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Abstract

This paper presents limit theorems for certain funtionals of semimartingales ob-
served at high frequency. In particular, we extend results from Jacod [4] to the case
of bipower variation, showing under standard assumptions that one obtains a limiting
variable, which is in general different from the case of a continuous semimartingale.
In a second step a truncated version of bipower variation is constructed, which has
a similar asymptotic behaviour as standard bipower variation for a continuous semi-
martingale and thus provides a feasible central limit theorem for the estimation of the
integrated volatility even when the semimartingale exhibits jumps.
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1 Introduction

A key issue in financial econometrics is to use discrete observations to draw inference about
certain characteristics of an underlying stochastic process X, typically separated into two
substantially different cases: One either has low-frequency data, thus a fixed lag between
the observations and a time horizon tending to infinity, or high-frequency data with a fixed
time horizon and lags converging to zero. Throughout this paper, we assume to be in the
high frequency situation with a time horizon [0, T ], say, and regular observations times i

n ,
i = 0, . . . , bnT c. X is typically regarded as a one-dimensional semimartingale (satisfying
some mild additional assumptions) living on (Ω,F , (Ft),P), and in this case it is classical
to focus on the estimation of the entire quadratic variation of X or parts thereof, namely
the integrated volatility or the sum of squared jumps.

Let us be more specific: The basic assumption on the latent price process X is that it
is an Itô semimartingale, which means that its characteristics are absolutely continuous
with respect to Lebesgue measure. Equivalently, we have the representation

Xt = X0 +
∫ t

0
bs ds+

∫ t

0
σs dWs + (δ1{|δ|≤1}) ? (µ− ν)t + (δ1{|δ|>1}) ? µt, (1.1)

where W is a Brownian motion and µ and ν are a Poisson random measure on R+ × E
and its compensator ν(dt, dz) = dt ⊗ λ(dz), where (E, E) is an auxiliary space and λ a
σ-finite measure. Some classical assumptions on the coefficients b, σ and δ will be given
later. For all unexplained (but standard) notation see Jacod and Shiryaev [9].

In this case, the quadratic variation [X,X]t of X is almost surely finite and has the
representation (with ∆Xs = Xs −Xs−)

[X,X]t =
∫ t

0
σ2
s ds+

∑
s≤t
|∆Xs|2,

where the first and the second term on the right hand side are the afore-mentioned inte-
grated volatility and the sum of squared jumps, respectively. In terms of semimartingale
theory, they constitute the quadratic variations of the continuous and the purely discontin-
uous martingale part of X. For financial applications, the integrated volatility is the most
important quantity that has to be estimated, and over the last years several methods have
been developed to tackle this task. At least for some of these estimators it is important,
whether the underlying semimartingale is continuous or exhibits jumps; others, however,
are robust to jumps and thus work in a discontinuous framework as well.

Let us give a brief overview on the four most prominent estimators for the integrated
volatility. When the underlying process is known to be continuous (and when some mild
assumptions on the processes (bt) and (σt) are satisfied as well), thus having the represen-
tation

Xt = X0 +
∫ t

0
bs ds+

∫ t

0
σs dWs,

then the quadratic variation of X and the integrated volatility coincide, and necessarily
any estimator for the quadratic variation of a semimartingale becomes an estimator for
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the integrated volatility. Quite naturally, one chooses the (in some sense optimal) realized
variance RV (X)n, for which we have with the notation ∆n

i X = X i
n
−X i−1

n
and for each

t > 0:

RV (X)nt :=
bntc∑
i=1

|∆n
i X|2

P−→
∫ t

0
σ2
s ds,

and one can prove a stable central limit theorem of the form

√
n
(
RV (X)nt −

∫ t

0
σ2
s ds

) L−(s)−→
√

2
∫ t

0
σ2
s dW

′
s. (1.2)

Here, W ′ denotes a second Brownian motion, defined on an appropriate extension of

the original probability space (Ω,F , (Ft),P) and being independent of F , and
L−(s)−→

denotes (F-)stable convergence in law. See Barndorff-Nielsen and Shephard [2] for some
econometric applications and consult Jacod and Shiryaev [9] for a definition of stable
convergence and various properties.

As a matter of fact, the realized variance becomes inconsistent when the process ex-
hibits jumps, and thus one would like to find estimators for the integrated volatility that
hold in the more comprehensive model (1.1) as well. Basically three types of estimators
owning this property have been discussed throughout the last years. A threshold estimator
of the form

TV (X,α,$)nt =
bntc∑
i=1

|∆n
i X|21{|∆n

i X|<αn−$}

with α > 0 and $ ∈ (0, 1
2) was introduced by Mancini for some special settings (see

Mancini [10] for a review) and extended in Jacod [4] to the general semimartingale case.
The intuition behind this estimator is to cut off large increments over small intervals as
it is likely that they are due to a jump of the underlying process X. It has been shown
that each TV (X,α,$)nt is consistent for

∫ t
0 σ

2
s ds, and under some additional conditions

on the measure ν (stating that the jumps of X are of finite variation with an index of
activity smaller than one) and for an appropriate choice of $ one obtains a stable central
limit theorem of the form (1.2). Alternatively, it has become popular to use multipower
variations, which are defined by

MV (X, r)nt = n|r|/2−1

bntc−q+1∑
i=1

q∏
j=1

|∆n
i+j−1X|rj .

