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Abstract

In a recent paper Dette, Neumeyer and Pilz (2006) proposed a new nonparametric esti-

mate of a smooth monotone regression function. This method is based on a non-decreasing

rearrangement of an arbitrary unconstrained nonparametric estimator. Under the assumption

of a twice continuously differentiable regression function the estimate is first order asymp-

totic equivalent to the unconstrained estimate and other type of smooth monotone estimates.

In this note we provide a more refined asymptotic analysis of the monotone regression esti-

mate. It is shown that, compared to the unconstrained estimate, the new monotone estimate

asymptotically reduces the Lp-error, if the “true” regression function is isotone for any p ≥ 1.

Moreover, in the case, where the regression function is increasing but only once continuously

differentiable we prove asymptotic normality of an appropriately standardized version of the

estimate, where the asymptotic variance is of order n−2/3−ε, the bias is of order n−1/3+ε and

ε > 0 is small. Therefore the rate of convergence of the new estimate does not coincide with

the rate of the estimate obtained from monotone least squares estimation, but the asymptotic

distribution of the new estimate is simpler. Additionally, if the derivative of the regression

function is Hölder continuous the rate of convergence of the new estimate is faster than n−1/3.
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1 Introduction

One of the most important problems in applied statistics is the estimation of relationships among

observable variables. Often a specific parametric form of a regression model cannot be postulated

and nonparametric estimation methods have become increasingly popular in recent years. However,

in many cases monotone estimates of the regression function are required, because physical con-

siderations suggest that the response is a monotone function of the explanatory variable. Typical

examples appear in economics where monotonicity applies to production, profit and cost function

[see e.g. Matzkin (1994), Aı̈t-Sahalia and Duarte (2003) among others] or in medicine where the

probability of contracting a certain disease depends monotonically on certain factors. Since the

early work of Brunk (1955) numerous authors have proposed monotone estimates of the regression

function [see e.g. Cheng and Lin (1981), Wright (1982), Mukerjee (1988), Mammen (1991) and

Friedman and Tibshirani (1984), Ramsay (1988), Kelly and Rice (1990), Mammen and Thomas-

Agnan (1999), Mammen, Marron, Turlach and Wand (2001) and Hall and Huang (2001) among

many others]. We refer the interested reader to the nice reviews of the literature by Delecroix and

Thomas-Agnan (2000) and Gijbels (2005).

In a recent paper Dette, Neumeyer and Pilz (2006) introduced an alternative monotone estimate

of a smooth and strictly increasing regression function, which is based on the concept of non-

decreasing rearrangements [see Hardy, Littlewood and Pólya (1952) or Lorentz (1953)]. This method

is called density regression estimate, because it combines a density and regression estimator. In a

first step an estimate of the inverse of the monotone regression function is constructed using an

integrated density estimator based on data from a preliminary regression estimate, while the final

estimate is obtained by an inversion of the function obtained from the first step. If the regression

function is twice continuously differentiable asymptotic normality of an appropriately standardized

estimate with rate n−2/5 can be proved, where n denotes the sample size. If the bandwidths are

chosen appropriately it is also shown that the new estimate is first order asymptotic equivalent

to a smoothed version of a monotone least squares estimate as considered by Mukerjee (1988) or

Mammen (1991).

The present paper has two purposes. On the one hand we provide further insight in the statistical

properties of the estimate of Dette et al. (2006). In particular we demonstrate that a smooth

rearrangment of the unconstrained estimator reduces asymptotically the Lp-estimation error if the

true regression function is increasing. On the other hand we investigate the properties of this

estimate in the case where the regression function is only once continuously differentiable. We

derive the asymptotic distribution of the density regression estimate under this assumption and

show that it differs from the asymptotic distribution of the monotone least squares estimate (which

is not smooth). For this estimate Brunk (1955) showed that an appropriately normalized version

converges weakly with rate n−1/3 to a random variable, which is defined as the slope at the point 0 of

the greatest convex minorant of the process W (t)+ t2, where W is a two sided Wiener-Levy process
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[see also Robertson, Wright and Dykstra (1989), Theorem 9.2.4]. If additional smoothness is added,

the density regression estimate is again asymptotically normal distributed with rate n−2/5 [see e.g.

Mammen (1991)]. By an appropriate choice of the smoothing parameters in the estimate of Dette

et al. (2006) we show in the present paper that in the case of a once continuously differentiable

regression function the density regression estimate is still asymptotically normal distributed, where

the variance is of order n−2/3−ε, the bias is of order n−1/3+ε and ε > 0 is small. The larger rate of

the mean squared error can be considered as a price, which has to be paid to preserve asymptotic

normality of the isotone estimate.

The paper is organized as follows. In Section 2 we briefly review the estimate of Dette et al. (2006).

Section 3 contains our main results, and we establish asymptotic normality of the density regression

estimate in the case of a once continuously differentiable regression function. We also prove uniform

almost sure consistency of the estimate in this case and compare the asymptotic results for a once

continuously differentiable regression function to the case where the regression function is at least

twice continuously differentiable. In Section 4 we present a simulation study in order to illustrate

the finite sample properties of the new estimate. We also compare the Lp-estimation error of the

new procedure with the S+I and I+S estimator discussed in Mukerjee (1988) and Mammen (1991)

and demonstrate that the density regression estimate has a smaller Lp-estimation error than these

estimates. It is also shown that the estimator discussed here is less sensitive to undersmoothing

than the unconstrained estimator. Finally, all proves are defered to an appendix.

