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Abstract

For t ∈ [0, 1] let H2⌊nt⌋ = (mi+j)
⌊nt⌋
i,j=0 denote the Hankel matrix of order 2⌊nt⌋ of a random

vector (m1, . . . ,m2n) on the moment space M2n(T ) of all moments (up to the order 2n) of

probability measures on the interval T ⊂ R. In this paper we study the asymptotic properties

of the stochastic process {log detH2⌊nt⌋}t∈[0,1] as n → ∞. In particular weak convergence

and corresponding large deviation principles are derived after appropriate standardization.

Keyword and Phrases: random Hankel determinant, random moment sequences, weak conver-

gence, large deviation principle, canonical moments, arcsine distribution
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1 Introduction

Hankel matrices are well studied objects in mathematics with applications in various fields such as

orthogonal polynomials, random matrices or operator theory. Asymptotic properties of functions

of non-random Hankel matrices such as the determinant, condition number or smallest eigenvalue

have been studied by Hirschman Jr. (1966), Zamarashkin and Tyrtyshnikov (2001), Basor et al.

(2001) or Berg and Szwarc (2011) among others. Recently, random Hankel matrices have also

been considered in the literature with the main focus on matrices with independent entries. For

example, Bryc et al. (2006) studied the limiting spectral measure of large Hankel (and Toeplitz)

matrices, while some results regarding the operator norm can be found in Bose and Sen (2007).

The present paper takes a different look at random Hankel matrices (more precisely, at their
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log-determinants) with not necessarily independent entries defined by a distribution on a moment

space. More precisely, our investigations are motivated by the fact that Hankel matrices are

usually used to characterize the solution of classical moment problems. To be precise, let T ⊂ R

denote an interval and define P(T ) as the set of all probability measures on the Borel field of T

with existing moments. For a measure µ ∈ P(T ) we denote by

mk = mk(µ) =

∫

T

xkµ(dx) ; k = 0, 1, 2, . . .

the k-th moment and define

M(T ) =
{

m(µ) = (m1(µ), m2(µ), . . . )
t| µ ∈ P(T )

}

⊂ R
N(1.1)

as the set of all moment sequences. We denote by Πn (n ∈ N) the canonical projection onto the

first n coordinates and call Mn(T ) = Πn (M(T )) ⊂ R
n the n-th moment space. The Hamburger

moment problem is to decide if a given sequence (mn)n∈N is an element of M(R) and it is well

known that this is the case if and only if the Hankel matrices H2k = (mi+j)
k
i,j=0 are nonnegative

definite for all k ∈ N [see Shohat and Tamarkin (1943)]. Moreover the vector m2n = (m1, . . . , m2n)

is an element of the moment space M2n(R) if and only if the Hankel matrix H2n = (mi+j)
n
i,j=0

is nonnegative definite. Similar characterization can be obtained for the Stieltjes and Hausdorff

moment problem corresponding to measures on the half line R
+
0 = [0,∞) and the interval [0, 1],

respectively.

Chang et al. (1993) considered the “classical” moment space corresponding to measures on the

interval [0, 1] [see Karlin and Shapeley (1953), Krein and Nudelman (1977), for some early refer-

ences] and equipped Mn([0, 1]) with a uniform distribution. They proved asymptotic normality

of an appropriately standardized version of a projection Πk(mn) of a uniformly distributed vec-

tor mn on Mn([0, 1]) as n → ∞. Gamboa and Lozada-Chang (2004) investigated corresponding

large deviation principles, while Lozada-Chang (2005) studied similar problems for moment spaces

corresponding to more general functions defined on a bounded set. More recently, some of these

results have been generalized by Dette and Nagel (2012) to the moment spaces Mn([0,∞)) and

Mn(R) corresponding to unbounded intervals.

The present paper is devoted to the asymptotic analysis of Hankel determinants of random mo-

ment vectors onM2n(T ). For example, ifm2n = (m1, . . . , m2n) denotes a random vector uniformly

distributed on the 2nth moment space M2n([0, 1]), then it is shown in this paper that an appro-

priately transformed and standardized version of the determinant of the random Hankel matrix

H2n = (mi+j)
n
i,j=0 converges weakly, that is

(1.2)
2√
n

{

log detH2n − log detH0
2n +

n

2

} D−→ N (0, 1),

whereH0
2n = (m0

i+j)
n
i,j=0 denotes the Hankel determinant of the moments of the arcsine distribution

on the interval [0, 1], that is mℓ = ( 2ℓ
ℓ )2

−2ℓ. Moreover, the sequence

(1.3) − 1

n

{

log detH2n − log detH0
2n

}
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satisfies a large deviation principle with a good rate function. It will be demonstrated in Section

2 that the moments of the arcsine distribution used for the centering in (1.2) and (1.3) correspond

to the center of the moment space M([0, 1]).

Similar results are available for the moment space M2n([0,∞)) and M2n(R), where the centering

has to be performed by the logarithms of the determinants of the Hankel matrices correspond-

ing to the Marcenko-Pastur law and Wigner’s semi-circle law, respectively (in these cases the

corresponding Hankel determinants H2n have value 1). These measures play a very important

role in the theory of random matrices, free probability and quantum probability, see the books of

Hiai and Petz (2000) and Hora and Obata (2007) among others.

The remaining part of this paper is organized as follows. In Section 2 we present some facts on

moment theory and introduce random moment sequences on the spaces Mn([0, 1]),Mn([0,∞))

and M2n−1(R). We also state some basic properties of these random variables which will be useful

in the following discussion. In Section 3 it is shown that for the canonical distributions on the

moment space M2n(T ) an appropriately standardized version of the stochastic process

{D2⌊nt⌋}t∈[0,1] = {log detH2⌊nt⌋}t∈[0,1](1.4)

converges weakly to a Gaussian process. The centering and scaling is different for the three

moment spaces under consideration. We also study the asymptotic properties of the vector

(Dn,2, . . . , Dn,2k)
t for any fixed k. Large deviation principles are investigated in Section 4, while

some technical results which are required for the proofs are provided in the Appendix.

2 Some basic facts about moment theory

Similar to cumulants, canonical moments provide a one-to-one transformation of the ordinary

moments. They appear naturally in the continued fraction expansion of the Stieltjes transform of

a probability measure but are less known than cumulants. Therefore, we state some basic facts in

the following two paragraphs, where we distinguish between bounded and unbounded intervals.

2.1 Canonical moments

Canonical moments have been investigated in a series of papers by Skibinsky (1967, 1968, 1969)

and roughly speaking define a one-to-one mapping from the set of moments M([0, 1]) (or more

generally from M([a, b]) for any finite interval [a, b] ⊂ R) onto the set [0, 1]N. They have implicitly

been discussed before in the work of Verblunsky (1935, 1936), who mainly considered measures on

the unit circle. In this section we briefly present some basic facts for the sake of a self contained

presentation and discuss corresponding results for the set M([0,∞)) and M(R). For details

we refer to the monographs of Dette and Studden (1997) and Wall (1948). For a given vector
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mk−1 =(m1, . . . , mk−1)
T ∈ Mk−1([0, 1]) of moments of a probability measure on the interval [0, 1]

define

m−
k = min

{

mk(µ)

∣

∣

∣

∣

µ ∈ P([0, 1]) with

∫ 1

0

tidµ(t) = mi for i = 1, . . . , k − 1

}

,

m+
k = max

{

mk(µ)

∣

∣

∣

∣

µ ∈ P([0, 1]) with

∫ 1

0

tidµ(t) = mi for i = 1, . . . , k − 1

}

.

