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Abstract

In nonparametric curve estimation, the smoothing parameter is critical for perfor-

mance. In order to estimate the hazard rate, we compare nearest neighbor selectors

that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These mea-

sures result in a rule of thumb, a cross-validation, and a plug-in selector. A Monte

Carlo simulation within the three-parameter exponentiated Weibull distribution in-

dicates that a counter-factual normal distribution, as an input to the selector, does

provide a good rule of thumb. If bias is the main concern, minimizing the uniform

loss yields the best results, but at the cost of very high variability. Cross-validation

has a similar bias to the rule of thumb, but also with high variability.

Keywords: hazard rate, kernel smoothing, bandwidth selection, nearest neighbor

bandwidth, rule of thumb, plug-in, cross-validation, credit risk.

1 Introduction

In the finance literature, the hazard rate or intensity of default is part of fundamental

pricing formulae [Bielecki and Rutkowski (2002)]. Furthermore, it is an important

parameter for rating matrices. The latter play a crucial role for regulatory capital

[Basel Committee on Banking Supervision (2004)] and economic capital [Gupton

et al. (1997)]. In medicine, the hazard rate is used in cancer research with death or

tumor relapse as endpoints [Günther et al. (2005); Siu et al. (1998); Weißbach et al.

(2008a)].

Although the constant hazard rate has its merits, a time-homogeneous failure process

is occasionally rejected by goodness-of-fit tests [see Weißbach and Dette (2007);

Weißbach et al. (2008b); Kiefer and Larson (2007)]. Kernel hazard rate estimation

has attracted some attention over the last few decades and is usually based on kernel

smoothing [Marron and de Uña Álvarez (2004); Marron (1996); Müller and Wang

(1994); Patil (1993); Schäfer (1985)]. Estimation for an entire rating transition

matrix is very similar [Andersen et al. (1993); Aalen and Johansen (1978)].

As in density estimation, the bandwidth selection is crucial for the performance of

an estimate. The bandwidth must not be too large, so as to avoid over-smoothing,

i.e. substantial bias, and must not be too small either, so as to avoid detecting the

underlying structure. The concept of nearest neighbors is currently attracting inter-

disciplinary interest [(see Abarbanel, 1996; Sugihara and May, 1990; Ralescu, 1995;

Wagner, 1975, e.g.)]. This concept helps balance the problem of fixed bandwidth

along the time axis, by using more observations where density is high and fewer
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where it is low. The idea is to widen the window that is used for estimation if the

density is low, and to narrow it if the density is high. The advantage, for failure

time analysis is, that it can also be adapted to censored data [Dette and Gefeller

(1995)].

Comparisons of bandwidth selectors are often asymptotical and in the context of

density estimation [Park and Marron (1990); Jones et al. (1996)]. The purpose of the

present paper is to study the finite-sample bias of kernel hazard rate estimates under

automated bandwidth selection, by means of a simulation study. We concentrate our

investigations on bias, because this is of primary concern in banking. The Banking

Committee on Banking Supervision (2004, p. 86) , for example, requests almost

totally unbiased estimation for credit risk parameters.

The first specific goal for bandwidth selection is to minimize the quadratic loss. To

this end, Weißbach et al. (2008a) translate Silverman’s rule of thumb for a fixed

bandwidth to the nearest neighbor bandwidth. Hall (1978) attempts to minimize

the Kullback-Leibler loss for a fixed bandwidth by means of a leave-one-out cross-

validation. We use an analogous implementation for the nearest neighbor bandwidth

[Gefeller et al. (1996)]. Weißbach (2006) suggests minimizing the uniform absolute

loss, and we use plug-in to implement an optimal number of nearest neighbors.

Motivated by empirical results about intensity shapes in credit risk modeling [Lando

and Skødeberg (2002)], we base our Monte Carlo simulation on a three-parameter

extension of the Weibull distribution. The main finding confirms what is already

known on fixed bandwidth selection in kernel density estimation. Assuming a normal

distribution in order to define an optimal bandwidth ideal from a practical point

of view. Cross-validation has a similar bias, but higher variability and required a

greater computational effort. Plug-in, however, results in a small maximal bias, but

with very substantial variability.