Here, r denotes a q-dimensional vector r = (r1, . . . , rq) with non-negative components
rj , and we set |r| = r1 + . . . + rq, r− = min(r1, . . . , rq) and r+ = max(r1, . . . , rq). The
intuition behind multipower variations is that increments over intervals with large jumps
are typically paired with small increments and therefore (depending on the choice of r) do
not play a role in the asymptotics. Precisely, we define mp to be the p-th absolute moment
of a standard normal distribution, set mr =

∏q
j=1mj and obtain

MV (X, r)nt
P−→ mr

∫ t

0
σ|r|s ds,
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as long as any component rj of r is smaller than two. Central limit theorems can be
obtained as well, but again one needs further restrictions on r and X. Basically, one has
to suppose that s

2−s < r− ≤ r+ < 1 holds, where s denotes the index of jump activity of
X. Then we have (again under further assumptions on the processes (bt) and (σt))

√
n
(
MV (X, r)nt −mr

∫ t

0
σ|r|s ds

) L−(s)−→
√
p(r)

∫ t

0
σ|r|s dW ′s, (1.3)

where W ′ has the same properties as in (1.2) and

p(r) =
q∏
j=1

m2rj − (2q − 1)
q∏
j=1

m2
rj + 2

q−1∑
k=1

k∏
j=1

mrj

q∏
j=q−k+1

mrj

q−k∏
j=1

mrj+rj+k .

When X is continuous, all these results hold regardless of r. See Barndorff-Nielsen et al.
[3], Woerner [11] or Jacod [5] for details.

The two most prominent examples for multipower variation are MV (X, (1, 1))nt and
MV (X, (2/3, 2/3, 2/3))nt , in the following simply called bipower and tripower variation,
respectively. Both estimators are (up to a proper scaling) consistent for the integrated
volatility, but only for the latter one we have a feasible central limit theorem, since we
know from (1.3) the precise form of the conditional variance and are thus able to prove
weak convergence of the standardised tripower variation to a standard normal distribution.

The aim of this paper is twofold. On the one hand, we will indeed prove that a central
limit theorem for bipower variation holds in the discontinuous case as well, but which is
of a substantially different form than for a continuous Itô semimartingale. This result
is an extension of the theory developed in Jacod [4] for certain power variations to the
multipower case. On the other hand, we will introduce a truncated version of bipower
variation and prove for this quantity a central limit theorem of the same type as before.
In contrast to TV (X,α,$)nt and MV (X, (2/3, 2/3, 2/3))nt this result does also hold for an
index of jump activity of X which is equal to one, and thus truncated bipower variation
is a more comprehensive alternative to estimate the integrated volatility in the presence
of jumps.

2 Assumptions and Notation

It is well-known from Barndorff-Nielsen et al. [1] or Jacod [4] that we need some additional
regularity conditions on the coefficients b, σ and δ in order to derive a central limit theo-
rem for certain bipower variation processes. All of these are gathered into the following
hypothesis:

Hypothesis (H) : The process X has the form (1.1) on (Ω,F , (Ft),P), and we have
further:

a) The process (bt) is optional and left-continuous with right limits.

b) The function δ is predictable and locally bounded by a family (γk) of non-negative
(deterministic) functions on L2(E, E , λ), such that

∫
E Φ1 ◦ γk(z) λ(dz) <∞ with Φs(z) =

1 ∧ |z|s.
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c) The process (σt) is an Itô semimartingale itself and admits the representation

σt = σ0 +
∫ t

0
b̃s ds+

∫ t

0
σ̃s dWs +Mt +

∑
s≤t

∆σs 1{|∆σs|>v}, (2.4)

where M is a local martingale orthogonal to W and with bounded jumps. Furthermore,
we have 〈M,M〉t =

∫ t
0 asds, and the compensator of

∑
s≤t 1{|∆σs|>v} is

∫ t
0 a
′
sds. (̃bt), (at)

and (a′t) are assumed to be optional and locally bounded, whereas (σ̃t) is optional and
left-continuous with right limits.

d) σt > 0 for all t almost surely. 2

Some of the assumptions in Hypothesis (H) are rather weak (and sometimes just as
strict as necessary in order to have the various integrals occuring in the definition of X
well-defined), while others are more restrictive.

For the third one regarding the structure of the volatility process σ, note that even in
Barndorff-Nielsen et al. [1], where the authors have derived a central limit theorem for
bipower variation when the underlying process X is a continuous Itô semimartingale, such
an additional assumption is necessary. (In contrast, when one only wants to draw inference
about the realised quadratic variation, this condition can be removed by an application of
Itô’s formula, which is not available in this setting.) Thus, it is natural to have a similar
condition involved here. Furthermore, the representation of σt in c) (which is the same
as in Jacod et al. [7]) is similar to the one in Barndorff-Nielsen et al. [1], where the
martingale Mt has been spilt up into a purely discontinuous part and a Brownian part,
whose driving Wiener process is orthogonal to W .

The condition in b) implies that the process X −Xc (and in particular the jump part
of X) is of finite variation, where Xc denotes the continuous martingale part of X. It is
well-known that in this case one has an equivalent representation of X as follows:

Xt = X0 +Bt +
∫ t

0
σs dWs +

∑
s≤t

∆Xs, (2.5)

where Bt =
∫ t

0 bs ds− (δ1{|δ|≤1}) ? νt is another drift process of finite variation.

Before we come to the results, we have to introduce some auxiliary quantities, all de-
fined on an extension of the original probability space (Ω,F , (Ft),P). For convenience,
we assume that we have a second probability space (Ω′,F ′, (F ′t),P′) supporting two se-
quences of normally distributed random variables (Um+)m≥1 and (Um−)m≥1, each having
mean zero and variance one, and a Brownian motion W ′. All random variables defined
above are assumed to be mutually independent. Then we set

Ω̃ = Ω× Ω′, F̃ = F ⊗ F ′, P̃ = P× P′,

and we extend all quantities defined on the original probability spaces to the product
space in the standard way. Any expectation with respect to P̃ will further be denoted
by Ẽ. In order to construct a filtration on (Ω̃, F̃ , P̃) we let (Tm)m≥1 be any sequence of
stopping times that exhausts the jump times of the process X, that is for any ω we have
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Tm(ω) 6= Tm′(ω) for m 6= m′ and µ(ω, {t} × E) = 1 if and only if t = Tm(ω) for some
m. Then (F̃t) is defined to be the smallest right-continuous filtration containing (Ft) and
such that W ′ is adapted and Um+ and Um− are F̃Tm-measurable for each m.

