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Abstract

In this paper, we consider binary response models with linear quantile restrictions. Consid-

erably generalizing previous research on this topic, our analysis focuses on an infinite collection

of quantile estimators. We derive a uniform linearization for the properly standardized empir-

ical quantile process and discover some surprising differences with the setting of continuously

observed responses. Moreover, we show that considering quantile processes provides an effective

way of estimating binary choice probabilities without restrictive assumptions on the form of

the link function, heteroskedasticity or the need for high dimensional non-parametric smooth-

ing necessary for approaches available so far. A uniform linear representation and results on

asymptotic normality are provided, and the connection to rearrangements is discussed.

1 Introduction

In various situations in daily life, individuals are faced with making a decision that can be described

by a binary variable. Examples relevant to various fields of economics include the decision to

participate in the labour market, to retire, to make a major purchase. From an econometric point

of view, such decisions can be modelled by a binary response variable Y = I{Y ∗ ≥ 0} that depends

on an unobserved continuous random variable Y ∗ which summarizes an individuals preferences. In

the presence of covariates, say W , a natural question is: what can we infer about the distribution

of the unobserved variable Y ∗ conditional on W from observations of i.i.d. replicates of (Y,W ).

In a seminal paper, Manski (1975) assumed that Y ∗ = W Tβ + ε where the ’error’ ε satisfies the

conditional median restriction P (ε ≤ 0|W = w) = 0.5 and derived conditions on the distribution

of (ε,W ) that imply identifiability of the coefficient vector β up to scale. In later work, Manski

(1985) extended those results to general quantile restrictions of the form P (ε ≤ 0|W = w) = τ for

fixed τ ∈ (0, 1). A more detailed discussion of identification issues was provided in Manski (1988).

Due to their importance in understanding binary decisions, binary choice models have ever since
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aroused a lot of interest and many estimation procedures have been proposed [see Cosslett (1983),

Horowitz (1992), Powell et al. (1989), Ichimura (1993), Klein and Spady (1993), Coppejans (2001),

Kordas (2006) and Khan (2013) to name just a few].

A particularly challenging part of analysing binary response models lies in understanding the

stochastic properties of corresponding estimation procedures. The asymptotic distribution of Man-

ski’s estimator was derived in Kim and Pollard (1990) under fairly general conditions, while a

non-standard case was considered in Portnoy (1998). In particular, Kim and Pollard (1990) demon-

strated that the convergence rate is n−1/3 and that the limiting distribution is non-Gaussian. A

different approach based on non-parametric smoothing that avoids some of the difficulties encoun-

tered by Manski’s estimator was taken by Horowitz (1992). By smoothing the objective function,

Horowitz (1992) obtained both better rates of convergence and a normal limiting distribution.

However, note that the smoothness conditions on the underlying model are stronger than those of

Kim and Pollard (1990).

The approaches of Manski and Horowitz have in common that only estimators for the coefficient

vector β are provided. While those coefficients are of interest and can provide valuable structural

information, their interpretation can be quite difficult since the scale of β is not identifiable from

the observations. On the other hand, the ’binary choice probabilities’ pw := P (Y = 1|W = w)

provide a much simpler and more straightforward interpretation.

Most of the available methods for estimating binary choice probabilities are of two basic types. The

first and more thoroughly studied approach is to assume a model of the form Y ∗
i = W T

i β+εi where

the εi are assumed to be either independent of Xi [see Cosslett (1983) and Coppejans (2001)],

or admit a very special kind of heteroskedasticity [Klein and Spady (1993)]. Another popular

approach has been to embed the problem into general estimation of single index models, see for

example Powell et al. (1989) or Ichimura (1993). Here, it is again necessary to assume independence

between ε and the covariate W .

While in the settings described above it is possible to obtain parametric rates of convergence for

the coefficient vector β and also construct estimators for choice probabilities, in many cases the

assumptions on the underlying model structure seem too restrictive.

An alternative approach allowing for general forms of heteroskedasticity was recently investigated

by Khan (2013), who proved that under general smoothness conditions any binary response model

with Y ∗
i = W T

i β + εi is observationally equivalent to a Probit/Logit model with multiplicative

heteroskedasticity, that is a model where εi = σ0(Wi)Ui with Ui independent of Wi and general

scale function σ0. Khan (2013) also proposed to simultaneously estimate β and the function σ0

by a semi-parametric sieve approach. The resulting model allows one to obtain an estimator of

the binary choice probabilities. While this idea is extremely interesting, it effectively requires

estimation of a d-dimensional function in a non-parametric fashion. For the purpose of estimating

β, the function σ0 can be viewed as nuisance parameter and its estimation does not have an impact

on the rate at which β is estimable. However, the binary choice probabilities explicitly depend on

σ0 and can thus only be estimated at the corresponding d-dimensional non-parametric rate. In

settings where d is moderately large this can be quite problematic.

In the classical setting where responses are observed completely, linear quantile regression models

[see Koenker and Bassett (1978)] have proved useful in providing a model that can incorporate gen-
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eral forms heteroskedasticity and at the same time avoid non-parametric smoothing. In particular,

by looking at a collection of quantile coefficients indexed by the quantile level τ it is possible to

obtain a broad picture of the conditional distribution of the response given the covariates. The aim

of the present paper is to carry this approach into the setting of binary response models. In con-

trast to existing methods, we can on one hand allow for rather general forms of heteroskedasticity

and at the same time estimate binary choice probabilities without the need of non-parametrically

estimating a d-dimensional function.

The ideas explored here are closely related to the work of Kordas (2006). Yet, there are many im-

portant differences. First, in his theoretical investigations, Kordas (2006) considered only a finite

collection of quantile levels. The present paper aims at considering the quantile process. Contrary

to the classical setting, and also contrary to the results suggested by the analysis in Kordas (2006),

we see that the asymptotic distribution is a white noise type process with limiting distributions

corresponding to different quantile levels being independent. An intuitive explanation of this seem-

ingly surprising fact along with rigorous theoretical results can be found in Section 2. We thus

provide both a correction and considerable extension of the findings in Kordas (2006).

Further, our results on the quantile process pave the way to obtaining an estimator for the condi-

tional probabilities pw and derive its asymptotic representation. While a related idea was considered

in Kordas (2006), no theoretical justification of its validity was provided. Moreover, we are able

to considerably relax the identifiability assumptions that were implicitly made in there. Finally,

we demonstrate that our ideas are closely related to the concept of rearrangement [see Dette et al.

(2006) or Chernozhukov et al. (2010)] and provide new theoretical insights regarding certain prop-

erties of the rearrangement map that seem to be of independent interest.

The rest of the paper is organized as follows. In Section 2, we formally state the model and provide

results on uniform consistency and a uniform linearization of the binary response quantile process.

All results hold uniformly over an infinite collection of quantiles T . In Section 3, we show how the

results from Section 2 can be used to obtain estimators of choice probabilities. We elaborate on

the connection of this approach to rearrangements. Finally, a uniform asymptotic representation

for a properly rescaled version of the proposed estimators is provided and their joint asymptotic

distribution is briefly discussed. All proofs are deferred to an appendix.

