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Abstract

A new test for strict monotonicity of the regression function is proposed which is based

on a composition of an estimate of the inverse of the regression function with a common

regression estimate. This composition is equal to the identity if and only if the “true”

regression function is strictly monotone, and a test based on an L
2-distance is investigated.

The asymptotic normality of the corresponding test statistic is established under the null

hypothesis of strict monotonicity.
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1 Introduction

Consider the common nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n(1.1)

where (Xi, Yi)i=1,...,n is a sample of bivariate observations and E[εi] = 0. In nonparametric regres-

sion models one typically assumes that m(·) is continuously differentiable of a certain order and
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estimates this function by some smoothing procedure. In many practical applications additional

qualitative information regarding the unknown regression function m(·) is available. A typical

information of this type is that of strict monotonicity, which is often motivated by biological, eco-

nomic or physical reasoning. If this assumption is justified it can be incorporated in the estimation

procedure and there exists a vast amount of literature on the estimation of a regression function

under the monotonicity constraint [see e.g. Brunk (1955), Friedman and Tibshirani (1984), Muk-

erjee (1988), Mammen (1991), Ramsay (1998), Hall and Huang (2001) or Dette, Neumeyer and

Pilz (2006) among many others]. Although a goodness-of-fit test for monotonicity is important

to justify this assumption, the literature on this subject is not so rich and the problem of testing

for monotonicity has only found recently attention in the literature. Schlee (1982) proposed a

test for this hypothesis, which is based on estimates of the derivative of the regression function.

Bowman Jones and Gijbels (1998) used Silverman’s (1981) “critical bandwidth” approach to con-

struct a bootstrap test for monotonicity while Gijbels, Hall, Jones and Koch (2000) considered

the length of runs for that purpose. More recent work on testing monotonicity can be found in

Hall and Heckman (2001), Goshal, Sen and Van der Vaart (2000), Durot (2003), Baraud, Huet

and Laurent (2003) and Domı́nguez-Menchero, González-Rodŕıguez and López -Palomo (2005).

In the present paper we propose an alternative procedure for testing monotonicity. In contrast to

the literature cited in the previous paragraph we consider the null hypothesis of strict monotonic-

ity, which has - to our knowledge - not been considered before. We propose to consider the

composition of an estimate proposed by Dette et al. (2006) for the inverse regression function

with an unconstrained estimate of the regression function. Under the null hypothesis of strict

monotonicity this composition equals the identity and an L2-distance between the composition

and the identity is proposed as test statistic. We prove consistency and asymptotic normality

of this statistic under the null hypothesis. For the sake of brevity we restrict ourselves to the

hypothesis

H0 : m is strictly isotone(1.2)

but the transformation to the strictly antitone case is rather obvious and indicated in Remark

2.3. The paper is organized as follows. Our idea for constructing the test statistic is carefully

described in Section 2, while Section 3 contains the main results and gives some further discussion.

Auxiliary results needed in the proof of our main theorem are deferred to the Appendix.

2 Testing for a strictly isotone regression

Recall the definition of the nonparametric regression model in (1.1), assume that Xi has a density,

say f, with compact support [0, 1], and that the random errors ε1, . . . , εn are centered with mean

0 and variance 1. In order to motivate the test statistic, we briefly recall the definition of an
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estimate of the “inverse” of the regression function m(·), which was recently proposed by Dette

et al. (2006). For this purpose let

f̂n(x) =
1

nhr

n
∑

i=1

Kr

(x−Xi

hr

)

(2.1)

denote the common density estimate and define

m̂(x) =
1

nhr

n
∑

i=1

Kr

(x−Xi

hr

)

Yi/f̂n(x)(2.2)

as the Nadaraya-Watson estimate. Dette et al. (2006) proposed

φ̂hd
(t) =

1

hd

∫ 1

0

∫ t

−∞

Kd

(m̂(v) − u

hd

)

dudv.(2.3)

as an estimate of the “inverse” of the regression function m, where Kd is a symmetric kernel with

compact support, say [−1, 1], and hd is a bandwidth converging to 0 with increasing sample size.

Intuitively, if hd → 0, the statistic φ̂hd
(t) approaches

φ̂(t) =

∫ 1

0

I{m̂(v) ≤ t}dv ≈

∫ 1

0

I{m(v) ≤ t}dv =: φ(t)(2.4)

where the approximation is justified for an increasing sample size using the uniform consistency

of the Nadaraya-Watson estimate [see e.g. Mack and Silverman (1982)]. Note that the right hand

side of (2.4) is equal to m−1(t) if the null hypothesis (1.2) is satisfied. In this case φ̂ ◦ m̂ would

converge to the identity and therefore we propose

Tn =

∫ 1

0

(φ̂hd
(m̂(x)) − x)2dx(2.5)

as test statistic for the hypothesis of a strictly increasing regression function in model (1.1). Our

first result specifies the limit of (2.5), if the estimate m̂ converges uniformly to the true regression

function [for sufficient assumptions for this property see e.g. Mack and Silverman (1982).