With these definitions at hand we define

U ′t(δ) =
∑
m

|∆XTm |
(
σTm−|Um−|+ σTm |Um+|

)
(2.6)

for each t, emphasising its dependency on the function δ through the jumps of X. Under
assumption (H), U ′(δ) is a process of finite variation, hence it is absolutely summable and
does not depend on the particular choice of the stopping times Tm. We set further

U ′′t =
√

1 + 2m2
1 − 3m4

1

∫ t

0
σ2
s dW

′
s, (2.7)

where W ′ is another Brownian motion, which is defined on an extension of (Ω,F , (Ft),P)
and is independent of F as well. Here, the scalar

√
1 + 2m2

1 − 3m4
1 corresponds with√

p(r) from (1.3) for this specific choice of r.

Bipower variation for given n and t was defined as MV (X, (1, 1))nt , but for brevity of
notation we will simply use

V (X)nt =
bntc−1∑
i=1

|∆n
i X||∆n

i+1X|.

3 Results

In the following we will prove a (stable) central limit theorem for

V (X)nt =
√
n
(
V (X)nt −m2

1

∫ t

0
σ2
s ds

)
, (3.8)

which holds pointwise for each t ≥ 0, but not for the entire process V (X)n, unless the
process X has continuous paths almost surely, in which case the corresponding result is
well-known from Barndorff-Nielsen et al. [1].

Theorem 3.1 Assume (H). Then for each t the random variable V (X)nt converges stably
in law with limiting variable U ′t(δ) + U ′′t .

Remark 3.2 In the continuous case the limiting variable is simply U ′′t , and there is a
simple intuition, where the additional component U ′t(δ) in the general setting comes from:
Each increment of X containing a jump appears twice in V (X)nt (forget about border
effects), one time paired with the previous increment and one time paired with the sub-
sequent one. If we suppose for a moment that the underlying semimartingale exhibits
only finitely many jumps on the interval [0, t], then each of the two adjacent increments
does not contain a jump with a probability converging to one. Thus, if the jump lies
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within [ i−1
n , in ], it obviously dominates ∆n

i X, whereas the asymptotic behaviour of ∆n
i−1X

and ∆n
i+1X is driven by the Brownian part as for a continuous semimartingale. Terms in

V (X)nt not affected by jumps behave in the same way as before, and this gives the result.
The extension to the case of infinite activity can be obtained by standard methods, if
one cuts off jumps smaller than 1

q first (for any q > 0 there are only finitely many jumps
remaining) and then letting q tend to infinity. 2

Note that the limiting process is not a martingale as for (1.3) unless X is continuous,
since U ′t(δ) is an increasing process of finite variation. A natural way to remove this bias
is to subtract an estimator for U ′t(δ) from

√
n V (X)nt . Intuitively, such an estimator is

given by
√
n V ∗(X,α,$)nt with

V ∗(X,α,$)nt =
bntc−1∑
i=1

|∆n
i X||∆n

i+1X| ·
(

1{|∆n
i X|≥αn−$}1{|∆n

i+1X|<αn−$}

+ 1{|∆n
i X|<αn−$}1{|∆n

i+1X|≥αn−$}

)
for α > 0 and $ ∈ (0, 1

2). Alternatively, we can develop the asymptotic theory for the
direct analogue of TV (X,α,$)nt , namely

TV ∗(X,α,$)nt =
bntc−1∑
i=1

|∆n
i X|1{|∆n

i X|<αn−$}|∆
n
i+1X|1{|∆n

i+1X|<αn−$}.

The intuition behind both estimators is the same: A large value of |∆n
i X| indicates the

existence of a big jump in [ i−1
n , in ], whereas a small value of |∆n

i X| suggests that the
continuous martingale part of X is dominating. With

V
∗(X)nt =

√
n
(

(V (X)nt − V ∗(X,α,$)nt )−m2
1

∫ t

0
σ2
s ds

)
and

TV
∗(X)nt =

√
n
(
TV ∗(X,α,$)nt −m2

1

∫ t

0
σ2
s ds

)
we end up with the following theorem.

Theorem 3.3 Assume (H) and let α > 0 and $ ∈ (0, 1
2) be arbitrary. Then for each t

the random variables V ∗(X)nt and TV ∗(X)nt converge stably in law with the same limiting
variable U ′′t .

Note that we only need hypothesis (H) in order to derive the stable convergence in
Theorem 3.3, and thus we have a less restrictive result than the corresponding limit the-
orems for TV (X,α,$)nt and MV (X, (2/3, 2/3, 2/3))nt , which need a stronger condition
than assumption b) in (H). Precisely, both claims rely on the fact that the familiy (γk)
from b) satisfies

∫
E Φs ◦ γk(z) λ(dz) <∞ for some s < 1.
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In order to derive a classical central limit theorem for the estimation of the integrated
volatility recall that the stochastic convergence

MV (X, (4/3, 4/3, 4/3))nt
P−→ m3

4/3

∫ t

0
σ4
s ds

holds. Thus, the following corollary can be derived easily.

Corollary 3.4 Assume (H) and let α > 0 and $ ∈ (0, 1
2) be arbitrary. Then for each t

we have

√
n

m−2
1 TV ∗(X,α,$)nt −

∫ t
0 σ

2
s ds√

1+2m2
1−3m4

1

m4
1 m3

4/3

MV (X, (4/3, 4/3, 4/3))nt

L−→ N (0, 1),

where L−→ denotes convergence in law.

