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Abstract

This article investigates weak convergence of the sequential d-
dimensional empirical process under strong mixing. Weak conver-
gence is established for mixing rates αn = O(n−a), where a > 1,
which slightly improves upon existing results in the literature that are
based on mixing rates depending on the dimension d.
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1 Introduction

Let (Ui)i∈Z, Ui = (Ui1, . . . , Uid), be a strictly stationary sequence of d-
dimensional random vectors whose marginals are standard uniform. Denote
the joint cumulative distribution function of Ui by C. The corresponding
empirical process is defined, for any u = (u1, . . . , ud) ∈ [0, 1]d, by

Dn(u) =
1√
n

n
∑

i=1

{I(Ui ≤ u)− C(u)}.
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Under various types of weak dependence conditions, the process Dn is known
to converge weakly in the space of bounded functions on [0, 1]d equipped
with the supremum-norm, denoted by (ℓ∞([0, 1]d), ‖·‖∞), to a tight, centered
Gaussian process DC with covariance

Cov{DC(u),DC(v)} =
∑

i∈Z

Cov{I(U0 ≤ u), I(Ui ≤ v)},

see for instance Arcones and Yu (1994) and Doukhan et al. (1995) for β-
mixing, Rio (2000) for α-mixing, Doukhan et al. (2009) for η-dependence
or Durieu and Tusche (2012) for multiple mixing condtions, among others.
Here and throughout, weak convergence is understood in the sense of Defi-
nition 1.3.3 of van der Vaart and Wellner (1996).

In this note, we are interested in situations in which the sequence (Ui)i∈Z
satisfies strong (α-)mixing conditions. Let (Xi)i∈Z be a sequence of Banach-
space valued random variables. For a ≤ b, where a, b ∈ Z∪{−∞,∞}, let F b

a

denote the σ-field generated by (Xi)a≤i≤b. The strong mixing coefficients of
the sequence (Xi)i∈Z are then defined by α0 = 1/2 and

αn = sup
p∈Z

sup
A∈Fp

−∞,B∈F+∞
p+n

|P(A ∩ B)− P(A)P(B)|, n ≥ 1.

The sequence (Xi)i∈Z is said to be strongly mixing if αn → 0 as n → ∞.
In the following, let αn denote the mixing coefficients of the sequence

(Ui)i∈Z. It has been shown by Rio (2000) that Dn  D in (ℓ∞([0, 1]d), ‖ · ‖∞)
provided that αn = O(n−a) for some a > 1, thereby improving previous
results by Yoshihara (1975) and Shao and Yu (1996).

In this note, we are interested in the slightly more general sequential
empirical process

Bn(s,u) =
1√
n

⌊sn⌋
∑

i=1

{I(Ui ≤ u)− C(u)},

where (s,u) = (s, u1, . . . , ud) ∈ [0, 1]d+1 and ⌊ns⌋ denotes the integer part
of ns. Note that Dn(u) = Bn(1,u). Investigating the process Bn is in-
teresting for several reasons in mathematical statistics. For instance, the
process can be used to derive nonparametric tests for change point detection
in a d-dimensional time series, see, e.g., Inoue (2001). As a second appli-
cation, suppose one is interested in constructing confidence bands for some
real-valued estimator that can be written as a functional of the empirical
cumulative distribution function, as for instance its integral over u ∈ [0, 1]d.
Then, following the self-normalizing approach developed in Shao (2010), a

2



weak convergence result for Bn can used to obtain confidence bands for this
estimator that do not require a tuning-parameter-dependent estimation of
the asymptotic covariance.