2 Monotone smoothing by inversion

Consider the nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n,(2.1)

where {(Xi, Yi)}n
i=1 is a bivariate sample of i.i.d. observations such that the random variables Xi

are located in the interval [0, 1] and have a continuous density f. The random variables εi are

also assumed as i.i.d. with zero mean, existing fourth moment and independent of the {Xi}n
i=1.

The regression function m is assumed to be strictly monotone and further assumptions which are

required for our main asymptotic statements will be presented in the following section (these are

not needed for the definition of the monotone estimate). For the sake of transparency we will

restrict ourselves to the problem of estimating a strictly increasing regression function, but the

antitone case can be treated exactly in the same way. Following Dette et al. (2006) we consider a

transformation of the regression function defined by

m−1
I (t) =

1

hd

∫ 1

0

∫ t

−∞
Kd

(

m (v) − u

hd

)

dudv,(2.2)

where Kd is a given density and hd denotes a bandwidth converging to 0 with increasing sample

size. Note that m−1
I is isotone even if the function m is not isotone. Therefore we can calculate
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its inverse, which will be denoted by mI throughout this paper. Because the regression function

in (2.1) is unknown, we use in the following as approximation its nonparametric estimate m̂. In

principle any estimate could be used here, but for the sake of simplicity we restrict ourselves to the

Nadaraya-Watson estimate

m̂(x) =

∑n
i=1 Kr

(

Xi−x
hr

)

Yi

∑n
i=1 Kr

(

Xi−x
hr

) ,(2.3)

where Kr is a further kernel and hr a second bandwidth. The estimate of m−1
I is then obtained as

m̂−1
I (t) =

1

hd

∫ 1

0

∫ t

−∞
Kd

(

m̂ (v) − u

hd

)

dudv,(2.4)

and the isotone estimate of the regression function is finally defined as the inverse of the function

m̂−1
I and denoted by m̂I . Note that for computational reasons Dette et al. (2006) replaced the

integral with respect to dv in (2.4) by a discrete approximation of the Riemann integral, but in this

paper we will work with the representation (2.4) for the sake of simplicity. It is easy to see that

all results presented in this paper remain true, if the integral with respect to dv is replaced by its

discrete approximation as considered in Dette et al. (2006).

Note that the derivative of the expression (2.2) with respect to the variable t corresponds to the

expectation of a kernel density estimate of an i.i.d. sample of the random variable m(U), where

U denotes a random variable with a uniform distribution on the interval [0, 1]. This justifies our

notation Kd and hd in (2.2), where the index d corresponds to the phrase density. Similarly, the

index r in (2.3) reveals the fact that m̂ is an estimate of the regression function. For this reason

we will also call m̂I density regression estimate in the following discussion.

Remark 2.1. As pointed out by a referee the function m̃I might exhibit a non intuitive behaviour

in the case where the function m is decreasing. For example, if m(x) = 1−x, it follows m̃I(x) = x,

while the best isotonic Lp-approximation of m by non-decreasing function is given by m∗(x) = 1
2
.

This indicates that the proposed estimator cannot be used to test whether the regression is really

isotonic, as opposed to the best Lp-isotonic approximation. On the other hand, it can be used to test

strict isotonicity [see Birke and Dette (2007)]. Moreover, the new estimate might have advantages for

data with an irregular behaviour in the tails. In such cases, an initial isotonization (and eventually

smoothing in a second step) will not fully correct this effect, but procedures smoothing and then

isotonizing are likely to produce better results.

3 A refined asymptotic analysis

If m and f are twice continuously differentiable, Dette et al. (2006) proved the asymptotic normality

of the density regression estimate and we refer the reader to this article for details. In particular

these authors showed asymptotic normality of the random variable
(

m̂−1
I (t) − E

[

m̂−1
I (t)

])

. This
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result is then used to establish the asymptotic normality of (m̂I (t) − E [m̂I (t)]). Their results

imply, that in the case hd = o(hr) the isotone estimate is first order asymptotic equivalent to

the Nadaraya-Watson estimate. In the following we will demonstrate that in the case of a once

continuously differentiable regression function a standardization of order
√

nhd is required and that

the condition

lim
hd→0,hr→0

hd

hr

= ∞(3.1)

is sufficient (among other technical assumptions) to obtain asymptotic normality of the statistic

√

nhd

(

m̂−1
I (t) − E

[

m̂−1
I (t)

])

.(3.2)

We will then use this result and a result on the uniform convergence of the estimates m̂−1
I and (m̂−1

I )′

to obtain asymptotic normality of the monotone estimate m̂I . The derivation of our asymptotic

results requires a substantially more refined analysis as given in Dette et al. (2006). In particular

we need the following basic assumptions

(V1) The random variables {Xi}i=1,...,n are i.i.d. with positive density f : [0, 1] → R
+, such that

f ∈ C1([0, 1]).

(V2) The random variables {εi}i=1,...,n are i.i.d. with E[εi] = 0, E[ε2
i ] = 1 and E[ε4

i ] < ∞. Moreover,

the sequence of the εi is independent of the sequence of the Xi.

(V3) The regression function m : [0, 1] → R is strictly increasing and m ∈ C1([0, 1]).

(V4) The variance function σ : [0, 1] → R
+ is continuous.

