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Abstract

In this paper we consider the problem of detecting a change in the parame-

ters of an autoregressive process, where the moments of the innovation process

do not necessarily exist. An empirical likelihood ratio test for the existence

of a change point is proposed and its asymptotic properties are studied. In

contrast to other work on change point tests using empirical likelihood, we do

not assume knowledge of the location of the change point. In particular, we

prove that the maximizer of the empirical likelihood is a consistent estimator

for the parameters of the autoregressive model in the case of no change point

and derive the limiting distribution of the corresponding test statistic under

the null hypothesis. We also establish consistency of the new test. A nice

feature of the method consists in the fact that the resulting test is asymp-

totically distribution free and does not require an estimate of the long run

variance. The asymptotic properties of the test are investigated by means of
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a small simulation study, which demonstrates good finite sample properties of

the proposed method.

Keywords and Phrases: Empirical likelihood, change point analysis, infinite variance,

autoregressive processes

AMS Subject Classification: 62M10, 62G10, 62G35

1 Introduction

The problem of detecting structural breaks in time series has been studied for a

long time. Since the seminal work of Page (1954, 1955), who proposed a sequential

scheme for identifying changes in the mean of a sequence of independent random

variables, numerous authors have worked on this problem. A large part of the litera-

ture concentrates on CUSUM tests, which are nonparametric by design [see Aue and

Horváth (2013) for a recent review and some important references]. Other authors

make distributional assumptions to construct tests for structural breaks. For exam-

ple, Gombay and Horváth (1990) suggested a likelihood ratio procedure to test for a

change in the mean and extensions of this method can be found in the monograph of

Csörgö and Horváth (1997) and the reference therein. An important problem in this

context is the detection of changes in the parameters of an autoregressive process

and we refer to the work of Andrews (1993), Bai (1993, 1994), Davis et al. (1995),

Lee et al. (2003) and Berkes et al. (2011) among others who proposed CUSUM-type

and likelihood ratio tests.

In practice, however, the distribution of random variables is rarely known and its mis-

specification may result in an invalid analysis using likelihood ratio methods. One

seminal method to treat the likelihood ratio empirically has been investigated by

Owen (1988), Qin and Lawless (1994) in a general context and extended by Chuang

and Chan (2002) to estimate and test parameters in an autoregressive model. In

change point analysis the empirical likelihood approach can be viewed as a compro-

mise between the completely parametric likelihood ratio and nonparametric CUSUM

method. Baragona et al. (2013) used this concept to construct a test for change-

points and showed that in the case where the location of the break points is known,

2



the limiting distribution of the corresponding test statistic is a chi-square distri-

bution. Ciuperca and Salloum (2015) considered the change point problem in a

non-linear model with independent data without assuming knowledge of its loca-

tion and derived an extreme value distribution as limit distribution of the empirical

likelihood ratio test statistic. These findings are similar in spirit to the meanwhile

classical results in Csörgö and Horváth (1997), who considered the likelihood ratio

test.

The purpose of the present paper is to investigate an empirical likelihood test for a

change in the parameters of an autoregressive process with infinite variance (more

precisely we do not assume the existence of any moments). Our work is motivated

by the fact that in many fields, such as electrical engineering, hydrology, finance

and physical systems, one often observes “heavy-tailed” data [see Nolan (2015) or

Samoradnitsky and Taqqu (1994) among many others]. To deal with such data,

many authors have developed L1-based methods. For example, Chen et al. (2008)

constructed a robust test for a linear hypothesis of the parameters based on least

absolute deviation. Ling (2005) and Pan et al. (2007) proposed self-weighted least ab-

solute deviation-based estimators for (parametric) time series models with an infinite

variance innovation process and show the asymptotic normality of the estimators.

However, the limit distribution of the L1-based statistics usually contains the un-

known probability density of the innovation process, which is difficult to estimate.

For example, Ling (2005) and Pan et al. (2007) used kernel density estimators for

this purpose, but the choice of the corresponding bandwidth is not clear and often

depends on users.

To circumvent problems of this type in the context of change point analysis, we

combine in this paper quantile regression and empirical likelihood methods. As a re-

markable feature, the asymptotic distribution of the proposed test statistic does not

involve unknown quantities of the model even if we consider autoregressive models

with an infinite variance in the innovation process. We would also like to emphasize

that the nonparametric CUSUM tests proposed by Bai (1993, 1994) for detecting

structural breaks in the parameters of an autoregressive process assume the exis-

tence of the variance of the innovations. However, an alternative to the method

proposed here are CUSUM tests based on quantile regression, which has been re-
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cently considered by Qu (2008), Su and Xiao (2008) and Zhou et al. (2015) among

others.

The remaining part of this paper is organized as follows. In Section 2, we introduce

the model, the testing problem and the so-called self-weighted empirical likelihood

ratio test statistic. Our main results are given in Section 3, where we derive the

limit distribution of the proposed test statistic and prove consistency. The finite

sample properties of the proposed test are investigated in Section 4 by means of a

simulation study. We also compare the test proposed in this paper with the CUSUM

test using quantile regression [see Qu (2008)]. While the empirical likelihood based

test suggested here is competitive with the CUSUM test using quantile regression

when the innovation process is Gaussian, it performs remarkably better than the

CUSUM test of Qu (2008) if the innovation process has heavy tails. Moreover, the

new test is robust with respect non-stationarity even when the process is nearly a

unit root process. Finally, rigorous proofs of the results relegated to Section 5.

2 Change point tests using empirical likelihood

Throughout this paper the following notations and symbols are used. The set of all

integers and real numbers are denoted as Z and R, respectively. For any sequence of

random vectors {An : n ≥ 1} we denote by

An
P−→ A and An

L−→ A

convergence in probability and law to a random vector A, respectively. The transpose

of a matrix M is denoted by M ′, and ‖M‖ = {tr(M ′M)}1/2 is the Frobenius norm.

We denote the i-dimensional zero vector, the j× k zero matrix and the l× l identity

matrix by 0i, Oj×k and Il×l, respectively.

Consider the autoregressive model of order p (AR(p) model) defined by

yt = X ′t−1β + et, (2.1)

where Xt−1 = (yt−1, . . . , yt−p)
′ and β ∈ Rp and assume that the innovation process

{et : t ∈ Z} is a sequence of independent and identically distributed (i.i.d.) random
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variables with vanishing median. Let {y1−p, . . . , yn} be an observed stretch from the

model (2.1) for β = β0, where β0 = (β1, . . . , βp)
′ denotes the “true” parameter.