Regarding weak convergence results for Bn, it is again known for various
types of weak dependence conditions that

Bn  BC in (ℓ∞([0, 1]d+1, ‖ · ‖∞), (1.1)

where BC denotes a tight, centered Gaussian process with covariance

Cov{BC(s,u),BC(t, v)} = (s ∧ t)
∑

i∈Z

Cov{I(U0 ≤ u), I(Ui ≤ v)},

see for instance Dedecker et al. (2013) for β-mixing or Dehling et al. (2013)
for multiple mixing properties, among others. To the best of our knowledge,
the best rate available in the literature for strongly mixing sequences follows
from the strong approximation result established in Dhompongsa (1984): if
αn = O(n−b) with b > 2+d, then (1.1) holds. It is the purpose of the present
note to improve this rate to αn = O(n−a) for any a > 1, independently
of the dimension d, which is the same rate as established in Rio (2000) for
the non-sequential process Dn. The proof of this result is inspired by the
proof of Theorem 2.12.1 in van der Vaart and Wellner (1996) and is based
on an adapted version of Ottaviani’s inequality, see Proposition A.1.1 in the
last-named reference, to strongly mixing sequences. This inequality might
be of independent interest in other applications where one wants to transfer
a weak convergence result from the non-sequential to the sequential setting.

2 Main result

Theorem 1. If αn = O(n−(1+η)) for some η > 0, then, as n → ∞,

Bn  BC in (ℓ∞([0, 1]d+1, ‖ · ‖∞).

For the proof of this Theorem, we need to establish weak convergence of
the finite-dimensional distributions (fidis) and asymptotic tightness. Regard-
ing weak convergence of the fidis, we can for instance apply Theorem 2.1 in
Peligrad (1996). The details are omitted for the sake of brevity.

Let us consider the tightness part. For some function f ∈ ℓ∞([0, 1]p),
p ≥ 1, and δ > 0 let

wδ(f) = sup
‖x−y‖≤δ

|f(x)− f(y)|

denote the modulus of continuity of f . By the results in van der Vaart and Wellner
(1996), Section 1.5, the following Lemma completes the proof of Theorem 1.
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Lemma 2 (Asymptotic tightness of Bn). Let αn = O(n−(1+η)) for some η ∈
(0, 1). Then

lim
δց0

lim sup
n→∞

P(wδ(Bn) > ε) = 0.

Proof. First, note that, by the results in Section 7 in Rio (2000) and Theorem
1.5.7 and its addendum in van der Vaart and Wellner (1996), we have

lim
δց0

lim sup
n→∞

P(wδ(Dn) > ε) = 0. (2.1)

By the triangle inequality

wδ(Bn) ≤ sup
|s1−s2|≤δ

sup
u∈[0,1]d

|Bn(s1,u)− Bn(s2,u)|

+ sup
0≤s≤1

sup
‖u−v‖≤δ

|Bn(s,u)− Bn(s, v)|. (2.2)

The second summand is equal to

n
max
k=1

sup
‖u−v‖≤δ

|Bn(k/n,u)− Bn(k/n, v)|

=
n

max
k=1

sup
‖u−v‖≤δ

∣

∣

∣

∣

∣

√

k

n
{Dk(u)− Dk(v)}

∣

∣

∣

∣

∣

=
n

max
k=1

√

k

n
wδ(Dk).

Define Gi(u, v) = I(Ui ≤ u)− C(u)− I(Ui ≤ v) + C(v). Set κ = η/8 and
ℓn = ⌊n1/2−κ⌋. For instance by observing that both Dn : Ω → D([0, 1]d) and
wδ : D([0, 1]d) → R are ball-measurable, we can apply Ottaviani’s inequality
under strong mixing, see Lemma 3, with T = {t = (u, v) ∈ [0, 1]2d : ‖u −
v‖ ≤ δ} and Yi(t) = n−1/2Gi(t), where t = (u, v). Let ε > 0. Then we
obtain

P(
n

max
k=1

√

k/nwδ(Dk) > 3ε) ≤ An1 + An2 + ⌊n/ℓn⌋αℓn

1−maxnk=1 P(
√

k/nwδ(Dk) > ε)
, (2.3)

where An1 = P(wδ(Dn) > ε) and

An2 = P

(

max
j<k∈{1,...,n}

k−j≤2ℓn

sup
‖u−v‖≤δ

1√
n

∣

∣

∣

∣

k
∑

i=j+1

Gi(u, v)

∣

∣

∣

∣

> ε

)

.