(W1) The kernel Kr has compact support given by the interval [−1, 1] and Kr ∈ C1([−1, 1]).

(W2) The kernel Kd is symmetric, twice continuously differentiable, of order 2 and has compact

support given by the interval [−1, 1]. Moreover Kd (1) = Kd (−1) = 0 and K ′′
d is bounded

away from zero.

(W3) The bandwidths hr and hd of the density regression estimate satisfy hr, hd → 0, nhr, nhd → ∞
as n → ∞, and additionally we assume that the following relations hold

hr = o(hd)

nh
3/(1−3ε)
d = O (1) , for some 0 < ε <

1

12
,

nh3
r = O (1) ,

log h−1
r

nh2
rhd

= o (1)
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Our first result shows that the kernel density estimate reduces asymptotically the Lp-error.

Theorem 3.1. If the assumptions (V1)-(V4), (W1)-(W3) are satisfied and the regression function

m is q ≥ 1 times continuously differentiable, then

(

∫ 1

0

|m̂I(x) − m(x)|pdx
)1/p

≤
(

∫ 1

0

|m̂(x) − m(x)|pdx
)1/p

+ O(D1/p
n )

where

Dn = α1 Cn + α2
1

hd

C2
n + α3

1

h3
d

C3
n + α4h

q
d

and Cn = ||m̂ − m||∞.

For the Nadaraya-Watson estimate we have Cn = O(log h−1
r /nhr)

1/2 and under the specified as-

sumptions on the bandwidth hd the remainder Dn converges to 0 for n → ∞. The asymptotic

reduction of the estimation error for m̂I can already be observed for moderate sample sizes (see the

examples in Section 4).

Theorem 3.2. If the assumptions (V1)-(V4), (W1)-(W3) are satisfied, then it follows for any

t ∈ (m(0),m(1)) with m′(m−1(t)) > 0

√

nhd

(

m̂−1
I (t) − m−1 (t) + hraKd,Kr

(t) − hd bKd
(t)

) D−→ N
(

0, g2 (t)
)

,

where aKd,Kr
and bKd

are given by (A.8) and (A.6) in the Appendix, respectively, and

g2 (t) =
σ2 (m−1 (t))

f (m−1 (t)) m′ (m−1 (t))

∫ 1

−1

K2
d (y) dy(3.3)

Note that the final monotone estimate of the regression function is obtained by an inversion of

the function m̂−1
I . Dette et al. (2006) investigated the properties of the operator which maps a

strictly increasing function onto a given quantile by a functional delta method assuming a twice

continuously differentiable regression function. In the case where m ∈ C1([0, 1]) this argument is not

applicable any more and we replace it by using the fact that the estimate m̂−1
I converges uniformly

to m−1 on proper subsets of the interval (m(0),m(1)). This statement is precisely formulated in the

following theorem and of own interest.

Theorem 3.3. Assume that (V 1) − (V 4), (W1) − (W3) are satisfied and that m′(m−1(t)) > 0 for

all t ∈ (m(0),m(1)). Let δ > 0, define J := J (δ) = [m (0) + δ,m (1) − δ] , then

sup
t∈J

∣

∣m̂−1
I (t) − m−1 (t)

∣

∣ = O

(

log h−1
r

nhr

)1/2

+ o (hd) a.s.

sup
t∈J

∣

∣

∣

(

m̂−1
I

)′
(t) −

(

m−1
)′

(t)
∣

∣

∣
= O

(

log h−1
r

nhrh2
d

)1/2

+ o (1) a.s.
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For the statement of the final result of this section we define for any δ > 0, η > 0 the set

I (η) :=
[

m−1 (m (0) + δ) + η,m−1 (m (1) − δ) − η
]

(3.4)

Theorem 3.4. Assume that the assumptions (V1)-(V4), (W1)-(W3), hd/hr → ∞ are satisfied,

then it follows for any x ∈ I(η) with m′(x) > 0

√

nhd (m̂I (x) − m (x) − hraKd,Kr
(m (x)) m′ (x) + hdbKd

(m (x)) m′ (x))
D−→ N

(

0, s2 (x)
)

,

where bKd
and aKd,Kr

(t) are defined in equation (A.6) and (A.8) in the Appendix, respectively and

s2(x) =
σ2(x)m′(x)

f(x)

∫ 1

−1

K2
d(y)dy.

Remark 3.5. Note that the result of Theorem 3.4 requires the condition hr = o(hd), which is used

at several steps in the proofs in the Appendix. This assumption differs from the choice proposed by

Dette et al. (2006), who recommended hd = o(hr) in the case of a twice continuously differentiable

regression function. We were not able to derive an asymptotic law if limhd,hr→0 hd/hr = c ∈ [0,∞)

and m ∈ C1([0, 1]), because a proof of the corresponding statements requires various contradicting

conditions regarding the bandwidths hd and hr. Consequently, from an asymptotic point of view -

in contrast to the case considered by Dette et al. (2006) - the parameter hd cannot be considered

as a secondary parameter. On the other hand simulation results show, that the impact of the

smoothing parameter hd on the performance of the estimate is much smaller compared to the

smoothing parameter hr of the initial unconstrained estimate. From our numerical experience we

recommend

hr = cn−1/3,(3.5)

where the constant c is determined from the data (e.g. by cross validation) and the bandwidth hd

should be chosen slightly larger.

