
Chapter 12

Recognition of Multiple Speech Sources using
ICA

Eugen Hoffmann, Dorothea Kolossa and Reinhold Orglmeister

Abstract In meetings or noisy public places, often a number of speakers are ac-

tive simultaneously and the sources of interest need to be separated from interfering

speech in order to be robustly recognized. Independent component analysis (ICA)

has proven to be a valuable tool for this purpose. However, under difficult environ-

mental conditions, ICA outputs may still contain strong residual components of the

interfering speakers. In such cases, time-frequency masking can be applied to the

ICA outputs to reduce remaining interferences. In order to remain robust against

possible resulting artifacts and loss of information, treating the processed speech

feature vector as a random variable with time-varying uncertainty, rather than as de-

terministic, is a helpful strategy. This chapter shows the possibilities of improving

recognition of multiple speech signals based on nonlinear postprocessing, applied

together with uncertainty-based decoding techniques.

12.1 Introduction

In order for speech recognition to perform well in arbitrary, noisy environments,

it is of special importance to suppress interfering speech, which poses significant

problems for noise reduction algorithms due to the overlapping spectra and nonsta-

tionarity. In such cases, blind source separation can often be of great value, since it

is applicable for any set of signals that is at least statistically independent and non-

Gaussian, which is a fairly mild requirement. Blind source separation itself can,

however, profit significantly from an additional nonlinear postprocessing, in order

to suppress speech or noise which remains in the separated components. Such non-

linear postprocessing functions have been shown to result in SNR improvements in

excess of 10dB, e.g. in [40].
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However, while the results of source separation are greatly improved by nonlin-

ear postprocessing, speech recognition results often suffer from artifacts and loss in

information due to such postprocessing. In order to compensate for these losses and

artifacts and to obtain results exceeding those of ICA alone, we suggest the use of

uncertainty-of-observation techniques for the subsequent speech recognition. This

allows for the utilization of a feature uncertainty estimate, which can be derived

considering the suppressed components of target speech, and will be described in

more detail in Section 12.3. From such an uncertain description of the speech signal

in the spectrum domain, uncertainties need to be made available also in the feature

domain, in order to be used for recognition. This can be achieved by uncertainty

propagation, which converts an uncertain description of speech from the spectrum

domain, where ICA takes place, to the feature domain of speech recognition, as de-

scribed in Chapter 2. After this uncertainty propagation, recognition can take place

under observation uncertainty, using uncertainty-of-observation techniques.

The entire process is vitally dependent on the appropriate estimation of uncer-

tainties. Results given in Section 12.4.7 show that when the exact uncertainty in the

spectrum domain is known, recognition results with the suggested approach are far

in excess of those achievable by ICA alone. Also, a realistically computable un-

certainty estimate is given, and the experiments and results in Section 12.4 show

that with this practically available uncertainty measure, significant improvements of

recognition performance can be attained for noisy and reverberant room recordings.

The presented method is closely related to other works that consider observation

vectors as uncertain for decoding purposes, most often for noisy speech recogni-

tion [16, 18, 29, 32], but in some cases also for speech recognition in multi-talker

conditions, as for example [10, 41], or [47] in conjunction with speech segregation

via binary masking (see e.g. [9, 49]).

The main novelty in comparison with the above techniques is the use of inde-

pendent component analysis in conjunction with uncertainty estimation and with

a piecewise approach of transforming uncertainties to the feature domain of inter-

est. This allows for the suggested approach to combine the strengths of indepen-

dent component analysis and soft time-frequency masking, and to be still used with

a wide range of feature parameterizations. Corresponding results are shown here

for MFCC coefficients, but the discussed uncertainty transformation approach also

generalizes well to the ETSI advanced front end, as shown in [48], and has been

successfully used for time-frequency masking of ICA results in conjunction with

RASTA-PLP features as well in [6].

12.2 Blind Source Separation

Blind source separation (BSS) is a technique of recovering the source signals of

interest using only observed mixtures, when both the mixing parameters and the

sources are unknown. Due to a large number of applications, for example in medi-

cal and speech signal processing, BSS has gained great attention. In the following
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chapter, we will discuss the application of BSS for acoustic signals observed in

a real environment, i.e. convolutive mixtures of multiple speakers recorded under

mildly noisy and reverberant distant-talking conditions.

In recent years, this problem has been widely studied and a number of different

approaches have been proposed [1–3]. Many existing unmixing methods of acoustic

signals are based on Independent Component Analysis (ICA) in the frequency do-

main, where the convolutions of the source signals with the room impulse response

are reduced to multiplications with the corresponding transfer functions. So for each

frequency bin, an individual instantaneous ICA problem can be solved in order to

obtain the unmixed sources in the frequency domain [3].

Alternative methods include adaptive beamforming, which is closely related to

independent component analysis when information theoretic cost functions are ap-

plied [8], sparsity based methods that utilize amplitude-delay-histograms [9, 10], or

grouping cues typical of human stream segregation [11]. Here, independent compo-

nent analysis has been chosen due to its inherent robustness to noise and its ability

to handle strong reverberation by frequency-by-frequency optimization of the cost

function.

12.2.1 Problem Formulation

This section provides an introduction into the problem of blind separation of acous-

tic signals.