A similar result holds for V (X)nt − V ∗(X,α,$)nt as well.

Remark 3.5 Obviously, it is not necessary to restrict oneself to the case of bipower
variation as similar results hold for any MV (X,1)nt , where 1 is q-dimensional having
components equal to 1 (q ≥ 2). In this case the limiting variable for the untruncated
version (connected with the CLT in Theorem 3.1) is Ũ ′t + U ′′t , where

Ũ ′t =
∑
m

|∆XTm |
( q−1∑
j=0

{
σTm−

j∑
k=1

|Um,−k|+ σTm+

q−1∑
k=j+1

|Um,k−j |
})
,

for a family of mutually independent standard normally distributed random variables

(Um,−(q−1), . . . Um,−1, Um,1, . . . Um,(q−1))m≥1

on (Ω′,F ′, (F ′t),P′). For the truncated versions (connected with the CLTs in Theorem 3.3)
we have the same result as in (1.3). 2

4 Appendix

As usual, a localisation procedure as for example explained in Jacod [6] allows us to
assume that the processes at, a′t, bt, b̃t and σ̃t as well as σt, Wt and Xt are all bounded
themselves. Moreover, we may replace the family (γk) by a bounded function γ having
the same properties. Constants appearing in the proofs are usually denoted by C or Cp,
if we want to emphasise their dependency on an additional parameter p.

Let us start with a lemma proving the claim on U ′(δ).
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Lemma 4.1 Assume (H). Then

U ′t(δ) =
∑

m: Tm≤t
|∆XTm |

(
σTm−|Um−|+ σTm |Um+|

)
(4.9)

defines an increasing process of finite variation and does thus not depend on the particular
choice of the sequence (Tm)m≥1.

Proof of Lemma 4.1. We have

Ẽ
[
σTm−|Um−|+ σTm |Um+|

∣∣∣F] < C
(
σTm− + σTm

)
< C

by assumption, and from the condition on the jump activity of X

Ẽ
[
U ′t(δ)

]
= Ẽ

( ∑
m: Tm≤t

|∆XTm | Ẽ
[
σTm−|Um−|+ σTm |Um+|

∣∣∣F] )
≤ C E

[ ∑
m: Tm≤t

|∆XTm |
]

= C E
[ ∫ t

0

∫
E
|δ(s, z)| λ(dz) ds

]
≤ C t

∫
E
γ(z) λ(dz) <∞

follows. The claim is obvious now. 2

Lemma 4.1 allows us to choose any sequence (Tm)m≥1 of stopping times with pairwise
disjoint graphs such that ∆Xt 6= 0 implies that t = Tm for some integer m. For our
purposes it is convenient to choose that sequence as follows: For any integer q (and with
1/0 =∞) let Tm,q denote the successive jump times of the Poisson process µ((0, t]× {z |
1/(q−1) ≥ γ(z) > 1/q}), where γ is the function occuring in (H). Obviously, the graphs of
these stopping times are pairwise disjoint (both in m and q), and we may define (Tm)m≥1

to be any reordering of {Tm,q | m, q ≥ 1}. Moreover, we denote by Pq the set of all m such
that Tm = Tm,r for some r ≤ q.

Recalling (2.5) and condition (H) we define several auxiliary processes. We set

X ′t = X0 +Bt +
∫ t

0
σsdWs, Jt =

∑
s≤t

∆Xs, (4.10)

and define for any integer q > 1

J(q)t = (δ 1{γ(z)>1/q}) ? µt, X(q)t = X ′t + J(q)t, X ′(q)t = Xt −X(q)t. (4.11)

We have to introduce some further additional notation. Define µ(q) to be the random
measure given by the restriction of µ to {x | γ(x) > 1/q}, thus it is associated with the
large jumps of X. It follows that if we denote by (F ′t) the smallest filtration containing
(Ft) and making µ(q) F ′0-measurable, W remains a Wiener process with respect to this
new filtration, and X ′ has the representation in (4.10), both with respect to (Ft) and (F ′t).
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As in Jacod et al. [7] we denote by Ωn(t, q) the set of all ω in Ω such that the following
properties are satisfied for any m 6= m′ in Pq with Tm(ω), Tm′(ω) ≤ t:

1
n
≤ Tm(ω), Tm′(ω) ≤ t− 2

n
, |Tm(ω)− Tm′(ω)| ≥ 4

n
, nTm is not an integer.

Since Ωn(t, q) → Ω almost surely (in n) for any q, we will assume in the following quite
often that ω belongs to Ωn(t, q), once we are working with a fixed parameter q.

Before we come to the proof of the two main results of this paper, we state a set of
inequalities for increments of the various processes in (4.10) and (4.11). Most of them are
well-known from the theory of semimartingales, but at least for one of these we will give
a short proof.

Lemma 4.2 Assume (H). Then the following inequalities hold for arbitrary i and n and
any r > 0:

E
[
|∆n

i X|r
∣∣∣F i−1

n

]
< C n−( r

2
∧1), E

[
|∆n

i J |r
∣∣∣F i−1

n

]
< C n−(r∧1),

E
[
|∆n

i X
′|r
∣∣∣F i−1

n

]
< C n−

r
2 , E

[
|∆n

iW |r
∣∣∣F i−1

n

]
< C n−

r
2 .

Moreover, with

eq =
∫
{γ(z)≤1/q}

γ(z) λ(dz) (4.12)

we have for any q, i and n:

E
[
|∆n

i X
′(q)|

∣∣∣F i−1
n

]
≤ eq n−1.