Remark 3.6. In the remaining part of this paper we discuss the case, where the bandwidth hr of

the regression estimate is chosen by (3.5), which corresponds to the optimal rate (with respect to

mean squared error) for the initial unconstrained estimate. In this case condition (W3) yield for

the bandwidth in the density step hd = n−1/3αn, where the sequence αn converges to infinity such

that αn = O(nε) for some 0 < ε < 1
12

, log n = o(αn). Now the statement of Theorem 3.4 simplifies

to

n1/3√αn{m̂I(x) − m(x)} − α1/2
n aKd,Kr

(m(x))m′(x) + α3/2
n bKd

(m(x))m′(x)
D−→ N (0, s2(x)),
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for any x with m′(x) > 0. In particular, if αn = nε and ε > 0 is sufficiently small, this gives the

order O(n−2/3−ε) for the variance and o(n−1/3+ε) for the bias. For the isotone least squares estimate

the order of the mean squared error is O(n−2/3). Therefore the slightly larger order of the mean

squared error of m̂I can be considered as a price which has to be paid to obtain an asymptotically

normal distributed estimate.

Finally, if m′ is Hölder continuous of order γ and the constant ε satisfies ε < 2γ
9+6γ

, then

n1/3α1/2
n (m̂I(x) − m(x))

D−→ N (0, s2(x))

and the rate of the density regression estimate is faster than n−1/3.

Remark 3.7. A careful inspection of the proofs in the Appendix shows that the assertion of

Theorem 3.2 - 3.4 remain correct if the assumptions (V3) and (V4) are satisfied in a neighborhood

of the point x ∈ (0, 1).

4 A simulation study

In this section we present a small simulation study in order to illustrate the finite sample prop-

erties of the density regression estimate and to compare it with the unconstrained estimate and

the monotone (S+I and I+S) estimates proposed by Mukerjee (1988) and Mammen (1991), which

are most similar in spirit with the density regression estimate proposed in this paper. In order to

avoid the domination by boundary effects we use the local linear estimate as initial estimate m̂ in

the density regression estimate and in the estimates S+I and I+S. In a first example we investi-

gate the Lp-estimation error of the unconstrained local linear estimate m̂, the isotone estimate m̂I

proposed in this paper and the S+I and I+S estimates m̂SI and m̂IS discussed in Mukerjee (1988)

and Mammen (1991). For computing m̂SI , in a first step an unconstrained local linear estimator

of m is calculated which is monotonized in a second step by the PAVA algorithm [see e.g. Barlow,

Bartholomew, Bremner and Brunk, (1972)]. The estimate m̂IS is obtained by applying the local

linear estimate to the isotonized data obtained from the isotone least squares estimate [see Brunk

(1955)]. For the estimator m̂I we choose the second smoothing parameter hd = h1.01
r and hr pro-

portional to (σ̂2/n)1/3, where σ̂2 = 1
2(n−1)

∑n−1
i=1 (Yi+1−Yi)

2 denotes the variance estimator proposed

by Rice (1984). For the estimates m̂SI and m̂IS we use the same bandwidth hr in the local linear

smoothing procedure. We generate samples of size n = 25 from the homoscedastic nonparametric

regression model (2.1) for the two once continuously differentiable regression functions

m1(x) =











−8x2 + 4x x ∈ [0, 1
4
]

1
2

x ∈ (1
4
, 3

4
]

8x2 − 12x + 5 x ∈ (3
4
, 1]
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Figure 1: (a) The Lp-errors as a function of p ∈ [1, 20] and (b) the L2-error as a function of the

bandwidth hr ∈ [0.01, 0.4] for the unconstrained (dashed line), the density regression (solid line) and

the S+I (dotted line) and I+S (dot-dashed line) estimator. The regression functions are given by

m1 (left part of subfigures) and m2 (right part of subfigures).

and

m2(x) =











12
5
x2 x ∈ [0, 1

4
]

−2
5
x2 + 7

5
x − 7

40
x ∈ (1

4
, 3

4
]

12
5
x2 − 14

5
x + 7

5
x ∈ (3

4
, 1]

where the standard deviation is σ = 0.05. The explanatory variables are uniformly distributed on

the interval [0, 1], while the errors are standard normal distributed. The Lp-errors are estimated

from 500 simulation runs and displayed for different values of p in Figure 1(a). The results clearly

indicate that the density regression estimate reduces the Lp-estimation error of the unconstrained

estimator substantially for all p ∈ [1,∞], which reflects the asymptotic statement in Theorem

3.1. We observe that in the two examples all monotone estimates reduce the Lp-error compared

to the unconstrained estimate. The reduction is only minor for the I+S estimate, and the density

regression estimate produces the smallest Lp-error. We have also investigated other cases, which are

not displayed here for the sake of brevity, and found a very similar behaviour of the four estimates.

The Lp-error only gives information about the global performance of the estimates but does not

reflect local properties of the different methods at points where the regression function is only

once continuously differentiable. Therefore we show in Table 1 the simulated MSE of the different

estimates at the points x = 1/4 and x = 1/3 (the behaviour at the point x = 3/4 is very similar

and the point x = 1/3 is considered for a comparison of the once and twice differentiable case).