At first, a general situation will be considered. In a reverberant room, N acous-

tic signals s(t) = [s1(t), . . .sN(t)] are simultaneously present, where t represents the

discrete time index. The vector of the source signals s(t) is recorded with M mi-

crophones placed in the room, so that an observation vector x(t) = [x1(t), . . .xM(t)]
results. Due to the time delay and to the signal reflections, the resulting mixture

x(t) is a result of a convolution of the source signal vector s(t) with unknown fil-

ter matrices {a1 . . .aK} where ak is the k-th (k ∈ [1 . . .K] ) M×N matrix with filter

coefficients and K is the filter length1. This problem can be summarized by

x(t) =
K−1

∑
k=0

ak+1s(t − k)+n(t). (12.1)

The term n(t) denotes the additive sensor noise. Now the problem is to find filter

matrices {w1 . . .wK′} so that by applying them to the observation vector x(t) the

source signals can be estimated via

ŝ(t) = y(t) =
K′−1

∑
k′=0

wk′+1x(t − k′) (12.2)

1 In all following work, only the situation with M ≥ N is considered. For M < N, the so-called

underdetermined case, see e.g. [9].
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with K′ as the filter length. In other words, for the estimated vector y(t) and the

source vector s(t), y(t) ≈ s(t) should hold.

This problem is also known as cocktail-party-problem. A common way to deal

with the problem is to reduce it to a set of the instantaneous source separation prob-

lems, for which efficient approaches exist.

For this purpose, the time-domain observation vectors x(t) are transformed into a

frequency domain time series by means of the short time Fourier transform (STFT)

X(Ω ,τ) =
∞

∑
t=−∞

x(t)w(t − τR)e− jΩ t , (12.3)

where Ω is the angular frequency, τ represents the frame index, w(t) is a window

function (e.g., a Hanning window) of length NFFT, and R is the shift size, in sam-

ples, between successive windows [12]. Transforming Eq. (12.1) into the frequency

domain reduces the convolutions to multiplications with the corresponding transfer

functions, so that for each frequency bin an individual instantaneous problem

X(Ω ,τ) ≈ A(Ω)S(Ω ,τ)+N(Ω ,τ) (12.4)

arises. A(Ω) is the mixing matrix in the frequency domain, S(Ω ,τ) = [S1(Ω ,τ),
. . . ,SN(Ω ,τ)] represents the source signals, X(Ω ,τ) = [X1(Ω ,τ), . . . ,XM(Ω ,τ)],
denotes the observed signals, and N(Ω ,τ) is the frequency domain representation

of the additive sensor noise. In order to reconstruct the source signals, the unmixing

matrix W(Ω) ≈ A+(Ω) is derived2 using a complex-valued unmixing algorithm,

so that

Y(Ω ,τ) = W(Ω)X(Ω ,τ) (12.5)

can be used for obtaining estimated sources in the frequency domain. Here,

Y(Ω ,τ) = [Y1(Ω ,τ), . . . ,YN(Ω ,τ)] is the time frequency representation of the un-

mixed outputs.

12.2.2 ICA

Independent Component Analysis (ICA) is an approach that can help to find opti-

mal unmixing matrices W. The main idea is to obtain statistical independence of

the output signals, which is mathematically defined in terms of probability densi-

ties. The components of the vector Y are statistically independent if and only if the

joint probability distribution function fY(Y) is equal to the product of the marginal

distribution functions of each signal Yi

fY(Y) = ∏
i

fYi
(Yi). (12.6)

2 A+(Ω) denotes the pseudo inverse of A(Ω).



12 Recognition of Multiple Speech Sources using ICA 323

The process of finding the unmixing matrix W is now composed of two steps:

• the definition of a contrast function J (W), which is a quantitative measure of

the statistical independence of all components in Y and

• the minimization of J (W) so that

Ŵ
!
= argmin

W
J (W). (12.7)

At this point, the definition of the contrast function J (W) is the key for the

problem solution. For this purpose, it is possible to focus on different aspects of

statistical independence, which results in the large number of ICA algorithms that

have been proposed during the last decades [2]. The most common approaches use

one of the following characteristics of independent signals:

• The higher order cross statistic tensor of independent signals is diagonal, so

J (W) is defined as a sum of the off-diagonal elements of, e.g., the fourth

order cross cumulant (JADE algorithm [13]).

• Each independent component remains independent in time, so the cross corre-

lation matrix C(τ) = E[Y(t)Y(t + τ)T ] remains diagonal, i.e.

C(τ) =




RY1Y1
(τ) 0 · · · 0

0 RY2Y2
(τ) · · · 0

...
...

. . .
...

0 0 · · · RYNYN
(τ)


 (12.8)

for each τ (SOBI algorithm [14]).

• The mutual information I(X,g(Y)), with g(·) as a nonlinear function, achieves

its maximum when the components of Y are statistically independent. This as-

sumption leads to a solution

Ŵ
!
= argmax

W
H(g(Y)) (12.9)

where H(g(Y)) is the joint entropy of g(Y). This is known as the information

maximization approach [15].

• If the distributions of the independent components are non-Gaussian, the search

for maximal independence results in a search for maximal non-Gaussianity [17].

In this case, the negentropy

J (W) = H(YGauss)−H(Y) (12.10)

plays the role of the cost function, where YGauss is a vector valued Gaussian

random variable of the same mean and covariance matrix as Y.

The last assumption leads to an approach proposed by Hyvärinen et al. [17] also

known as the FastICA algorithm. The problem of this approach is the computation

of the negentropy. The calculation according to the Eq. (12.10) would require an
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estimate of the probability density functions in each iteration, which is computa-

tionally very costly. Therefore, the cost function J (W) is approximated using a

nonquadratic function G

J (W) ∝ (E [G(Y)]−E [G(YGauss)])
2 . (12.11)

Using the approximation of the negentropy from Eq. (12.11), the update rule for the

unmixing matrix W in the i-th iteration can be derived as [1]

W̃i =
〈
g(Y)XH

〉
−ΛWi−1 (12.12)

Wi =
(
W̃iW̃

T
i

)−1/2
W̃i (12.13)

where Λ is a diagonal matrix with λii = 〈g′(Yi)〉 and 〈·〉 denotes the mean value. As

for the function g(·), the derivative of the function G(·) from the Eq. (12.10) will be

chosen, so setting

G(x) = −exp

(
−|x|2

2

)
(12.14)

the function g(·) becomes

g(x) = xexp

(
−|x|2

2

)
(12.15)

and

g′(x) = (1− x2)exp

(
−|x|2

2

)
. (12.16)

Ideally, these approaches will result in independent output signals in each frequency

bin.