Lemma 2.1. Assume that the assumptions stated at the beginning of this section are satisfied and

that the estimate m̂ converges uniformly to m. If n → ∞, hd → 0 we have Tn
P
→ T, where the

quantity T is defined by

T =

∫ 1

0

(

∫ 1

0

I{m(v) ≤ m(x)}dv − x
)2

dx(2.6)

Proof. The difference between the statistic Tn and the “parameter” T can be written as

Tn − T =

∫ 1

0

(

(φ̂hd
(m̂(x)) − x)2 − (φ(m(x)) − x)2

)

dx
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=

∫ 1

0

(

φ̂2
hd

(m̂(x)) − φ2(m(x)) − 2x(φ̂hd
(m̂(x)) − φ(m(x)))

)

=

∫ 1

0

(φ̂hd
(m̂(x)) + φ(m(x)) − 2x)(φ̂hd

(m̂(x)) − φ(m(x)))dx

= OP (1)

∫ 1

0

(φ̂hd
(m̂(x)) − φ(m(x)))dx

by using the boundedness of φ̂hd
(m̂(x)) and φ(m(x)). Therefore it suffices to show that the

difference φ̂hd
(m̂(x)) − φ(m(x)) converges uniformly to 0. Using the definition of the statistic

φ̂hd
(m̂(x)) yields

φ̂hd
(m̂(x)) =

1

hd

∫ 1

0

∫ m̂(x)

−∞

Kd

(m̂(v) − u

hd

)

dudv

=
1

hd

∫ 1

0

I{m̂(v) ≤ m̂(x) + hd}

∫ m̂(x)

m̂(v)−hd

Kd

(m̂(v) − u

hd

)

dudv

=

∫ 1

0

I{m̂(v) ≤ m̂(x) + hd}

∫ 1

m̂(v)−m̂(x)
hd

Kd(u)dudv

=

∫ 1

0

I{m̂(v) ≤ m̂(x) − hd}dv

+

∫ 1

0

I{m̂(x) − hd ≤ m̂(v) ≤ m̂(x) + hd}

∫ 1

m̂(v)−m̂(x)
hd

Kd(u)dudv.

The first term converges to φ(m(x)) because of the uniform consistency of the estimate m̂. The

second term is smaller than
∫ 1

0

I{m̂(x) − hd ≤ m̂(v) ≤ m̂(x) + hd}dv

which converges to 0 by again using the uniform consistency of the estimate m̂. This proofs

Lemma 2.1. 2

Obviously, if the regression function m is strictly increasing the parameter T vanishes and the

following result shows that this is a necessary and sufficient condition for strict monotonicity.

Proposition 2.2. Assume that the regression function m is continuous. The parameter T defined

by (2.6) is equal to 0 if and only if the regression function m is strictly increasing on the interval

[0, 1].

Proof of Proposition 2.2. Obviously the result follows if we can prove that the assertion

∫ 1

0

I{m(v) ≤ m(x)}dv = x for almost all x ∈ [0, 1](2.7)
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holds if and only if the regression function m is strictly increasing. If the latter case is satisfied,

then (2.7) is obviously true for all x ∈ [0, 1], and it remains to prove the necessary part.

For this purpose we assume that (2.7) holds and distinguish three cases

(a) m is increasing on the interval [0, 1] but not strictly increasing

(b) m is decreasing on the interval [0, 1]

(c) m is neither increasing nor decreasing on the interval [0, 1]

(a) In this case there exist disjoint intervals Ai, i ∈ I, where m is constant and intervals Bj, j ∈ J ,

where m is strictly increasing with
(

⋃

i∈I

Ai

)

∪
(

⋃

j∈J

Bj

)

= [0, 1].

This decomposition implies the representation

m(x) =
∑

i∈I

miIAi
(x) +

∑

j∈J

m↗

j (x)(2.8)

for some constants mi ∈ R (i ∈ I) and strictly increasing functions m↗

j = m|Bj
j ∈ J . Note that

φ(t) =

∫ 1

0

I{m(v) ≤ t}dv = sup{v ∈ [0, 1]|m(v) ≤ t}

if m is increasing and t ∈ Im(m). Consequently, if x ∈ Int(Ai) for some i ∈ I we have φ(m(x)) >

x, which implies φ(m(x)) − x > 0 on a set with positive Lebesgue measure which contradicts

assumption (2.7). Note that this argument also covers the case, where the regression function m

is constant on the interval [0, 1].