2 Estimating the coefficients

Before we proceed to state our results, let us briefly recall some basic facts about identification

in binary response models and provide some intuition for the estimators of Manski (1975) and

Horowitz (1992). Assume that we have n i.i.d. replicates, say (Yi,Wi)i=1,...,n, drawn from the

distribution (Y = I{Y ∗ ≥ 0},W ) with Y ∗ denoting the unobserved variable of interest and W

denoting a vector of covariates. Further, denote by qτ (w) the conditional quantile function of Y ∗

given W = w and assume that for τ ∈ T ⊂ [0, 1] we have qτ (w) = wTβτ for some vectors βτ .

Observing that I{Y ∗ ≥ 0} = I{aY ∗ ≥ 0} with a > 0 arbitrary directly shows that the scale of

the vector βτ can not be identified from (Y,W ). On the other hand, the vector βτ is identified up

to scale if for example b 6= βτ implies that the distribution of Y conditional on wTβτ > 0 differs

from that conditional on wT b > 0 on a sufficiently large set. More precisely, assume that the
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function u 7→ FY ∗|W (wTβτ + u|w) is strictly increasing for u in a neighbourhood of zero and all

w ∈ support(W). In that case we have by the definition of the τ ’th quantile

P (Y = 1|W = w)















> 1− τ, if wTβτ > 0

= 1− τ, if wTβτ = 0

< 1− τ, if wTβτ < 0.

This already suggests that the expectation of (Y − (1− τ)) is positive for W Tβτ > 0 and negative

for W Tβτ < 0. We thus expect that under appropriate conditions the function

Sτ (β) := E

[

(Y − (1− τ))I{W Tβ ≥ 0}
]

should be maximal at aβτ for any a > 0. Consider a vector b ∈ R
d+1. Then

Sτ (b)− Sτ (βτ ) = D1(b, τ) +D2(b, τ)

with

D1(b, τ) := E[(Y − (1− τ))I{W T b ≥ 0 > W Tβτ}],
D2(b, τ) := −E[(Y − (1− τ))I{W T b < 0 ≤ W Tβτ}].

Note that both quantities are non-positive, and at least one of them being strictly negative is

sufficient for inferring βτ/‖βτ ‖ 6= b/‖b‖ from the observable data. An overview and more detailed

discussion of related results is provided in Chapter 4 of Horowitz (2009).

A common assumption [see e.g. Chapter 4 in Horowitz (2009)] is that one component of βτ is either

constant or at least bounded away from zero. Without loss of generality, we assume that this holds

for the first component of βτ . In order to simplify the notation of what follows, write the covariate

W in the form W = (Z,X) with Z being the first component of W and X denoting the remaining

components. Denote the supports of X,Z,W by X ,Z,W, respectively. Denote by (Yi,Wi)
n
i=1 a

sample of i.i.d. realizations of the random variable (Y,W ). Define the empirical counterpart of Sτ

by

S̃n,τ (β) :=
1

n

n
∑

i=1

(Yi − (1− τ))I{W T
i β ≥ 0}

and consider a smoothed version

Ŝn,τ (β) :=
1

n

n
∑

i=1

(Yi − (1− τ))K
(W T

i β

hn

)

with hn denoting a bandwidth parameter and K(u) :=
∫ u
−∞K(v)dv a smoothed version of the

indicator function I{u ≤ 0}. Following Horowitz (2009), define the estimator (ŝ, b̂τ ) through

(ŝτ , b̂τ ) = argmaxs=±1,b∈RdŜn,τ ((s, b
T )T )

Remark 2.1 The proofs of all subsequent results implicitly rely on the fact that we know which

coefficient stays away from zero and that the covariate corresponding to this particular coefficient
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has a ’nice’ distribution conditional on all other coefficients [see assumptions (F1), (D2) etc.]. This

is in line with the approach of Horowitz (1992) and Kordas (2006) and makes sense in many practical

examples. Results similar to the ones presented below might continue to hold if we use Manski’s

normalization ‖β̂‖ = 1 instead of setting the ’right’ component to ±1. However, the asymptotic

representation would be somewhat more complicated. For this reason, we leave this interesting

question to future research.

In all of the subsequent developments we make the following basic assumption.

(A) The coefficient βτ,1 satisfies infτ∈T |βτ,1| > 0 and the coefficient βτ,1 has the same sign on all

of T . In what follows, denote this sign by s0.

Remark 2.2 Note that due to the scaling the estimator b̂ defined above is an estimator of the

re-scaled quantity b̄τ := bτ/|βτ,1| where bτ := (βτ,2, ..., βτ,d+1)
T . When interpreting the estimator

b̂τ , this must be taken into account. In particular, b̂τ can not be interpreted as classical quantile

regression coefficient. This also explains the reason behind assumption (A).

In order to establish uniform consistency of the smoothed maximum score estimator, we need the

following assumptions.

(K1) The function K is uniformly bounded and satisfies sup|v|≥c |K(v)− I{v ≥ 0}| → 0 as c → ∞.

(F1) The conditional distribution function of Z given X, say FZ|X , is uniformly continuous uni-

formly over x ∈ X , that is

sup
x∈X

sup
v∈R

sup
|u|≤δ

|FZ|X(v|x) − FZ|X(v + u|x)| → 0 as δ → 0

(D1) For any fixed τ ∈ T , β̄τ = (s0, b̄τ ) is the unique minimizer of Sτ (β) on {−1, 1} × R
d and

additionally

d(α) := sup
{

ε
∣

∣

∣
inf
τ∈T

inf
‖β−β̄τ‖≥ε,|β1|=1

|Sτ (β)− Sτ (β̄τ )| ≥ α
}

→ 0 as α → 0

In order to intuitively understand the meaning of condition (D1) above, note that conditions (K1)

and (F1) imply that Ŝn,τ (β) → Sτ (β) uniformly in τ, β. Condition (D1) essentially requires that the

maximum of Sτ (β) is ’well separated’ uniformly in τ , which allows to obtain uniform consistency of

a sequence of maximizers of any function that uniformly converges to Sτ . Versions of this condition

that are directly connected to densities and distributions of some of the regressors can for example

be derived by considering a uniform version of Assumption 2 in Manski (1985) by arguments similar

to the ones given in that paper, see also Assumptions 1-3 in Horowitz (1992).

Lemma 2.3 Under assumptions (K1), (D1), (F1) let hn → 0. Then the estimator (ŝ, b̂τ ) is weakly

uniformly consistent, that is

sup
τ∈T

‖(ŝτ , b̂τ )− (s0, b̄τ )‖∞ = oP (1).
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The next collection of assumptions is sufficient for deriving a uniform linearization [some kind of

’Bahadur-representation’] for b̂τ . Assume that there exists some η > 0 such that the following

conditions hold.

(K2) The function K is two times continuously differentiable and its second derivative is uniformly

Hölder continuous of order γ > 0, that is it satisfies

sup
|x−y|≤δ

|K′′(x)−K′′(y)| ≤ CK |x− y|γ .

Denote the derivative of K by K. Assume that additionally, K,K ′ are uniformly bounded and

we have
∫

|v2K ′(v)|dv < ∞,
∫

|K ′(v)|2dv < ∞ and additionally αn := h−1
n

∫

|vhn|>η |K ′(v)|dv =

o(1).