This paper focuses on a posteriori type change point problem for the parameters in

the AR(p) process (2.1). More precisely, we consider the model

yt =

{
X ′t−1θ1 + et (1 ≤ t ≤ k∗)

X ′t−1θ2 + et (k∗ + 1 ≤ t ≤ n)

for some vector θ1, θ2 ∈ Rp, where k∗ ∈ {1, . . . , n} is the unknown time point of the

change. The testing problem for a change point in the autoregressive process can

then be formulated by the following hypotheses:

H0 : θ1 = θ2 = β0 against H1 : θ1 6= θ2. (2.2)

Note that we neither assume knowledge of the change point k∗ (if the null hypothesis

is not true) nor of the true value β0 ∈ Rp (if the null hypothesis holds).

For the testing problem (2.2), we construct an empirical likelihood ratio (ELR) test.

To be precise, let I denote the indicator function. As the median of et is zero, the

moment condition

E
[{1

2
− I(yt −X ′t−1β0 ≤ 0)

}
a∗(Xt−1)

]
= 0m (2.3)

holds under the null hypothesis H0 in (2.2), where a∗(Xt−1) is any m-dimensional

measurable function of Xt−1 independent of et. Motivated by the moment conditions

(2.3), we first introduce the self-weighted moment function

g(Y p
t , β) :=

{1

2
− I
(
yt −X ′t−1β ≤ 0

)}
a∗(Xt−1) (t = 1, . . . , n),

where Y p
t = (yt, . . . , yt−p) and a∗(Xt−1) = wt−1a(Xt−1), a(x) = (x′, ϕ(x)′)′ is an m =

(p+ q)-dimensional function, ϕ a q-dimensional function, wt−1 = w(yt−1, . . . , yt−p) a

self-weight and w some positive weight function. We can choose the weight function

w and ϕ arbitrarily provided that Assumption 3.2 in Section 3 holds. In particular,

we can use a(x) = x, which corresponds to the case q = 0 (see also Section 4).

Note that under the null hypothesis H0, we have that E[g(Y p
t , β0)] = 0m for all

t = 1, . . . , n. Let rn,k be (v1, . . . , vk, vk+1, . . . , vn)′ be a vector in the unit cube [0, 1]n,
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then the empirical likelihood (EL), for β = θ1 before the change point k ∈ {1, . . . , n}
and β = θ2 after the change point, is defined by

Ln,k(θ1, θ2) := sup
{( k∏

i=1

vi

)( n∏
j=k+1

vj

)
: rn,k ∈ Pn,k ∩Mn,k(θ1, θ2)

}
,

where Pn,k and Mn,k(θ1, θ2) are subsets of the cube [0, 1]n defined as

Pn,k :=
{
rn,k ∈ [0, 1]n :

k∑
i=1

vi =
n∑

j=k+1

vj = 1
}

and

Mn,k(θ1, θ2) :=
{
rn,k ∈ [0, 1]n :

k∑
i=1

vig(Y p
i , θ1) =

n∑
j=k+1

vjg(Y p
j , θ2) = 0m

}
.

Note that the unconstrained maximum EL is represented as

Ln,k,E := sup
{ n∏
i=1

vi : rn,k ∈ Pn,k
}

= k−k(n− k)−(n−k),

and hence, the logarithm of the empirical likelihood ratio (ELR) statistic is given by

ln,k(θ1, θ2) := − log
Ln,k(θ1, θ2)

Ln,k,E

= − log sup
{( k∏

i=1

kvi

)( n∏
j=k+1

(n− k)vj

)
: rn,k ∈ Pn,k ∩Mn,k(θ1, θ2)

}

=
[ k∑
i=1

log
{

1− λ′g(Y p
i , θ1)

}
+

n∑
j=k+1

log
{

1− η′g(Y p
j , θ2)

}]
, (2.4)

where (2.4) is obtained by the Lagrange multiplier method and the multipliers λ,

η ∈ Rm satisfy

k∑
i=1

g(Y p
i , θ1)

1− λ′g(Y p
i , θ1)

=
n∑

j=k+1

g(Y p
j , θ2)

1− η′g(Y p
j , θ2)

= 0m.
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We finally define the test statistic for the change point problem (2.2). Since the

maximum ELR under H0 is given by

Pn,k := sup
β∈B
{−ln,k(β, β)},

one may define the ELR test statistic by

Tn := 2 max
br1nc≤k≤br2nc

Pn,k, (2.5)

where 0 < r1 < r2 < 1 for fixed constants. Note that we do not consider the

maximum of {Pn,k | k = 1, . . . , n} as Pn,k can not be estimated accurately for small

and large values of k (see Theorem 3.1 in Section 3 for more details). The asymptotic

properties of a weighted version of this statistic are investigated in the following

section.

Remark 2.1. The approach presented here can be naturally extended to the general

τ -quantile regression models. To be precise, suppose that

Qy(τ | Xt−1) = inf{y : P (yt < y | Xt−1) ≥ τ}

denotes the τth-quantile of yt conditional on Xt−1 and assume that Qy(τ | Xt−1) =

β(τ)′Xt−1. The moment condition

E[g(τ)(Y p
t , β0(τ))] = 0m

still holds under the null hypothesis H0, if we define

g(τ)(Y p
t , β(τ)) := ψτ (yt − β(τ)′Xt−1)a∗(Xt−1)

and ψτ (u) := {τ − I(u ≤ 0)}.

Remark 2.2. The method can also be extended to develop change point analysis

based on the generalized empirical likelihood (GEL). A GEL test statistic for the

change point problem (2.2) can be defined by

lρn,k(θ1, θ2) = 2
[

sup
λ∈Rm

k∑
i=1

ρ {λ′g(Y p
i , θ1)}+ sup

η∈Rm

n∑
j=k+1

ρ
{
η′g(Y p

j , θ2)
} ]
,
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where ρ is a real-valued, concave, twice differentiable function defined on an open

interval of the real line that contains the point 0 with ρ′(0) = ρ′′(0) = 1. Typical

examples for the choice of ρ are given by ρ(ν) = − log(1− ν) and

ρ(ν) =
(1 + cν)(c+1)/c − 1

c+ 1
. (2.6)

Using Lagrangian multipliers, it is easy to see that the choice ρ(ν) = − log(1 − ν)

yields the empirical likelihood method discussed so far. The class associated with

(2.6) is called the Cressie-Read family [see Cressie and Read (1984)].