(b) If the regression function m is decreasing but not constant on the interval [0, 1] there exist

intervals Ai, i ∈ I, where m is constant and intervals Bj , j ∈ J , where m is strictly decreasing. As

in case (a) we have a decomposition of the form (2.8) with constants mi ∈ R (i ∈ I) and strictly

decreasing functions m↘

j = m|Bj
( j ∈ J), that is

m(x) =
∑

i∈I

miIAi
(x) +

∑

j∈J

m↘

j (x).

In this case it follows

φ(m(x)) =

∫ 1

0

I{m(v) ≤ m(x)}dv = 1 − inf{v ∈ [0, 1] |m(v) ≤ m(x)}

Because J 6= ∅ we have φ(m(x)) = 1 − x 6= x on ∪j∈JBj . This is a set of positive Lebesgue

measure, which contradicts assumption (2.7).
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(c) This follows by combining similar arguments as given in (a) and (b).

2

Remark 2.3. For a test of the hypothesis of a strictly antitone regression function a strictly

antitone inverse regression estimate instead of the isotone inverse regression estimate is used in

the definition of the test statistic. An antitone inverse regression estimate is defined by

ϕ̂(t) =

∫ 1

0

I{m̂(v) ≥ t}dv,

and the smoothed version is given by

ϕ̂hd
(t) =

1

hd

∫ 1

0

∫ ∞

t

Kd

(m̂(v) − u

hd

)

dudv.

We now obtain a test statistic for the null hypothesis

H̃0 : m is strictly antitone

as

T̃n =

∫ 1

0

(ϕ̂hd
(m̂(x)) − x)2dx.

It can be shown by similar methods as above that T̃n converges to the quantity

TA =

∫ 1

0

(

∫ 1

0

I{m(v) ≥ m(x)}dv − x
)2

dx,

which vanishes if and only if m is strictly decreasing.

In the following section we derive the asymptotic distribution of the test statistic under the null

hypothesis. We restrict ourselves to the case of testing strict isotonicity but a similar result for

testing the hypothesis of a strictly antitone regression function can be obtained in a similar way.

3 Main result

In this section we investigate the weak convergence of the statistic defined in (2.5). For this purpose

we require several regularity assumptions on the kernels Kd, Kr and the bandwidths hd, hr in the

estimate of the inverse regression function:

(K1) The kernel Kr is of order 2 and three times continuously differentiable with compact support

[−1, 1] such that Kr(±1) = K ′
r(±1) = 0

(K2) The kernel Kd is of order 2, positive and twice continuously differentiable with compact

support [−1, 1] and Kd(±1) = K ′
d(±1) = 0
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(B) If n→ ∞ the bandwidths hd and hr have to satisfy

hr, hd → 0

nhr, nhd → ∞

hr = O(n−1/5)

h2
d log h−1

r /h5/2
r → 0

h1/2
r (log h−1

r )2/nh4
d = O(1).

If the bandwidth hr is chosen asymptotically optimal as hr = γrn
−1/5 for a constant γr > 0, then

the last two conditions simplify to
√

nh4
d log n → 0 and (log n)2/n11/10h4

d = O(1). The second

bandwidth can then, for example, be chosen as hd = γdn
−a with 1/4 < a < 11/40 and γd > 0.

Theorem 3.1. Assume that the regression function m in model (1.1) is four times continuously

differentiable with m′(x) > 0 for all x ∈ [0, 1], f is three times continuously differentiable and

positive and σ2 is continuously differentiable on the interval [0, 1]. If E[µ4(X1)] <∞ with µ4(X1) =

E[(Y1 −m(X1))
4|X1] and conditions (K1), (K2) and (B) are satisfied, we have as n→ ∞

nh
9/2
r

h4
d

(

Tn − h4
dκ

2
2(Kd)(B

[1]
n +B[2]

n )
)

D
→ N (0, V ),

where the asymptotic bias and variance are given by

B[1]
n =

1

nh5
r

∫ 1

0

σ2(x)

f(x)(m′(x))6
dx

∫ 1

−1

K ′′2
r (y)dy

B[2]
n =

∫ 1

0

(m′′(x))2

(m′(x))6
dx

and

V = 4κ4
2(Kd)

(

∫ 1

0

σ2(y)f 2(y)(m′(y))−12dy
)(

∫ 1

0

(

∫ 1

0

K ′′
r (x)K ′′

r (x+ z)dx
)2

dz
)

.