(K3)
∫

|vkK(v)| < ∞ for some k ≥ 2 and
∫

vjK(v)dv = 0 for 1 ≤ j < k and additionally
∫

|vhn|>η |K(v)|dv = o(hkn) as well as sup|a|>x |K(a)| = o(x−1) as x → ∞.

(B) The bandwidth hn satisfies hn = o(1) and additionally (nh3n)
−1/2(log n)2 = o(1).

(D2) The distribution of X has bounded support X . For almost every x ∈ X , the covariate Z has

a conditional density fZ|X(·|x).

(D3) For any vector b with ‖b − b̄τ‖ ≤ η the two functions u 7→ fZ|X(s0(−xT b̄τ + u)|x) and

u 7→ FY ∗|X,Z(0|x, s0(−xT b̄τ +u)) are two times continuously differentiable at every u ∈ Uη(0)

for almost every x ∈ X and the first and second derivatives are uniformly bounded [uniformly

over x ∈ X ,τ ∈ T ].

(D4) The function u 7→ fZ|X(s0(−xT b̄τ+u)|x) is k−1 times continuously differentiable for every x ∈
X at every u with |u| ≤ η. All derivatives are uniformly bounded and uniformly continuous

uniformly in x, τ . The function u 7→ FY ∗|X,Z(0|x, S − 0(−xT b̄τ + u)) is k times continuously

differentiable at every u with |u| ≤ η at almost every x ∈ X and all derivatives are uniformly

bounded and uniformly continuous uniformly in x, τ .

(D5) The map τ 7→ βτ is uniformly on T Hölder continuous of order γ > 0, that is supτ,τ ′∈T,|τ−τ ′|≤δ ‖βτ−
βτ ′‖ ≤ Cδγ for some universal constant C, some γ > 0 and all δ ≤ δ0 with δ0 > 0.

(D6) For any τ1 6= τ2 with τ1, τ2 ∈ T there exists ε > 0 such that P (‖W T (βτ1 − βτ2)‖ < ε) = 0.

(Q) We have infτ∈T |λmax(Q(s0, b̄τ , τ))| > 0 where λmax(A) denotes the largest eigenvalue of the

matrix A and we defined

Q(s, b, τ) :=

∫

∂

∂u

(

(τ − FY ∗|X,Z(0|x, s(−xT b+ u)))fZ|X(s(−xT b+ u)|x)
)
∣

∣

∣

u=0
xxTdPX (x).

The conditions on the kernel function K are standard in the binary response setting and were for

example considered in Horowitz (2009) and Kordas (2006). Assumptions (D2)-(D4) and (Q) are

uniform versions of the conditions in Horowitz (1992) and are needed to obtain results holding

uniformly in an infinite collection of quantiles. Condition (D5) is needed to obtain a rate in the
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uniform representation below. Condition (D6) implies asymptotic independence of the limiting

variables corresponding to different quantile levels. Essentially, it states that quantile curves cor-

responding to different quantile levels should be ’uniformly separated’ which is reasonable in most

applications. In particular, (D6) follows if the conditional density fY ∗|W (y|w) of Y ∗ given W is

uniformly bounded away from zero for all (y,w) with FY ∗|W (y|w) ∈ T and w in the support of W .

Remark 2.4 Some straightforward calculations show that under assumption (D3) and the bound-

edness of the support of Z the matrix Q(s0, b̄τ , τ) in condition (Q) is the second derivative of the

function b 7→ Sτ ((s0, b
T )T ) evaluated in b̄τ . Since S is assumed to be maximal in this point, the

matrix Q(s0, b̄τ , τ) is negative definite, and thus we need to bound its largest eigenvalue away from

zero in order to obtain a uniform version of the non-singularity of Q.

Theorem 2.5 Under assumptions (A), (B), (D1)-(D5), (F1), (K1)-(K3), we have

Q(s0, b̄τ , τ)(b̂τ − b̄τ ) = −T̃n(s0, b̄τ , τ) +Rn(τ) (2.1)

where

T̃n(s, b, τ) :=
∂S̃n(s, b, τ)

∂b
=

1

nhn

n
∑

i=1

(Yi − (1− τ))XiK
(XT

i b+ sZi

hn

)

,

sup
τ∈T

‖Rn(τ)‖ = OP (κn) := OP

(

(hkn + (nhn)
−1/2 log n)((nh3n)

−1/2 log n+ hn + αn)
)

.

In particular, κn = o(hkn + (nhn)
−1/2) and thus negligible compared to T̃n(s0, b̄τ , τ).

Now assume that additionally condition (D6) holds. Then, for any finite collection τ1, ..., τk ∈ T

we obtain
(

√

nhn

(

b̂τj − b̄τj − Tn(s0, b̄τj , τj)
))

j=1,...,k

D→
(

(Qτj (s0, b̄τj , τj))
−1Mτj

)

j=1,...,k
(2.2)

where

Tn(s, b, τ) :=
hkn
k!

∫

vkK(v)dv

∫

gk(s, b, x)xdPX (x),

gj(s, x, b) :=
∂j

∂uj

(

(τ − FY ∗|X,Z(0|x, s(−xT b+ u)))fZ|X(s(−xT b+ u)|x)
)
∣

∣

∣

u=0
,

Mτi ,Mτj are independent for j 6= i and

Mτ ∼ N (0,Στ ).

where

Στ := τ(1− τ)

∫

K2(u)du

∫

xxT fZ|X(−s0x
T b̄τ |x)dPX(x).

Compared to the results available in the literature [e.g. in Kordas (2006) and Horowitz (2009)],

the preceding theorem provides two important new insights. To the best of our knowledge, it is

the first time that the estimator is simultaneously considered at an infinite collection of quantiles.

Equally importantly, it demonstrates that the joint asymptotic distribution of several quantiles

differs substantially from what both intuition and results in Kordas (2006) seem to suggest.

7



Remark 2.6 In contrast to the ’classical’ case, the properly normalized quantile process at differ-

ent quantile levels converges to independent random variables. An intuitive explanation for this

surprising fact can be obtained from the asymptotic linerization in (2.1). For simplicity, assume

that the kernel K has compact support, say [−1, 1]. Then all observations that have a non-zero

contribution to T̃n(s0, b̄τ , τ) will need to satisfy |W T
i βτ | ≤ hn|βτ,1|. In particular, letting hn → 0

implies that asymptotically for different values of τ disjoint sets of observations will be driving the

distribution of Tn. Similar phenomena can be observed in other settings that include non-parametric

smoothing, a classical example being density estimation. Note that regarding this particular point

the paper of Kordas (2006) contained a mistake. More precisely, Kordas (2006) claimed that the

asymptotic distributions corresponding to different quantiles have a non-trivial covariance which is

not the case.

In particular, the above findings imply that there can be no weak convergence of the normalized

process
(√

nhn

(

b̂τ − b̄τ − Tn(s0, b̄τ , τ)
))

τ∈T
in a reasonable functional sense since the candidate

’limiting process’ has a ’white noise’ structure and is not tight. This will present an additional

challenge for the analysis of estimators for binary choice probabilities constructed in the following

section.