Proof of Lemma 4.2. We will only prove the last assertion. It holds

E
[
|∆n

i X
′(q)|

∣∣∣F i−1
n

]
≤ E

[ ∑
m∈P cq : Tm∈[ i−1

n
, i
n

]

|∆XTm |
∣∣∣F i−1

n

]

= E
[ ∫ i

n

i−1
n

∫
{γ(z)≤1/q}

|δ(u, z)| λ(dz) du
∣∣∣F i−1

n

]
≤

∫ i
n

i−1
n

∫
{γ(z)≤1/q}

γ(z) λ(dz) du =
eq
n
.

2

We end this preliminary part with an auxiliary result on stable convergence, for which
we have to introduce some further notation. For any m the stopping time Tm is contained
in exactly one interval of size i

n , and we set Inm = min(i : i
n ≥ Tm), thus Tm ∈ ( I

n
m−1
n , I

n
m
n ].

Moreover, we define a couple of random variables depending on m and n, namely

Unm− =
√
n ∆n

Inm−1W, Unm+ =
√
n ∆n

Inm+1W, Un = (Unm−, U
n
m+)m≥1,

ρ
′n
m− =

√
n σ Inm−2

n

∆n
Inm−1W, ρ

′n
m+ =

√
n σInm ∆n

Inm+1W, ρ
′n = (ρ

′n
m−, ρ

′n
m+)m≥1,

ρnm− =
√
n ∆n

Inm−1X
′, ρnm+ =

√
n ∆n

Inm+1X
′, ρn = (ρnm−, ρ

n
m+)m≥1,

ρm− = σTm− Um−, ρm+ = σTm Um+, ρ = (ρm−, ρm+)m≥1,
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where Um− and Um+ are the random variables introduced in Section 2. We start with a
claim, which is similar to a lemma from Jacod [6].

Lemma 4.3 The sequence ρn converges stably in law to the sequence ρ.

Proof of Lemma 4.3. We will only give a sketch of the proof, since main parts are
analogous to the one of the corresponding result in Jacod [6].

The first step is to establish the convergence Un
L−(s)−→ U , where U = (Um−, Um+)m≥1.

This result can be shown by similar methods as in Jacod [6] or Jacod and Protter [8], and
we will only give the basic idea. Note that one has to prove

E[g(Un)Z]→ Ẽ[g(U)Z]

for a bounded F-measurable Z and a bounded and continuous function g. Without loss of
generality it can be assumed that Z is measurable with respect to the σ-algebra G which
is generated by W and µ, as Un and U are G- and G ×F ′-measurable, respectively. Since
µ has the form µ =

∑
m≥1 δ{Tm,Vm}, where δ denotes the Dirac measure, and the Vm are

suitable E-valued variables, and by a density argument it is sufficient to show (4.13) for
the specific choice

Z = f(W )
M∏
m=1

hm(Tm)h′m(Vm), g((ym)m≥1) =
M∏
m=1

gm(ym),

any integer M . Here, f , hm, h′m, gm denote bounded and continuous functions on the
obvious spaces connected with W , Tm, Vm, Un (and U). Note further that Wn

t = Wt −∑M
m=1(WTm+ 2

n
−W(Tm− 2

n
)+) converges uniformly to Wt, which allows us to focus on Wn

only. For given M ,

Ωn(M) =
⋂

m,m′∈{1,...M},m 6=m′

{
ω : |Tm(ω)− Tm′(ω)| ≥ 4

n

}
converges to Ω almost surely, and by construction Wn, the family (Vm) and the family
(hm(Tm) gm(Unm−, U

n
m+)) are mutually independent on Ωn(M). We are thus left to prove

E
[ M∏
m=1

hm(Tm) gm(Unm−, U
n
m+) 1Ωn(M)

]
→ Ẽ

[ M∏
m=1

hm(Tm) gm(Um−, Um+)
]
,

and the first claim follows easily.

For the second step, note that(
σ Inm−2

n

, σ Inm
n

)
m≥1

P−→
(
σTm− , σTm

)
m≥1

,

since σ is càdlàg and bounded, and the first claim plus the properties of stable convergence

yield ρ
′n L−(s)−→ ρ. It remains to prove that ρ

′n
m−−ρnm−

P−→ 0 holds for each m, as the result



BPV-1 12

with m− replaced by m+ can be shown analogously. However, this is an easy consequence
of Lemma 4.2 and the assumptions on σ. 2

Proof of Theorem 3.1. The proof will basically consist of five steps, and we will quite
often refer to details given in Barndorff-Nielsen et al. [1] or Jacod [6]. The main step is
the following decomposition of V (X)nt , which holds for any fixed integer q. We have

V (X)nt =
√
n
(
V (X ′)nt −m2

1

∫ t

0
σ2
s ds

)
+
√
n
(
V (X(q))nt − V (X ′)nt

)
+
√
n
(
V (X)nt − V (X(q))nt

)
=: V 1(X)nt + V 2(X)nt + V 3(X)nt .

Step 1. Here, we simply show that the conditions for an application of Theorem 2.4. in
Barndorff-Nielsen et al. [1] are fulfilled, from which we conclude that

V 1(X)nt
L−(s)−→ U ′′t . (4.13)

To this end, note that Bt in (2.5) can be written as

Bt =
∫ t

0
bs ds with bs = bs −

∫
δ(s, z)1{|δ(s,z)|≤1} λ(dz),

and following Jacod [4] it has the same properties as the original drift process. Moreover,
both conditions on the volatility process (σt) are similar to the ones in Barndorff-Nielsen
et al. [1]. Thus (4.13) holds. 2