3 Main results

In this section we state our main results. Throughout this paper, let F and f denote

the distribution function and the probability density function of et, respectively. We

impose the following assumptions.

Assumption 3.1.

(i) β0 ∈ Int(B), where the parameter space B is a compact set in Rp with non-

empty interior.

(ii) 1− β1z − · · · − βpzp 6= 0 for |z| ≤ 1 and β ∈ B.

(iii) The median of et is zero.

(iv) The distribution function F of et is continuous and differentiable at the point

0 with positive derivative F ′(0) = f(0).

Assumption 3.2. E[(wt−1 + w2
t−1)(‖a(Xt−1)‖2 + ‖a(Xt−1)‖3)] <∞.

Assumption 3.3. The matrix E[g(Y p
t , β0)g(Y p

t , β0)′] is positive definite.

Assumption 3.4.

(i) There exists a constant γ > 2 such that E[‖a∗(Xt−1)‖γ] <∞.
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(ii) Let vt := sign(et)a
∗(Xt−1). Then the sequence {vt : t ∈ Z} is strong mixing

with mixing coefficients αl that satisfy
∑∞

l=1 α
1−2/γ
l <∞.

The maximum EL estimator β̂n,k is defined by

−ln,k(β̂n,k, β̂n,k) = sup
β∈B
{−ln,k(β, β)} ,

and the consistency with corresponding rate of convergence of this statistic are given

in the following theorem.

Theorem 3.1. Suppose that Assumptions 3.1-3.4 hold and define k∗ := rn for some

r ∈ (0, 1). Then, under the null hypothesis H0, we have, as n→∞,

β̂n,k∗ − β0 = Op

(
n−1/2

)
.

As seen from Theorem 3.1, Tn is not accurate for small k and n − k as the result

does not hold if k/n = o(1) or (n − k)/n = o(1). In addition, the ELR statistic is

not computable for small k and n− k. For this reason, we consider in the following

discussion the trimmed and weighted-version of EL ratio test statistic, defined by

T̃n := 2 max
k1n≤k≤k2n

h
(k
n

)
Pn,k, (3.1)

where h is a given weight function, k1n := r1n, k2n := r2n and 0 < r1 < r2 < 1. If T̃n

takes a significant large value, we have enough reason to reject the null hypothesis

H0 of no change point. We also need a further assumption to control a remainder

terms in the stochastic expansion of T̃n.

Assumption 3.5. sup0<r<1 h(r)2 <∞.

With this additional assumption the limit distribution of the test statistic (3.1) can

be derived in the following theorem.

Theorem 3.2. Suppose that Assumptions 3.1-3.5 hold. Then, under the null hy-

pothesis H0 of no change point

T̃n
L−→ T := sup

r1≤r≤r2

{
r−1(1− r)−1h(r)

∥∥B(r)− rB(1)
∥∥2

+ h(r)B(1)′QB(1)
}

(3.2)
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as n → ∞. Here {B(r) : r ∈ [0, 1]} is an m-dimensional vector of independent

Brownian motions and the matrix Q is defined by

Q = Im×m − Ω−1/2GΣG′Ω−1/2, (3.3)

where A1/2 denotes the square root of a nonnegative definite matrix A, G = G(β0) =

∂g(β0)/∂β′, Σ = (G′Ω−1G)−1 and

Ω := E[g(Y p
t , β0)g(Y p

t , β0)′] =
1

4
E[a∗(Xt−1)a∗(Xt−1)′]. (3.4)

A test for the hypotheses in (2.2) is now easily obtained by rejecting the null hy-

pothesis in (2.2) whenever

T̃n > q1−α, (3.5)

where q1−α is the (1− α)-quantile of the distribution of the random variable T defined

on the right-hand side of equation (3.2) (using an appropriate estimate of the matrix

Q).

Theorem 3.3. Suppose that Assumptions 3.1-3.5 and the alternative H1 : θ1 6= θ2

hold. Then we have

T̃n
P−→∞

as n→∞.

Theorem 3.3 shows that the power of the test (3.5) approaches 1 at any fixed alter-

native. In other words, the test is consistent.

4 Finite sample properties

In this section, we illustrate the finite sample properties of the ELR test (3.5) for the

hypothesis (2.2) by means of small simulation study. For this purpose we consider

the AR(1) model

yt = βyt−1 + et,

10



where the coefficient β satisfies

β =

{
θ1 (t = 1, . . . , k∗)

θ2 (t = k∗ + 1, . . . , n)
.

For the calculation of the ELR statistic T̃n in (3.1), we use the functions a(x) = x

and h(r) = r(1− r) throughout this section. Following Ling (2005), the self-weights

are chosen as

wt−1 =

{
1 (dt−1 = 0)

(c/dt−1)3 (dt−1 6= 0)
,

where dt−1 = |yt−1|I(|yt−1| > c) and c is the 95%-quantile of the sample {y0, y1, . . . , yn}.
The trimming parameters in the definition of the statistic T̃n are chosen as r1n = 0.1

and r2n = 0.9. The critical value in (3.5) is obtained as the empirical 95% quantile

of the Monte-Carlo samples{
max

k1n≤k≤k2n

(
B(l)(k/n)− (k/n)B(l)(1)

)2
: l = 1, . . . , 1000

}
,

where B(1)(·), . . . , B(1000)(·) are independent standard Brownian motions (note that

in this case, the matrix in (3.3) is given by Q = 0).

In Figures 1-3, we display the rejection probabilities of the ELR test (3.5) for the

hypothesis (2.2), where the nominal level is chosen as α = 0.05. The horizontal

and vertical axes show, respectively, the values of θ2 and the rejection rate of the

hypothesis H0 : θ1 = θ2 at this point (θ1 is fixed as 0.3). The sample sizes are given

by n = 100, 200 and 400 and the distribution of the innovation process is a standard

normal distribution (Figure 1), a t-distribution with 2 degrees of freedom (Figure 2)

and a Cauchy distribution (Figure 3). We also consider two values of the parameter

r in the definition of the change point k∗ = rn, that is r = 0.5 and r = 0.8.

We observe that for small sample sizes, the test is slightly conservative and that the

approximation of the nominal level improves with increasing sample size. The alter-

natives are rejected with reasonable probabilities, where the power is larger in the

case r = 0.5 than for r = 0.8. A comparison of the different distributions in Figures

1-3 shows that the power is lower for standard normal distributed innovations, while
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an error process with a Cauchy distribution yields the largest rejection probabilities.