Proof of Theorem 3.1. Let C(A) denote the set of all continuous functions on A ⊂ R. We

consider the test statistic Tn as functional on C(R) × C(R), i.e. Tn = Ψ(φ̂hd, m̂), where

Ψ(f, g) =

∫ 1

0

(f(g(x)) − x)2dx.

For sufficiently smooth f, g the functional ψ is Gateáux differentiable and we obtain by a Taylor

expansion [see Serfling (1980) pp. 314-315] the stochastic expansion
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Tn =

∫ 1

0

{

(m̂−m)(x)(m−1)′(m(x)) + (φ̂hd
−m−1)(m(x))

}2

dx+
1

6
P (3)(λ∗),(3.1)

where λ∗ ∈ [0, 1] and the remainder P (3) is defined by

P (3)(λ) = 6

∫ 1

0

{

g̃(x)[f (1) + λf̃ (1)]([g + λg̃](x)) + f̃([g + λg̃](x))
}

(3.2)

×
{

g̃2(x)[f (2) + λf̃ (2)]([g + λg̃](x)) + 3g̃(x)f̃ (1)([g + λg̃](x))
}

dx

+2

∫ 1

0

{

[f + λf̃ ]([g + λg̃](x)) − x
}

×
{

g̃3(x)[f (3) + λf̃ (3)]([g + λg̃](x)) + 2g̃2(x)f̃ (2)([g + λg̃](x))
}

dx.

A similar calculation shows

φ̂hd
(m(x)) −m−1(m(x)) = Ahd

(m(x)) + ∆(1)
n (m(x)) +

1

2
∆(2)

n (m(x))(1 + oP (1)),(3.3)

where the quantities Ahd
,∆

(1)
n and ∆

(2)
n are given by

Ahd
(m(x)) = φhd

(m)(m(x)) −m−1(m(x))(3.4)

∆(1)
n (m(x)) = −

∫ 1

0

Kd(v)(m
−1)′(m(x) + hdv)(m̂−m)(m−1(m(x) + hdv))dv(3.5)

= −(m−1)′(m(x))(m̂−m)(x) − h2
dκ2(Kd)[(m

−1)′(m(x))]3(m̂−m)′′(x)

−Rn(x)

∆(2)
n (m(x)) = −

1

hd

∫ 1

0

K ′
d(v)(m

−1)′(m(x) + hdv)(m̂−m)2(m−1(m(x) + hdv))dv(3.6)

and the remainder in (3.5) is defined by

Rn(x) = h2
dκ2(Kd)[(m

−1)(3)(m(x))(m̂−m) + 3(m−1)′′(m(x))(m−1)′(m(x))(m̂−m)′(x)](3.7)

+
h3

d

6
[(m−1)′(m̂−m) ◦m−1](3)(ξn(x)).

A combination of these estimates yields for the test statistic the representation

Tn = h4
dκ

2
2(Kd)

∫ 1

0

[m′(x)]−6(m̂(2)(x) −m(2)(x))2dx+

∫ 1

0

A2
hd

(m(x))dx+Qn,(3.8)

where the remainder term Qn is given by

Qn =

∫ 1

0

R2
n(x)dx+

1

4

∫ 1

0

(∆(2)
n (m(x)))2dx

+2
{

− h2
dκ2(Kd)

∫ 1

0

[m′(x)]−3(m̂(2)(x) −m(2)(x))Ahd
(x)dx
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−h2
dκ2(Kd)

∫ 1

0

[m′(x)]−3(m̂(2)(x) −m(2)(x))Rn(x)dx

−h2
dκ2(Kd)

∫ 1

0

[m′(x)]−3(m̂(2)(x) −m(2)(x))∆(2)
n (m(x))dx

+

∫ 1

0

Ahd
(x)Rn(x)dx+

1

2

∫ 1

0

Ahd
(x)∆(2)

n (m(x))dx+
1

2

∫ 1

0

Rn(x)∆(2)
n (m(x))dx

}

+
1

6
P (3)(λ∗)

It follows from Theorem A.1 in the Appendix that the first term in (3.8) converges weakly with a

normal limit, that is

nh
9/2
r

h4
d

· h4
dκ

2
2(Kd)

(

∫ 1

0

[m′(x)]−6(m̂(2)(x) −m(2)(x))2dx− B[1]
n

)

D
→ N (0, V ).(3.9)

For the second term we have by a straightforward calculation

∫ 1

0

A2
hd

(m(x))dx = h4
dκ

2
2(Kd)B

[2]
n + o(h6

d).(3.10)

(note that the remainder term is of order o(h4
d/nh

9/2
r ). The assertion is now a consequence of the

estimate

Qn = op(h
4
d/nh

9/2
r ),(3.11)

which will be proved in several steps.