Step 2. We set

δ(q)(ω, s, z) = δ(ω, s, z) 1{γ(z)≥1/q}

and prove

V 2(X)nt =
√
n
(
V (X(q))nt − V (X ′)nt

) L−(s)−→ U ′t(δ(q)) (4.14)

for any fixed integer q. It can easily be seen that only those summands in

V (X(q))− V (X ′) =
bntc−1∑
i=1

(
|∆n

i X(q)||∆n
i+1X(q)| − |∆n

i X
′||∆n

i+1X
′|
)

are non-vanishing, for which we have i = Inm or i = Inm + 1 with m in Pq. Thus

V (X(q))− V (X ′) =
∑
m∈Pq

{(
|∆n

Inm
X(q)||∆n

Inm+1X(q)| − |∆n
Inm
X ′||∆n

Inm+1X
′|
)

+
(
|∆n

Inm
X(q)||∆n

Inm+1X(q)| − |∆n
Inm
X ′||∆n

Inm+1X
′|
)}
.
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On Ωn(t, q) we have ∆n
Inm−1X(q) = ∆n

Inm−1X
′ as well as ∆n

Inm+1X(q) = ∆n
Inm+1X

′, so by an
application of Lemma 4.2 we end up with

V (X(q))− V (X ′) =
∑
m∈Pq

|∆n
Inm
X(q)|

(
|∆n

Inm−1X
′|+ |∆n

Inm+1X
′|
)

+Op(n−1),

since there are only finitely many elements in Pq. From∣∣∣|∆n
Inm
X(q)| − |∆XTm |

∣∣∣ ≤ |∆n
Inm
X ′|

we conclude finally that

√
n (V (X(q))− V (X ′)) =

√
n
∑
m∈Pq

|∆XTm |
(
|∆n

Inm−1X
′|+ |∆n

Inm+1X
′|
)

+Op(n−
1
2 )

=
∑
m∈Pq

|∆XTm |
(
|ρnm−|+ |ρnm+|

)
+Op(n−

1
2 ).

Using Lemma 4.3, (2.6) and the continuity theorem for stable convergence the result
follows. 2

Step 3. Here, we prove the joint stable convergence(
V 1(X)nt , V 2(X)nt

) L−(s)−→
(
U ′′t , U

′
t(δ(q))

)
(4.15)

for any fixed integer q. Set βni = σ i−1
n

∆n
iW and β

′n
i = σ i−1

n
∆n
i+1W and let

ζni = |βni ||β
′n
i | − E

[
|βni ||β

′n
i |
∣∣∣F i−1

n

]
.

As in Barndorff-Nielsen et al. [1] we have

V 1(X)nt =
√
n

bntc−1∑
i=1

ζni + op(1),

uniformly in t. Denote the sum on the right hand side by U
n
t . Our aim is to show the

stable convergence(
U
n
, (ρnm−, ρ

n
m+)m∈Pq

) L−(s)−→
(
U ′′, (ρm−, ρm+)m∈Pq

)
, (4.16)

from which (using the last part in the proof of (4.14)) the result in (4.15) can be concluded.
Again, this result has a similar expression in Jacod [4].

Note that we have to show

E
[
h(Un)

r∏
m=1

gm(ρnm−, ρ
n
m+) Y

]
→ Ẽ

[
h(U ′′)

r∏
m=1

gm(ρm−, ρm+) Y
]
,
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each r, for an arbitrary bounded and Lipschitz h (on the Skorokhod space of functions
on R+ endowed with an appropriate metric for the Skorokhod topology) and any familiy
of bounded and continuous functions gm, and where the T1, T2, . . . are the jump times of
µ(q). As before, it suffices to prove this assertion for a bounded and H-measurable Y ,
where H is generated by the measure µ(q) and the processes σ, W and X.

First, the same argument as in the proof of Lemma 4.3 allows us to replace ρn and ρ
by Un and U , so we are left to prove

E
[
h(Un)

r∏
m=1

gm(Unm−, U
n
m+) Y

]
→ Ẽ

[
h(U ′′)

r∏
m=1

gm(Um−, Um+) Y
]
, (4.17)

each r.

For a given integer p, we set T p−m = (Tm − 1
p)+ and T p+m = (Tm + 1

p) and define
Bp =

⋃
m≥1(T p−m , T p+m ]. Moreover, we let F ′p be the smallest filtration, which contains

F ′ and with respect to which the process W p
t =

∫ t
0 1Bp(s) dWs is F ′0

p
-measurable. Since

Bp is F ′0-measurable by construction and as it decreases to the union of the graphs of the
stopping times Tm as p grows, it is likely that we can replace the processes Unt and U ′′t in
(4.17) by

U
n,p
t =

∑
i∈Γn(p,t)

ζni , U ′′pt =
√

1 + 2m2
1 − 3m4

1

∫ t

0
σ2
s 1Bcp(s) dW

′
s,

respectively, where Γn(p, t) is the set of all integers i such that [ i−2
n , i+1

n ]∩Bp = ∅. Indeed,
it is easy to see that for p→∞ both

sup
s≤t
|U ′′s − U ′′ps |

P−→ 0 and sup
s≤t
|Uns − U

n,p
s |

P−→ 0

hold, the latter result uniformly in n. (4.17) follows, once we have shown

E
[
h(Un,p)

r∏
m=1

gm(Unm−, U
n
m+) Y

]
→ Ẽ

[
h(U ′′p)

r∏
m=1

gm(Um−, Um+) Y
]

(4.18)

for each p.