Throughout this paper let IntC denote the interior of a set C. It is shown in Dette and Studden

(1997) that mk = (m1, . . . , mk)
T ∈ IntMk([0, 1]) if and only if m−

k < mk < m+
k . In this case the

canonical moments of order l = 1, . . . , k are defined as

pl = pl(mk) =
ml −m−

l

m+
l −m−

l

; l = 1, . . . , k.(2.1)

Note that for mk ∈ IntMk([0, 1]) we have pl ∈ (0, 1); l = 1, . . . , k; and that pk describes the

relative position of the moment mk in the set of all possible k-th moments with fixed moments

m1, . . . , mk−1. It can also be shown that the definition (2.1) defines a one-to one mapping from

IntMn([0, 1]) onto the open cube (0, 1)n. As an example consider the arcsine distribution µ0 on

the interval [0, 1] with density 1/(π
√

x(1− x)), then the corresponding canonical moments are

given by pℓ = 1/2 for all ℓ ∈ N [see Dette and Studden (1997)]. Consequently, the sequence

of moments of the arcsine distribution defines the center of the moment space M([0, 1]). Note

however, that it is not the barycenter of the moment space.

The determinant of the Hankel matrix H2k = (mi+j)
k
i,j=0 of the moment vector (m1, . . . , m2k) can

easily be expressed in terms of the corresponding canonical moments, that is

detH2k = det(mi+j)
k
i,j=0 =

(

p1q1p2
)k

k
∏

j=2

(

q2k−2p2k−1q2k−1p2k
)k−j+1

,(2.2)

where qj = 1− pj [see Dette and Studden (1997), Theorem 1.4.10].

In the case T = [0,∞) the upper bound m+
k is in general not finite, but we can still define for a

point mk−1 ∈ IntMk−1([0,∞)) the lower bound

m−
k = min

{

mk(µ)

∣

∣

∣

∣

µ ∈ P([0,∞)) with

∫ ∞

0

tidµ(t) = mi for i = 1, . . . , k − 1

}

,

where mk = (m1, . . . , mk)
T ∈ IntMk([0,∞)) if and only if mk > m−

k . In this case, the analogues

of the canonical moments are defined by the quantities

zl =
ml −m−

l

ml−1 −m−
l−1

l = 1, . . . , k(2.3)

(with m−
0 = 0). As in the case of a bounded interval the definition (2.3) provides a one to one

mapping from IntMn([0,∞)) onto (R+)n, and it can be shown using similar arguments as in

Dette and Studden (1997) that

detHk = (mk −m−
k ) detHk−2 , k ≥ 2.
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Consequently, the determinant of the Hankel matrix is given by

detH2k = det(mi+j)
k
i,j=0 =

k
∏

j=1

(

z2k−1z2k
)k−j+1

,(2.4)

Finally, in the case T = R neither m−
k nor m+

k are in general finite. Nevertheless, there exists an

analogue of the quantities pi and zi defined in (2.2) and (2.4). To be precise, we define for a vector

m2n−1 = (m1, . . . , m2n−1) ∈ M2n−1(R) with H2n−2 > 0 the polynomial

Pk(x) =

∣

∣

∣

∣

∣

∣

∣

m0 · · · mk−1 1
...

. . .
...

...

mk · · · m2k−1 xk

∣

∣

∣

∣

∣

∣

∣

/

∣

∣

∣

∣

∣

∣

∣

m0 · · · mk−1

...
. . .

...

mk−1 · · · m2k−2

∣

∣

∣

∣

∣

∣

∣

; k = 1, . . . , n(2.5)

[see Chihara (1978)]. We consider a one to one mapping

ξn :

{

IntM2n−1(R) −→ (R× R
+)

n−1 × R

m2n−1 7→ (b1, a1, . . . , an−1, bn)
T(2.6)

defined by

∫

R

xkPk(x)dµ(x) = a1 . . . ak; k = 1, . . . , n− 1,(2.7)
∫

R

xk+1Pk(x)dµ(x) = a1 . . . ak(b1 + · · ·+ bk+1); k = 0, . . . , n− 1,(2.8)

where µ is any measure with first 2n− 1 moments given by (m1, . . . , m2n−1) [see for example Wall

(1948)]. Note that P1(x), . . . , Pn(x) are orthogonal polynomials with leading coefficient 1 with

respect to the measure µ. It is now easy to see that the determinant of the Hankel matrix can be

represented as

detH2k = det(mi+j)
k
i,j=0 =

k
∏

j=1

ak−j+1
j .(2.9)

In the following section we will equip these moment spaces with distributions. We begin with the

moment space corresponding to measures on bounded intervals.

2.2 Distributions on moment spaces

Chang et al. (1993) considered a uniformly distributed vector on the set Mn([0, 1]) and showed

that an appropriately standardized version of a projection Πk(mn) onto its first k components is

asymptotically normal distributed, where the centering has to be performed with the moments of

the arcsine distribution. A key ingredient in their proof is the following lemma, which shows that
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the canonical moments of a uniformly distributed vector mn on Mn([0, 1]) are independent [for a

proof of the following result see Dette and Studden (1997)]. For this and the following statements

we will make the dependence of the canonical moments on the dimension of the moment space

Mn([0, 1]) more explicit. More precisely, we use the notation pn,ℓ(mn) instead of pℓ(mn), and the

symbol β(a, b) denotes a Beta-distribution on the interval [0, 1] with density

I[0,1](x)x
a−1(1− x)b−1/B(a, b).

Lemma 2.1. For a uniformly distributed random vector mn on the nth moment space Mn([0, 1])

the canonical moments pn,1(mn), . . . , pn,n(mn) defined by (2.1) are independent and Beta-distributed,

that is

pn,i(mn) ∼ β(n− i+ 1, n− i+ 1) .

Note that the mapping between the (regular) moments and the canonical moments has only been

defined on the the interior of Mn([0, 1]). However, Mn([0, 1]) is a closed, convex set and therefore

its boundary has Lebesgue measure 0. Since we endow this space with the uniform distribution,

the random variables pn,i are a.s. well-defined. We also note that Dette and Nagel (2012) defined

more general distributions on Mn([0, 1]), which contain the uniform distribution as a special case.