In order to obtain complete spectra of unmixed sources, it is additionally nec-

essary to correctly sort the outputs, since their ordering after solving instantaneous

ICA problems for each frequency is arbitrary and may vary from frequency bin to

frequency bin. This so-called permutation problem can be solved in a number of

ways and will be discussed in the following section.

12.2.3 Permutation Correction

Due to the principle of the ICA algorithms, it is highly unlikely to obtain a consistent

ordering of the recovered signals for different frequency bins. In case of frequency

domain source separation, this means that the ordering of the outputs may change

in each frequency bin. In order to obtain correctly estimated source signals in the
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time domain, however, all separated frequency bins have to be put in one consistent

order. This problem is also known as the permutation problem.

There exist several classes of algorithms giving a solution for the permutation

problem. Approaches presented in [4], [19], and [20] try to correct permutations

by considering the cross statistics (such as cross correlation or cross cumulants)

of the spectral envelopes of adjacent frequency bins. In [21], algorithms were pro-

posed that make use of the spectral distance between neighboring bins and try to

make the impulse response of the mixing filters short, which corresponds to smooth

transfer functions of the mixing system in the frequency domain. The algorithm

proposed by Kamata et al. [22] solves the problem using the continuity in power

between adjacent frequency components of the same source. A similar method was

presented by Pham et al. [23]. Baumann et al. [24] proposed a solution which works

by comparing the directivity patterns resulting from the estimated demixing matrix

in each frequency bin. Similar algorithms were presented in [25], [26] and [27].

In [28], it was suggested to use the direction of arrival (DOA) of source signals im-

plicitly estimated by the ICA unmixing matrices W for the problem solution. The

approach in [30] exploits the continuity of the frequency response of the mixing

filter. A similar approach was presented in [31] using the minimum of the L2-norm

of the resulting mixing filter and in [33] using the minimum distance between the

filter coefficients of adjacent frequency bins. In [34], the authors suggest to use the

cosine between the demixing coefficients of different frequencies as a cost func-

tion for the problem solution. Sawada et al. [35] proposed an approach using basis

vector clustering of the normalized estimated mixing matrices. In [36] the permu-

tation problem was solved using a maximum-likelihood-ratio criterion between the

adjacent frequency bins.

However, with a growing number of independent components, the complexity of

the solution grows. This is true not only because of the factorial increase of permuta-

tions to be considered, but also because of the degradation of the ICA performance.

Therefore, not all of the approaches mentioned above perform equally well for an

increasing number of sources.

In all following work, permutations have been corrected by maximizing the

likelihood-ratio criterion described in [36]. The correction algorithm from [36] was

expanded for the case of more than two extracted channels. In order to solve the

permutation problem, for each frequency bin a correction matrix P̂(Ω)

P̂(Ω)
!
= arg min

k=1...K
∏

i, j∈
{

Pk
i j(Ω)=1

}
γi j(Ω) (12.17)

has to be found, where Pk(Ω) is the k-th among K possible permutation matrices,

the parameter γi j(Ω) is

γi j(Ω) =
1

T
∑
τ

|Yi(Ω ,τ)|
β j(τ)

(12.18)

and
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β j(τ) =
1

N
∑
Ω

∣∣Yj(Ω ,τ)
∣∣ . (12.19)

In this case, β j(τ) is a scaling parameter of the signal envelope. β j(τ) allows to

consider the scaling of signals in permutation correction, so that the likelihood of an

unmixed source at a given frequency will be weighted with the averaged magnitude

of the current frame.

12.2.4 Postmasking

Even after source separation, in the majority of real-world cases, the extracted in-

dependent components are still corrupted by residual noise and interference, es-

pecially in reverberant environments. The residual disturbances are assumed to be

a superposition of the other independent components and the background noise.

Therefore, the quality of the recovered source signals often leaves room for im-

provement, which can be attained in a wide range of scenarios by applying a soft

time-frequency-mask to the ICA outputs. While an ideal post processing function is

impossible to obtain realistically, approximations to it are already advantageous. As

one such approximation, mask estimation based on ICA results has been proposed

and shown to be successful, both for binary and soft masks, see e.g. [35, 37, 40].

In this section, a brief review of four types of time-frequency masking algo-

rithms, namely

• amplitude-based masks

• phase-based masks

• interference-based masks and

• a two stage noise suppression algorithm based masks

will be given. The data flow of the whole application is shown in Figure 12.1.