Other simulations show a similar picture, and the results are omitted for the sake of

brevity.

Figure 1: Simulated rejection probabilities of the ELR test (3.5) in the AR(1) model

with normal distributed innovations.

(a) θ1 = 0.3, r = 0.5 (b) θ1 = 0.3, r = 0.8
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Figure 2: Simulated rejection probabilities of the ELR test (3.5) in the AR(1) model

with t-distributed innovations.

(a) θ1 = 0.3, r = 0.5 (b) θ1 = 0.3, r = 0.8
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Figure 3: Simulated rejection probabilities of the ELR test (3.5) in the AR(1) model

with Cauchy distributed innovations.

(a) θ1 = 0.3, r = 0.5 (b) θ1 = 0.3, r = 0.8
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In the second part of this section we compare the new test defined by (3.5) with the

CUSUM test in Qu (2008) which uses quantile regression. The test statistic for the

median in Qu (2008) is defined by

SQ0.5 = sup
λ∈[0,1]

‖Hλ,n(β̂)− λH1,n(β̂)‖, (4.1)

where ‖ · ‖ is the sup norm, β̂ is the median regressor,

Hλ,n = (X ′X )−1/2

[λn]∑
i=1

|yt −X ′t−1β̂|Xt−1,

and the matrix X is given by X = (X1, . . . , Xn)′. In Figures 4-6, we display the

rejection probabilities of the test based on the statistic Tn in (2.5), T̃n in (3.1) and

SQ0.5 in (4.1) for the hypothesis (2.2), where the nominal level is chosen as α = 0.05.

The horizontal and vertical axes show, respectively, the values of θ2 and the rejection

rate of the hypothesis H : θ1 = θ2 at this point (θ1 is fixed as 0.3). The distribution of

the innovation process is a standard normal distribution (Figure 4), a t-distribution

with 2 degree of freedom (Figure 5) and a Cauchy distribution (Figure 6) and the

sample sizes are given by n = 100, 200 and 400 in each case. Again we consider two

different locations for the change point k∗ corresponding to the values r = 0.5 and

r = 0.8.
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We observe that all tests derived from the three statistics Tn in (2.5) (corresponding

to the weight function h(r) ≡ 1), T̃n in (3.1) (corresponding to the weight function

h(r) = r(1 − r)) and SQ0.5 in (4.1) are slightly conservative and that the approxi-

mation of the nominal level improves with increasing sample size [see Figure 4-6 for

the value θ2 = θ1 = 0.3]. The approximation is usually more accurate for r = 0.5.

Next we compare the power of the different tests (i.e. θ2 6= θ1 = 0.3) for different

distributions of the innovations. In the case of Gaussian innovations all tests shows

a similar behavior (see Figure 4) and only if the case n = 200 and r = 0.8 the ELR

test based on the (unweighted) statistic Tn shows a better performance as the tests

based on T̃n and SQ0.5. Moreover, for Gaussian innovations all three tests show a

remarkable robustness against non-stationarity, that is |θ2| = 1.

In Figure 5 we display corresponding results for t2-distributed innovations. The

differences in the approximation of the nominal level are negligible (θ2 = θ1 = 0.3).

If r = 0.5 we do not observe substantial differences in the power between the three

tests (independently of the sample size). On the other hand, if r = 0.8 the tests

based on ELR statistics T̃n and Tn yield larger rejection probabilities than the test

SQ0.5 (see the right part of Figure Figure 5). Interestingly the unweighted test based

on Tn shows a better performance than the test based on T̃n in these cases. Again,

all tests are robust with respect to non-stationarity.

Finally, in Figure 6 we display the rejection probabilities of the three tests for Cauchy

distributed innovations, where we again do not observe differences in the approxi-

mation of the nominal level (θ2 = θ1 = 0.3). On the other hand the differences in

power between the tests based on ELR and quantile regression are remarkable. In all

cases the ELR tests based on Tn and T̃n have substantially more power than the test

based on SQ0.5. The ELR test based on the unweighted statistic Tn shows a better

performance than the ELR test based on T̃n. This superiority is less pronounced

in the case r = 0.5 but clearly visible for r = 0.8. Finally, in contrast to the test

based on SQ0.5 the ELR tests based on Tn and T̃n are robust against non-stationarity

(i.e. |θ2| = 1) for Cauchy distributed innovations and clearly detect a change in the

parameters in these cases.
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Figure 4: Simulated rejection probabilities of various change point tests based on the

statistics Tn, T̃n and SQ0.5 defined in (2.5), (3.1) and (4.1), respectively. The model

is given by an AR(1) model with normal distributed innovations.

(i) n = 100

(a) r = 0.5 (b) r = 0.8
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Figure 5: Simulated rejection probabilities of various change point tests based on the

statistics Tn, T̃n and SQ0.5 defined in (2.5), (3.1) and (4.1), respectively. The model

is given by an AR(1) model with t2-distributed innovations.
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Figure 6: Simulated rejection probabilities of various change point tests based on the

statistics Tn, T̃n and SQ0.5 defined in (2.5), (3.1) and (4.1), respectively. The model

is given by an AR(1) model with Cauchy distributed innovations.

(i) n = 100
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5 Proofs

This section gives rigorous proofs of all results in this paper. In what follows, C will

denote a generic positive constant that varies in different places. “with probability

approaching one” will be abbreviated as w.p.a.1. Moreover, we use the following

notations throughout this section:

gi(β) = g(Y p
i , β), g(β) = E[g(Y p

i , β)],

P̂ 1
k (β, λ) =

1

k

k∑
i=1

log{1− λ′gi(β)},

P̂ 2
n,k(β, η) =

1

n− k

n∑
j=k+1

log{1− η′gj(β)},

Λ̂1
k(β) = {λ ∈ Rm : |λ′gi(β)| < 1 for all i = 1, . . . , k} ,

Λ̂2
n,k(β) = {η ∈ Rm : |η′gj(β)| < 1 for all j = k + 1, . . . , n} ,

ĝ(β) =
1

n

n∑
i=1

g(Y p
i , β) =

1

n

n∑
i=1

gi(β),

ĝ1
k(β) =

1

k

k∑
i=1

gi(β) and ĝ2
n,k(β) =

1

n− k

n∑
j=k+1

gj(β).

5.1 Proof of Theorem 3.1

We start proving several auxiliary results which are required in the proof of Theorem

3.1.