2 Model

The typical examples of (right-)censoring in applications are studies with “time

till event” as the variable in question T and a censoring mechanism preventing

the observation of the “event”. For such studies, the hazard rate α(·) has proven

easier for the purpose of interpretation than the density, because of its notion as

instantaneous failure rate

α(t) = lim
∆t→0

1

∆t
P (T ∈ [t, t + ∆t] | T ≥ t)

=
f(t)

S(t)
=

f(t)

1− F (t)
,
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where f(·) denotes the pertinent density and F (·) and S(·) the cumulative distrib-

ution function (CDF) and survival function. One can smooth the empirical process

so as to obtain an estimate of the density, or, similarly, it is possible to smooth the

Nelson-Aalen estimate of the cumulative hazard rate A(t) =
∫ t

0
α(s)ds

An(t) =
∑

i:X(i)≤t

δ(i)

n− i + 1
(1)

to obtain an estimate of the hazard rate. The observations Xi = max{Ti, Ci} are

either failure times (Ti) or times of censoring (Ci). The δi = I{Xi=Ti} indicate the

censoring for i = 1, . . . , n independent observations. The order of the δ(i)’s refers to

the pertinent ordered X(i)’s.

The nearest neighbor bandwidth definition in the presents of censored data is [Dette

and Gefeller (1995)]

RNN
n (t) := inf

{
r > 0 | |Sn

(
t− r

2

)
− Sn

(
t +

r

2

)
| ≥ k

n

}
.

Here

Sn(t) =
∏

{i:X(i)≤t}

(
n− i

n− i + 1

)δ(i)

denotes the Kaplan-Meier product limit estimate of the survival function [Kaplan

and Meier (1958)].

Combining the estimate (1) with the nearest-neighbor bandwidth, we propose the

following estimate for the hazard rate

αn(t) =

∫

R+
0

1

Rn(s)
K

(
t− s

Rn(s)

)
dAn(s)

=
n∑

i=1

δ(i)

(n− i + 1)RNN
n (X(i))

K

(
X(i) − t

RNN
n (X(i))

)
. (2)

We use the quadratic kernel with support z ∈ [−1/2, 1/2]

K(z) = I[− 1
2
, 1
2
]

240

23

(
1

4
− z2

)2

.

Fortunately, the impact of the kernel on the performance of the estimation is known

to be small [(see Wand and Jones, 1995, p. 31)].
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3 Selecting the number of nearest neighbors

Three types of bandwidth selectors are referred to frequently in the literature. First

of all, one may assume a (counterfactual) distribution. Minimizing, say, the mean

integrated squared error with respect to the bandwidth results in an analytical

expression for the optimal bandwidth [Parzen (1962); Silverman (1986)]. Without a

specific distributional assumption, the second alternative is to numerically minimize

an error by cross-validation, usually, leave-one-out estimation is used in this context

[Scott and Terrell (1987); Chow et al. (1983); Hall (1978); Marron (1987); Patil

(1993)]. Another idea without distributional assumptions is plug-in. The optimal

bandwidth depends on the distribution to be estimated, therefore one plugs an

arbitrarily estimate into the analytic expression of the optimal bandwidth [Hall

et al. (1991)]. One of each type will be used in our simulation study.

For the fixed bandwidth b in kernel density estimation, Silverman’s rule of thumb

assumes normality of the data and minimizes asymptotically the mean integrated

squared error [Silverman (1986)]. The solution is explicitly given by

hRoT =

(
8π

1
2

∫
K2(z)dz

3(
∫

zK2(z)dz)2n

)1/5

σ̂, (3)

where σ is the standard deviation of the observations and to be estimated. Weißbach

et al. (2008a) give a modification of that rule of thumb for the hazard rate under

random censoring and for the nearest neighbor bandwidth. The adoption to the

nearest neighbor bandwidth is achieved by identifying the fixed bandwidth to imply