3 Estimating conditional probabilities

Partially due to the lack of complete identification, the coefficients estimated in the preceding

section might be hard to interpret. A more tractable quantity is given by the conditional probability

pw := P (Y = 1|W = w). One possible way to estimate this probability would be local averaging.

However, due to the curse of dimensionality, this becomes impractical if the length of W exceeds 2

or 3. An alternative is to assume that the linear model qτ (w) = wTβτ holds for all τ ∈ T ⊂ [0, 1]. By

definition of Y = I{Y ∗ ≥ 0}, the existence of τw ∈ T with wtβτw = 0 implies that pw = 1− τw. On

the other hand, the quantile function of Y ∗ is given by wTβτ and thus P (Y ∗ ≤ 0|W = w) = wTβτw .

By definition of the quantile function and the assumptions on Y ∗, τ < τw ⇔ wTβτ < wTβτw . This

implies the equality τw =
∫ 1
0 I{wTβτ ≤ 0}dτ . In particular, we have for any (a, b) ⊂ T with

a < τw < b

pw =

∫ 1

0
I{wTβτ ≥ 0}dτ = 1− b+

∫ b

a
I{wTβτ ≥ 0}dτ = 1− b+

∫ b

a
I{wT β̄τ ≥ 0}dτ

This suggests to estimate pw by replacing βτ in the above representation with the estimator β̂τ from

the preceding section after choosing (a, b) in some sensible manner. The fact that β̂ is an estimator

of the re-scaled version β̄τ is not important here since multiplication by a positive number does not

affect the inequality wTβτ ≥ 0. From here on, define

p̂w(a, b) := 1− b+

∫ b

a
I{wT β̂τ ≥ 0}dτ. (3.1)

This also indicates that in order to estimate pw we do not need the linear model qτ (w) = wTβτ to

hold globally and also do not require that βτ can be estimated for all τ ∈ T . In fact, the validity
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of the linear model qτ (w) = wTβτ for τ in a neighbourhood of τw and estimability of βτ on this

region is sufficient for the asymptotic developments provided below.

Remark 3.1 Assume that the estimator β̂τ is uniformly consistent and that additionally for any

δ > 0 there exists εδ > 0 such that inf |u−τw|>δ |wT (β̄u− β̄τw)| ≥ εδ. Then uniform consistency of β̂τ

will directly yield that, with probability tending to one, p̂w(a, b) = p̂w(a
′, b′) as long as a < τw < b

and a′ < τw < b′. This suggests that from an asymptotic point of view the choice of a, b in the

estimator p̂w(a, b) is not very critical. On the other hand, τw is unknown in practice. Thus choosing

a, b as small and large as the data allow, respectively, seems to be a sensible practical approach.

At the same time, identifiability at infinity is not needed to obtain an estimator of probabilities for

points that are bounded away from the boundary of the covariate space.

Remark 3.2 The definition of p̂w is closely connected to the concept of rearrangement [see Hardy et al.

(1988)]. More precisely, recall that the monotone rearrangement Φ of a function g : [0, 1] → R is

defined as

Φg(u) = Ψ−
g (u), Ψg(v) =

∫ 1

0
I{g(u) ≤ v}du

where Ψ−
g denotes the generalized inverse of the function u 7→ Ψg(u) and the first step of the

rearrangement, Ψg, is the distribution function of g with respect to Lebesgue measure. Thus we can

interpret the integral
∫ 1
0 I{wTβτ ≤ 0}dτ in the definition of τw as the distribution function of the

map τ 7→ wTβτ . Previously, a smoothed version of the first step of the rearrangement was used

by Dette and Volgushev (2008) to invert a non-increasing estimator of an increasing function in

the setting of quantile regression. On the other hand, it is not obvious if the function τ 7→ wT β̄τ

is increasing since β̄τ is s re-scaled version of the quantile coefficient βτ . However, as we already

pointed out in Remark 3.1, the function τ 7→ wT β̄τ will still have a unique zero. As we shall argue

next, the first step of the rearrangement map can provide a way to estimate this zero point in a

sensible way.

The properties of the rearrangement viewed as mapping between function spaces were consid-

ered in Dette et al. (2006) for estimating a monotone function and Chernozhukov et al. (2010)

for monotonizing crossing quantile curves. In particular, the last-named authors derived a kind

of compact differentiability of the rearrangement mapping at functions that are not necessar-

ily increasing. However, those results can not be directly applied here since Dette et al. (2006)

and Dette and Volgushev (2008) applied smoothing while the compact differentiability result of

Chernozhukov et al. (2010) requires a process based functional central limit theorem. Due to the

asymptotic independence of the limiting distributions in Theorem 2.5, such a result is impossible

in our setting. Still, a general analysis of the rearrangement map is possible and will be presented

next. The crucial insight is that the process τ 7→ (nhn)
1/2(β̂τ − β̄τ ) is still sufficiently smooth on do-

mains of size decreasing at the rate hn while its convergence to the limit takes place at a faster rate.

We begin by stating a general result that allows to derive a uniform linearization of the map

Ψ defined above. In situations where a functional central limit result does not hold (this will often

be the case in the situation of estimators build from local windows), this result seems to be of

9



independent interest. In particular, it can be used to derive a uniform Bahadur representation for

the estimator p̂w in the present setting.

Theorem 3.3 Consider a collection of functions gq : [0, 1] → R indexed by a general set Q and

assume that for all q ∈ Q there exists u0,q ∈ (0, 1) with gq(u0,q) = 0. Additionally, assume that each

gq is continuously differentiable in a neighbourhood Uδ(u0,q) ⊂ (0, 1)∀q ∈ Q and that its derivative

is uniformly Hölder continuous of order γ with constant CH both not depending on q, and that for

any ε > 0 we have infq inf |u−u0,q|>ε |gq(u)− gq(u0,q)| > 0 and infq g
′
q(u0,q) > 0.

Denote by gn,q : [0, 1] → R a collection of estimators for gq. Assume that

sup
q∈Q

sup
|u−u0,q|≤εn

|gn,q(u0,q)− gn,q(u)− (gq(u0,q)− gq(u))| = OP (ξn(εn)), (3.2)

that

sup
q

sup
u∈[0,1]

|gn,q(u)− gq(u)| = oP (1) (3.3)

and that

sup
|u−u0,q|≤δ

|gn,q(u)− gq(u)| = OP (Rn). (3.4)

If for all cn = o(Cn) with some given Cn → ∞ we have ξn(Rncn) = o(Rn) it follows that for any

collection of points aq, bq ∈ (0, 1) with aq + ε ≤ uq ≤ bq − ε with ε > 0 fixed we have with probability

tending to one

Ψgn,q(0) = aq +

∫ bq

aq

I{gn,q(u) ≤ 0}du ∀q ∈ Q (3.5)

and

sup
q∈Q

∣

∣

∣
Ψgq(0) −Ψgn,q (0)

∣

∣

∣
= OP

(

R1+γ
n + ξn(Rn+)

)

. (3.6)

where f(x+) := limεց0 f(x+ ε).