For the regression function m1 the density regression estimator behaves much better than the

unconstrained, the S+I and the I+S estimator at both points. In this example the estimation error

is not worse at points where the regression function is only once continuously differentiable. For

the regression function m2 the situation is slightly different. Here, the density regression estimate
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(a)

MSE x = 1/4 x = 1/3

m̂I 0.000611 0.000608

m̂ 0.001242 0.001241

S+I 0.001240 0.001241

I+S 0.001169 0.001176

(b)

MSE x = 1/4 x = 1/3

m̂I 0.010820 0.002556

m̂ 0.013683 0.015598

S+I 0.008047 0.004531

I+S 0.013256 0.014869

Table 1: Simulated MSE of the different estimates at the points x = 1/4 and x = 1/3. The regression

functions are m1 (a) and m2 (b).
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Figure 2: Simulated MSE as a function of the bandwidth hr at x = 1/4 (left part of subfigures)

and x = 1/3 (right part of subfigures)for the density regression (solid line), the unconstrained

(dashed line), the S+I (dotted line) and the I+S (dot-dashed line). The subfigures correspond to the

regression functions m1 (a) and m2 (b).

has a better performance than the unconstrained and the I+S estimator at the point x = 1/4 and

is worse than the S+I estimator. In this example the density regression estimate shows a better

performance at the point x = 1/3, where the function is twice continuously differentiable.

In the second part of the simulation study we investigate the impact of the isotonization on the

sensitivity of the estimates with respect to the choice of the smoothing parameter. Cuesta-Albertos,

Domı́nguez-Menchero and Matrán (1995) proved that isotonization makes the S+I and I+S estimate

less sensitive with respect to the selection of the smoothing parameter, and a similar behaviour

can be observed for the density regression estimate. Figure 1(b) shows the L2-estimation errors

as functions of the bandwidth hr ∈ (0, 0.4). We observe that all estimates behave very similar

for bandwidths near the optimal one for the unconstrained estimator. In the case of moderate

undersmoothing, we see advantages of the density regression estimator m̂I over the unconstrained

as well as the S+I and, for m2, also the I+S estimator. Combining all the information given in
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Figure 1(b) we conclude that in the considered examples the density regression estimate m̂I is more

robust against moderate undersmoothing.

We finally show in Figure 2 the dependence of the MSE at the points x = 1/4 and x = 1/3

on the bandwidth. For the regression function m1 the density regression estimate shows a better

performance at both points than all other estimates over a large range of bandwidths. For the

regression function m2 the density regression estimate is better than the other estimates for small

bandwidths but worse for larger bandwidths. The estimate is more sensitive with respect to the

choice of the bandwidth at the point x = 1/4 than at x = 1/3. At the point x = 1/3 the

minimal value of the MSE is comparable with that of the other estimates but attained for a smaller

bandwidth while in x = 1/4 the minimal MSE is again attained for a smaller bandwidth than that

for the other estimates but slightly larger than the best MSE obtained by the other estimates.
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Datenstrukturen. The authors would also like to thank two referees and the Associate Editor for

their constructive comments on an earlier version of this paper.

References

Y. Aı̈t-Sahalia, J. Duarte (2003). Nonparametric Option Pricing under Shape Restrictions. Journal

of Econometrics 116, 9-47

R.E. Barlow, D.J. Bartholomew, J.M. Bremner and H.D. Brunk (1972). Statistical inference under

order restrictions. Wiley, New York.

M. Birke, H. Dette (2007). Testing strict monotonicity in nonparametric regression. Math. Methods

of Statistics 16, 1-13.

H.D. Brunk (1955). Maximum likelihood estimates of monotone parameters. Ann. Math. Statist.

26, 607-616.

K.F. Cheng, P.E. Lin (1981). Nonparametric estimation of a regression function. Z. Wahrsch.

Verw. Gebiete 57, 223-233.

V. Chernozhukov, I. Fernandez-Val, A. Galichon (2007). Improving Estimates of Monotone Func-

tions by Rearrangement. arXiv:0704.3686. http://arxiv.org/abs/0704.3686v1

J.A. Cuesta-Albertos, J.S. Domı́nguez-Menchero, C. Matrán (1995). Consistency of the Lp-best

monotone approximations. J. Statist. Plann. Inf. 47, 295-318.

M. Delecroix, C. Thomas-Agnan (2000). Spline and kernel regression under shape restrictions.

11



Smoothing and regression. Approaches, computation and application. Wiley Series in Probability

and Statistics 109-133.

H. Dette, N. Neumeyer, K.F. Pilz (2006). A simple nonparametric estimator of a strictly monotone

regression function. Bernoulli 12, 469-490.

H. Dette, K.F. Pilz (2006). A comparative study of monotone nonparametric kernel estimates.

Journal of Statistical Computation and Simulation 76, 41-56.

J. Friedman, R. Tibshirani (1984). The monotone smoothing of scatterplots. Technometrics 26,

243-250.

I. Gijbels (2005). Monotone regression. In N. Balakrishnan, S. Kotz, C.B. Read and B. Vadakovic

(eds), The Encyclopedia of Statistical Sciences, 2nd edition. Hoboken, NJ: Wiley.