For sufficiently large n, we have ℓn ≥ 1
2
n1/2−κ, whence

⌊n/ℓn⌋αℓn ≤ 1
2
n1−(1/2−κ)−(1/2−κ)(1+η) = 1

2
n2κ−η/2+κη = 1

2
nη/4(η/2−1) = o(1)
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as n → ∞. Next, An1 converges to 0 as n → ∞ followed by δ ց 0 by (2.1).
Moreover,

max
j<k∈{1,...,n}

k−j≤2ℓn

sup
‖u−v‖≤δ

1√
n

∣

∣

∣

∣

k
∑

i=j+1

Gi(u, v)

∣

∣

∣

∣

≤ 8ℓn/
√
n ≤ 8n−κ = o(1),

as n → ∞, whence An2 = o(1).
To complete the treatment of the second summand in (2.2), it remains

to be shown that the denominator in (2.3) is bounded away from zero for
sufficiently large n and small δ. By (2.1), there exists δ0 > 0 such that
lim supn→∞ P(wδ(Dn) > ε) < 1/2 for all δ ≤ δ0. Then, there exists n0 =
n0(δ0) such that P(wδ0(Dn) > ε) < 1/2 for all n ≥ n0. Therefore, for all
δ < δ0,

n
max
k=n0

P(
√

k/nwδ(Dk) > ε) ≤ n
max
k=n0

P(wδ(Dk) > ε) ≤ n
max
k=n0

P(wδ0(Dk) > ε) < 1/2.

On the other hand, for k < n0 and arbitrary δ > 0, we have

wδ(Dk) ≤ 2 sup
u∈[0,1]d

|Dk(u)| ≤ 4
√
k ≤ 4

√
n0,

which implies that maxn0−1
k=1 P(

√

k/nwδ(Dk) > ε) = 0 for sufficiently large n
and all δ > 0. Therefore, the denominator in (2.3) is bounded from below
by 1/2.

Finally, consider the first suprema on the right of (2.2). It suffices to show
that, for every ε > 0,

P

(

max
0≤jδ≤1

j∈N

sup
jδ≤s≤(j+1)δ

sup
u∈[0,1]d

|Bn(s,u)− Bn(jδ,u)| > 3ε

)

converges to 0 as n → ∞ followed by δ ց 0. By stationarity of the incre-
ments of Bn in s, the at most ⌈1/δ⌉ terms in the maximum are identically
distributed. Therefore, the probability can be bounded by

⌈1/δ⌉P
(

sup
0≤s≤δ

sup
u∈[0,1]d

|Bn(s,u)| > 3ε

)

= ⌈1/δ⌉P
(

⌊nδ⌋
max
k=1

sup
u∈[0,1]d

|
√

k/nDk(u)| > 3ε

)

≤ ⌈1/δ⌉(Bn1 +Bn2 + ⌊⌊nδ⌋/ℓn⌋αℓn)

1−max
⌊nδ⌋
k=1 P

(

√

k/n sup
u∈[0,1]d |Dk(u)| > ε

) , (2.4)
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by the Ottaviani-type inequality in Lemma 3, where

Bn1 = P

(

√

⌊nδ⌋/n sup
u∈[0,1]d

|D⌊nδ⌋(u)| > ε

)

Bn2 = P

(

max
j<k∈{1,...,⌊nδ⌋}

k−j≤2ℓn

sup
u∈[0,1]d

∣

∣

∣

∣

∣

n−1/2

k
∑

i=j+1

{I(Ui ≤ u)− C(u)}
∣

∣

∣

∣

∣

> ε

)

.

Here, we were allowed to apply Lemma 3 by a similar argument as before. It
remains to be shown that Bn1, Bn2 and ⌊⌊nδ⌋/ℓn⌋αℓn , multiplied with 1/δ,
converges to zero as n → ∞ followed by δ ց 0 and that the denominator in
(2.4) is bounded away from zero. First of all, for δ ≤ 1, we have

⌈1/δ⌉⌊⌊nδ⌋/ℓn⌋αℓn ≤
(

1

δ
+ 1

)

nδαℓn

ℓn
≤ 2

nαℓn

ℓn
= o(1)

as n → ∞, by the same arguments as above. Second, by the Portmanteau-
Theorem,

lim sup
n→∞

Bn1 ≤ lim sup
n→∞

P( sup
u∈[0,1]d

|Dn(u)| > εδ−1/2)