In order to define an analogue of the uniform distribution on the unbounded moment space

Mn([0,∞)) these authors use the relation (2.3). To be precise, consider a random vector mn

and denote the quantities in (2.3) by zn,1(mn), . . . , zn,n(mn). A density on the moment space

Mn([0,∞)) is then defined by

g(γ,δ)n (mn) = c[0,∞)
n

n
∏

k=1

zn,k(mn)
γn,k exp(−δn,kzn,k(mn))1{zn,k(mn)>0},(2.10)

where the constants satisfy γn,k > −(n − k + 1), δn,k > 0 for k = 1, . . . , n, and the normalizing

constant is given by c
[0,∞)
n =

∏n
k=1(δ

γk+n−k+1
n,k )/Γ(γn,k + n− k + 1)). The analogue of Lemma 2.1

is now provided by the following result, where the symbol γ(a, b) denotes a Gamma distribution

(a, b > 0) with density
ba

Γ(a)
xa−1e−bx

1[0,∞)(x) .

Lemma 2.2. For a random vector mn with density (2.10) on Mn([0,∞)) the canonical moments

zn,k(mn) defined by (2.3) are independent and Gamma-distributed, that is

zn,k(mn) ∼ γ(γn,k + n− k + 1, δn,k), k = 1, . . . , n.

A proof of Lemma 2.2 can be found in Dette and Nagel (2012) and we conclude this section with

the corresponding statements for the moment space M2n−1(R). Following Dette and Nagel (2012)
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we define a distribution on M2n−1(R) by

h
(γ,δ)
2n−1(m2n−1) =

n
∏

k=1

√

δn,2k−1

π
exp

(

−δn,2k−1b
2
n,k(m2n−1)

)

×
n−1
∏

k=1

δn,2k
γn,k+2n−2k

Γ(γn,k + 2n− 2k)
a
γn,k

n,k (m2n−1) exp (−δn,2kan,k(m2n−1))1{an,k(m2n−1)>0},(2.11)

where the constants satisfy γn,k > −2(n − k) for k = 1, . . . , n− 1 and δn,1, . . . , δ1,2n−1 > 0. The

distribution of the corresponding quantities ak and bk defined by (2.7) and (2.8) is specified in the

following result.

Lemma 2.3. Let m2n−1 ∈ M2n−1(R) be a random vector with density h
(γ,δ)
2n−1 defined in (2.11).

Then the random coefficients (bn,1, an,1 . . . , an,n−1, bn,n)
T defined by (2.7) and (2.8) are independent

and

bn,k ∼ N (0, 1
2δn,2k−1

), an,k ∼ γ(γn,k + 2n− 2k, δn,2k).

Remark 2.4. There exists an interesting relation to random matrix theory in particular to the β-

ensembles considered by Dumitriu and Edelman (2002); Edelman and Sutton (2008); Ramı́rez et al.

(2011) among others. To be precise, consider exemplarily the moment space M2n−1(R). It can be

shown that for a point m2n−1 ∈ IntM2n−1(R) the polynomials defined in (2.5) satisfy the three

term recurrence relation

xPk(x) = Pk+1(x) + bk+1Pk(x) + akPk−1(x); k = 1, . . . , n− 1,(2.12)

(P0(x) = 1, P1(x) = x−b1), where the coefficients in the recursion are defined by (2.7) and (2.8). A

straightforward calculation now shows that the polynomial Pn(x) is the characteristic polynomial

det(xIn − An) of the matrix

(2.13) An =















b1
√
a1√

a1 b2
√
a2

. . .
. . .

. . .
√
an−2 bn−1

√
an−1√

an−1 bn















.

If m2n−1 is a random vector on M2n−1(R) with density h
(γ,δ)
2n−1 defined in (2.11), and δn,2k−1 = 1/2

(k = 1, . . . , n), δn,2k = 1, γn,k = (1
2
β − 2)(n− k) (k = 1, . . . , n− 1) for some β > 0, then it follows

from Lemma 2.3 that the coefficients in this matrix are independent with distributions bi ∼
N (0, 1), ai ∼ 1

2
χ2
β(n−i). This means that Pn(x) is the characteristic polynomial of the random the

matrix (2.13) corresponding to the β- Hermite ensemble as introduced by Dumitriu and Edelman
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(2002). While the common matrix literature investigates spectral properties of this matrix, the

random Hankel determinant corresponds to a product of L2-norms of the (random) polynomials

P1, . . . , Pn, that is
n
∏

i=1

∫

R

P 2
i (x)µ(dx) =

n
∏

i=1

an−i+1
i ,

where µ denotes a random measure whose first 2n − 1 moments are defined the random Jacobi

matrix (2.13).

We also note that a similar interpretation is available for the random moment sequences on

M2n−1([0, 1]) andM2n−1([0,∞)) observing the results of Killip and Nenciu (2004) and Dumitriu and Edelman

(2002), respectively.

3 Weak convergence of Hankel determinant processes

Throughout this section we investigate the asymptotic properties of the stochastic process

{Dn,2⌊nt⌋(m2n)}t∈[0,1] = {log detHn,2⌊nt⌋(m2n)}t∈[0,1](3.1)

where Hn,2⌊nt⌋(m2n) = (mi+j(m2n))
⌊nt⌋
i,j=0 is the Hankel determinant of a random vector m2n

on the moment space M2n(T ). We also investigate the asymptotic properties of the vector

(Dn,2(m2n), . . . , Dn,2k(m2n)) for some fixed k ∈ N. In the following discussion we treat the cases

of a bounded and unbounded moment space separately.

3.1 Hankel determinants from M2n([0, 1])

Throughout this paper the symbol Yn
d−→ Y denotes weak convergence of a vector valued sequence

of random variables (Yn)n∈N. Moreover, let l∞([0, 1]) denote the space of bounded real-valued

functions on the interval [0, 1] with the topology induced by the uniform norm. We denote by

Xn =⇒ X the weak convergence of a sequence (Xn)n∈N of random variables in l∞([0, 1]) to an

l∞([0, 1])-valued random variable X . We also use the convention 0 log(0) := 0 and in the following

s∧t and s∨t denote the minimum and maximum of s, t ∈ [0, 1], respectively. Consider a uniformly

distributed random vector m2n on M2n([0, 1]), that is m2n ∼ U(M2n). We first investigate the

weak convergence of the vector

Hk
n = (Dn,2(m2n), . . . , Dn,2k(m2n))

t(3.2)

for a fixed k ∈ N.

Theorem 3.1. If m2n ∼ U(M2n), then the random vector

√
4n(Hk

n −D0
n,2k)

d−→ N (0,Σk) ,

8



where D0
n,2k denotes the log-determinant of the Hankel matrix corresponding to the arcsine distri-

bution, that is

D0
n,2k = log det

(

(

2(i+ j)

i+ j

)

2−2(i+j)
)

i,j=0,...,k
= − k(2k + 1) log(2),(3.3)

and the asymptotic covariance matrix is given by

Σk = (i ∧ j)ki,j=1 .(3.4)

Proof: In all proofs of this paper we do not reflect the dependence of the canonical moments on the

vector of random moments and use the notation p2n,i = p2n,i(m2n). According to Lemma 2.1 the

canonical moments p2n,i are independent and β(2n− i+1, 2n− i+1) distributed (i = 1, 2, . . . , 2n).