Missing Data

HMM Speech

Recognition

X(Ω,τ)

MFCC-Domain
Time- Frequency-Domain

Uncertainty

Propagation

Time-

Freq.-

Mask

Y(Ω,τ)
ICA

S(Ω,τ)

σ(Ω,τ)

s(c,τ)

σ(c,τ)

Fig. 12.1: Block diagram with data flow.
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12.2.4.1 Amplitude based mask estimation

The time-frequency mask is calculated by comparing the local amplitude ratios be-

tween the output signal Yi(Ω ,τ) and all other Yj(Ω ,τ). With an additional sigmoid

transition point T , the mask can be used to block all time-frequency components

of Yi which are not at least T dB above all other estimated sources in that time-

frequency point. This corresponds to computing [37]

Mi(Ω ,τ) = Ψ

(
log
(
|Yi(Ω ,τ)|2

)
−max

∀ j 6=i
log
(∣∣Yj(Ω ,τ)

∣∣2
)
− T

10

)
(12.20)

and applying a sigmoid nonlinearity Ψ defined by

Ψ(x) =
1

1+ exp(−x)
. (12.21)

An example of the resulting masks is shown in Fig. 12.2.
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Fig. 12.2: Effect of Amplitude Mask for the case of M = N = 2. The spectrograms of 1) the

output signals Y1(Ω ,τ) and Y2(Ω ,τ) obtained only with ICA (left column), 2) the estimated masks

M1(Ω ,τ) and M2(Ω ,τ) (middle column), and 3) the output signals Ŝ1(Ω ,τ) and Ŝ2(Ω ,τ) obtained

by a combination of ICA and T-F masking calculated with Eq. (12.20).
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12.2.4.2 Phase angle based mask estimation

The source separation performance of ICA can also be seen from a beamforming

perspective. When the unmixing filters learned by ICA are viewed as frequency-

variant beamformers, it can be shown that successful ICA effectively places zeros

in the directions of all interfering sources [39]. Therefore, the zero directions of

the unmixing filters should be indicative of all source directions. Thus, when the

local direction of arrival (DOA) is estimated from the phase of any one given time-

frequency bin, this should give an indication of the dominant source in this bin. This

is the principle underlying phase-based time-frequency masking strategies.

Phase-based post-masking of ICA outputs was introduced in [35]. This method

considers closeness of the phase angle ϑi(Ω ,τ) between a column of the mixing

matrix ai(Ω) and the observed signal X(Ω ,τ) calculated in the whitened space,

with V(Ω) = R−1/2(Ω) as the whitening matrix that is obtained from the signal

autocorrelation R(Ω) =
〈
X(Ω ,τ)X(Ω ,τ)H

〉
. H denotes the conjugate or Hermitian

transpose. The phase angle is given by

ϑi(Ω ,τ) = arccos

∣∣bH
i (Ω)Z(Ω ,τ)

∣∣
‖bi(Ω)‖‖Z(Ω ,τ)‖ , (12.22)

where Z(Ω ,τ) = V(Ω)X(Ω ,τ) are whitened samples and bi(Ω) = V(Ω)ai(Ω) is

the basis vector i in the whitened space. Then the mask is calculated by

Mi(Ω ,τ) =
1

1+ exp(g(ϑi(Ω ,τ)−ϑT ))
(12.23)

where ϑT and g are parameters specifying the sigmoid transition point and steep-

ness, respectively. Figure 12.3 shows exemplary results.

12.2.4.3 Interference based mask estimation

Interference based mask estimation is introduced in detail in [40]. The main idea is

to detect the time-frequency points in the separated signals, where the source signal

and the interference are dominant, assuming them to be sparse in the time-frequency

domain. The mask is estimated by

Mi(Ω ,τ) =
1

1+ exp(g(S̃i(Ω ,τ)−λs))
×
(

1− 1

1+ exp(g(Ñi(Ω ,τ)−λn))

)

(12.24)

where λs,λn and g are parameters specifying the threshold points and the steepness

of the sigmoid function and S̃i(Ω ,τ) and Ñi(Ω ,τ) are speech and noise dominance

measures given by

S̃i(Ω ,τ,RΩ ,Rτ) =

∥∥Φ(Ω ,τ,RΩ ,Rτ)(Yi(Ω ,τ)−∑m6=i Ym(Ω ,τ))
∥∥

∥∥Φ(Ω ,τ,RΩ ,Rτ)∑m6=i Ym(Ω ,τ)
∥∥ (12.25)
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Fig. 12.3: Effect of Phase Mask for the case of M = N = 2. The spectrograms of 1) the out-

put signals Y1(Ω ,τ) and Y2(Ω ,τ) obtained only with ICA (left column), 2) the estimated masks

M1(Ω ,τ) and M2(Ω ,τ) (middle column), and 3) the output signals Ŝ1(Ω ,τ) and Ŝ2(Ω ,τ) obtained

by a combination of ICA and T-F masking calculated with Eq. (12.23).

and

Ñi(Ω ,τ,RΩ ,Rτ) =

∥∥Φ(Ω ,τ,RΩ ,Rτ)(Yi(Ω ,τ)−∑m6=i Ym(Ω ,τ))
∥∥

‖Φ(Ω ,τ,RΩ ,Rτ)Yi(Ω ,τ)‖ . (12.26)

Here, ‖·‖ denotes the Euclidean norm operator and

Φ(Ω ,τ,RΩ ,Rτ) =





W (Ω −Ω0,τ − τ0,RΩ ,Rτ), |Ω −Ω0| ≤ RΩ ,
|τ − τ0| ≤ Rτ

0, otherwise

(12.27)

utilizes a two dimensional window function W (Ω −Ω0,τ − τ0,RΩ ,Rτ) of the size

RΩ ×Rτ (e.g. a two dimensional Hanning window) [40]. This mask tends to result in

a very strong suppression of interferences, as can be already gleaned from its visual

impression in Fig. 12.4.
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Fig. 12.4: Effect of Interference Mask for the case of M = N = 2. The spectrograms of 1) the

output signals Y1(Ω ,τ) and Y2(Ω ,τ) obtained only with ICA (left column), 2) the estimated masks

M1(Ω ,τ) and M2(Ω ,τ) (middle column), and 3) the output signals Ŝ1(Ω ,τ) and Ŝ2(Ω ,τ) obtained

by a combination of ICA and T-F masking calculated with Eq. (12.24).