P. Hall, L.-S. Huang (2001). Nonparametric kernel regression subject to monotonicity constraints.

Ann. Statist. 29, 624-647.
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Appendix

Proof of Theorem 3.1. If hd → 0 it is easy to see that the function m−1
I defined by (2.2) can be

approximated as m−1
I (t) = m̃−1

I (t) + o(1), where

m̃−1
I (t) =

∫ 1

0

I{m(x) ≤ t}dx,(A.1)

and the precise order of the error of this approximation depends on the smoothness of the regression

function m. We define ˜̂mI as the function obtained by (A.1) for m = m̂ and denote by m̃I and
˜̂mI the corresponding inverses. By a result of Chernozhukov, Fernndez-Val and Galichon (2007) it

follows for all 1 ≤ p ≤ ∞
(

∫ 1

0

( ˜̂mI(x) − m(x))p
)1/p

≤
(

∫ 1

0

(m̂(x) − m(x))p
)1/p

,(A.2)

where the inequality is strict, whenever m̂ is strictly decreasing on a subset of positive Lebesgue

measure. Theorem 3.1 can now be proven by similar arguments as in Neumeyer (2007), which give

| ||m̂I − m||p − || ˜̂mI − m||p | ≤ C(|m(1) − m(0)| + Cn)D1/p
n

for some constant C > 0. The details are omitted for the sake of brevity. 2

Proof of Theorem 3.2. The assertion follows by combining several lemmas which we prove

in the following. We begin the asymptotic analysis with a Taylor expansion of the difference

m̂−1
I (t) − m−1(t), that is

m̂−1
I (t) − m−1 (t) = m−1

I (t) − m−1 (t) + ∆(1)
n (t) +

1

2
∆(2)

n (t) ,(A.3)

where the quantities m̂−1
I and m−1

I are defined in (2.4) and (2.2) respectively,

∆(1)
n (t) = − 1

hd

∫ 1

0

Kd

(

m (v) − t

hd

)

(m̂ (v) − m (v)) dv(A.4)

∆(2)
n (t) =

1

h3
d

∫ 1

0

∫ t

−∞
K ′′

d

(

ξ (u, v) − u

hd

)

du (m̂ (v) − m (v))2 dv,(A.5)

13



and |ξ(u, v)−m(v)| ≤ |m̂(v)−m(v)|. We now investigate the three terms in this expansion separately.

Lemma A.1. We have for any t with m′(m−1(t)) > 0 and some λ ∈ [0, 1]

m−1
I (t) − m−1 (t) = hd

∫ 1

−1

uKd (u)
(

m−1
)′

(t + hdλu) du =: bKd
(t)(A.6)

Proof. Using the same arguments as in Dette et al. (2006) yields for some λ ∈ [0, 1]

Dn (t) = m−1 (t − hd) + hd

∫ 1

−1

(

m−1
)′

(t + hdz)

∫ 1

z

Kd (v) dvdz − m−1 (t)

= hd

∫ 1

−1

zKd (z)
(

m−1
)′

(t + hdλz) dz .

2

Lemma A.2. We have for any t with m′(m−1(t)) > 0

∆(1)
n (t) + hraKd,Kr

(t) = ∆(1.2)
n (t) + op

( 1√
nh

)

,

where h = hd or h = hr,

∆(1.2)
n (t) = − 1

nhrhd

n
∑

i=1

∫ 1

0

Kd

(

m (v) − t

hd

)

Kr

(

v − Xi

hr

)

σ (Xi) εi

f (v)
dv,(A.7)

aKd,Kr
(t) =

∫ 1

−1

Kd (v)

∫ 1

−1

uKr (u)
m′ (m−1 (t + hdv) + hrµu)

m′ (m−1 (t + hdv))
dudv.(A.8)

Proof. We use the decomposition

∆(1)
n (t) =

(

∆(1.1)
n (t) + ∆(1.2)

n (t)
)

(1 + op (1)) ,(A.9)

where ∆
(1.2)
n (t) is defined in (A.7) and

∆(1.1)
n (t) = − 1

nhrhd

n
∑

i=1

∫ 1

0

Kd

(

m (v) − t

hd

)

Kr

(

v − Xi

hr

)

m (Xi) − m (v)

f (v)
dv.(A.10)

For the expectation of ∆
(1.1)
n (t) we obtain for some µ, ν ∈ [0, 1]

E
[

∆(1.1)
n (t)

]

= − 1

hrhd

∫ m−1(t+hd)

m−1(t−hd)

∫ v+hr

v−hr

Kd

(

m (v) − t

hd

)

Kr

(

v − y

hr

)

m (y) − m (v)

f (v)
f (y) dydv

= −hr

∫ 1

−1

∫ 1

−1

Kd (v) yKr (y)
m′ (m−1 (t + hdv) − hrµy)

m′ (m−1 (t + hdv))

×
{

1 + hry
f ′ (m−1 (t + hdv) − hrνy)

f (m−1 (t + hdv))

}

dydv

= hraKd,Kr
(t) + o

(

1√
nh

)

,
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where h = hd or h = hr. On the other hand it was shown by Dette et al. (2006) that for

limhd,hr→0 hr/hd = c ∈ [0,∞) Var(∆(1.1)(t)) = op

(

1√
nhd

)

= op

(

1√
nhr

)

(note that the deriva-

tion of this statement in that paper only requires a regression function, which is once continuously

differentiable). Finally, the expectation of ∆
(1.2)
n (t) is obviously 0, while the variance is obtained by

a straightforward calculation as limhd,hr→0 Var(
√

nhd∆
(1.2)
n (t)) = g2(t). The assertion of the Lemma

is now obvious from (A.9). 2

Lemma A.3. We have ∆
(2)
n (t) = ∆

(2.1)
n (t) (1 + op (1)), where the random variable ∆

(2.1)
n is defined

by

∆(2.1)
n (t) = − 1

h2
d

∫ 1

0

K ′
d

(

m (v) − t

hd

)

(m̂ (v) − m (v))2 dv = Op

( 1√
nhd

{ 1
√

nh2
rhd

+

√

nh4
r

hd

})

.