Therefore it follows from Theorem 3.1 in Dette and Nagel (2012) and the Delta method that
√
4n(log(p2n,k)− log(1

2
))

d−→ N (0, 1)(3.5)
√
4n(log(p2n,k(1− p2n,k))− log(1

4
))

P−→ 0(3.6)

Because the canonical moments pn,1, . . . , pn,n are independent we obtain that the random vector

Bn =
√
4n
(

(log(q2n,2), . . . , log(q2n,2k))
t − (log(1

2
), . . . , log(1

2
))t
)

converges weakly to a standard k-dimensional Gaussian distribution.

Next, note that the representation (3.3) follows from (2.2) and the fact that the canonical moments

of the arsine distribution are all given by 1/2. Consequently, we can decompose the vector Hk
n as

follows
√
4n(Hk

n −D0
n,2k) = Sn − Tn ,

where the components of the vectors Sn and Tn are given by

Sni =

i
∑

j=1

√
4n(i− j + 1)(log(q2n,2jp2n,2j) + log(q2n,2j−1p2n,2j−1)− 2 log(1

4
)) ,

Tni =
√
4n

i
∑

j=1

(log(q2n,2j)− log(1
2
)) ,

respectively (i = 1, . . . , k). Observing (3.6) we see that Sn converges in probability to 0. For a

proof of weak convergence of the random variable Tn note that Tn = AkBn , where the matrix

Ak ∈ R
k×k is given by

Ak =















1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1
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This yields the weak convergence Tn
d−→ N (0,Σk) and the representation (3.4) for the matrix

Σk = AkA
t
k follows by a straightforward calculation.

While Theorem 3.1 holds for any fixed k ∈ N, the following result provides a process version.

Theorem 3.2. Let m2n denote a uniformly distributed random vector on M2n([0, 1]), then

{

Gn(t)
}

t∈[0,1]
:=

2√
n

{

Dn,2⌊nt⌋(m2n)−D0
n,2⌊nt⌋ +

n

2
r(t)

}

t∈[0,1]
=⇒ {G[0,1](t)}t∈[0,1] ,

where Dn,2⌊nt⌋(m2n) is defined in (3.1),

r(t) = t + (1− t) log(1− t)(3.7)

and G[0,1] is a centered continuous Gaussian process on the interval [0, 1] with covariance kernel

f(s, t) =
s∧t
∫

0

(t−x)(s−x)
(1−x)2

dx = (s ∧ t)(2− s ∨ t)− (s+ t− 2) log(1− s ∧ t)(3.8)

Proof: It is shown later (more precisely, in the proof of (3.10)) that the kernel f is in fact

nonnegative definite, that is for all k ∈ N, s1, . . . , sk, t1, . . . , tk ∈ [0, 1] the matrices (f(si, tj))
k
i,j=1

are nonnegative definite. A simple calculation shows that E[(G[0,1](t) − G[0,1](s))4] ≤ 48(t − s)2,

and consequently the existence of the process G[0,1] = {G[0,1](t)}t∈[0,1] follows from Theorem 3.23 in

Kallenberg (2002). Moreover, since G[0,1] is continuous and l∞([0, 1]) is a complete space, Theorem

1.3.2 in van der Vaart and Wellner (1995) shows that G[0,1] is tight. For the following discussion

we define

ξ̃n,i = log(q2n,2ip2n,2i) + log(q2n,2i−1p2n,2i−1),

ξn,i(t) =
2√
n
(⌊nt⌋ − i+ 1)

(

ξ̃n,i − E[ξ̃n,i]
)

,

and obtain by (2.2) the decomposition

Gn(t) = Sn(t) + 2Rn(t)− 2Tn(t) + 2Un(t),(3.9)

where the processes Sn, Rn, Tn and Un are defined by

Sn(t) =

⌊nt⌋−1
∑

i=1

ξn,i(t),

Tn(t) =
1√
n

{

⌊nt⌋ log(2)− log(p2n,2⌊nt⌋) +

⌊nt⌋−1
∑

i=1

log(q2n,2i)
}

,
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Rn(t) =
I{nt ≥ 1}√

n
log(q2n,2⌊nt⌋−1p2n,2⌊nt⌋−1),

Un(t) =
1√
n

{

⌊nt⌋−1
∑

i=1

(⌊nt⌋ − i+ 1)E[ξ̃n,i]−D0
n,2⌊nt⌋ +

n

2
r(t) + ⌊nt⌋ log(2)

}

,

respectively. With these notations the proof of Theorem 3.2 follows from the assertions

Sn =⇒ G[0,1] ,(3.10)

Tn =⇒ 0 ,(3.11)

Rn =⇒ 0 ,(3.12)

||Un||∞ n→∞−−−→ 0 ,(3.13)

and a simple application of Slutsky’s theorem.

Proof of (3.10). For each k ∈ N consider 0 = t0 ≤ t1 ≤ . . . ≤ tk ≤ 1 and define the k-dimensional

random variable S∗
n := (Sn(t1), . . . , Sn(tk))

t. Let c = (c1, . . . , ck)
t ∈ R

k be an arbitrary vector.

then

ctS∗
n =

k
∑

i=1

ciSn(ti) =

k
∑

i=1

ci

⌊nti⌋−1
∑

j=1

ξn,j(ti) =

k
∑

i=1

ci

i
∑

l=1

⌊ntl⌋−1
∑

j=⌊ntl−1⌋∨1

ξn,j(ti)

=
2√
n

k
∑

l=1

⌊ntl⌋−1
∑

j=⌊ntl−1⌋∨1

(

ξ̃n,j − E[ξ̃n,j]
)

k
∑

i=l

ci(⌊nti⌋ − j + 1)

In order to calculate the variance of ctS∗
n we assume 0 ≤ s ≤ t ≤ 1, use the approximation (A.2)

in the Appendix and obtain

cov(Sn(s), Sn(t)) =
4

n

⌊ns⌋−1
∑

i=1

(⌊nt⌋ − i+ 1)(⌊ns⌋ − i+ 1)Var(ξ̃n,i)

=
4

n

⌊ns⌋−1
∑

i=1

(⌊nt⌋ − i+ 1)(⌊ns⌋ − i+ 1)

4(n− i+ 1)2

+
4

n

⌊ns⌋−1
∑

i=1

(⌊nt⌋ − i+ 1)(⌊ns⌋ − i+ 1)O
(

(n− i+ 1)−3
)

=
1

n

⌊ns⌋−1
∑

i=1

(

t− i−1+nt−⌊nt⌋
n

)(

s− i−1+ns−⌊ns⌋
n

)

(1− i−1
n
)2

+
4

n

⌊ns⌋−1
∑

i=1

O((n− i+ 1)−1).

Interpreting the first term as Riemann-sum, we can calculate the limit

lim
n→∞

cov(Sn(s), Sn(t)) =

s
∫

0

(t− x)(s− x)

(1− x)2
dx = f(s, t),

11



which gives

lim
n→∞

Var(ctS∗
n) = lim

n→∞
ct cov(S∗

n, S
∗
n)c→ ctΣc ,

where the matrix Σ is given by Σ = (f(ti, tj))i,j=1,...,k and the covariance kernel f is defined in

(3.8). Consequently we obtain that this kernel is nonnegative definite.