12.2.4.4 Two stage noise suppression

As an alternative criterion for masking, residual interference in the signal may be

estimated and the mask may be computed as an MMSE estimator of the clean signal.

For this purpose, the following signal model is assumed

Y(Ω ,τ) = S(Ω ,τ)+N(Ω ,τ), (12.28)

where the clean signal S(Ω ,τ) is corrupted by a noise component N(Ω ,τ), the

remaining sum of the interfering signals and the background noise. The estimated

clean signals are obtained by

Ŝ(Ω ,τ) = MSE(Ω ,τ)Y(Ω ,τ), (12.29)

where MSE(Ω ,τ) is the amplitude estimator gain. For the calculation of the gain

MSE(Ω ,τ) in Eq. (12.34), different speech enhancement algorithms can be used.

In [42] the method by McAulay and Malpass [43] has been used. In the following,
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we use the log spectral amplitude estimator (LSA) as proposed by Ephraim and

Malah [38].

In case of the LSA estimator, first the a posteriori SNR γi(Ω ,τ) and the a priori

SNR ξi(Ω ,τ) are defined by

γi(Ω ,τ) =
|Yi(Ω ,τ)|2
λD,i(Ω ,τ)

(12.30)

and

ξi(Ω ,τ) = αξi(Ω ,τ −1)+(1−α)
λX ,i(Ω ,τ)

λD,i(Ω ,τ)
, (12.31)

where α is a smoothing parameter that controls the trade-off between the noise re-

duction and the transient distortions [45], Yi(Ω ,τ) is the i-th ICA-output, λD,i(Ω ,τ)
is the noise power and λX ,i(Ω ,τ) is the approximate clean signal power. With these

parameters, the log spectral amplitude estimator is given by:

MSE(Ω ,τ) =
ξ (Ω ,τ)

1+ξ (Ω ,τ)
exp

(∫ ∞

t=ν(Ω ,τ)

e−t

t
dt

)
(12.32)

and

ν(Ω ,τ) =

(
ξ (Ω ,τ)

1+ξ (Ω ,τ)

)
γ(Ω ,τ) (12.33)

with ξ (Ω ,τ) denoting the local a priori SNR.

According to [44], this approach can be generalized by using additional informa-

tion for calculation of speech presence probabilities. The speech presence probabil-

ity p(Ω ,τ) can then be used to modify the spectral gain function

M(Ω ,τ) = MSE(Ω ,τ)p(Ω ,τ)G
(1−p(Ω ,τ))
min , (12.34)

where Gmin is a spectral floor constant [44, 45]. Since the probability functions are

not known, the masks from Sections 12.2.4.1-12.2.4.3 can be used at this point as

an approximation. Considering p(Ω ,τ) = M(Ω ,τ) from Eq. (12.24) as the approx-

imate speech presence probability, we estimate the noise power λD,i(Ω ,τ) as

λD,i(Ω ,τ) = pi(Ω ,τ)λD,i(Ω ,τ −1)

+(1− pi(Ω ,τ))
[
αDλD,i(Ω ,τ −1)+(1−αD) |Yi(Ω ,τ)|2

]
(12.35)

with αD as as a smoothing parameter and the approximate clean signal power

λX ,i(Ω ,τ) as

λX ,i(Ω ,τ) = (|Yi(Ω ,τ)| pi(Ω ,τ))2 . (12.36)

The effect of the two-stage mask is again a strong interference suppression, how-

ever, the spectral distortion is reduced compared to that of the interference mask.

This can also be observed from the associated spectrographic representation in

Fig. 12.5.
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Fig. 12.5: Effect of 2-stage noise suppression for the case of M = N = 2. The spectrograms of 1)

the output signals Y1(Ω ,τ) and Y2(Ω ,τ) obtained only with ICA (left column), 2) the estimated

masks M1(Ω ,τ) and M2(Ω ,τ) (middle column), and 3) the output signals Ŝ1(Ω ,τ) and Ŝ2(Ω ,τ)
obtained by a combination of ICA and T-F masking calculated with Eq. (12.34).

12.3 Uncertainty Estimation

Because of the use of time-frequency masking, a part of the information of the

original signal is often eliminated along with the interfering sources. To compensate

for this lack of information, each masked estimated source is considered as uncertain

and described in the form of a posterior distribution of each Fourier coefficient of

the clean signal Sk(Ω ,τ) given the available information, as described in more detail

e.g. in [6].

Estimating the uncertainty in the spectrum domain has clear advantages, when

contrasted with uncertainty estimation in the domain of speech recognition, since

much intermediate information about the signal and noise process as well as the

mask is known in this phase of signal processing, but is generally not available in

the further steps of feature extraction. This has motivated a number of studies on

spectrum domain uncertainty estimation, most recently for example [47] and [48].

In contrast to other methods, the suggested strategy possesses two advantages: It

does not need a detailed spectrum domain speech prior, which may require a large
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number of components or may incur the need for adaptation to the speaker and

environment; and it gives a computationally very inexpensive approximation that is

applicable for both binary and soft masks.

The model used here for this purpose is the complex Gaussian uncertainty model

[50]

p(Sk(Ω ,τ)|Ŝk(Ω ,τ)) =
1

πσ2(Ω ,τ)
exp

(
−|Sk(Ω ,τ)− Ŝk(Ω ,τ)|2

σ2(Ω ,τ)

)
, (12.37)

where the mean is set equal to the Fourier coefficient obtained from post-masking

Ŝk(Ω ,τ) and the variance σ2(Ω ,τ) represents the lack of information, or uncer-

tainty. In order to determine σ2, two alternative procedures were used.