Lemma 5.1. Suppose that Assumption 3.4 (i) holds. For 1/γ < ζ < 1/2, let

Λn,k = {(λ, η) ∈ R2m : ‖λ‖ ≤ Ck−ζ , ‖η‖ ≤ C(n− k)−ζ}.

Then, as n→∞, we have

sup
β∈B,λ∈Λn,k∗

max
1≤i≤k∗

|λ′gi(β)| P−→ 0, sup
β∈B,η∈Λn,k∗

max
k∗+1≤j≤n

|η′gj(β)| P−→ 0.

Also, Λn,k∗ ⊂ Λ̂1
k∗(β)× Λ̂2

n,k∗(β) for all β ∈ B w.p.a.1.
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Proof. Let bi = supβ∈B ‖gi(β)‖. By Assumption 3.4 (i), we can choose γ > 2 such

that K = E[bγ1 ]1/γ is finite. Then, for any δ > 0, we can define M(δ) = K/δ1/γ and

obtain

P
(

max
1≤i≤k∗

bi ≥M(δ)k∗1/γ
)
≤

k∗∑
i=1

P
(
bi ≥M(δ)k∗1/γ

)
=

k∗∑
i=1

P (bγi ≥M(δ)γk∗)

≤
k∗∑
i=1

E[bγi ]

M(δ)γk∗
= δ.

Consequently, maxi bi = Op(k
∗1/γ) and by the Cauchy-Schwartz inequality we have

sup
β∈B,λ∈Λn,k∗

max
1≤i≤k∗

|λ′gi(β)| ≤ sup
λ∈Λn,k∗

‖λ‖ max
1≤i≤k∗

bi = Op(k
∗−ζ+1/γ),

which implies

sup
β∈B,λ∈Λn,k∗

max
1≤i≤k∗

|λ′gi(β)| P−→ 0.

Similarly, it follows that

sup
β∈B,η∈Λn,k∗

max
k∗+1≤j≤n

|η′gj(β)| P−→ 0.

Therefore, Λn,k∗ ⊂ Λ̂1
k∗(β)× Λ̂2

n,k∗(β) for all β ∈ B w.p.a.1, which completes the proof

of Lemma 5.1.

Lemma 5.2. Suppose that Assumptions 3.1 – 3.4 hold, and there exists a sequence

{βn,k∗} ⊂ B such that

βn,k∗
P−→ β0, ĝ

1
k∗(βn,k∗) = Op(k

∗−1/2) and ĝ2
n,k∗(βn,k∗) = Op((n− k∗)−1/2)

as n→∞. Denote βn,k∗ by β. Then, under H0,

λ := arg max
λ∈Λ̂1

k∗ (β)
P̂ 1
k∗(β, λ) and η := arg max

η∈Λ̂2
n,k∗ (β)

P̂ 2
n,k∗(β, η)

exist w.p.a.1. Moreover, as n→∞ we have

λ = Op(k
∗−1/2), η = Op((n− k∗)−1/2),

P̂ 1
k∗(β, λ) = Op(k

∗−1), P̂ 2
n,k∗(β, η) = Op((n− k∗)−1).
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Proof. We only show the statement for λ, the corresponding statement for η follows

by similar arguments. Since Λn,k∗ is a closed set, it follows that

λ̌ := arg max
λ∈Λn,k∗

P̂ 1
k∗(β, λ)

exists (note that P̂k∗(β, λ) is a concave function of λ). From Lemma 5.1 it follows

that P̂ 1
k∗(β, λ) is continuously twice differentiable with respect to λ w.p.a.1. By a

Taylor expansion at λ = 0m, there exists a point λ̇ on the line joining λ̌ and 0m such

that

0 = P̂ 1
k∗(β, 0m) ≤ P̂ 1

k∗(β, λ̌)

= −λ̌′ĝ1
k∗(β) +

1

2
λ̌′
[ 1

k∗

k∗∑
i=1

ρ1
i (λ̇)gi(β)gi(β)′

]
λ̌, (5.1)

where ρ1
i (λ) = −1/(1− λ′gi(β))2. Note that the definition of gi(β) implies

gi(β)gi(β)′ =
1

4
a∗(Xi−1)a∗(Xi−1)′

for any β ∈ B. By Lemma 5.1 we have ρ1
i (λ̇) ≥ −C uniformly with respect to

i w.p.a.1. Furthermore, the ergodicity of {Xt : t ∈ Z} implies that the random

variable

Ω̂1
k∗ := (4k∗)−1

k∗∑
i=1

a∗(Xi−1)a∗(Xi−1)′

converges to Ω in probability. Hence the minimum eigenvalue of Ω̂1
k∗ is bounded

away from 0 w.p.a.1. and we obtain

−λ̌′ĝ1
k∗(β) +

1

2
λ̌′
[ 1

k∗

k∗∑
i=1

ρ1
i (λ̇)gi(β)gi(β)′

]
λ̌ ≤ ‖λ̌‖ ‖ĝ1

k∗(β)‖ − C

2
λ̌Ω̂1

k∗λ̌

≤ ‖λ̌‖‖ĝ1
k∗(β)‖ − C‖λ̌‖2 (5.2)

w.p.a.1. Dividing both sides of (5.2) by ‖λ̌‖, we get

‖λ̌‖ = Op(k
∗−1/2) = op(k

∗−ζ),
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and hence λ̌ ∈ Int(Λ̂1
k∗) w.p.a.1. Again by Lemma 5.1, the concavity of P̂ 1

k∗(β, λ)

and the convexity of Λ̂1
k∗(β), it follows that λ = λ̌ exists w.p.a.1 and λ = Op(k

∗−1/2).

These results also imply that P̂ 1
k∗(β, λ) = Op(k

∗−1). By similar arguments, we can

show the corresponding results for η and P̂ 2
n,k∗(β, η).

Next, let us consider the estimator β̂n,k of Theorem 3.1. Recall that β̂n,k is the

minimizer of

ln,k(β, β) = k sup
λ∈Λ̂1

k(β)

P̂ 1
k (β, λ) + (n− k) sup

η∈Λ̂2
n,k(β)

P̂ 2
n,k(β, η).