We now state the additional assumptions that are needed to derive the limiting distribution of p̂w.

Assume that for some δ > 0 the conditions of Theorem 2.5 hold on the set T δ := [tL − δ, tU + δ]

with T := [tL, tU ] ⊂ (δ, 1 − δ). For this T , we will need the following conditions.

(T1) Define the setWT δ := {w ∈ W| ∃τw ∈ T δ : wTβτw = 0}. Assume that for every w ∈ WT δ there

exists a unique τw ∈ T with wTβτw = 0. Assume that the function τ 7→ β̄τ is continuously

differentiable on T δ, that its derivative, say ∆τ , is uniformly Hölder continuous of order γ > 0

and that LT := infτ∈T δ |wT∆τw | > 0.

(T2) The function τ 7→ Q(s0, b̄τ , τ) is Hölder continuous of order γ > 0 uniformly on T δ.

(K4) We have sup|x|≥c |K ′(x)| ≤ c−1/2−ε for some ε > 0 and all c ≥ c0.

The above conditions ensure that the collection of estimators gn,w(τ) := wT β̂τ satisfies the condi-

tions of Theorem 3.3 [see Lemma 4.4 for condition (3.2)]. An application of this result thus directly

yields the following result.
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Theorem 3.4 Assume that for some δ > 0 the conditions of Theorem 2.5 hold on the set T δ :=

[tL− δ, tU + δ] with T := [tL, tU ] ⊂ (δ, 1− δ) and let conditions (T1), (T2), (K4) hold. Assume that

for each w ∈ WT we have (aw, bw) ⊂ T δ. Then for any w ∈ WT := {w ∈ W| ∃τw ∈ T : wTβτw = 0}

p̂w(aw, bw)− pw = −wT (β̂τw − β̄τw)|wT∆τw |−1 +R(2)
n (w)

with

sup
w∈WT

|R(2)
n (w)| = OP

( 1

(nhn)1/2

((log n)1+γβ

(nhn)γβ/2
+

(log n)2

(nh3n)
1/2

))

+ oP (h
k
n) +OP (κn)

where κn was defined in Theorem 2.5. In particular, the remainder is negligible compared to

−wT (β̂τw − β̄τw)|wT∆τw |−1. Moreover, for any finite collection w1, ..., wk ∈ WT with wT
j = (zj , xj)

we obtain

(

√

nhn

(

p̂wj − pwj + |wT∆τw |−1xTj Tn(s0, b̄τwj
, τwj)

))

j=1,...,k

D→
(

(wT∆τwj
)−1xTj (Qτwj

(s0, b̄τwj
, τwj ))

−1Mτwj

)

j=1,...,k

where Tn,Mτ is as defined in Theorem 2.5.

From the results derived above, we see that the convergence rate of the estimators for binary

choice probabilities corresponds to the rate typically encountered if one-dimensional smoothing is

performed. Compared to the results of Khan (2013) whose rates correspond to d−dimensional

smoothing, this can be a very substantial improvement. While our assumptions are of course

more restrictive than those of Khan (2013), the form of allowed heteroskedasticity is somewhat

more general than the simple multiplicative heteroskedasticity or even homoskedasticity assumed

in previous work. While we of course do not suggest to completely replace the methodologies

developed in the literature, we feel that our approach can be considered as a good compromise

between flexibility of the underlying model and convergence rates. It thus provides a valuable

supplement and extension of available procedures.
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4 Proofs

Proof of Lemma 2.3 By Lemma 2.6.15 and Lemma 2.6.18 in van der Vaart and Wellner (1996),

the classes of functions {(y,w) 7→ yI{wTβ ≥ 0}|β ∈ R
d+1} and {w 7→ I{wT β ≥ 0}|β ∈ R

d+1} are

VC-subgraph classes of functions. Together with Theorem 2.6.7 and Theorem 2.4.3 in the same

reference this implies

sup
τ∈[0,1],β∈Rd+1

|Sτ (β)− S̃n,τ (β)| = o(1) a.s. (4.1)

Next, observe that almost surely

|Ŝn,τ (β)− S̃n,τ (β)| ≤ sup
|v|≥c

|K(v/hn)− I{v ≥ 0}| + (1 + sup
v

|K(v)|) 1
n

n
∑

i=1

I{|βTWi| ≤ chn}.

Moreover,

I{|βTWi| ≤ chn} = I{βTWi ≤ chn} − I{βTWi > −chn},

and the classes of functions {w 7→ I{wTβ ≤ c}|β ∈ R
d+1, c ∈ R}, {w 7→ I{wTβ > c}|β ∈ R

d+1, c ∈
R} are VC-subgraph by Lemma 2.6.15 and Lemma 2.6.18(viii) in in van der Vaart and Wellner

(1996). In combination with Theorem 2.6.7 and Theorem 2.4.3 from the same reference this implies

sup
β∈Rd+1

sup
c∈R

∣

∣

∣

1

n

n
∑

i=1

I{|βTWi| ≤ chn} − P (|βTWi| ≤ chn)
∣

∣

∣
→ 0 a.s.

Setting c = cn = h
−1/2
n in the bound for |Ŝn,τ (β) − S̃n,τ (β)| we see that the first term, which is

independent of β, converges to zero by assumption (K1). Moreover, by assumption (F1) we have

for β = (1, bT )T

sup
b∈Rd

P (Zi + bTXi| ≤ cnhn) = sup
b∈Rd

∫

FZ|X(−bTx+ h1/2n |x)− FZ|X(−bTx− h1/2n |x)dPX (x)

= o(1)

almost surely. A similar results holds for β = (−1, bT )T . Combining all the results so far we thus

see that

sn := sup
b∈Rd,s=±1

∣

∣

∣
Ŝn,τ ((s, b

T )T )− Sτ ((s, b
T )T )

∣

∣

∣
= o(1) a.s.

Finally, observe that almost surely

sup
τ∈T

‖β̂τ,n − β̄τ‖ ≤ 2d(sn) = o(1)

where d(s) was defined in condition (D1). To see that this is the case, observe that β̂τ,n maximizes

S̃n,τ (β), and thus we have a.s. for every τ ∈ T

0 ≤ S̃n,τ (β̂τ )− S̃n,τ (β̄τ ) ≤ Sτ (β̂τ )− Sτ (β̄τ ) + 2sn,

which implies supτ |Sτ (β̂τ )− Sτ (β̄τ )| ≤ 2sn since Sτ (β̄τ ) ≥ Sτ (β̂τ ) for all τ ∈ T . ✷
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Proof of Theorem 2.5 Define the quantities

S̃n(s, b, τ) :=
1

n

n
∑

i=1

(Yi − (1− τ))K
(XT

i b+ sZi

hn

)

. (4.2)

First, by uniform consistency of β̂τ and given the fact that s0 ∈ {−1, 1} we see that with probability

tending to one ŝτ = s0 for all τ ∈ T . Thus defining

b̂τ := argmaxb∈Rd Ŝn(s0, b, τ)

we see that P (b̂τ = b̃τ∀τ ∈ T ) → 1. Moreover, uniform consistency of b̂τ implies that with

probability tending to one it will satisfy supτ∈T ‖b̂τ − b̄τ‖ ≤ η, and continuous differentiability of

b 7→ S̃n(s, b, τ) for b with ‖b− b̄τ‖ ≤ η implies that

T̃n(s0, b̂τ , τ) = 0 ∀τ ∈ T.