12.3.1 Ideal Uncertainties

Ideal uncertainties describe the squared difference between the true and the esti-

mated signal magnitude. They are computed by

σ2
T =

∣∣∣|Sk(Ω ,τ)|− |Ŝk(Ω ,τ)|
∣∣∣
2

, (12.38)

where Sk is the reference signal. However, these ideal uncertainties are available

only in experiments where a reference signal has been recorded. Thus, the ideal

results may only serve as a perspective of what the suggested method would be

capable of if a very high quality error estimate were already available.

12.3.2 Masking Error Estimate

In practice, it is necessary to approximate the ideal uncertainty estimate using values

that are actually available. Since much of the estimation error is due to the time-

frequency mask, in further experiments such a masking error was used as the single

basis of the uncertainty measure.

This uncertainty due to masking can be computed by

σ2
E = α

∣∣|Ŝk(Ω ,τ)|− |Yk(Ω ,τ)|
∣∣2 . (12.39)

If α = 1, this error estimate would assume that the time-frequency mask leads

to missing signal information with 100% certainty. The value should be lower to

reflect the fact that some of the masked time-frequency bins contain no target speech

information at all. To obtain the most suitable value for α , the following expression

was minimized
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α = argmin
α̃

(σE(α̃)−σT )2. (12.40)

In order to avoid adapting parameters to each of the test signals and masks, this

minimization was carried out only once and only for a mixture not used in testing,

at which point stereo data was also necessary in order to compute σT according to

(12.38). After averaging over all mask types, the same value of α was used in all

experiments and for all datasets. This optimal value was α = 0.71.

12.3.3 Uncertainty Propagation

Once the clean speech features and their uncertainties have been estimated in the

STFT domain, the uncertain features need to be made available in that feature do-

main where speech recognition takes place. In all subsequent experiments and re-

sults, this ASR feature domain was the mel-frequency cepstrum.

Therefore, after uncertainty estimation, an additional step of uncertainty prop-

agation was necessary, as it is also shown in Fig. 12.1. For this purpose, the esti-

mated speech signal Ŝk(Ω ,τ) and its variance σ2(Ω ,τ) are interpreted as mean and

variance of a complex Gaussian distributed random variable. Then, the effect that

subsequent MFCC feature extraction stages have on these random variables can be

determined. This uncertainty propagation was carried out as described in detail in

Chapter 3, and its outputs are the approximate mean and variance of the uncertain

speech features, after they have been nonlinearly transformed to the mel-frequency

cepstrum domain.

12.4 Experiments and Results

12.4.1 Recording Conditions

For the evaluation of the proposed approaches, different real room recordings were

used. In these recordings, audio files from the TIDigits database [46] were used and

mixtures with up to 3 speakers were recorded in a mildly reverberant (TR ≈ 160

ms) and noisy lab room at TU Berlin. The distances Li between loudspeakers and

microphones were varied between 0.9 and 3 m.

The setup is shown schematically in Figure 12.6 and the experimental conditions

are summarized in Table 12.1.
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Fig. 12.6: Experimental setup used in recording of mixtures. The distance d between adjacent

microphones was 3cm for all recordings.

Table 12.1: Mixture description.

Mixture Mix. 1 Mix. 2 Mix. 3 Mix. 4 Mix. 5

Number of speakers N 2 3 2 2 3

Number of microphones M 2 3 2 2 3

Speaker Codes ar,ed pg,ed,cp fm,pg cp,ed fm,ga,ed

Distance between L1 = L2 = L1 = L2 = L1 = 1.0 m L1 = L2 = L1 = L2 =

speaker i and array center 2.0 m L3 = 0.9 m L2 = 3.0 m 0.9 m L3 = 0.9 m

Angular position θ1 = 75◦ θ1 = 30◦ θ1 = 50◦ θ1 = 50◦ θ1 = 40◦

of the speaker i θ2 = 165◦ θ2 = 80◦ θ2 = 100◦ θ2 = 115◦ θ2 = 60◦

(as shown in Fig. 12.6) θ3 = 135◦ θ3 = 105◦

12.4.2 Parameter Settings

The algorithms were tested on the room recordings, which were first transformed

to the frequency domain at a resolution of NFFT = 1024. For calculating the STFT,

the signals were divided into overlapping frames using a Hanning window with an

overlap of 3/4 ·NFFT. For the BSS, the FastICA algorithm (Eq. (12.12)-(12.13)) with

the nonlinearity g(·) from Eq. (12.15) and g′(·) from Eq. (12.16) was used.

The parameter settings for the different evaluated time-frequency masks are sum-

marized in Table 12.2.
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Table 12.2: Parameter Settings.

Algorithm Settings

Amplitude based T = 0 dB

mask

Phase angle ϑT = 0.3 ·π
based mask g = 50

Interference based λs = 1.3

mask λn = 1.3

g = 20

Two stage α = 0.7

noise suppression αD = 0.3

Gmin = 0.1

12.4.3 Performance Measures

For determining of the performance of ICA and time-frequency masking, the signal

to interference ratio (SIR) was used as a measure of the separation performance

and the signal to distortion ratio (SDR) as a measure of the signal quality. The SIR

improvement ∆SIR is obtained from

∆SIRi = 10log10

∑n y2
i,si

(n)

∑ j 6=i ∑n y2
i,s j

(n)
−10log10

∑n x2
i,si

(n)

∑ j 6=i ∑n x2
i,s j

(n)
, (12.41)

and the SDR is computed by

SDRi = 10log10

∑n x2
k,si

(n)

∑n(xk,si
(n)−αyi,si

(n−D))2
, (12.42)

where yi,s j
is the i-th separated signal with only the source signal s j active, and xk,s j

is the observation obtained by microphone k, again when only s j is active. α and D

are parameters for phase and amplitude which are chosen automatically to optimally

compensate the difference between yi,s j
and xk,s j

.