Finally, a close look at the proof of Theorem 2.4. in Barndorff-Nielsen et al. [1] shows
that Step 1) still holds for Un,p and U ′′p (conditionally on F ′0

p
), that is

E
[
h(Un,p) Y

∣∣∣F ′0p]→ Ẽ
[
h(U ′′p) Y

∣∣∣F ′0p].
Since any gm(Unm−, U

n
m+) is bounded and measurable with respect to F ′0

p
,

E
[
h(Un,p)

r∏
m=1

gm(Unm−, U
n
m+) Y

]
= E

[ r∏
m=1

gm(Unm−, U
n
m+) E

[
h(Un,p) Y

∣∣∣F ′0p]]
= E

[ r∏
m=1

gm(Unm−, U
n
m+) Ẽ

[
h(U ′′p) Y

∣∣∣F ′0p]]+ o(1)
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follows. However, Ẽ
[
h(U ′′p) Y

∣∣∣F ′0p] is bounded and F ′0
p
-measurable, so proving (4.18)

simply means proving Un
L−(s)−→ U , and thus we are done. 2

Step 4. In this step we show that the third term in the decomposition of V (X)nt is
asymptotically negligible, i.e. we have for each η, t ≥ 0

lim
q→∞

lim sup
n→∞

P
(
|V 3(X)nt | > η

)
= 0. (4.19)

We have

|∆n
i X||∆n

i+1X| − |∆n
i X(q)||∆n

i+1X(q)|

= |∆n
i X|

(
|∆n

i+1X| − |∆n
i+1X(q)|

)
+
(
|∆n

i X| − |∆n
i X(q)|

)
|∆n

i+1X(q)|

and may thus conclude (with
∣∣∣|∆n

i X| − |∆n
i X(q)|

∣∣∣ ≤ |∆n
i X
′(q)|) that

|V 3(X)nt | ≤
√
n

bntc−1∑
i=1

(
|∆n

i X||∆n
i+1X

′(q)|+ |∆n
i X
′(q)||∆n

i+1X(q)|
)

=: An +Bn.

Regarding An, we obtain from Lemma 4.2 that

E
[
|∆n

i X||∆n
i+1X

′(q)|
]

= E
[
|∆n

i X| E
[
|∆n

i+1X
′(q)|

∣∣∣F i
n

]]
≤ C eq n

− 3
2

and thus E[|An|] ≤ C eq. From Lebesgue’s Theorem we have limq→∞ eq = 0 as well (note
that

∫
E γ(z) λ(dz) <∞ by assumption), and hence we conclude

lim
q→∞

lim sup
n→∞

P(An > η) = 0.

(4.19) obviously follows, once we have shown a similar result for the quantity Bn. To this
end, note that ∆n

i+1X(q) equals ∆n
i+1X

′ unless i+ 1 = Inm for some m. Using

|∆n
i+1X(q)| ≤ |∆n

i+1X
′|+ |∆n

i+1J(q)|

we obtain the following decomposition:

Bn =
√
n

bntc−1∑
i=1

|∆n
i X
′(q)||∆n

i+1X(q)|

≤
√
n

bntc−1∑
i=1

|∆n
i X
′(q)||∆n

i+1X
′|+
√
n
∑
m∈Pq

|∆n
Inm−1X

′(q)||∆n
Inm
J(q)|

The first sum on the right hand side can be treated in a similar way as An. For the second
quantity note that we have only finitely many summands, each of which is of small order.
Precisely, recalling the filtration (F ′t) we have

E
[
|∆n

Inm−1X
′(q)||∆n

Inm
J(q)|

∣∣∣F ′ Inm−2
n

]
= |∆n

Inm
J(q)| E

[
|∆n

Inm−1X
′(q)|

∣∣∣F ′ Inm−2
n

]
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and

E
[
|∆n

Inm−1X
′(q)|

∣∣∣F ′ Inm−2
n

]
≤ eq

n

in a similar way as in Lemma 4.2. Thus

E
[√

n
∑
m∈Pq

|∆n
Inm
J(q)||∆n

Inm−1X
′(q)|

∣∣∣F ′0] ≤ eq n− 1
2

∑
s≤t
|∆n

i X|1{|∆n
i X|>1/q}

and (4.19) follows. 2

Step 5. Here, we finally show that

lim
q→∞

Ẽ
[

sup
s≤t
|U ′s(δ)− U ′s(δ(q))|

]
= 0, (4.20)

which finishes the proof of Theorem 3.1. From (4.9) we obtain

Ẽ
[

sup
s≤t
|U ′s(δ)− U ′s(δ(q))|

]
≤ Ẽ

[
Ẽ
[
|U ′t(δ)− U ′t(δ(q))|

∣∣∣F] ]
≤ C E

[∑
s≤t
|∆Xs|1{|∆Xs|≤1/q}

]
,

which by the same arguments as in Step 4) converges to zero as q tends to infinity. Thus,
(4.20) follows and we are done. 2

Proof of Theorem 3.3. We show first that we can focus on TV
∗(X)nt only and use for

the latter steps the decomposition

TV
∗(X)nt =

√
n
(
TV ∗1 (X)nt −m2

1

∫ t

0
σ2
s ds

)
+
√
n TV ∗2 (X)nt ,

where

TV ∗1 (X)nt =
bntc−1∑
i=1

|∆n
i X
′|1{|∆n

i X|<αn−$}|∆
n
i+1X

′|1{|∆n
i+1X|<αn−$}

and

TV ∗2 (X)nt =
bntc−1∑
i=1

(
|∆n

i X||∆n
i+1X| − |∆n

i X
′||∆n

i+1X
′|
)

1{|∆n
i X|<αn−$}1{|∆n

i+1X|<αn−$}.

Step 1. For any η, t > 0 we have

lim
n→∞

P
(∣∣∣V ∗(X)nt − TV

∗(X)nt
∣∣∣ > η

)
= 0.
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Obviously, the relation

V
∗(X)nt − TV

∗(X)nt =
√
n

bntc−1∑
i=1

|∆n
i X|1{|∆n

i X|≥αn−$}|∆
n
i+1X|1{|∆n

i+1X|≥αn−$}

holds, and with the notation (4.10) we have

|∆n
i X||∆n

i+1X| = |∆n
i X
′||∆n

i+1X
′|+

(
|∆n

i X| − |∆n
i X
′|
)
|∆n

i+1X
′|

+ |∆n
i X
′ + ∆n

i J |
(
|∆n

i+1X| − |∆n
i+1X

′|
)

≤ |∆n
i X
′||∆n

i+1X
′|+ |∆n

i J ||∆n
i+1X

′|+ |∆n
i X
′||∆n

i+1J |+ |∆n
i J ||∆n

i+1J |.