Proof. Recalling the definition of the term ∆
(2)
n (t) in (A.5) we obtain

∆(2)
n (t) =

1

h3
d

∫ 1

0

∫ t

−∞
K ′′

d

(m(v) − u

hd

)

(m̂(v) − m(v))2

×
[

1 +
(

K ′′
d

(m(v) − u

hd

))−1(

K ′′
d

(ξ(u, v) − u

hd

)

− K ′′
d

(m(v) − u

hd

))]

dudv

=
1

h2
d

∫ 1

0

∫ ∞

m(v)−t

hd

K ′′
d (u)(m̂(v) − m(v))2

×
[

1 + (K ′′
d (u))−1

(

K ′′
d

(

u +
ξ(m(v) − hdu, v) − m(v)

hd

)

− K ′′
d (u)

)]

dudv,(A.11)

where we used the substitution u → m (v) − hdu in the second step. Using the estimate

sup
u

|m̂ (u) − m (u)| = O
(( log h−1

r

nhr

)1/2)

a.s.(A.12)

[see Mack and Silverman (1982)] we obtain

1

hd

sup
u,v

|ξ (m (v) − hdu, v) − m (v)| ≤ 1

hd

sup
v

|m̂ (v) − m (v)| = OP

( log h−1
r

nhrh2
d

)1/2

= oP (1) ,

where we use assumption (W3) for the last estimate. By the continuity of K ′′
d we have

∣

∣

∣
K ′′

d

(

u +
ξ (m (v) − hdu, v) − m (v)

hd

)

− K ′′
d (u)

∣

∣

∣
= op(1)(A.13)

Therefore it follows from (A.11)

|∆(2)
n (t)| ≤ 1

h2
d

∣

∣

∣

∫ 1

0

∫ ∞

m(v)−t

hd

K ′′
d (u)(m̂(v) − m(v))2dudv

∣

∣

∣
(1 + op(1))

≤ 1

h2
d

∣

∣

∣

∫ 1

0

K ′
d

(m(v) − t

hd

)

(m̂(v) − m(v))2dv
∣

∣

∣
(1 + op(1)).
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Observing E[|m̂(v) − m(v)|2] = O( 1
nhr

+ h2
r) we obtain |∆(2)

n (t)| = Op(
1

nhrhd

+ h2
r

hd

). The assertion of

Lemma A.3 follows now from assumption (W3). 2

Observing the decomposition (A.3), Lemma A.1, A.2 and A.3 we obtain

√

nhd

(

m̂−1
I (t) − m−1 (t) + hraKd,Kr

(t) − hd bKd
(t)

)

=
√

nhd

(

∆(1)
n (t) + hraKd,Kr

(t)
)

(1 + op (1)) +
√

nhd∆
(2)
n (t) .

=
√

nhd∆
(1.2)
n (t) (1 + op (1)) + op(1)

By Ljapunoff’s Theorem the remaining term is asymptotically normal with variance g2(t) defined

in (3.3), which proves the assertion of Theorem 3.2. 2

Proof of Theorem 3.3. Let s ∈ {0, 1}, then it follows

sup
t∈J

|
(

m̂−1
I

)(s)
(t) −

(

m−1
)(s)

(t) | ≤ T
(s)
1 + T

(s)
2 ,(A.14)

where T
(s)
1 := supt∈J |

(

m̂−1
I

)(s)
(t) −

(

m−1
I

)(s)
(t) |, T

(s)
2 := supt∈J |

(

m−1
I

)(s)
(t) − (m−1)

(s)
(t) |. Ob-

serving the decomposition in (A.3) we therefore obtain T
(s)
1 ≤ ∆

(1),(s)
n + 1

2
∆

(2),(s)
n , where we used the

notation ∆
(k),(s)
n = supt∈J | (∆

(k)
n )(s) (t) | , k = 1, 2; s = 0, 1, the upper index (s) means differentia-

tion with respect to the variable t (s times) and ∆
(1)
n (t) and ∆

(2)
n (t) are defined in (A.4) and (A.5),

respectively. Assume that hd is sufficiently small such that

{t + hdv | t ∈ J(δ), |v| ≤ 1} ⊂ [m(0),m(1)],(A.15)

then this term can be estimated as follows

∆(k),(s)
n ≤ 1

hk+s−1
d

∫ 1

−1

∣

∣

∣
K

(k+s−1)
d (v)

∣

∣

∣
sup
t∈J

∣

∣

∣

(

m−1
)′

(t + hdv)
∣

∣

∣
(A.16)

×
(

sup
t∈J

∣

∣(m̂ − m) ◦ m−1 (t + hdv)
∣

∣

)k

dv

≤ 1

hk+s−1
d

sup
z

|
(

m−1
)′

(z) | sup
z

|m̂ (z) − m (z)|k
∫ 1

−1

|K(k+s−1)
d (v) |dv.