We now prove the weak convergence of ctS∗
n by verifying the Lyapunov–condition. For this purpose

we use the notation c∗ := max{|c1|, . . . , |cn|} and obtain

24

n2

k
∑

l=1

⌊ntl⌋−1
∑

j=⌊ntl−1⌋∨1

E
[

(ξ̃n,j − E[ξ̃n,j])
4
]

(

k
∑

i=l

ci(⌊nti⌋ − j + 1)
)4

≤ 24

n2

k
∑

l=1

⌊ntl⌋−1
∑

j=⌊ntl−1⌋∨1

E
[

(ξ̃n,j − E[ξ̃n,j]
4
]

(kc∗)4(n− j + 1)4 ≤ (2kc∗)4C2

n
→ 0 ,

where we have used the estimate (A.5) in Appendix A for the moments. Consequently, Lyapunov‘s

Theorem implies convergence of the finite dimensional distributions, that is

S∗
n = (Sn(t1), . . . , Sn(tk))

t d−→ N (0,Σ).

We finally prove that Sn is asymptotically tight, that is

lim
m→∞

lim sup
n→∞

P
(

ωn

(

1
m

)

> ǫ
)

= 0 ,(3.14)

where ωn(a) = sup {|Sn(t)− Sn(s)| | 0 ≤ t− s ≤ a} denotes the modulus of continuity of the

process Sn. The statement (3.10) then follows from Theorem 1.5.4 in van der Vaart and Wellner

(1995). For a proof of (3.14) we introduce the notation

dn,i =
2√
n















⌊nt⌋ − ⌊ns⌋ i ≤ ⌊ns⌋ − 1

⌊nt⌋ − i+ 1 ⌊ns⌋ − 1 < i ≤ ⌊nt⌋ − 1

0 else

,

and obtain the following representation

Sn(t)− Sn(s) =
n
∑

i=1

dn,i
(

ξ̃n,i − E[ξ̃n,i]
)

.

The inequalities (A.4) and (A.5) in the Appendix then yield

E
[

(Sn(t)− Sn(s))
4] ≤ C2

(

n
∑

i=1

d2n,i
1

(n− i+ 1)2

)2

≤ (2C)2
(1

n

⌊ns⌋−1
∑

i=1

(t− s+ 1
n
)2

(1− i
n
+ 1

n
)2

+
1

n

⌊nt⌋−1
∑

i=⌊ns⌋∨1

(t− i−1
n
)2

(1− i−1
n
)2

)2

12



≤ (2C)2
(

I
{

s ≥ 2
n

} (

t− s+ 1
n

)2

s
∫

1
n

1
(

1− x+ 1
n

)2 dx+
(⌊nt⌋ − ⌊ns⌋)

n

)2

≤ (2C)2
(

I
{

s ≥ 2
n

} (

t− s+ 1
n

)2
(

1
1−s+1/n

− 1
)

+
(

t− s+ 1
n

)

)2

≤ (4C)2
(

t− s+ 1
n

)2
.(3.15)

Consequently, we obtain

lim sup
n→∞

m
∑

k=1

E
[

(Sn(
k
m
)− Sn(

k−1
m

))4
]

≤ lim sup
n→∞

m
∑

k=1

(4C)2
(

1
m
+ 1

n

)2
=

(4C)2

m
.(3.16)

Now assume that 0 ≤ r ≤ s ≤ t ≤ 1. If t − r ≥ 1
n
, Hölders’s inequality and (3.15) yield the

estimate

E
[

(Sn(s)− Sn(r))
2(Sn(t)− Sn(s))

2
]

≤ (4C)2
(

s− r + 1
n

) (

t− s+ 1
n

)

≤ (4C)2
(

t−r
2

+ 1
n

)2 ≤ (6C)2(t− r)2,

which also holds if t − r < 1
n
(because we have Sn(r) = Sn(s) or Sn(s) = Sn(t) in this case).

Therefore Lemma 3.1 in Shorack and Wellner (1986) and (3.16) show that

lim sup
n→∞

P
(

ωn

(

1
m

)

≥ ǫ
)

≤ lim sup
n→∞

1

ǫ4

{

m
∑

k=1

E
[(

Sn(
k
m
)− Sn(

k−1
m

)
)4]

+
K(6C)2

m

}

=
(4C)2 +K(6C)2

ǫ4m

for an absolute constant K. This proves (3.14) and completes the proof of (3.10).

Proof of (3.11) and (3.12): These statements follow by similar arguments as given in the proof of

assertion (3.10) using the estimates (A.1) - (A.7) in Appendix A. The details are omitted for the

sake of brevity.

Proof of (3.13): By (3.3) we have

D0
n,2⌊nt⌋ = −(2⌊nt⌋ + 1)⌊nt⌋ log(2) ,

and the estimate (A.1) from Section A yields the approximation

⌊nt⌋−1
∑

i=1

(⌊nt⌋ − i+ 1)E[ξ̃n,i] =

⌊nt⌋−1
∑

i=1

(⌊nt⌋ − i+ 1)
(

− 4 log(2)− 1
2(n−i+1)

+O
(

1
(2n−2i+1)2

))

= −2 log(2)
(

⌊nt⌋2 + 2⌊nt⌋
)

+ log(16)− ⌊nt⌋
2

+ n−⌊nt⌋
2

(Gn −Gn−⌊nt⌋+1)

+O(log(n))
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(uniformly with respect to t ∈ [0, 1]), where Gn =
∑n

i=1
1
i
is the nth partial sum of the harmonic

series. Therefore

Un(t) =
1√
n

(

nt−⌊nt⌋
2

+ n
2
(1− t) log(1− t) + n−⌊nt⌋

2
(Gn −Gn−⌊nt⌋+1)

)

+O
( log(n)√

n

)

.

Using the approximation Gn = log(n) + γ +O( 1
n
), where γ is the Euler-Mascheroni constant, we

can easily see that

Un(t) =
1√
n

{

n
2
(1− t) log(1− t)− n−nt

2
log
(

1− t + nt−⌊nt⌋+1
n

)}

+O
( log(n)√

n

)

=
−n(1 − t)

2
√
n

log
(

1 + nt−⌊nt⌋+1
n(1−t)

)

+O
( log(n)√

n

)

= o(1) ,

uniformly with respect t ∈ [0, 1], which completes the proof of Theorem 3.2. ✷

Remark 3.3. Similar results as stated in Theorem 3.1 and 3.2 can be obtained for the Hankel

matrices H2n+1 = (mi+j+1)
n
i,j=0, H2n = (mi+j+1 −mi+j+2)

n−1
i,j=0 and H2n+1 = (mi+j −mi+j+1)

n
i,j=0,

which are commonly used to characterize Hausdorff moment sequences [see Karlin and Studden

(1966)]. The details are omitted for the sake of brevity.