a linear approximation of the CDF, upon which can be improved by stochastic

approximation, with the empirical process. The number of nearest neighbors is

given by

kRoT =
[
n · |β̂| · hRoT

]
,

with β̂ as the regression slope through the points (Xi, Sn(Xi)) of the Kaplan-Meier

survival estimate. For the characteristics
∫

K2 and the second moment of the bi-

square kernel in (3), see Wand and Jones (1995, p. 176) . In order to estimate the

standard deviation, we used the unbiased variance estimate restricted to the uncen-

sored observations, knowing that this is not statistically, but rather computationally

efficient. The Gaussian brackets [·] ensure k to be an integer.

Bandwidth selection for the nearest neighbor bandwidth in hazard rate estimation

can be implemented by cross-validation, as in Gefeller et al. (1996). Maximizing a

leave-one-out likelihood results in an optimal bandwidth. Hall (1978) shows that this
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asymptotically minimizes the expected Kullback-Leibler loss for the corresponding

density. Looking at this in more detail, the likelihood is decomposed into the hazard

rate and the survival function, both estimated by cross-validation.

kCV = argmaxk∈{1,...,n}
n∏

i=1

α−i
n (Xi)

δiS−i
n (Xi).

Here, h−i
n (Xi) estimates the hazard rate at time Xi by (2) based on the entire sample

except for Xi. The same applies to the Kaplan-Meier estimate S−i
n (·) of the survival

function. Enumeration over the possible numbers of nearest neighbors yields the

optimum.

The uniform error for data-driven bandwidth functional estimators is analyzed by

decomposing into two additive components. The first is the stochastic error, the

second, the deterministic bias [Einmahl and Mason (2005)]. More specifically, one

can use an asymptotic bound on the uniform error to establish the consistency of

the nearest neighbor hazard rate estimate [Weißbach (2006)]. In order to balance

deterministic and stochastic error, we minimize the bound with respect to the num-

ber of nearest neighbors and yield an optimal bandwidth selector with respect to

the uniform loss:

kPI =

(
D1 + D2

2D3

) 2
3

(log n)
1
3 n

2
3

The constants are given as D1 = 18(1−G(B))−
1
2 MM̃2m̃−2(sup(K)m̃−1+LKM̃m̃−1),

D2 = 9(1 − F obs(B)))−
1
2 M̃M

1
2 V (K)m̃− 1

2 , and D3 = 2M̃3MLKLψ̃m̃−5 +

2 sup(K)Lψ̃M̃2Mm̃−4 + Lψm̃−1. They mainly depend on the distribution of the

failure time Ti. In detail, M̃ and m̃ denote the maximum and the minimum of the

density. M is the maximum of the hazard rate. The Lipschitz constants of the

density and the hazard rate are Lψ̃ and Lψ. All quantities are to be seen restricted

to the support [A,B] to which the uniform consistency must be restricted. Clearly,

the censoring leaves its traces, so that the CDF for the censoring Ci, G(·), and of

the actual observations Xi, F obs(·) enter the constants. All those quantities are es-

timated by plug-in here. As plug-in estimates, we use the selectors kRoT and kCV

from the previous paragraphs.

For the kernel, the supremum, sup(K), and the Lipschitz constant, LK , and the total

variation, V (K), gear the constants. The biquadratic kernel, we use here, implies

sup(K) to be 0.652173913 and LK to be 2.008174849 and V (K) to be 0.326086957.
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4 Simulation design

The preceding sections proposes three numbers for the nearest neighbors kRoT , kCV ,

and kPI for the hazard rate estimate (2). Plugging the modified rule of thumb

kRoT into kPI , denoted by kPI(← RoT ), and the cross-validation kCV , denoted by

kPI(← CV ), yields four bandwidth selection methods for the purpose of comparison.