Let us define

P̂n,k(β, λ, η) := kP̂ 1
k (β, λ) + (n− k)P̂ 2

n,k(β, η) (5.3)

and

λ̂n,k := arg max
λ∈Λ̂1

k(β̂n,k)
P̂ 1
k (β̂n,k, λ), η̂n,k := arg max

η∈Λ̂2
n,k(β̂n,k)

P̂ 2
n,k(β̂n,k, η). (5.4)

Lemma 5.3. Suppose that Assumptions 3.1 – 3.4 hold. Then, under the null hy-

pothesis H0 of no change point we have

ĝ1
k∗(β̂n,k∗) = Op(k

∗−1/2), ĝ2
n,k∗(β̂n,k∗) = Op((n− k∗)−1/2)

as n→∞.

Proof. Define ˆ̂gln,k := ĝl(β̂n,k) for l = 1, 2,

λ̃n,k := −k−1/2 ˆ̂g1
n,k/‖ˆ̂g1

n,k‖, η̃n,k := −(n− k)−1/2 ˆ̂g2
n,k/‖ˆ̂g2

n,k‖, (5.5)

then it follows from (5.4) that

P̂ 1
k (β̂n,k, λ̃n,k) ≤ P̂ 1

k (β̂n,k, λ̂n,k) and P̂ 2
n,k(β̂n,k, η̃n,k) ≤ P̂ 2

n,k(β̂n,k, η̂n,k),

which implies the inequality

P̂n,k(β̂n,k, λ̃n,k, η̃n,k) ≤ P̂n,k(β̂n,k, λ̂n,k, η̂n,k). (5.6)
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By similar arguments as used in (5.1) and (5.2) we have

P̂n,k∗(β̂n,k∗ , λ̃n,k∗ , η̃n,k∗) ≥ k∗1/2‖ˆ̂g1
n,k∗‖+ (n− k∗)1/2‖ˆ̂g2

n,k∗‖ − c0 (5.7)

w.p.a.1, where c0 is the same constant as in the proof of Lemma 5.2. On the other

hand, we have the following inequality:

P̂n,k(β̂n,k, λ̂n,k, η̂n,k) = inf
β∈B

sup
λ∈Λ̂1

k(β̂n,k), η∈Λ̂2
n,k(β̂n,k)

P̂n,k(β, λ, η)

≤ sup
λ∈Λ̂1

k(β0), η∈Λ̂2
n,k(β0)

P̂n,k(β0, λ, η)

≤ k sup
λ∈Λ̂1

k(β0)

P̂ 1
k (β0, λ) + (n− k) sup

η∈Λ̂2
n,k(β0)

P̂ 2
n,k(β0, η). (5.8)

Applying Lemma 5.2 with βn,k∗ = β0 yields

sup
λ∈Λ̂1

k∗ (β0)

P̂ 1
k∗(β0, λ) = Op(k

∗−1), sup
η∈Λ̂2

n,k∗ (β0)

P̂ 2
n,k∗(β0, η) = Op((n− k∗)−1), (5.9)

and from (5.8) and (5.9), we get

P̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) = Op(1). (5.10)

Finally, from (5.6), (5.7) and (5.10), we have

−c0 ≤ −c0 + k∗1/2‖ˆ̂g1
n,k∗‖+ (n− k∗)1/2‖ˆ̂g2

n,k∗‖ ≤ P̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) = Op(1),

which implies

‖ˆ̂g1
n,k∗‖ = ‖ĝ1

k∗(β̂n,k∗)‖ = Op(k
∗−1/2) and ‖ˆ̂g2

n,k∗‖ = ‖ĝ2
n,k∗(β̂n,k∗)‖ = Op((n−k∗)−1/2),

establishing the assertion of Lemma 5.3.

Proof. [Proof of Theorem 3.1] By Lemma 5.3 we have ĝ(β̂n,k∗) = op(1). Then, it

follows from the triangular inequality and uniform law of large numbers that

‖g(β̂n,k∗)‖ ≤ ‖g(β̂n,k∗)− ĝ(β̂n,k∗)‖+ ‖ĝ(β̂n,k∗)‖
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≤ sup
β∈B
‖g(β)− ĝ(β)‖+ ‖ĝ(β̂n,k∗)‖ = op(1).

Since g(β) has a unique zero at β0, the function ‖g(β)‖ must be bounded away

from zero outside any neighborhood of β0. Therefore, β̂n,k∗ must be inside any

neighborhood of β0 w.p.a.1. and therefore, β̂n,k∗
P−→ β0.

Next, we show that β̂n,k∗ − β0 = Op(n
−1/2). As k∗ = rn, by Lemma 5.3, we have

ĝ(β̂n,k∗) = n−1
{
k∗ĝ1

k∗(β̂n,k∗) + (n− k∗)ĝ2
n,k∗(β̂n,k∗)

}
= Op(n

−1/2)

and the central limit theorem implies

ĝ(β0) = Op

[
n−1

{
k∗1/2 + (n− k∗)1/2

}]
= Op(n

1/2).

Further,

‖ĝ(β̂n,k∗)− ĝ(β0)− g(β̂n,k∗)‖ ≤ (1 +
√
n‖β̂n,k∗ − β0‖)op(n−1/2), (5.11)

which yields

‖g(β̂n,k∗)‖ ≤ ‖ĝ(β̂n,k∗)− ĝ(β0)− g(β̂n,k∗)‖+ ‖ĝ(β̂n,k∗)‖+ ‖ĝ(β0)‖

= (1 +
√
n‖β̂n,k∗ − β0‖)op(n−1/2) +Op

[
n−1

{
k∗1/2 + (n− k∗)1/2

}]
.

Moreover, similar arguments as given in Newey and McFadden (1994) on page 2191,

the differentiability of ‖g(β)‖ and the estimate ‖g(β̂n)‖ ≥ C‖β̂n− β0‖ w.p.a.1. show

that

‖β̂n,k∗ − β0‖ = (1 +
√
n‖β̂n,k∗ − β0‖)op(n−1/2) +Op

[
n−1

{
k∗1/2 + (n− k∗)1/2

}]
,

and hence

{1 + op(1)}‖β̂n,k∗ − β0‖ = op(n
−1/2) +Op

[
n−1

{
k∗1/2 + (n− k∗)1/2

}]
. (5.12)

If k∗ = rn the right-hand side of (5.12) is of order Op(n
−1/2), which completes the

proof of Theorem 3.1.
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5.2 Proof of Theorem 3.2

We first show that P̂n,k∗(β, λ, η) in (5.3) is well approximated by some function near

its optima using a similar reasoning as in Parente and Smith (2011). For this purpose

let us define

L̂1
k(β, λ) = {−G(β − β0)− ĝ1

k(β0)}′λ− 1

2
λ′Ωλ,

L̂2
n,k(β, η) = {−G(β − β0)− ĝ2

n,k(β0)}′η − 1

2
η′Ωη

and

L̂n,k(β, λ, η) := kL̂1
k(β, λ) + (n− k)L̂2

n,k(β, η).