3.2 Hankel determinants from M2n([0,∞)) and M2n(R)

In this section we will derive analogues of Theorem 3.2 for random moment sequences on un-

bounded moment spaces, where the corresponding distributions are defined by (2.10) and (2.11),

respectively. For the sake of brevity we omit the discussion of Dn,2k(m2n) for fixed k (correspond-

ing results can be easily obtained using similar arguments as given in the proof of Theorem 3.1)

and concentrate on the stochastic process {Dn,2⌊nt⌋(m2n)}t∈[0,1].

Theorem 3.4. Let m2n denote a random vector on M2n([0,∞)) with density g
(γ,δ)
n defined in

(2.10), where γ2n,1, . . . γ2n,2n > 0 are bounded by a constant which does not depend on n and

δ2n,i = 2n− i+ 1 + γ2n,i, then

{

Gn(t)
}

t∈[0,1]
:=

{ 1

n
Dn,2⌊nt⌋(m2n)

}

t∈[0,1]
=⇒

{

G[0,∞)(t)}t∈[0,1]

where Dn,2⌊nt⌋(m2n) is defined in (3.1), and G[0,∞) is a continuous Gaussian process on the interval

[0, 1] with mean −r(t)/2 and covariance kernel

g(s, t) =

s∧t
∫

0

(t− x)(s− x)

1− x
dx(3.17)

=
1

2
(s ∧ t)(s+ t− 2 + s ∨ t) + (s− 1)(t− 1) log(1− s ∧ t)
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Proof: We will use the decomposition 1
n
Dn,2⌊nt⌋(m2n) = S

[0,∞)
n (t)+R

[0,∞)
n (t), where the processes

S
[0,∞)
n and R

[0,∞)
n are defined by

S [0,∞)
n (t) =

1

n

(

Dn,2⌊nt⌋(m2n)− E[Dn,2⌊nt⌋(m2n)]
)

R[0,∞)
n (t) =

1

n
E[Dn,2⌊nt⌋(m2n)]

Observing the fact that bX ∼ γ(a, 1), whenever X ∼ γ(a, b), and using the approximations (A.8) -

(A.10) from the Appendix it can be shown by similar arguments as given in the proof of Theorem

3.2 that S
[0,∞)
n converges weakly to a centered continuous Gaussian process on the interval [0, 1]

with covariance kernel (3.17). For the remaining term R
[0,∞)
n (t) we use (2.4), Lemma 2.2 and the

approximation

E(log(z2n,i)) = E [log (z2n,i · (2n− i+ 1 + γ2n,i))]− log(2n− i+ 1 + γ2n,i)

= − 1

2(2n− i+ 1 + γ2n,i)
+O((2n− i+ 1 + γ2n,i)

−2).

This yields (uniformly with respect to t ∈ [0, 1])

R[0,∞)
n (t) = − 1

4n

⌊nt⌋
∑

i=1

(

t− i
n
+ ⌊nt⌋−nt+1

n

1− i
n
+

γ2n,2i+1/2

n

+
t− i

n
+ ⌊nt⌋−nt+1

n

1− i
n
+

γ2n,2i−1+1

n

)

+O

(

log(n)

n

)

,

and a careful calculation shows that this term converges uniformly to −r(t)/2, where r(t) is defined
in (3.7). This yields the assertion. ✷

We conclude this section with a corresponding result for the moment space M2n(R). The proof

is similar to that of Theorem 3.2 and therefore omitted.

Theorem 3.5. Let m2n−1 denote a random vector on M2n−1(R) with density h
(γ,δ)
n defined in

(2.10), where γn,1, . . . γn,n are bounded by a constant which does not depend on n and δn,2i =

2n− 2i+ γn,i, then
{ 1

n
Dn,2⌊(n−1)t⌋(m2n−1)

}

t∈[0,1]
=⇒ {GR(t)}t∈[0,1]

where Dn,2⌊(n−1)t⌋(m2n) is defined in (3.1), and GR is a continuous Gaussian process on the interval

[0, 1] with mean −r(t)/4 and covariance kernel g(s, t)/2, defined by (3.7) and (3.8), respectively.

4 Large deviations

Throughout this section we consider large deviation principles (LDP) for the moment space

M2n([0, 1]). Similar results can be obtained for moment spaces corresponding to unbounded
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intervals. For fixed k the sequence (Hk
n)n∈N defined in (3.2) for a uniformly distributed vector

m2n on the moment space M2n([0, 1]) satisfies an LDP with a good rate function. To see this,

observe that the sequence of canonical moments (Yn)n∈N = ((p2n,1, . . . , p2n,2k))n∈N satisfies a large

deviation principle with good rate function

I(x) = 2
2k
∑

i=1

(

− log(xi − x2i )− log(4)
)

(c.f. Gamboa and Lozada-Chang (2004)). As the function that maps the canonical moments

to the logarithms of the Hankel-determinants is obviously continuous, the contraction principle

[Theorem 4.2.1 in Dembo and Zeitouni (1998))] shows that (Hk
n)n∈N satisfies an LDP with a good

rate function. However, due to the complicated form of this map it is not possible to explicitly

represent the corresponding rate function in terms of standard functions.

The investigation of LDP-properties of the logarithm of the lower Hankel determinant with in-

creasing dimension turns out to be substantially more complicated, and we consider again the

process {Dn,2⌊nt⌋(m2n)}t∈[0,1], which has to be normalized differently, that is

Zn(t) = −1

n

(

Dn,2⌊nt⌋(m2n)−D0
n,2⌊nt⌋

)

,

where qn,0 = 1. Let S([0, 1]) denote the space of all signed regular Borel measures on the interval

[0, 1] endowed with the weak-∗-topology (with (C([0, 1]), || · ||∞) as predual). Then its (topological)

dual space is the space C([0, 1]) of all continuous functions on the interval [0, 1]. In the following

we interpret the process Zn as the distribution function of a random measure νn ∈ S([0, 1]). To be

precise note that the process Zn is piecewise constant with jumps at the points 1
n
, . . . , n

n
. Therefore

νn is a linear combination of Dirac-measures and a simple calculation shows that

νn = −1

n

n
∑

i=1

{

i
∑

j=1

log(4q2n,2j−1p2n,2j−1) +
i−1
∑

j=1

log(4q2n,2jp2n,2j) + log(2p2n,2i)
}

δ i
n
,(4.1)

where δt denotes the Dirac measure at the point t ∈ [0, 1]. In order to investigate the large

deviation properties of the sequence of random measures {νn}n∈N we first derive the limit of the

(normalized) logarithmic moment generating function.

Theorem 4.1. Let νn denote the random measure defined in (4.1). For any Riemann-integrable

function f ∈ l∞([0, 1]) we have

Λ(f) = lim
n→∞

1

n
logE[enνn(f)] =











−
1
∫

0

log
(

1− G(x)
2(1−x)

)

dx K < 2

∞ K > 2

,

where

G(x) =

1
∫

x

f(t) dt ; K = sup
x∈[0,1)

G(x)

1− x
.
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It is in general unknown what happens in the case K = 2.