For a simulation, it is necessary to select a parametric family for the comparison

of true and estimated hazard rates. The benchmark is a constant hazard rate. For

instance, In finance, the homogeneous Markov process is popular for modeling rat-

ing migrations. In particular, its generalization for several rating states enables

convenient calculation of rating migration matrices containing the one-, two-, and

three-year transition probabilities by means of the generator method [see Bluhm

et al. (2002)]. The constant hazard rate, that is, the exponential distribution, is a

special case of the Weibull distribution. It is advisable to have more parameters,

in order to avoid reducing the smoothness of the family. Few parameters will auto-

matically lead to a dominance of methods that originate from the case of bandwidth

selection for a gaussian density, as is the case for bandwidth hRoT (3). Lando and

Skødeberg (2002) present empirical evidence that external rating intensities tend to

decrease. In order to model this effect, we use the three-parameter (exponentiated)

Weibull family [Mudholkar et al. (1995)]. Decreasing hazards are incorporated, and

additionally, bath-tub shapes. The latter is useful, because decreasing hazards are

not plausible as a long-term effect in credit risk. Migration rates would be decreas-

ing, an unexperienced effect. In medicine, the bath-tub shape is the general death

hazard after birth.

The exponentiated Weibull distribution is defined in terms of the survival function

S(t) = 1−
(

1− exp

(
−

(
t

γ

)κ))θ

,

with 0 < x < ∞, κ > 0, θ > 0 and γ > 0, so that the family contains the original

Weibull distribution for θ = 1. In terms of the hazard rate, the three-parameter

extension becomes

α(t) =
κθ

(
1− exp

(
−

(
t
γ

)κ))θ−1

exp
(
−

(
t
γ

)κ)(
t
γ

)κ−1

γ

(
1−

(
1− exp

(
−

(
t
γ

)κ))θ
) .

Four shapes of the hazard rate modeled in this family are identifiable by parame-

ter space segments, increasing, decreasing, unimodal and convex (bath-tub) shaped.

The limiting lines are κ = 1 and κθ = 1. The simulation was conducted for represen-

tatives of the four shapes, but the convex hazard rate is the most challenging of the
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four (see Figure 1). It increases steeply towards the left boundary, the time-origin.

Additionally, it increases steeply towards the left, where fading data constitutes the

main problem. For the sake of brevity, we restrict the discussion mainly to the esti-

mation of that type, with the parameters (5, 0.1, 100). The findings are similar for

the three other (increasing, unimodal and decreasing) shapes. There is one aspect

in which the similarity is not true for the decreasing shape, this will be analyzed.

Figure 1: Convex hazard rate (black) and its density (gray) of an exponentiated

Weibull distribution with parameters κ = 5, θ = 0.1, γ = 100

Preliminary simulations have shown that it is advisable to restrict estimation to the

inner 80% area, [F−1(0.1), F−1(0.9)], for our bath-tub hazard it becomes [1; 84.5].

We consider only one degree of censoring, namely 40%. To our experience there is

no typical value, but this is an average value for data sets we have analyzed. In

fact lays in between the degrees of the two sets we analyze later on. The degree

of censoring is achieved by choosing survival times Ti and censoring times Ci, both

due to the exponentiated Weibull family with similar parameters. Starting from

an expected 50% censoring for similar distributions, we use the monotony of the

expected degree of censoring with respect to the parameter θ, in order to simulate

the desired 40%. The resulting parameter set is (5, 0.15, 100). (The parameter sets

for the decreasing hazard rates are (0.5, 9.5, 5) for the failure time and (0.5, 14.3, 5)

for the censoring time. The 80% support is [11.8; 101.6].) Note that the censoring

was simulated with respect to the entire support, but was found to hold for the 80%

support with high accuracy in the study.

Sample sizes n of 50 and 100 observations mimic the situation depicted in Weißbach
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and Dette (2007). A moderate number of 300 observations resembles the situation

in Weißbach et al. (2008b). In our experience, 500 simulation runs are sufficient

for point estimation purposes. For the 300-observation situation, 250 replications

reduce the computation time. The remaining variability inherent in the mean of the

point estimates enabled us to detect high variability in an investigated method.

As random number generator, we use the generator of uniformly distributed random

numbers on [0, 1] as implemented in SAS/IML and map to our distribution family

via the inverse CDF

F−1(u) = γ[− log(1− u
1
θ )]

1
κ , 0 < u < 1.