A Taylor expansion now yields that with probability tending to one

T̃n(s0, b̄τ , τ) + Q̃n(s0, b
∗
τ , τ)(b̂τ − b̄τ ) = 0 ∀τ ∈ T

where

Q̃n(s, b, τ) :=
∂T̃n(s, b, τ)

∂b
=

1

nh2n

n
∑

i=1

(Yi − (1− τ))XiX
T
i K

′
(XT

i b+ sZ

hn

)

(4.3)

and b∗τ = ξn(τ)b̄τ + (1− ξn(τ))b̂τ for some ξn(τ) ∈ [0, 1]. Rearranging we obtain

Q(s0, b̄τ , τ)(b̂τ − b̄τ ) = −T̃n(s0, bτ , τ) + (Q̃n(s, b
∗
τ , τ)−Q(s, b̄τ , τ))(b̂τ − b̄τ ). (4.4)

Since ‖b̂τ − b̄τ‖∞ = oP (1) uniformly over τ ∈ T and since the same holds for T̃n(s0, b̄τ , τ) [see

Lemma 4.2], there exists a γn → 0 such that

sup
τ∈T

∥

∥

∥
− T̃n(s0, b̄τ , τ) + (Q̃n(s, b

∗
τ , τ)−Q(s, b̄τ , τ))(b̂τ − b̄τ )

∥

∥

∥
= oP (γn).

By the conditions on Q(s0, b̄τ , τ) this implies supτ ‖b̂τ − b̄τ‖ = oP (γn). By Lemma 4.1 this in turn

implies

sup
τ∈T

∥

∥

∥
Q̃n(s, b

∗
τ , τ)−Q(s, b̄τ , τ)

∥

∥

∥
= OP ((nh

3
n)

−1/2 log n) +O(hn) + oP (γn).

Plugging this into (4.4) and repeating this argument [note that every application yields an improve-

ment of the bound until γn ∼ supτ ‖T̃n(s0, b̄τ , τ)‖] yields the assertion (2.1).

For a proof of assertion (2.2) note that for κ 6= τ and any δ > 0 we have as n → ∞

E

[
∥

∥

∥
T̃n(s0, bτ , τ)

T T̃n(s0, bκ, κ)
∥

∥

∥

]

≤ 1

nh2n

∫ ∫

∣

∣

∣
K
(xT bτ + s0z

hn

)

K
(xT bκ + s0z

hn

)∣

∣

∣
fZ|X(z|x)dzdPX (x).

≤ 1

nh2n

∫

(

sup
|a|≥δh−1

n

|K(a)| + ‖K‖∞I{‖wTβτ‖ < |βτ,1|−1δ}
)

×
(

sup
|a|≥δh−1

n

|K(a)|+ ‖K‖∞I{‖wT βκ‖ < |βκ,1|−1δ}
)

dPW (w)
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The assumptions on K now imply that for any δ > 0 we have sup|a|≥δh−1
n

|K(a)| = o(h2n). Thus it

remains to consider the integral

∫

‖K‖2∞I{‖W Tβκ‖ < |βκ,1|−1δ}I{‖W T βτ‖ < |βτ,1|−1δ}dPW (w).

By condition (D6), this integral equals zero if we choose δ such that |βκ,1|−1δ and |βτ,1|−1δ are

below the ε specified in that condition. Thus E
[∥

∥

∥
T̃n(s0, bτ , τ)

T T̃n(s0, bκ, κ)
∥

∥

∥

]

= o(nhn
−1) and the

covariance is negligible compared to the variance which is of order nhn
−1. The rest of the proof

follows by standard arguments and is omitted. ✷

Lemma 4.1 Under assumptions (K1), (K2), (B), (D2), (D3), (D5) we have [αn was defined in

assumption (K2)]

sup
τ∈T

sup
‖b−b̄τ ‖≤η

∥

∥

∥
E[Q̃n(s0, b, τ)]−Q(s0, b, τ)

∥

∥

∥

∞
= O(hn + αn), (4.5)

sup
τ∈T

sup
‖b−b̄τ ‖≤η

∥

∥

∥
Q̃n(s0, b, τ)− E[Q̃n(s0, b, τ)]

∥

∥

∥

∞
= OP ((nh

3
n)

−1/2 log n), (4.6)

where Q̃n(s, b, τ) was defined in (4.3). Moreover, we have for any an → 0

sup
τ∈T

sup
‖b−b̄τ ‖≤an

∥

∥

∥
Q(s0, b̄τ , τ)−Q(s0, b, τ)

∥

∥

∥

∞
≤ Can (4.7)

for an small enough and some universal constant C.

Proof We begin by considering assertion (4.5). Observe that

E[Q̃n(s0, b, τ)] =
1

h2n

∫ ∫

(τ − FY ∗|X,Z(0|x, z))fZ|X (z|x)xxTK ′
(xT b+ s0z

hn

)

dzdPX(x)

=
1

hn

∫ ∫

(

τ − FY ∗|X,Z(0|x, s0(vhn − xT b))
)

fZ|X(s0(vhn − xT b)|x)xxTK ′(v)dvdPX (x).

The assertion now follows from a Taylor expansion, the assumptions on K, and standard arguments

similar to those given in Horowitz (2009). For a proof of (4.6) note that for i, j = 1, ..., d we have

sup
τ∈T

sup
‖b−b̄τ |≤η

∣

∣

∣

(

Q̃n(s0, b, τ)− E[Q̃n(s0, b, τ)]
)

i,j

∣

∣

∣
≤ h−2

n n−1/2 sup
f∈F i,j

n

|Gn(f)|

where F i,j
n denotes the n−dependent class of functions

F i,j
n :=

{

fn,b,τ (x, y, z) = K ′
(xT (b̄τ + b) + s0z

hn

)

(y − (1− τ))xixj

∣

∣

∣
b ∈ R

d, ‖b‖ ≤ η, τ ∈ T
}

and

Gn(f) := n−1/2
n
∑

i=1

(f(Xi, Yi, Zi)− E[f(Xi, Yi, Zi)]).
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Now uniform Hölder continuity of K ′, uniform Hölder continuity of τ 7→ bτ , and uniform bounded-

ness of x implies that for every sufficiently small δ > 0 we have for all |τ − τ ′| ≤ δ, ‖b− b′‖ ≤ δ for

some γ > 0

‖fn,b,τ (x, y, z)− fn,b′,τ ′(x, y, z)‖∞ ≤ C

hn
(|τ − τ ′|γ + ‖b− b′‖γ)

with C denoting some constant independent of n, τ, τ ′, b, b′. This shows that for sufficiently small

ε the ‖ · ‖∞-bracketing number [see van der Vaart and Wellner (1996), Chapter 2] of the class F i,j
n

is bounded by

N[ ](ε,F i,j
n , ‖ · ‖∞) ≤ Cγh

−(d+1)/γ
n ε−(d+1)/γ .