Proof: Interpreting the sequences

xn,j = −
n
∑

i=j

f
(

i
n

)

and yn,j = −
n
∑

i=j+1

f
(

i
n

)

as Riemann-sums, we get the approximations

sup
j=1,...,n

∣

∣G
(

j
n

)

+
xn,j

n

∣

∣

n→∞−−−→ 0 , sup
j=1,...,n

∣

∣G
(

j
n

)

+
yn,j

n

∣

∣

n→∞−−−→ 0 .(4.2)

This yields for the logarithm of the moment generating function

1

n
log (E[exp(nνn(f))])

=
1

n

n
∑

j=1

(

log
(

E
[

q
xn,j

2n,2j−1p
xn,j

2n,2j−1

])

+ log
(

E
[

q
yn,j

2n,2jp
xn,j

2n,2j

])

+ (3xn,j + yn,j) log(2)
)

.

For the determination of the limit we now consider the two cases K > 2 and K < 2 separately.

(1) In the case K > 2 we choose constants δ, C > 0 such that for all sufficiently large n there

exists a jn ∈ {1, . . . , n} with 1 − jn
n
> C and G( jn

n
) ≥ (2 + δ)(1 − jn

n
) (this is possible since the

function G is continuous). Choosing another constant 0 < ǫ < δC and considering (4.2), we get

the following approximation for sufficiently large n:

xn,jn

n
≤
∣

∣

xn,jn

n
+G

(

j
n

)∣

∣−G
(

jn
n

)

≤ ǫ− (2 + δ)(1− jn
n
) .

Therefore 2n− 2jn +1+xn,jn ≤ 1+n(ǫ− δC) < −1, which yields E[q
xn,jn

n,2jn−1p
xn,jn

n,2jn−1] = ∞ and the

assertion follows.

(2) In the case K < 2 we use the formula

log(Γ(x)) = (x− 1
2
) log(x)− x+

log(2π)

2
+ 2φ0(x) ,

where

φ0(x) =

∞
∫

0

arctan
(

t
x

)

exp(2πt)− 1
dt(4.3)

[cf. (4.3) in Dette and Gamboa (2007)]. Using the representation (4.1) we can show that

1

n
E[exp(nνn(f))] = Bn,1 + Bn,2 +Bn,3 +Bn,4(4.4)

+R(2n− 2j + 2, xn,j, xn,j) +R(2n− 2j + 1, xn,j, yn,j) ,
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where

Bn,1 = − 1

2n

n
∑

j=1

log
(

1 +
xn,j

2n−2j+2

)

,

Bn,2 = − 1

2n

n
∑

j=1

log
(

1 +
xn,j

2n−2j+1

)

,

Bn,3 =
1

n

n
∑

j=1

(2n− 2j + 1 + xn,j) log
(

1 + −f(j/n)
2(2n−2j+1)+xn,j+yn,j

)

,

Bn,4 =
1

n

n
∑

j=1

(2n− 2j + 1 + yn,j − 1
2
) log

(

1 + f(j/n)
2(2n−2j+1)+xn,j+yn,j

)

,

and the remaining two terms are defined by

R(a, x, y) = 2(φ0(a+ x)− φ0(a) + φ0(a+ y)− φ0(a))− 4(φ0(2a+ x+ y)− φ0(2a)) .

We now investigate the terms in this decomposition separately. The first term Bn,1 can be inter-

preted as Riemann-sum, using (4.2), that is

Bn,1 = − 1

2n

n
∑

j=1

log
(

1− G
(

j
n

)

+ o(1)

2
(

1− j−1
n

)

+ o(1)

)

n→∞−−−→ −1

2

1
∫

0

log
(

1− G(x)

2(1− x)

)

dx .(4.5)

Analogously, the second term converges to the same limit, i.e.

Bn,2
n→∞−−−→ −1

2

1
∫

0

log
(

1− G(x)

2(1− x)

)

dx .(4.6)

For the the terms Bn,3 and Bn,4 we use the Taylor-approximation log(1 + x) = x+O(x2) (x→ 0)

and obtain

Bn,3 = − 1

2n

n
∑

j=1

2
(

1− j
n

)

−G
(

j
n

)

+ o(1)

2
(

1− j
n

)

−G
(

j
n

)

+ o(1)
f
(

j
n

)

+O
(1

n

)

n→∞−−−→ −G(0)
2

,(4.7)

Bn,4 =
n→∞−−−→ G(0)

2
,(4.8)

and it remains to show that the last two terms in (4.4) are asymptotically negligible.

For this purpose we note that the following inequality holds for the function φ0 defined in (4.3)

[cf. formula (4.10) in Dette and Gamboa (2007)]

|φ0(a+ x)− φ0(a)| ≤ C
|x|

(a ∧ (a+ x))2
with C =

∞
∫

0

t

exp(2πt)− 1
dt ,
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where a > 0, x > −a. This gives

|R(a, x, y)| ≤ 2C
( |x|
(a ∧ (a + x))2

+
|y|

(a ∧ (a + y))2

)

+ 4C
( |x+ y|
(2a ∧ (2a+ x+ y))2

)

,

and using this inequality to estimate the terms R(2n−2j+2, xn,j , xn,j) and R(2n−2j+1, xn,j , yn,j)

in (4.4) yields six terms, which have a similar form. For the sake of brevity we will only show

exemplarily the convergence

Dn :=
1

n

n
∑

j=1

|xn,j|
((2n− 2j + 2) ∧ (2n− 2j + 2 + xn,j))2

n→∞−−−→ 0 .

The other five sums can be approximated in a similar way and the details are omitted. For

sufficiently small ǫ > 0 and sufficiently large n, we obtain by similar arguments as in the case

K > 2:

xn,j ≥ −(ǫ+K)(n− j)− ǫj ,

2n− 2j + xn,j ≥ (2−K − 2ǫ)(n− j) .

Choosing δ = min{2−K − 2ǫ, 2} > 0, we get the inequalities

(2n− 2j + 2) ∧ (2n− 2j + 2 + xn,j) ≥ δ(n− j + 1) ,

|xn,j| ≤ n(|G( j
n
)|+ ǫ) ≤ ||f ||∞(n− j + 1) + nǫ .

This yields

lim sup
n→∞

Dn ≤ lim sup
n→∞

{ ||f ||∞
δ2n

n
∑

j=1

1

n− j + 1
+

ǫ

δ2

n
∑

j=1

1

(n− j + 1)2

}

=
ǫ

δ2

∞
∑

j=1

1

j2
.(4.9)

Considering the limit ǫց 0 on the right hand side of (4.9) we obtain that the last two terms in

(4.4) converge to 0, and the assertion follows from (4.5) - (4.8).

Lemma 4.2. The sequence (νn)n∈N of random measures defined by (4.1) is exponentially tight.