12.4.4 Separation Results

All the mixtures from Table 12.1 were separated with the FastICA algorithm and

subsequently the time frequency masking from Sections 12.2.4.1-12.2.4.4 was per-

formed using parameter settings as shown in Section 12.4.2. For each result, the

performance was calculated using Eq. ((12.41))-((12.42)). Table 12.3 shows the re-

sults of the applied methods.

As can be seen in Table 12.3, the best SIR improvements were achieved by the

two stage approach. Still, the results of all time-frequency masks depend on the
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performance of the preceding BSS algorithm, which in turn depends on the exper-

imental setup. As can be seen, the best BSS results were generally achieved when

the microphones were placed near the source signals. Thus, given a low ICA perfor-

mance for large microphone distances (in terms of SIR and SDR), a stronger signal

distortion should be expected from subsequent masking as well. Furthermore, the

higher the SIR improvement gained with a time-frequency mask, the lower the SDR

value tends to become. The consequence of this for speech recognition will be dis-

cussed further in Section 12.4.7.

Table 12.3: Experimental results (mean value of output ∆SIR/SDR in dB).

Scenario none Amplitude Phase Interference 2-stage

Mix. 1 3.48 / 5.13 6.35 / 3.98 4.93 / 4.38 8.43 / 2.48 8.57 / 2.84

Mix. 2 9.06 / 4.23 11.99 / 4.10 13.76 / 3.86 16.88 / 2.68 17.25 / 2.87

Mix. 3 6.14 / 6.33 11.20 / 5.39 9.11 / 5.88 14.11 / 3.78 14.14 / 4.14

Mix. 4 8.24 / 8.68 14.56 / 7.45 11.32 / 7.91 19.04 / 4.88 18.89 / 5.33

Mix. 5 3.93 / 2.92 5.24 / 2.41 6.70 / 2.66 9.31 / 0.84 9.55 / 1.11

12.4.5 Model Training

The HMM speech recognizer was trained with the HTK toolkit [51]. The HMMs

were trained at the phoneme-level with 6-component mixture-of-Gaussian emitting

probabilities and a conventional left-right structure. The training data was mixed and

it comprised the 114 speakers of the TI-DIGITS clean speech database along with

the room recordings for speakers sa and rk used for adaptation. The speakers that

had been used for adaptation were removed from the test set. The features were Mel-

Frequency Cepstral Coefficients with deltas and accelerations, which were postpro-

cessed with cepstral mean subtraction (CMS) for further reduction of convolutive

effects.

12.4.6 Recognition of Uncertain Data

In the following experiments, the clean cepstrum domain speech features sk(c,τ)
are assumed to be unavailable, with only an estimate ŝk(c,τ) and its associated un-

certainty or variance σ2(c,τ) as the available data according to Fig. 12.1.

In the recognition tests, we compare three strategies to deal with this uncertainty.

• All estimated features ŝk(c,τ) are treated as reliable observations and recog-

nized by conventional likelihood evaluation. This is labeled by no Uncertainty

in all following tables.
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• Uncertainty decoding is used, as described in [16]. This will be labeled by Un-

certainty Decoding (UD).

• Modified imputation according to [41] is employed, which will be denoted by

Modified Imputation (MI).

The implementation that was used for the experiments with both considered

uncertainty-of-observation techniques is also described in more detail in Chapter

13 of this book.

12.4.7 Recognition Results

Table 12.4 shows the baseline result, attained after some adaptation to the reverber-

ant room environment, as well as the word error rate on the noisy mixtures and on

the ICA output signals. Here, the word error rate is computed via

WER = 100
D+S + I

N
, (12.43)

with D as the number of deletions, S as the substitutions, I as the insertions, and

N as the number of reference output tokens, and error rates are computed over all 5

scenarios.

Table 12.4: Word error rate (WER) for reverberant data, noisy mixtures and ICA results.

reverberant data mixtures ICA output

WER 9.28 72.55 26.34

The recognition results in Table 12.5 and 12.7 are achieved with true squared

errors used as uncertainties. As it can be seen here, all considered masks lead to a

greatly reduced average word error rate under these conditions. However, since only

uncertainties estimated from the actual signal should be considered, Tables 12.6 and

12.8 show the error rate reductions that can easily be attained in practice by setting

the uncertainty to a realistically available estimate as described in Section 12.3.2.

In each of the tables, the numbers in parentheses give the word error rate re-

duction, relative to that of the ICA outputs, which are achieved by including time-

frequency masking with observation uncertainties.

It is visible from the results that modified imputation clearly tends to give the best

results for true uncertainties, whereas uncertainty decoding is the superior strategy

for the estimated uncertainty that was tested here. This is indicative of a high sensi-

tivity of modified imputation to uncertainty estimation errors.

However, since a good uncertainty estimation is vital in any case for optimal per-

formance of uncertain feature recognition, it will be interesting to further compare

the performance of both uncertainty-of-observation techniques in conjunction with
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Table 12.5: Word error rate (WER) for true squared error used as uncertainty. The relative error

rate reduction in percent is given in parentheses.

none 2-stage Phase Amplitude Interference

Mixtures 72.55 n.a. n.a. n.a. n.a.