Furthermore, hereafter redefine

β̃n,k := arg min
β∈B

sup
λ∈Rm,η∈Rm

L̂n,k(β, λ, η),

λ̃n,k := arg max
λ∈Rm

L̂1
k(β̃, λ) and η̃n,k := arg max

η∈Rm
L̂2
n,k(β̃, η).

Lemma 5.4. Suppose that Assumptions 3.1-3.4 hold. Then, under H0,

P̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) = L̂n,k∗(β̃n,k∗ , λ̃n,k∗ , η̃n,k∗) + op(1)

as n→∞.

Proof. It is sufficient to show that

(i) P̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗)− L̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) = op(1),

(ii) L̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗)− L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗) = op(1),

(iii) L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗)− L̂n,k∗(β̃n,k∗ , λ̃n,k∗ , η̃n,k∗) = op(1).

For a proof of (i) we note that a Taylor expansion leads to

P̂ 1
k (β̂n,k, λ̂n,k) = −λ̂′n,k ˆ̂g1

n,k +
1

2
λ̂′n,k

[1

k

k∑
i=1

ρ1
i (λ̈)a∗(Xi−1)a∗(Xi−1)′

]
λ̂n,k,
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where λ̈ is on the line joining the points λ̂n,k and 0m. Observing the definition of

L̂1(β̂n,k, λ̂n,k) this yields the estimate∣∣∣P̂ 1
k (β̂n,k, λ̂n,k)− L̂1(β̂n,k, λ̂n,k)

∣∣∣ ≤ ∣∣∣− (ˆ̂g1
n,k − ĝ1

k(β0)−G(β̂ − β0)
)′
λ̂n,k

∣∣∣ (5.13)

+
∣∣∣1
2
λ̂′n,k

[1

k

k∑
i=1

ρ̇1
i a
∗(Xi−1)a∗(Xi−1)′ + Ω

]
λ̂n,k

∣∣∣.
Since β̂n,k∗

P−→ β0 by Theorem 3.1, we can take βn,k∗ = β̂n,k∗ in Lemma 5.2, and

obtain λ̂n,k∗ = Op(n
−1/2). Then, recalling (5.11), the first term in (5.13) (where k is

replaced by k∗) becomes∣∣∣− (ˆ̂g1
n,k∗ − ĝ1

k∗(β0)−G(β̂n,k∗ − β0)
)′
λ̂n,k∗

∣∣∣
≤
{∥∥∥ˆ̂g1

n,k∗ − ĝ1
k∗(β0)− g(β̂n,k∗)

∥∥∥+
∥∥∥g(β̂n,k∗)−G(β̂n,k∗ − β0)

∥∥∥}∥∥∥λ̂n,k∗∥∥∥
=
{(

1 +
√
n
∥∥∥β̂n,k∗ − β0

∥∥∥) op(n−1/2) +Op

(∥∥∥β̂n,k∗ − β0

∥∥∥2 )}
Op(n

−1/2)

=op(n
−1).

Moreover, the second term in (5.13) is of order op(k
∗−1). Hence, we get∣∣P̂ 1

k∗(β̂n,k∗ , λ̂n,k∗)− L̂1(β̂n,k, λ̂n,k∗)
∣∣ = op(k

∗−1)

and similarly ∣∣P̂ 2
n,k∗(β̂n,k∗ , η̂n,k∗)− L̂2(β̂n,k∗ , η̂n,k∗)

∣∣ = op((n− k∗)−1).

Combining these estimates yields

P̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗)− L̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) = op(1),

which is the statement (i).

For a proof of (ii) we first show∣∣P̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗)− L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗)
∣∣ = op(1).

Note that the function L̂n,k(β, λ, η) is smooth in β, λ and η. Then, the first order

conditions for an interior global maximum

0p =
∂L̂n,k(β, λ, η)

∂β
= −G′ {kλ+ (n− k)η} ,
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0m =
∂L̂n,k(β, λ, η)

∂λ
= −k

{
G(β − β0) + ĝ1

k(β0) + Ωλ
}
,

0m =
∂L̂n,k(β, λ, η)

∂η
= −(n− k)

{
G(β − β0) + ĝ2

n,k(β0) + Ωη
}

are satisfied for the point (β′, λ′, η′) = (β̃′n,k, λ̃
′
n,k, η̃

′
n,k). These conditions can be

rewritten in matrix form as Op×p G′ G′

G k−1Ω Om×m

G Om×m (n− k)−1Ω


 β̃n,k − β0

kλ̃n,k

(n− k)η̃n,k

+

 0p

ĝ1
k(β0)

ĝ2
n,k(β0)

 = 0p+2m. (5.14)

With the notations

Σ := (G′Ω−1G)−1, H := Ω−1GΣ,

P 1
k := Ω−1 − k

n
HΣ−1H ′, P 2

n,k := Ω−1 − n− k
n

HΣ−1H ′,

the system (5.14) is equivalent to β̃n,k − β0

kλ̃n,k

(n− k)η̃n,k


=

 n−1Σ −kn−1H ′ −(n− k)n−1H ′

−kn−1H −kP 1
k k(n− k)n−1HΣ−1H ′

−(n− k)n−1H k(n− k)n−1HΣ−1H ′ −(n− k)P 2
n,k


 0p

ĝ1
k(β0)

ĝ2
n,k(β0)


=

 −H ′ĝ(β0)

−k {Ω−1ĝ1
k(β0)−HΣ−1H ′ĝ(β0)}

−(n− k)
{

Ω−1ĝ2
n,k(β0)−HΣ−1H ′ĝ(β0)

}
 . (5.15)

Consequently, β̃n,k∗ − β0, λ̃n,k∗ and η̃n,k∗ are of order Op(n
−1/2), Op(k

∗−1/2) and

Op((n − k∗)−1/2), respectively. Therefore, by the same arguments as given in the

proof of (i), it follows that

|P̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗)− L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗)| = op(1).
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This relationship and the fact that (β̂′n,k∗ , λ̂
′
n,k∗ , η̂

′
n,k∗)′ and (β̃′n,k∗ , λ̃

′
n,k∗ , η̃

′
n,k∗)′ are the

saddle points of the functions P̂n,k∗(β, λ, η) and L̂n,k∗(β, λ, η), respectively, imply that

L̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) = P̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) + op(1)

≤ P̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗) + op(1)

= L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗) + op(1). (5.16)

On the other hand,

L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗) ≤ L̂n,k∗(β̃n,k∗ , λ̃n,k∗ , η̃n,k∗)

≤ L̂n,k∗(β̂n,k∗ , λ̃n,k∗ , η̃n,k∗)

= P̂n,k∗(β̂n,k∗ , λ̃n,k∗ , η̃n,k∗) + op(1)

≤ P̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) + op(1)

= L̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) + op(1). (5.17)

Thus, (5.16) and (5.17) lead to

L̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗)− L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗) = op(1).

Finally, we can prove (iii) by similar arguments that

L̂n,k∗(β̃n,k∗ , λ̃n,k∗ , η̃n,k∗) ≤ L̂n,k∗(β̂n,k∗ , λ̃n,k∗ , η̃n,k∗)

= P̂n,k∗(β̂n,k∗ , λ̃n,k∗ , η̃n,k∗) + op(1)

≤ P̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗) + op(1)

≤ P̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗) + op(1)

= L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗) + op(1)

and

L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗) ≤ L̂n,k∗(β̃n,k∗ , λ̃n,k∗ , η̃n,k∗).

Consequently, L̂n,k∗(β̃n,k∗ , λ̂n,k∗ , η̂n,k∗) = L̂n,k∗(β̃n,k∗ , λ̃n,k∗ , η̃n,k∗)+op(1), which implies

(iii).

27



Proof. [Proof of Theorem 3.2] By (5.3), (5.4), Lemma 5.4 and (5.15) it follows that

sup
β∈B
{−ln,k∗(β, β)} = P̂n,k∗(β̂n,k∗ , λ̂n,k∗ , η̂n,k∗)

= L̂n,k∗(β̃n,k∗ , λ̃n,k∗ , η̃n,k∗) +Rn,k∗

=
k∗

2
λ̃′n,k∗Ωλ̃n,k∗ +

n− k∗

2
η̃′n,k∗Ωη̃n,k∗ +Rn,k∗ + op(1)

=
k∗

2
ĝ1
k∗(β0)′Ω−1ĝ1

k∗(β0) +
n− k∗

2
ĝ2
n,k∗(β0)′Ω−1ĝ2

n,k∗(β0)

− n

2
ĝ(β0)′HΣ−1H ′ĝ(β0) +Rn,k∗ + op(1)

= M̂n,k∗ +Rn,k∗ + op(1), (5.18)

where

M̂n,k =

∥∥Ŵn(k/n)− (k/n)Ŵn(1)
∥∥2

2φ(k/n)
+
Ŵn(1)′QŴn(1)

2
,

Ŵn(r) =
1√
n

[rn]∑
t=1

Ω−1/2g(Y p
t , β0),

Rn,k = P̂n,k(β̂n,k, λ̂n,k, η̂n,k)− L̂n,k(β̃n,k, λ̃n,k, η̃n,k),

φ(u) = u(1 − u) and [x] denotes the integer part of real number x. As shown in

Lemma 5.4,

max
k1n≤k∗≤k2n

|Rn,k∗| = sup
r1≤r≤r2

|Rn,rn| = op(1).

Second, from Assumption 3.4 and Lemma 2.2 in Phillips (1987), it follows that{
c′Ŵn(r) : r ∈ [0, 1]

}
L−→ {c′B(r) : r ∈ [0, 1]} ,

for any vector c ∈ Rm, where {B(r) : r ∈ [0, 1]} is an m-dimensional standard

Brownian motion. Hence, the Cramér-Wold device and the continuous mapping

theorem lead to

T̃n = 2 max
k1n≤k≤k2n

{
h
(k
n

)
M̂n,k

}
= sup

k1n/n≤r≤k2n/n

{h(k/n)

φ(k/n)

∥∥Ŵn(r)− ([rn]/n)Ŵn(1)
∥∥2

+ h([rn]/n)Ŵn(1)′QŴn(1)
}
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L−→ sup
r1≤r≤r2

{h(r)

φ(r)
‖B(r)− rB(1)‖2 + h(r)B(1)′QB(1)

}
.

5.3 Proof of Theorem 3.3

Proof. Without loss of generality, suppose that θ2 6= β0. This implies that there exist

a neighborhood U(β0) of β0 and a neighborhood U(θ2) of θ2 such that

U(β0) ∩ U(θ2) = ∅.

Under the alternative it follows that β̂n,k∗ 6∈ U(β0) or β̂n,k∗ 6∈ U(θ2). Note that

E[g(Ypt , θ2)] 6= 0 for 1 ≤ t ≤ k∗ and E[g(Ypt , β0)] 6= 0 for k∗ + 1 ≤ t ≤ n. From a

uniform law of large numbers, ĝ1
k∗(β̂n,k∗) or ĝ2

n,k∗(β̂n,k∗) is outside a neighborhood of

0 for any sufficiently large n.

Now, if we consider ĝ1
k(β̂n,k∗) instead of ĝ1

k(β0) and ĝ2
n,k(β̂n,k∗) instead of ĝ2

n,k(β0) in

(5.14), we find, as in (5.18), that supβ∈B{−ln,k∗(β, β)} can be approximated by

k∗

2
ĝ1
k∗(β̂n,k∗)′Ω−1ĝ1

k∗(β̂n,k∗) +
n− k∗

2
ĝ2
n,k∗(β̂n,k∗)′Ω−1ĝ2

n,k∗(β̂n,k∗)

− n

2
ĝ(β̂n,k∗)′HΣ−1H ′ĝ(β̂n,k∗) +Rn,k∗ + op(1).

This time, however, we have

k∗

2
ĝ1
k∗(β̂n,k∗)′Ω−1ĝ1

k∗(β̂n,k∗) +
n− k∗

2
ĝ2
n,k∗(β̂n,k∗)′Ω−1ĝ2

n,k∗(β̂n,k∗)→∞,

since ĝ1
k∗(β̂n,k∗)′Ω−1ĝ1

k∗(β̂n,k∗) + ĝ2
n,k∗(β̂n,k∗)′Ω−1ĝ2

n,k∗(β̂n,k∗) > 0 for any sufficiently

large n. This completes the proof of Theorem 3.3.
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