Proof: By the Banach-Alaoglu theorem the set

Kα =
{

µ ∈ M([0, 1])
∣

∣

∣
sup

f∈C([0,1])
||f ||≤1

µ(f) ≤ α
}

is compact (note that we endowed S([0, 1]) with the weak-∗-topology). We define the modified

measure

ν ′n = −1

n

n
∑

i=1

{

i
∑

j=1

log(4q2n,2j−1p2n,2j−1) +
i−1
∑

j=1

log(4q2n,2jp2n,2j) + log(p2n,2i)
}

δ i
n
.
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Observing νn = ν ′n − log(2)
n

n
∑

i=1

δ i
n
we can see νn(f) ≤ ν ′n(f) + log(2) for all f ∈ C([0, 1]) with

||f ||∞ ≤ 1. Since ν ′n is a positive measure, we get by Markov’s inequality

1

n
log P(νn ∈ Kc

α) ≤
1

n
log P

(

sup
f∈C([0,1])
||f ||≤1

ν ′n(f) > α− log(2)
)

≤ 1

n
logE[exp(nν ′n(1))]− α + log(2)

=
1

n
logE[exp(n(νn(1) + log(2))]− α + log(2)

n→∞−−−→ Λ(1)− α + 2 log(2) ,

which yields the assertion.

Theorem 4.3. Let Λ∗ be the Fenchel-Legendre transform of Λ and let E denote the set of all

exposed points of Λ∗ which have an exposing hyperplane λ that satisfies

lim
n→∞

1

n
logE[exp(νn(nλ)] exists and Λ(γλ) <∞ for some γ > 1.

Then

− inf
x∈E∩Γ◦

Λ∗(x) ≤ lim inf
n→∞

1

n
log P(νn ∈ Γ) ≤ lim sup

n→∞

1

n
log P(νn ∈ Γ) ≤ − inf

x∈Γ
Λ∗(x)

for all measurable sets Γ ⊂ S([0, 1]).

Proof: This follows directly from Baldi’s theorem [c.f. Theorem 4.5.20 in Dembo and Zeitouni

(1998)].

The main difficulty in proving an LDP for the process {Zn(t)}t∈[0,1] consists in the fact that

an explicit representation of the Fenchel-Legendre transform Λ∗ is not available. This makes it

difficult to eliminate the set E in the lower bound in Theorem 4.3. On the other hand - in contrast

to the LDP for the process {Zn(t)}t∈[0,1] - the LDP for the random variable Zn(t) with a fixed t

can be established.

Theorem 4.4. For a fixed t ∈ (0, 1] the sequence (Zn(t))n∈N satisfies a large deviation principle

with good rate function

Λ∗(x) = sup
λ< 2

t

{

λx+

∫ t

0

log
(

1− λ(t−x)
2(1−x)

)

dx
}

Proof: We will again apply Baldi’s theorem. To calculate the normalized cumulant generating

function of Zn(t), note that

E[exp(λZn(t))] = E[νn(λI{· ≤ t})] ,
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and Theorem 4.1 yields

Λt(λ) = lim
n→∞

1

n
logE[exp(nλZn(t))]

= Λ(λI{· ≤ t}) =







−
∫ t

0
log
(

1− λ(t−x)
2(1−x)

)

dx λ < 2
t

∞ λ > 2
t

.

It now follows by similar arguments as given in the proof of Lemma 4.2 that the sequence (Zn(t))n∈N
is exponentially tight (note that we can use the euclidean topology on R because the interval [0, α]

is compact) and Baldi’s theorem yields an analogue of the inequality in Theorem 4.3, where the

set E has to be replaced by an analogue set Et. It remains to prove that the lower bound remains

correct if one removes the set Et.

In order to see this, we define the new function

Λ̃t :















R → (−∞,∞]

λ 7→







Λt(λ) if λ 6= 2
t

lim
ǫց0

Λt(λ− ǫ) if λ = 2
t

Λt and Λ̃t have the same Fenchel-Legendre transform and it is therefore sufficient to prove

inf
x∈Et∩F

Λ̃∗
t (x) = inf

x∈F
Λ̃∗

t (x)(4.10)

for all open sets F ⊂ R. It is easy to see that Λ̃t is an essentially smooth function and the iden-

tity (4.10) follows by an adaptation of the arguments in the proof of the Gärtner-Ellis theorem

[Theorem 2.3.6 in Dembo and Zeitouni (1998)]. By Lemma 1.2.18 in the same reference the rate

function Λ∗ is a good rate function, which yields the assertion.

Our final result specializes Theorem 4.4 to the case t = 1, where the rate function can be de-

termined explicitly. The proof follows by a straightforward calculation of Λ1(λ) and its convex

conjugate.

Corollary 4.5. The sequence (Zn(1))n∈N satisfies an LDP with good rate function

I(x) =

{

2x− 1− log(2x) x > 0

∞ else
.

A Auxiliary results

In the proof of the results we make frequent use of the following approximations, which can can

be derived from the approximations given in Dette and Gamboa (2007). Throughout this section
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C denotes a positive constant.
∣

∣

∣
E
[

ξ̃n,i
]

+ 4 log(2) +
1

2(n− i+ 1)

∣

∣

∣
≤ C

(2n− 2i+ 1)2
(A.1)

∣

∣

∣
Var

(

ξ̃n,i
)

− 1

4(n− i+ 1)2

∣

∣

∣
≤ C

(2n− 2i+ 1)3
(A.2)

|E[log(qn,i)] + log(2)| ≤ C

n− i+ 1
(A.3)

Var
(

ξ̃n,i
)

≤ C

(n− i+ 1)2
(A.4)

E
[(

ξ̃n,i − E[ξ̃n,i]
)4] ≤ C2

(n− i+ 1)4
(A.5)

Also, a direct estimate of the occurring integrals show for i < 2n:

E
[

| log(q2n,i)|k
]

≤ 3 sup
x∈[0,1]

| log(x)|kx <∞(A.6)

Lastly, one can prove by differentiation under the integral that for a random variable X ∼ β(a, b)

Var(log(X)) = ψ1(a)− ψ1(a+ b)(A.7)

where ψ1(x) =
d2

dx2 log(Γ(x)) = x−1 +O(x−2) (x→ ∞) denotes the trigamma function.

We also need to approximate the moments of gamma-distributed random variables. Using the

notation di =
Γ(i)(k)
Γ(k)

we can see that

d

dk
log(Γ(k)) = d1 = log(k)− 1

2k
+O(k−2)

d2

dk2
log(Γ(k)) = d2 − d21 =

1

k
+

1

2k2
+O(k−3)

d4

dk4
log(Γ(k)) = d4 − 3d22 − 6d41 − 4d3a1 + 12d21d2 = O(k−3)

where the first part of the equations follows from formally differentiating the term, while the second

part follows from the approximations of the polygamma functions in Abramowitz and Stegun

(1964). If X ∼ γ(k, 1), then for Y = log(X) the following equations hold

E[Y ] = d1 = log(k)− 1

2k
+O(k−2)(A.8)

Var(Y ) = d2 − d21 =
1

k
+

1

2k2
+O(k−3)(A.9)

E[(Y − E[Y ])4] = d4 − 4d1d3 + 6d21d2 − 3d41 = 3(d2 − d21)
2 +O(k−3)(A.10)

=
3

k2
+O(k−3)
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