ICA, no Uncertainty 26.34 55.53 91.79 29.91 96.92

Modified Imputation n.a. 11.48 (56.4) 13.84 (47.5) 16.42 (37.7) 16.80 (36.2)

Uncertainty Decoding n.a. 12.35 (53.1) 18.59 (29.4) 16.50 (37.4) 22.20 (15.7)

Table 12.6: Word error rate (WER) for estimated uncertainty. The relative error rate reduction in

percent is given in parentheses.

none 2-stage Phase Amplitude Interference

ICA, no Uncertainty 26.34 55.53 91.79 29.91 96.92

Modified Imputation n.a. 24.78 (5.9) 20.87 (20.8) 26.53 (-0.01) 23.22 (11.9)

Uncertainty Decoding n.a. 20.79 (21.1) 19.95 (24.3) 23.41 (11.1) 21.55 (18.2)

more precise uncertainty estimation techniques, which are an important target for

future work.

As for mask performance, the lowest word error rate with estimated uncertainty

values is quite clearly achieved for the phase masking strategy. This corresponds

well to the high SDR that has been achieved with this strategy in Table 12.3.

On the other hand, the lowest word error rate for ideal uncertainties is almost

always reached using the two-stage mask. Again, it is possible to draw a conclu-

sion from comparing with Table 12.3, which now shows that best performance is

apparently possible when the largest interference suppression is reached, i.e. when

the ∆SIR takes on its largest values.

Also, a more detailed analysis of results is provided in Tables 12.7 and 12.8,

which each show the word error rates separately for each mixture recording. Here, it

can be seen how the quality of source separation influences the overall performance

gained from the suggested approach. For the lower quality separation observable in

mixtures #1 and #5, the relative performance gains are clearly lower than average,

especially for estimated uncertainties. In contrast, the mean performance improve-

ment for the best separated mixtures #2 and #4 is 36.9% for estimated uncertainties

with uncertainty decoding and phase masking, and 61.6% for true squared errors

with uncertainty decoding and the 2-stage mask.

A special case is presented by mixture #3. Here, the separation results are com-

paratively good, however, due to the large microphone distance of 3m, the recogni-

tion performance is not ideal. Thus, the rather small performance improvement for

estimated uncertainties in this case can also be understood from the fact that much

of the recognition error is likely due to mismatched conditions, and hence cannot be

expected to be overly influenced by uncertainties derived only from the value of the

time-frequency mask.
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Table 12.7: Detailed results (WER) for true squared error used as uncertainty.

Algorithm none Amplitude Phase Interference 2-stage

Mix. 1

no Unc. 31.54 34.65 92.12 96.89 53.73

MI 21.16 13.90 18.26 15.77

UD 22.20 20.54 22.61 17.84

Mix. 2

no Unc. 18.38 18.86 94.45 96.83 48.65

MI 11.57 9.35 11.25 8.87

UD 11.89 10.78 15.21 7.45

Mix. 3

no Unc. 29.93 33.67 88.03 96.76 52.62

MI 18.45 17.71 21.45 12.22

UD 16.21 23.94 25.94 14.71

Mix. 4

no Unc. 14.73 22.86 90.77 97.14 55.60

MI 10.99 9.01 9.45 6.37

UD 9.89 10.33 13.85 5.27

Mix. 5

no Unc. 35.95 39.58 91.99 96.98 65.11

MI 20.09 19.03 23.26 13.90

UD 21.45 27.04 32.02 16.47

12.5 Conclusions

We have discussed the application of ICA for the recognition of multiple, overlap-

ping speech signals, which have been recorded with distant talking microphones in

noisy and mildly reverberant environments. Independent component analysis can

segregate these multiple sources also in such realistic environments, and can thus

lead to significantly improved robustness of automatic speech recognition.

In order to gain more performance even when the ICA outputs still contain resid-

ual interferences, the use of time-frequency masking has proved beneficial. How-

ever, it improves results only in conjunction with uncertainty-of-observation tech-

niques, in which case, a further 24% relative reduction of word error rate has been

shown possible, on average, for datasets with 2 or 3 simultaneously active speakers.

Even greater error rate reductions, about 39% when averaged over all tested time-

frequency masks and decoding strategies, have been achieved for ideal uncertainties,

i.e. when the true squared estimation error is utilized as the feature uncertainty.

This indicates the need for further work on reliable uncertainty estimation as a step

for greater robustness with respect to highly instationary noise and interferences.

This should also include an automatized parameter adaptation for the uncertainty

compensation, e.g. via an EM-style unsupervised adaptation.

Another important target for further work is the source separation itself. As

the presented experimental results have shown, overall performance both of time-

frequency masking and of subsequent uncertain recognition depends strongly on
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Table 12.8: Detailed results (WER) for estimated uncertainty.

Algorithm none Amplitude Phase Interference 2-stage

Mix. 1

no Unc. 31.54 34.65 92.12 96.89 53.73

MI 32.99 24.90 27.80 29.25

UD 27.59 23.86 24.48 24.07

Mix. 2

no Unc. 18.38 18.86 94.45 96.83 48.65

MI 19.81 14.58 16.32 18.70

UD 16.16 11.89 13.79 12.36

Mix. 3

no Unc. 29.93 33.67 88.03 96.76 52.62

MI 32.92 24.19 32.67 35.91

UD 27.68 26.18 27.93 27.68

Mix. 4

no Unc. 14.73 22.86 90.77 97.14 55.60

MI 15.16 11.21 11.21 11.87

UD 12.75 9.01 10.55 9.45

Mix. 5

no Unc. 35.95 39.58 91.99 96.98 65.11

MI 32.18 28.55 29.00 29.46

UD 32.02 28.55 30.51 30.06

the quality of preliminary source separation by ICA. Thus, more successful source

separation in strongly reverberant environments would be of great significance for

attaining the best overall results from the suggested approach.
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