≤ lim sup
n→∞

P( sup
u∈[0,1]d

|Dn(u)| ≥ εδ−1/2)

≤ P( sup
u∈[0,1]d

|DC(u)| ≥ εδ−1/2) = P( sup
u∈[0,1]d

|DC(u)| > εδ−1/2)

since sup
u∈[0,1]d |DC(u)| is a continuous random variable. Since additionally

sup
u∈[0,1]d |DC(u)| possesses moments of any order (cf. Proposition A.2.3 in

van der Vaart and Wellner (1996)), the latter probability converges to zero
faster than any power of δ, as δ ց 0.

Third, regarding Bn2, we have

max
j<k∈{1,...,⌊nδ⌋}

k−j≤2ℓn

sup
u∈[0,1]d

∣

∣

∣

∣

∣

n−1/2
k
∑

i=j+1

{I(Ui ≤ u)− C(u)}
∣

∣

∣

∣

∣

≤ 4ℓnn
−1/2 = o(1),

as n → ∞, whence Bn2 converges to zero as n → ∞ followed by δ ց 0 as
asserted.

Finally, let us consider the denominator in (2.4). By a similar argument
as before, we have from the Portmanteau Theorem that

lim sup
n→∞

P( sup
u∈[0,1]d

|Dn(u)| > ε) ≤ P( sup
u∈[0,1]d

|DC(u)| > ε)
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by continuity of sup
u∈[0,1]d |DC(u)|. Also, since ε > 0, we obtain that p =

P(sup
u∈[0,1]d |DC(u)| > ε) < 1, whence we can choose ζ > 0 such that 0 <

ζ < 1− p. It follows that there exists n0 ∈ N such that

sup
k≥n0

P( sup
u∈[0,1]d

|Dk(u)| > ε) ≤ p+ ζ.

Hence,

⌊nδ⌋
max
k=n0

P(
√

k/n sup
u∈[0,1]d

|Dk(u)| > ε) ≤ ⌊nδ⌋
max
k=n0

P( sup
u∈[0,1]d

|Dk(u)| > ε) ≤ p+ ζ.

On the other hand, for k < n0, we have
√

k/n sup
u∈[0,1]d |Dk(u)| ≤

√

k/n×
2
√
k ≤ 2n0/

√
n, which implies that, for n large enough,

n0−1
max
k=1

P(
√

k/n sup
u∈[0,1]d

|Dk(u)| > ε) = 0.

Hence, the denominator in (2.4) is bounded from below by 1− p− ζ > 0 for
n large enough. This completes the proof.

3 An auxiliary Lemma

Let (Xi)i∈Z be a sequence of random elements in some Banach space E. Let
T be some arbitrary index set and, for i ∈ Z, let Gi ∈ ℓ∞(E× T ). For t ∈ T ,
set Yi(t) = Gi(Xi, t) and Sn(t) =

∑n
i=1 Yi(t), for n ≥ 1 and S0 ≡ 0. Finally,

for f ∈ ℓ∞(T ), let ‖f‖ = supt∈T |f(t)|.
Lemma 3 (An Ottaviani-type inequality under strong mixing). Suppose that
‖Sm − Sn‖ is measurable for each 0 ≤ n < m. Then, for each ε > 0 and
1 ≤ ℓ < n,

P

(

n
max
k=1

‖Sk‖ > 3ε
)

×
{

1− n
max
k=1

P (‖Sn − Sk‖ > ε)
}

≤ P(‖Sn‖ > ε) + P

(

max
j<k∈{1,...,n}

k−j≤2ℓ

‖Sk − Sj‖ > ε

)

+ ⌊n/ℓ⌋ × αℓ,

where αn denotes the sequence of mixing coefficients of the sequence (Xi)i∈Z.