All samples are generated once for all methods, in order to avoid a bias from mul-

tiple random number generation, between the different smoothing methods.

5 Results

We now analyze the bias obtained by the different methods for the selection of

the smoothing parameter. To that end, we plot the average over all 500 (or 250)

simulation loops. We see that, along with the bias assessment, some aspects of

estimation variability can be deduced from those graphs. The graphical analysis

is amended by a statistical analysis. The averages and standard deviations of the

losses, the selected numbers of nearest neighbors, the integrated squared biases and

variances are discussed.

Before comparing the nearest-neighbor selectors, we study (i) the effect of censoring

and (ii) the effect of the sample size on the bias.

The effect of censoring can be seen, even for the decreasing hazard in Figure 2, for

kRoT and the cross-validatory selector kCV . For 40% censoring, large observations

are more likely to be censored than small ones. It is easier to estimate the left

boundary, as compared to the right tail, especially for the small sample size of 50

observations.

The effect of sample size is depicted for the convex hazard in Figure 4 for the number

of nearest neighbors selected according to the four selectors (each in a row). With

increasing sample size (left to right) the bias decreases. However, the benefit differs

across the support interval. On the left boundary, the interval’s part that benefits

is much smaller than on the right tail. The reason is mainly the larger density

near the origin. As deduced from Figure 2, censoring compounds this effect by

further reducing data towards the right tail. The fit between the quartiles of the
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Figure 2: Decreasing hazard rate (solid line) and average of 500 estimations with

kRoT (top/dotted) and kPI(← RoT ) (top/dashed), and kCV (bottom/dotted) and

kPI(← CV ) (bottom/dashed) nearest neighbors from 50 uncensored observations

(left) and 50 observations with 40% censoring (right)

distribution, however, is only slightly improved. The reason is that the hazard rate

is near to constant here.

In fact, the rule of thumb and cross-validation behave very similarly with respect to

the bias. The plug-in estimate behaves differently, but before assessing the effect of

uniform absolute error minimization kPI , it is useful to ensure that the plug-in choice

does not exert a dominant influence. As plug-in for estimation the convex hazard,

Figure 4 shows the rule of thumb kRoT (second row) and the modified likelihood

maximization kCV (forth row). The bias is similar, that is not influenced by the

choice of plug-in.

Both graphs series - compared to the direct use of kRoT (first row) and kCV (third

row) nearest neighbors - visualize the behavior of the asymptotic minimization of

uniform loss. The maximal bias is smaller than for kRoT and kCV , and to the left
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Figure 3: Convex hazard rate (solid line) and average of estimations with kRoT

(dotted/first row), kPI(← RoT ) (dashed/second row), kCV (dotted/third row), and

kPI(← CV ) (dashed/forth row) nearest neighbors and 40% censoring (dashed) for

500 estimations from 50 observations (left), 500 estimations from 100 observations

(middle) and 250 estimations from 300 observations (right)

boundary for n = 300 even non-existent. As a consequence, the small bias leads to

large variance. The wriggly appearance of the hazard rate already indicates a very

substantial estimation variability, including very small numbers of nearest neighbors.

This can also be seen in the numeric results. The exception, the smoothness on the

left from 0 to 20, is caused, once again, by the fading density causing more than

50% – mostly uncensored – observations in that region.

An aggregate assessment can be made on the basis of mean integrated squared error

(MISE), the uniform absolute error (UAE), the mean integrated Kullback-Leibler

error (MIKLE), the number of nearest neighbors (NN), the integrated squared bias

(IBIAS2), and the integrated variance (IVARIANCE). The averages and standard

deviation over the simulations are displayed in Table 1 for the decreasing hazard

and Table 2 for the convex hazard.
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Table 1: Loss averages, bandwidth averages, average integrated squared biases, and

average integrated variances for decreasing hazard under 40% censoring.

kRoT kCV kPI(← RoT ) kPI(← CV )