Next, observe that for any τ ∈ T, ‖b‖ ≤ η

E[f2
n,b,τ (X,Y,Z)] ≤ C

∫ ∫

R

∣

∣

∣
K ′

(xT (b̄τ + b) + s0z

hn

)∣

∣

∣

2
dzdPX (x) = C

∫ ∫

R

|K ′(zh−1
n )|2dzdPX (x)

= hnC

∫

R

|K ′(z)|2dz.

Combining this with Lemma A.1 yields

sup
f∈F i,j

n

|Gn(f)| = OP (h
1/2
n log n),

and thus the proof of (4.6) is complete. Finally, assertion (4.7) follows by the smoothness properties

of FY ∗|X,Z and fZ|X . Thus the proof is complete. ✷

Lemma 4.2 Under assumptions (K1)-(K3), (B), (D2), (D4), (D5) we have

sup
τ∈T

∥

∥

∥
E[T̃n(s0, b̄τ , τ)]− Tn(s0, b̄τ , τ)

∥

∥

∥

∞
= o(hkn), (4.8)

sup
τ∈T

∥

∥

∥
T̃n(s0, b̄τ , τ)− E[T̃n(s0, b̄τ , τ)]

∥

∥

∥

∞
= OP ((nhn)

−1/2 log n). (4.9)

Proof The proof of (4.9) follows by arguments very similar to those used to establish (4.6) and is

therefore omitted. For the proof of (4.8), note that

E[T̃n(s0, b̄τ , τ)] =
1

hn

∫ ∫

x(τ − FY ∗|X,Z(0|x, z))K
(s0z + xT b̄τ

hn

)

fZ|X(z|x)dzdPX (x)

= |s0|
∫ ∫

x
(

τ − FY ∗|X,Z(0|x, s0(vhn − xT b̄τ ))
)

fZ|X(s0(vhn − xT b̄τ )|x)K(v)dvdPX (x).

=

∫ ∫

|vhn|>η
x
(

τ − FY ∗|X,Z(0|x, s0(vhn − xT b̄τ ))
)

fZ|X(s0(vhn − xT b̄τ )|x)K(v)dvdPX (x)

+

∫ ∫

|vhn|≤η
x
(

τ − FY ∗|X,Z(0|x, s0(vhn − xT b̄τ ))
)

fZ|X(s0(vhn − xT b̄τ )|x)K(v)dvdPX (x).

The order of the first integral is o(hkn) by the assumptions on K. The assertion now follows by a

Taylor expansion of the function

u 7→
(

τ − FY ∗|X,Z(0|x, s0(u− xT b̄τ ))
)

fZ|X(s0(u− xT b̄τ )|x),
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which holds for |u| ≤ η the assumptions on K and standard arguments. ✷

Proof of Theorem 3.3 The statement (3.5) is a direct consequence of the condition on the

collection of functions gq and the uniform consistency in (3.3).

The main technical ingredient for the remaining proof are the bounds provided in Lemma 4.3.

Consider an arbitrary sequence cn → ∞ with ξn(Rncn) = o(Rn) and set rn := Rncn. Then, with

probability tending to one we have for all q ∈ Q

Ψgq(0)−Ψgq,n(0) =

∫ u0,q+rn

u0,q−rn

I{gq(u) ≤ 0} − I{gn,q(u) ≤ 0}du

and for all p > 0 there exists n0 ∈ N such that for all n ≥ n0 we have supq |gn,q(u0,q)| +
2(ξn(rn)+CHr1+γ

n )
|g′q(u0,q)|

≤ rn with probability at least 1 − p [this follows from ]. Applying the bound

in Lemma 4.3 we thus see that for each q ∈ Q, as soon as rn < δ and n large enough we have with

probability at least 1− p

sup
q

∣

∣

∣

∫ u0,q+rn

u0,q−rn

I{gq(u) ≤ 0} − I{gn,q(u) ≤ 0}du − gn,q(u0,q)

|g′q(u0,q)|
∣

∣

∣

≤ sup
q

2ξn(rn) + 4CHr1+γ
n

|g′q(u0,q)|
.

Since p was arbitrarily small, the claim of the Theorem follows with rn instead of Rn. Since cn can

converge to infinity arbitrarily slowly, the claim also holds with Rn instead of rn. This completes

the proof. ✷

Lemma 4.3 Consider functions g, h : [0, 1] → R and assume that for some u0 ∈ (0, 1) we

have g(u0) = 0. Additionally, assume that g is continuously differentiable in a neighbourhood

Uδ(u0) ⊂ (0, 1) and that its derivative is uniformly Hölder continuous of order γ with constant

CH . Define ξ(ε) := sup|u−u0|≤ε |h(u0) − h(u) − (g(u0) − g(u))|. Then for any ε < δ such that

|h(u0)|+ 2(ξ(ε)+CHε1+γ)
|g′(u0)|

≤ ε we have for [u0 − ε, u0 + ε] ⊂ [a, b]

∣

∣

∣

∫ b

a
I{g(u) ≤ 0}du−

∫ b

a
I{h(u) ≤ 0}du − |g′(u0)|−1h(u0)

∣

∣

∣
≤ 2ξ(ε) + 4CHε1+γ

|g′(u0)|
.

Proof. Rewrite

I{h(u) ≤ 0} = I{h(u0)− (g(u0)− g(u)) − (h(u0)− h(u) − (g(u0)− g(u)))}

and observe that by the properties of g we have

sup
|u−u0|≤ε

|g(u) − g(u0)− g′(u0)(u− u0)| ≤ CHε1+γ .

Thus the indicators I{h(u0) + g′(u0)(u − u0) ≤ 0, |u − u0| ≤ ε} and I{h(u0) − (g(u0) − g(u)) −
(h(u0) − h(u) − (g(u0) − g(u))), |u − u0| ≤ ε} can only take different values on an interval with

length at most 2(ξ(ε) + CHε1+γ)/|g′(u0)|. Thus we see that

∣

∣

∣

∫ u0+ε

u0−ε
I{h(u) ≤ 0}du −

∫ u0+ε

u0−ε
I{h(u0) + g′(u0)(u− u0) ≤ 0}du

∣

∣

∣
≤ 2(ξ(ε) + CHε1+γ)

|g′(u0)|
.
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Recalling that g(u0) = 0, similar arguments yield the bound

∣

∣

∣

∫ u0+ε

u0−ε
I{g(u) ≤ 0}du−

∫ u0+ε

u0−ε
I{g′(u0)(u− u0) ≤ 0}du

∣

∣

∣
≤ 2CHε1+γ

|g′(u0)|
.

Finally, a simple computation shows that under the assumption |h(u0)| + 2(ξ(ε)+CHε1+γ)
|g′(u0)|

≤ ε we

have
∫ u0+ε

u0−ε
I{g′(u0)(u− u0) ≤ 0}du −

∫ u0+ε

u0−ε
I{h(u0) + g′(u0)(u− u0) ≤ 0}du =

h(u0)

|g′(u0)|
.