Since E
[
|∆n

i J |
∣∣∣F i−1

n

]
≤ C n−1 and by taking successive conditional expectations and

using Markov’s inequality the proof amounts to showing that

E
[
|∆n

i X
′|1{|∆n

i X|≥αn−$}

∣∣∣F i−1
n

]
≤ C n−γ (4.21)

for some γ > 3/4. For later purposes we will prove an even stronger result, namely that
(4.21) holds with γ > 1.

To this end, note that we have 1{|∆n
i X|≥αn−$} ≤ 1{|∆n

i X
′|≥ 1

2
αn−$} + 1{|∆n

i J |≥
1
2
αn−$}.

Then for any r > 0 it holds

E
[
|∆n

i X
′|1{|∆n

i X
′|≥ 1

2
αn−$}

∣∣∣F i−1
n

]
≤ C nr$E

[
|∆n

i X
′|r+1

∣∣∣F i−1
n

]
≤ C nr($−

1
2

)− 1
2 ,

and since $ < 1
2 we have the desired result by choosing r large enough. On the other

hand, for 0 < ρ < 1 Hölder’s inequality yields

E
[
|∆n

i X
′|1{|∆n

i J |≥
1
2
αn−$}

∣∣∣F i−1
n

]
≤ C nρ$E

[
|∆n

i X
′||∆n

i J |ρ
∣∣∣F i−1

n

]
≤ C nρ$E

[
|∆n

i X
′|

1
1−ρ

∣∣∣F i−1
n

]1−ρ
E
[
|∆n

i J |
∣∣∣F i−1

n

]ρ
≤ C nρ($−1)− 1

2 ,

and by choosing ρ sufficiently close to one we are done. 2

Step 2. We come now to TV ∗(X)nt and show first that the stable convergence

√
n
(
TV
∗
1(X)nt −m2

1

∫ t

0
σ2
s ds

) L−(s)−→ U ′′t

holds. Using (4.13) this claim can be reduced to

lim
n→∞

P
(√

n
∣∣∣V1(X)nt − TV ∗1 (X)nt

∣∣∣ > η
)

= 0

for any η, t > 0. A standard calculation with indicator functions forces us to show

lim
n→∞

P
(√

n

bntc−1∑
i=1

|∆n
i X
′||∆n

i+1X
′|1A(j)ni

> η
)

= 0,



BPV-1 18

where j runs from one to three and

A(1)ni = {ω : |∆n
i X| ≥ αn−$} ∩ {ω : |∆n

i+1X| ≥ αn−$},
A(2)ni = {ω : |∆n

i X| ≥ αn−$} ∩ {ω : |∆n
i+1X| < αn−$},

A(3)ni = {ω : |∆n
i X| < αn−$} ∩ {ω : |∆n

i+1X| ≥ αn−$}.

However, since we know from Step 1) that (4.21) holds with γ > 1, and upon observing
that E

[
|∆n

i X
′|
∣∣∣F i−1

n

]
< Cn−

1
2 and by taking successive conditional expectations, all

claims are obvious. 2

Step 3. It remains to show that for any η, t > 0 we have

lim
n→∞

P
(√

n TV ∗2 (X)nt > η
)

= 0.

As before, we have∣∣∣|∆n
i X||∆n

i+1X| − |∆n
i X
′||∆n

i+1X
′|
∣∣∣ ≤ |∆n

i X||∆n
i+1J |+ |∆n

i J ||∆n
i+1X

′|,

and hence we can use similar arguments as in Step 4) of the preceding proof. Without
loss of generality let us focus on the second summand only. We fix q > 0 again, and thus
we have with the notation from (4.11)

|∆n
i J ||∆n

i+1X
′| = |∆n

i J(q)||∆n
i+1X

′|+ |∆n
i X
′(q)||∆n

i+1X
′|. (4.22)

Obviously, 1{|∆n
i X|<αn−$} ≤ 1{|∆n

i J(q)|<2αn−$} + 1{|∆n
i J(q)|≥2αn−$, |∆n

i X
′(q)|≥αn−$}. For

some nq we have 1/q > 2αn−$ for all n > nq, and thus for n large enough it holds that

√
n

bntc−1∑
i=1

|∆n
i J(q)||∆n

i+1X
′|1{|∆n

i J(q)|<2αn−$}1{|∆n
i+1X|<αn−$} = 0

identically (on Ωn(t, q)). For the second indicator recall the filtration (F ′t). Then we have

E
[
|∆n

i J(q)|1{|∆n
i X
′(q)|≥αn−$}

∣∣∣F i−1
n

]
< C n$E

[
|∆n

i J(q)||∆n
i X
′(q)|

∣∣∣F i−1
n

]
= C n$E

[
|∆n

i J(q)| E
[
|∆n

i X
′(q)|

∣∣∣F ′ i−1
n

] ∣∣∣F i−1
n

]
.

Since both

E
[
|∆n

i X
′(q)|

∣∣∣F ′ i−1
n

]
< C n−1 and E

[
|∆n

i J(q)|F i−1
n

]
< C n−1

and upon observing that $ < 1
2 and by taking successive expectations it is easy to show

the desired result for the first summand in (4.22). For the latter one, the same theory as
for An in Step 4) of Theorem 3.1 applies, and thus we are done. 2
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