Criterion Average(±Std) Average(±Std) Average(±Std) Average(±Std)

n = 50

MISE 0.042(±0.07) 0.027(±0.04) 0.165(±0.87) 0.140(±0.87)
UAE 0.069(±0.06) 0.055(±0.03) 0.185(±0.31) 0.153(±0.30)
MIKLE 7.2(±2.2) 7.1(±2.1) 5.6(±2.8) 6.0(±2.7)
NN 13(±2) 21(±7) 26(±64) 34(±65)
IBIAS2 0.041(±0.07) 0.025(±0.04) 0.159(±0.88) 0.136(±0.88)
IVARIANCE 0.0027(±0.002) 0.0030(±0.003) 0.0089(±0.009) 0.0064(±0.007)

n = 100

MISE 0.020(±0.03) 0.015(±0.02) 0.173(±0.88) 0.107(±0.28)
UAE 0.046(±0.03) 0.043(±0.02) 0.192(±0.33) 0.161(±0.22)
MIKLE 7.8(±2.0) 7.8(±1.9) 6.2(±2.8) 6.5(±2.6)
NN 22(±2) 34(±9) 30(±76) 43(±114)
IBIAS2 0.020(±0.03) 0.014(±0.02) 0.169(±0.88) 0.104(±0.28)
IVARIANCE 0.0007(±0.001) 0.0011(±0.001) 0.0058(±0.007) 0.0042(±0.005)

n = 300

MISE 0.007(±0.01) 0.006(±0.01) 1.012(±13.85) 0.103(±0.20)
UAE 0.027(±0.01) 0.027(±0.01) 0.186(±0.73) 0.129(±0.15)
MIKLE 8.1(±1.4) 8.1(±1.4) 6.5(±5.1) 6.5(±2.1)
NN 52(±3) 78(±8) 29(±80) 37(±106)
IBIAS2 0.007(±0.01) 0.006(±0.01) 1.006(±13.8) 0.100(±0.21)
IVARIANCE 0.0002(±0.000) 0.0008(±0.001) 0.0102(±0.095) 0.0044(±0.006)

The similarity of the selectors kRoT and kCV in the visual bias assessment extents

to the aggregated characteristics. The average losses differ at most by 36% - in

the case of the MISE of 0.042, compared to 0.027 - for both hazard shapes and

all three losses. The comparison of integrated bias and variance suggests that the

bias is slightly larger for kRoT than for kCV , up to 64% - 0.025 compared to 0.041.

Consequently, the inverse relation holds for the variance. The higher variance of the

cross-validation has already been reported for the fixed-bandwidth kernel density

estimation (cf. Hall et al. (1987)). Along with the variance of the estimate, the

standard deviation of the nearest-neighbor number kRoT is smaller than kCV , up

to seven times - 1 compared to 7. It is puzzling that this coincides with a smaller

average kRoT , compared to the average kCV , up to 50% - 52 compared to 78.

The consistency of the kernel hazard rate estimates using kRoT and kCV is well

documented in Tables 1 and 2 for MISE and UAE. The mean integrated squared

error and uniform absolute error decrease as the sample size n increases, at a rate
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Table 2: Loss averages, bandwidth averages, average integrated squared biases, and

average integrated variances for convex hazard under 40% censoring.

kRoT kCV kPI(← RoT ) kPI(← CV )

Criterion Average(±Std) Average(±Std) Average(±Std) Average(±Std)

n = 50

MISE 0.037(±0.01) 0.029(±0.05) 143.076(±3198.10) 0.048(±0.14)
UAE 0.058(±0.08) 0.051(± 0.06) 0.915(±18.42) 0.084(±0.13)
MIKLE 7.4(±1.9) 7.3(±1.9) 7.5(±22.3) 6.4(±2.0)
NN 14(±1) 18(±7) 88(±165) 100(±154)
IBIAS2 0.034(±0.01) 0.026(±0.06) 142.803(±3185.78) 0.040(± 0.14)
IVARIANCE 0.0051(± 0.005) 0.0055(±0.005) 0.5504(±12.306) 0.0090(±0.007)