Using (A.12) we obtain from (A.16) the estimate

∆(k),(s)
n = O

( log h−1
r

nhrh
2(k+s−1)/k
d

)k/2

a.s. (k = 1, 2, s = 0, 1)(A.17)

In the case k = 2 this gives ∆
(2),(s)
n = O

(

log h−1
r

nhrh1+s

d

)

= O
(

log h−1
r

nhrh2s

d

)1/2

a.s. (s = 0, 1) by assumption

(W3), while for the terms ∆
(1),(s)
n this estimate follows directly from (A.17). This yields for s = 0, 1

T
(s)
1 = O

(( log h−1
r

nhrh2s
d

)1/2)

a.s. ,(A.18)
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and it remains to derive a corresponding estimate for the quantities T
(0)
2 and T

(1)
2 . In the case s = 0

we have by Lemma 3.1 for the term T
(0)
2

T
(0)
2 = hd sup

t∈J
|
∫ 1

−1

uKd(u)
{

(m−1)′(t + hdλu) − (m−1)′(t)
}

du|(A.19)

≤ hd

∫ 1

−1

|u||Kd(u)| sup
t∈J

|(m−1)′(t + hdλu) − (m−1)′(t)|du

= hd

∫ 1

−1

|u||Kd(u)|du · o(1) = o(hd),

where we used the fact that
∫ 1

−1
uKd(u)du = 0 and the uniform continuity of the function (m−1)′

on the interval [0, 1]. Finally, the remaining term T
(1)
2 is treated as follows

T
(1)
2 = sup

t∈J

∣

∣

∣

∣

∂

∂t

(

1

hd

∫ 1

0

∫ t

−∞
Kd

(

m (v) − u

hd

)

dv

)

−
(

m−1
)′

(t)

∣

∣

∣

∣

= sup
t∈J

∣

∣

∣

∣

1

hd

∫ 1

0

Kd

(

m (v) − t

hd

)

dv −
(

m−1
)′

(t)

∣

∣

∣

∣

≤ sup
t∈J

∣

∣

∣

(

m−1
)′

(t + hdλv) −
(

m−1
)′

(t)
∣

∣

∣
= o(1)

for some λ ∈ [0, 1], where we again used the uniform continuity of (m−1)′ on the interval [0, 1]. The

assertion of Theorem 3.5 now follows from (A.14), (A.18) and (A.19).

2

Proof of Theorem 3.4. Without loss of generality it is assumed that m′(x) > 0 for all x ∈
[0, 1] (otherwise this assumption is satisfied in a neighbourhood of the point x and an appropriate

subinterval has to be considered). Recall the definition of J(δ), and assume that n is sufficiently

large, hd and hr are sufficiently small such that {m̂I(x) | x ∈ I(η)} ⊂ J(δ), where the set I(η) has

been defined in (3.4) (note that the function m̂−1
I converges uniformly to m−1 on J(δ), by Theorem

3.3). By the mean value theorem we have for any x ∈ I(η)

m̂−1
I (m̂I (x)) − m̂−1

I (m (x)) = (m̂I (x) − m (x))
(

m̂−1
I

)′
(ξm̂I

(x)) ,(A.20)

where |ξm̂I
(x) − m (x)| ≤ |m̂I (x) − m (x)|. Note that ξm̂I

(x) ∈ J(δ), because it is a convex com-

bination of m(x) and m̂I(x). (m−1)′ is bounded from below by some positive constant in a neigh-

bourhood of the point m(x) and by Theorem 3.3 the same holds true for the estimate (m̂−1
I )′ if n

is sufficiently large. Form (A.20) and the identity m̂−1
I (m̂I (x)) = m−1 (m (x)) , we obtain

m̂I (x) − m (x) = −m̂−1
I (m (x)) − m−1 (m (x))

(

m̂−1
I

)′
(ξm̂I

(x))
.(A.21)
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We will finally show that the denominator in this expression converges in probability to (m−1)′(m(x))

= 1/m′(x). The assertion of Theorem 3.4 is then obvious from Theorem 3.2. For this final step we

use the estimate
∣

∣

∣

(

m̂−1
I

)′
(ξm̂I

(x)) −
(

m−1
)′

(m (x))
∣

∣

∣
≤

∣

∣

∣

(

m̂−1
I

)′
(ξm̂I

(x)) −
(

m−1
)′

(ξm̂I
(x))

∣

∣

∣
(A.22)

+
∣

∣

∣

(

m−1
)′

(ξm̂I
(x)) −

(

m−1
)′

(m (x))
∣

∣

∣
.

It follows from the proof of Theorem 3.3 that the random variables

T (0) (t) =
∣

∣m̂−1
I (t) − m−1 (t)

∣

∣ ; T (1) (t) =
∣

∣

∣

(

m̂−1
I

)′
(t) −

(

m−1
)′

(t)
∣

∣

∣

converge a.s. to 0 uniformly on the set J(δ). This implies the uniform a.s. convergence of m̂I(x) to

m(x) on I(η) and as a consequence the random variable ξm̂I(x) converges to m(x) a.s. The continuity

of (m−1)′ now implies the a.s. convergence of (m−1)′(ξm̂I(x)) to (m−1)′(m(x)), which shows that the

second term in (A.22) converges to 0. By the previous discussion we have ξm̂I
(x) ∈ J (δ) and the

uniform convergence of T (1)(t) on J(δ) yields for the first term in (A.22) T (1)(ξm̂I(x)) = o(1) a.s.

In other words the left hand side of (A.22) converges uniformly to 0 which completes the proof of

Theorem 3.4. 2
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