Proof. For k = 1, . . . , n, define the event Bk by

Bk = {‖Sk‖ > 3ε, ‖S1‖ ≤ 3ε, . . . , ‖Sk−1‖ ≤ 3ε} .
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Note that these events are pairwise disjoint and that their union is given by
{maxnk=1 ‖Sk‖ > 3ε}. Furthermore, for m = 1, . . . , ⌊n/ℓ⌋ − 1, let

Cm =

mℓ
⋃

k=(m−1)ℓ+1

Bk, and C⌊n/ℓ⌋ =

n
⋃

k=(⌊n/ℓ⌋−1)ℓ+1

Bk,

which are also pairwise disjoint and have the same union as the Bk’s.
Now, let us first consider a fixed m ≤ ⌊n/ℓ⌋ − 1. Then

P (Cm)×
n

min
k=1

P (‖Sn − Sk‖ ≤ ε)

≤ P (Cm)P
(

‖Sn − S(m+1)ℓ‖ ≤ ε
)

≤ P
(

Cm, ‖Sn − S(m+1)ℓ‖ ≤ ε
)

+ αℓ

≤ P

(

Cm,
mℓ
max

k=(m−1)ℓ+1
‖Sk‖ > 3ε, ‖Sn − S(m+1)ℓ‖ ≤ ε

)

+ αℓ. (3.1)

Since ‖Sk‖ ≤ ‖Sk − S(m+1)ℓ‖ + ‖S(m+1)ℓ − Sn‖ + ‖Sn‖ for any k = 1, . . . , n,
we have

‖Sn‖ ≥ mℓ
max

k=(m−1)ℓ+1
{‖Sk‖ − ‖S(m+1)ℓ − Sk‖ − ‖S(m+1)ℓ − Sn‖}

≥
{ mℓ

max
k=(m−1)ℓ+1

‖Sk‖
}

−
{ mℓ

max
k=(m−1)ℓ+1

‖S(m+1)ℓ − Sk‖
}

− ‖S(m+1)ℓ − Sn‖.

Therefore, we can estimate the right-hand side of (3.1) by

≤ P

(

Cm, ‖Sn‖ > 2ε− mℓ
max

k=(m−1)ℓ+1
‖S(m+1)ℓ − Sk‖

)

+ αℓ

≤ P (Cm, ‖Sn‖ > ε) + P

(

Cm,
mℓ
max

k=(m−1)ℓ+1
‖S(m+1)ℓ − Sk‖ > ε

)

+ αℓ

≤ P (Cm, ‖Sn‖ > ε) + P

(

Cm, max
j<k∈{1,...,n}

k−j≤2ℓ

‖Sk − Sj‖ > ε

)

+ αℓ.

Next, let us consider the case m = ⌊n/ℓ⌋. Then

P
(

C⌊n/ℓ⌋

)

×
n

min
k=1

P (‖Sn − Sk‖ ≤ ε)

≤ P

(

C⌊n/ℓ⌋,
n

max
k=(⌊n/ℓ⌋−1)ℓ+1

‖Sk‖ > 3ε

)

≤ P

(

C⌊n/ℓ⌋, ‖Sn‖ > 3ε− n
max

k=(⌊n/ℓ⌋−1)ℓ+1
‖Sn − Sk‖

)
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≤ P
(

C⌊n/ℓ⌋, ‖Sn‖ > 2ε
)

+ P

(

C⌊n/ℓ⌋,
n

max
k=(⌊n/ℓ⌋−1)ℓ+1

‖Sn − Sk‖ > ε

)

≤ P
(

C⌊n/ℓ⌋, ‖Sn‖ > ε
)

+ P

(

C⌊n/ℓ⌋, max
j<k∈{1,...,n}

k−j≤2ℓ

‖Sk − Sj‖ > ε

)

.

Joining both cases, we have, for any m = 1, . . . , ⌊n/ℓ⌋,

P (Cm)×
n

min
k=1

P (‖Sn − Sk‖ ≤ ε)

≤ P (Cm, ‖Sn‖ > ε) + P

(

Cm, max
j<k∈{1,...,n}

k−j≤2ℓ

‖Sk − Sj‖ > ε

)

+ αℓ.

Summation over m finally yields the assertion.
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