n = 100

MISE 0.020(±0.03) 0.017(±0.03) 0.049(±0.26) 0.042(±0.25)
UAE 0.040(±0.03) 0.038(±0.02) 0.080(±0.16) 0.073(±0.14)
MIKLE 7.8(±1.65) 7.8(±1.6) 7.2(±1.8) 7.2(±1.7)
NN 25(±1) 28(±5) 78(±128) 82(±126)
IBIAS2 0.018(±0.03) 0.016(±0.03) 0.044(±0.26) 0.037(±0.25)
IVARIANCE 0.0023(±0.002) 0.0025(±0.002) 0.0055(±0.005) 0.0032(±0.003)

n = 300

MISE 0.008(±0.01) 0.007(±0.01) 0.032(±0.05) 0.015(±0.02)
UAE 0.026(±0.01) 0.026(±0.01) 0.066(±0.07) 0.041(±0.03)
MIKLE 8.3(±1.2) 8.4(±1.1) 8.1(±1.3) 8.2(±1.1)
NN 61(±2) 75(±0.4) 45(±55) 67(±58)
IBIAS2 0.008(±0.01) 0.006(±0.01) 0.032(±0.05) 0.014(±0.02)
IVARIANCE 0.0007(±0.001) 0.0012(±0.001) 0.0006(±0.001) 0.0009(±0.001)

close to n−1. The Kullback-Leibler error, however, is influenced only by the sample

size.

Now consider the plug-in selector kPI . The unimportance of the plug-in, kRoT or

kCV , already mentioned in the graphic evaluation, can also be seen in the numerical

assessment in Tables 1 and 2. Average losses for kPI(← RoT ) and kPI(← CV ) are

similar for both hazard shapes, only the 300-observation simulation for the decreas-

ing hazard and the 50-observation simulation for the convex hazard are obviously

dominated by pathological outliers. However, some minor differences are revealed.

In general, plugging kRoT into kPI leads to a larger average loss, larger integrated

squared bias, and larger integrated variance. The average number of nearest neigh-

bors is smaller throughout, compared to plugging in kCV .

Compared to the rule of thumb and cross validation, the plug-in selectors are clearly

inferior. Only for the convex hazard rate (with the exception of n = 50 and kPI(←
RoT )), mean integrated squared error and the uniform absolute error are of a similar

13



magnitude as for the direct methods (Table 2). For the decreasing hazard rate, MISE

and UAE are - with the outlier at n = 300 and kPI(← RoT ) - around ten times

higher (Table 1). The main reason is clearly the difficulty of estimating the constants

D1, D2, and D3. The contained elements, such as maxima and minima, must be

estimated with statistics that converge to the parameters at the known slow rates.

As evidence for this, virtually no decrease in the average losses with respect to the

small to medium sizes is evident. In contrast, the average Kullback-Leibler losses

for kPI(← RoT ) and kPI(← CV ) are smaller than for kRoT or kRoT .

In conclusion, the use of a specific loss, in order to asymptotically define the optimal

number of nearest neighbor, does not automatically lead to a superiority with respect

to that loss, in a finite sample situation. A preference for a specific loss should be

combined with the size of the sample to be analyzed.

6 Applications

After the assessment of bias in simulations, that is the averages over several samples,

it is of interest to determine how the estimate performs in single sample situations.

We apply now the nearest neighbor estimate (2) to two sets of study data, a financial

and a medical study. The hazard rate estimates with the four bandwidth selectors,

namely the numbers of nearest neighbors kRoT , kCV , kPI(← RoT ), and kPI(← CV ),

are depicted in Figure 4.