Thus the proof is complete. ✷

Lemma 4.4 Under the assumptions of Theorem 3.4 we have for any rn = o(hn)

sup
τw∈T δ

sup
|τ−τw|≤rn

‖β̂τw − β̂τ − (β̄τw − β̄τ )‖∞ = OP (n
−1/2h−3/2

n rn log n) + o(hkn) +OP (κn)

where κn was defined in Theorem 2.5.

Proof From Theorem 2.5 we know that ŝτ = s0 for all τ ∈ T δ with probability tending to one,

and thus it suffices to find a bound for ‖b̂τ − b̄τ − (b̂τw − b̄τw)‖∞. Here we have for any τ, τw ∈ T δ

b̂τ − b̄τ − (b̂τw − b̄τw)

= −Q(s0, b̄τ , τ)
−1T̃n(s0, b̄τ , τ) +Q(s0, b̄τw , τw)

−1T̃n(s0, b̄τw , τw) +Rn(τ) +Rn(τw)

= Q(s0, b̄τw , τw)
−1

(

T̃n(s0, b̄τw , τw)− T̃n(s0, b̄τ , τ)
)

+
(

Q(s0, b̄τw , τw)
−1 −Q(s0, b̄τ , τ)

−1
)

T̃n(s0, b̄τ , τ) +Rn(τ) +Rn(τw).

Combining condition (T2) with the results from Theorem 2.5 and Lemma 4.2 we see that the term

in the last line is of order OP (((nhn)
−1/2 log n+ hkn)

1+γ + κn). For the first term, note that

sup
τw∈T δ

sup
|τ−τw|≤rn

∥

∥

∥
T̃n(s0, b̄τw , τw)− T̃n(s0, b̄τ , τ)

∥

∥

∥

∞
≤ D1,n +D2,n

where

D1,n := sup
j=1,...,d

sup
‖f−g‖2≤h

−1/2
n rn,f,g∈Fn,j

h−1
n n−1/2|Gn(f)−Gn(g)|,

D2,n := sup
τw∈T δ

sup
|τ−τw|≤rn

∥

∥

∥
E[T̃n(s0, b̄τw , τw)− T̃n(s0, b̄τ , τ)]

∥

∥

∥

∞
,

Gn(f) :=
1

n

n
∑

i=1

(f(Xi, Yi, Zi)− E[f(Xi, Yi, Zi)]),

and the classes of functions Fn,j are given by

Fn,j =
{

(z, x, y) 7→ K
(xT (b̄τ + b) + s0z

hn

)

xj(y − (1− τ))
∣

∣

∣
b ∈ R

d, ‖b‖ ≤ η, τ ∈ T δ
}

.
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In order to see that the representation for D1,n is true, note that

T̃n(s0, b̄τw , τw)− T̃n(s0, b̄τ , τ)

=
1

nhn

n
∑

i=1

(

K
(XT

i b̄τ + s0Zi

hn

)

(Yi − (1− τ))−K
(XT

i b̄τw + s0Zi

hn

)

(Yi − (1− τw))
)

Xi

In particular we have for n large enough

∣

∣

∣
K
(XT

i b̄τ + s0Zi

hn

)

(Yi − (1− τ))−K
(XT

i b̄τw + s0Zi

hn

)

(Yi − (1− τw))
∣

∣

∣

≤ sup
|v|≤1

∣

∣

∣
K ′

(

v +
XT

i b̄τ + s0Zi

hn

)∣

∣

∣

|XT
i b̄τ −XT

i b̄τw |
hn

+ sup
v

|K(v)||τ − τw|

This shows that for sufficiently small ε the ‖·‖∞-bracketing number [see van der Vaart and Wellner

(1996), Chapter 2] of the class Fn,j is bounded by

N[ ](ε,Fn,j , ‖ · ‖∞) ≤ Ch−(d+1)/γ
n ε−(d+1)/γ .

Moreover, the above bound implies that for |τ − τw| ≤ rn we have for n large enough

sup
w

sup
|τ−τw|≤rn

∥

∥

∥
K
(XT

i b̄τ + s0Zi

hn

)

(Yi − (1− τ))−K
(XT

i b̄τw + s0Zi

hn

)

(Yi − (1− τw))
∥

∥

∥

2

≤ Ch−1/2
n rn.

Applying Lemma A.1 to the classes of functions {f −g|f, g ∈ Fn,j , ‖f−g‖ ≤ Ch
−1/2
n rn} thus shows

that Dn,1 = OP (n
−1/2h

−3/2
n rn log n).

Next, consider Dn,2. By the results in Lemma 4.2 we have

Dn,2 = sup
t

∣

∣

∣

∂k

∂uk

((

(τ − FY ∗|X,Z(0|x, s0(−xT b̄τ + u)))fZ|X(s0(−xT b̄τ + u)|x)

−(τw − FY ∗|X,Z(0|x, s0(−xT b̄τw + u)))fZ|X(s0(−xT b̄τw + u)|x)
)
∣

∣

∣

u=0

∣

∣

∣
+ o(hkn).

From condition (D4) we see that the left-hand side in the above expression of of order o(hkn). Thus

the proof is complete. ✷

A Technical details

Lemma A.1 Assume that the classes of measurable functions Fn consist of uniformly bounded

functions (by a constant not depending on n). If additionally

N[ ](Fn, ε, L
2(P )) ≤ Cnaε−a

for every ε ≤ δn, some a > 0 and constants C, b not depending on n, then we have for any δn ∼ n−b

with b < 1/2

√
n sup

f∈Fn,‖f‖P,2≤δn

(

∫

fdPn −
∫

fdP
)

= O∗
P

(

δn(| log δn|+ log n)
)

.
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Proof. Start by observing that the uniform boundedness of elements of Fn by D implies that

F ≡ D is a measurable envelope function with L2-norm D. Note that for ηn sufficiently small

a(ηn) := ηnD/
√

1 + logN[](ηnD,Fn, L2(P )) ≥ Dηn/
√

1 + logC + b log n− a log(Dηn)

≥ DC̃ηn/
√

| log ηn|+ log n

for some finite constant C̃ depending only on a, b, C,D. Thus the bound in Theorem 2.14.2 in

van der Vaart and Wellner (1996) yields for δn sufficiently small

E

[

sup
f∈Fn

∫

fdαn

]∗
≤ DJ[](δn,Fn, L2(P )) +

√
n

∫

F (u)I{F (u) >
√
na(δn)}P (du)

≤ DC1

∫ δn

0
| log ε|+ log ndε+D

√
nI

{

D >
DC̃

√
nδn

| log δn|+ log n

}

≤ DC2δn(| log δn|+ log n) +D
√
nI

{

1 >
C̃
√
nδn

| log δn|+ log n

}

where αn :=
√
n(Pn −P ), Pn denotes the empirical measure, and C1, C2 are some finite constants.

Here, the second inequality follows by a straightforward calculation and the first inequality is due

to the fact that for δn sufficiently small by definition

J[](δn,Fn, L2(P )) =

∫ δn

0

√

1 + logN[](εD,Fn, L2(P ))dε ≤ C1

∫ δn

0
| log ε|+ log ndε.

Now under the assumption on δn, the indicator in the last line will be zero for n large enough and

thus the proof is complete. ✷
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