Figure 4: Hazard rate estimate with kRoT (black-solid), kPI(← RoT ) (black-dashed),

kCV (grey-solid), and kPI(← CV ) (grey-dashed) nearest neighbors for rating study

(left) (NN=123/38/78/38), bladder cancer study (right) (NN=69/9/80/15)

First, the data on credit rating migrations from Weißbach et al. (2008b); Weißbach

and Dette (2007); Weißbach et al. (2009) is re-analyzed. In this study, the duration of

14



359 counterparts to a bank are followed, with the onset at entry into the portfolio,

until they migrate to an adjacent rating class. The censoring events are either

termination of contract, the end of the seven year study, or migration to any but

the adjacent class. As a result, 60% of the observations are censored. The two

estimates with kRoT = 123 and kCV = 78 are bimodal in shape, the modes are more

evident for kCV than for kRoT . Although, in the simulations in Tables 1 and 2, the

number of nearest neighbors for the rule of thumb is on average smaller, in this

study, kRoT is now larger than kCV . An explanation is that, in most simulations,

the cross-validation is more variable than the rule of thumb.

The shape supports the findings of Weißbach et al. (2008b) and Weißbach and Dette

(2007), that rating migration does not follow a homogeneous Markov process, that is

that migration hazard rates are not constant. However, this interpretation was made

in Weißbach et al. (2008b) and Weißbach and Dette (2007) by significance testing

and in Weißbach et al. (2008b) by a visual assessment of the cumulative hazard rates,

whereas in the present paper, we are able to depict the hazard rates themselves. The

plug-in number of nearest neighbors kPI(← RoT ) and kPI(← CV ) are both 38 in

this example. The finding that the pilot estimate, kRoT or kCV , has little impact

on kPI , was already found in the simulations in the preceding section. However,

the equality in a single sample case is remarkable. The simulations already indicate

that the plug-in bandwidth is more variable than the direct methods. Accordingly,

it is not surprising that the shape of the plug-in estimation differs from the two

others. The difference for the kCV -based estimate in the firth mode is not very

pronounced. In the second mode, however, the plug-in suggests some further small

modes. The plug-in also provides evidence suggesting a lack of constancy of the

hazard rate. The large migration activity shortly after portfolio entrance, already

found in Weißbach et al. (2008b), is supported here, especially by cross-validation

and the plug-in methods.

Second, we re-analyze the bladder cancer study by Siu et al. (1998) with 114 obser-

vations and, due the lethal character of bladder cancer, with only 15% censoring.

Weißbach (2006) has already explored the data in order to show that kernel esti-

mation with kCV for three groups, stratified by a categorical medical performance

measure, allows almost a strict ordering of the hazard functions. Different band-

width selectors are not compared. In general, the cancer study has a much lower

scale, namely up to 0.007 compared to 0.5 for the rating study. This is mainly due

to the time scale, for rating migrations, yearly and daily for cancer deaths.

Considering this in more detail, kRoT = 69 is now smaller than kCV = 80, in

agreement with the findings in the simulation for the sample size of 100 (see again

Tables 1 and 2). For the bladder cancer hazard, this implies a steeper increase and
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an earlier maximum. Both kRoT and kCV indicate the same unimodal, left-skewed

shape. As in the rating example, the plug-in bandwidths kPI(← RoT ) = 9 and

kPI(← CV ) = 15 are smaller than the direct methods kRoT and kCV . Contrary to

the rating example and although the pilot bandwidths are even closer to one another

here, the plug-in estimates for kPI(← RoT ) and kPI(← CV ) are now different. Both

estimates indicate a large number of modes. On the other hand, it is interesting to

see that even maximal daily hazards of almost 0.007 can be supported, whereas the

direct methods only support maxima that are half as high, and smaller bandwidths

result in less biased estimates.

7 Conclusions

We based a monte carlo simulation study for the kernel hazard rate estimation on

the exponentiated Weibull distribution family, thus modeling important shapes in fi-

nancial applications. Motivated by the intrinsic problem of censoring in failure-time

analysis, we propose the nearest neighbor bandwidth and investigate three alterna-

tives for selecting the number of nearest neighbors. Assessing the performance by

means of visual bias assessment, combined with a numerical assessment of average

integrated losses, the recently developed rule of thumb for the nearest neighbor se-

lection demonstrates superiority in many aspects. However, this can change when a

particular loss is considered exclusively. Preferences about the loss criterium remain

an unresolved problem, considered for example in Marron and Tsybakov (1995).
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