First note that a standard argument yields

∫ 1

0

R2
n(x)dx ≤ Ch4

d

[

∫ 1

0

w1(x)d
2(x)dx+

∫ 1

0

w2(x)(d
′(x))2dx

+h2
d

∫ 1

0

(

[(m−1)′d ◦m−1](3)(ξ(x))
)2

dx
]

= OP

( h4
d

nh
5/2
r

)

+OP

(h6
d log h−1

r

nh7
r

)

= oP

( h4
d

nh
9/2
r

)

,

where w1(x) = [(m−1)(3)(m(x))]2, w2(x) = [(m−1)(2)(m(x))(m−1)′(m(x))]2, d(x) = m̂(x) −m(x),

and the second inequality follows from the fact that the integrand (m̂(3) − m(3))2 is of order

Op(log h−1
r /nh7

r) uniformly with respect to x [this can be derived by similar methods as in Mack

and Silverman (1982) ] . Similarly, we obtain for the second and third term in the decomposition

of Qn

∫ 1

0

(∆(2)
n (m(x)))2dx =

∫ 1

0

(

∫ 1

−1

Kd(v)[(m
−1)′′(m(x) + hdv)d

2(m−1(m(x) + hdv))

9



+ 2[(m−1)′(m(x) + hdv)]
2d′(m−1(m(x) + hdv))d

2(m−1(m(x) + hdv))]dv
)2

dx

= OP

((log h−1
r )2

n2h4
r

)

= OP

( h4
d

nh
9/2
r

(log h−1
r )2

nh4
d

h1/2
r

)

= oP

( h4
d

nh
9/2
r

)

,

∣

∣

∣
h2

d

∫ 1

0

[m′(x)]−3(m̂(2)(x) −m(2)(x))Ahd
(m(x))dx

∣

∣

∣

≤
∣

∣

∣
h2

d[m
′(x)]−3(m̂

′

(x) −m
′

(x))Ahd
(m(x))

∣

∣

∣

1

0

∣

∣

∣

+
∣

∣

∣
h2

d

∫ 1

0

(m̂
′

(x) −m
′

(x))[(m′(x))−3Ahd
(m(x))]

′

dx
∣

∣

∣

= OP

(

h3
d

( log h−1
r

nh3
r

)1/2)

= oP

( h4
d

nh
9/2
r

)

,

where we have used integration by parts and the assumption that the kernel Kd vanishes at the

boundary of its support. The remaining five terms of Qn are estimated by means of the Cauchy-

Schwarz inequality and are all of order op(h
4
d/(nh

9/2
r )). Consequently, the assertion (3.11) (and

from this estimate the assertion of the theorem) now follows if the estimate

P (3)(λ∗) = op

( h4
d

nh
9/2
r

)

(3.12)

for the random variable defined in (3.2) can be established. For this estimate we introduce the

notation d(x) = m̂(x) −m(x) and dI,−1(y) = φ̂hd
(y) −m−1(y), and obtain the representation

P (3)(λ) = 6

∫ 1

0

{

d(x)[(m−1)(1) + λd
(1)
I,−1]([m+ λd](x)) + dI,−1([m+ λd](x))

}

×
{

d2(x)[(m−1)(2) + λd
(2)
I,−1]([m+ λd](x)) + 2d(x)d

(1)
I,−1([m+ λd](x))

}

dx

+2

∫ 1

0

{

d(x)(m−1)′(ξ̂(x)) + λdI,−1([m+ λd](x))
}

×
{

d3(x)[(m−1)(3) + λd
(3)
I,−1]([m+ λd](x)) + 3d2(x)d

(2)
I,−1([m+ λd](x))

}

dx

for some ξ̂(x) with |ξ̂(x)−m(x)| ≤ |m̂(x)−m(x)|. ¿From Mack and Silverman (1982) and Lemma

B.2 in the Appendix it follows

d(x) = OP

( log h−1
r

nhr

)

,

d
(k)
I,−1(y) = OP

( log h−1
r

nh2k+1
r

)1/2

+O(h2
d) for k = 0, 1, 2,

d
(3)
I,−1(y) = OP

( log h−1
r

nh7
r

)1/2

+ o(hd),
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which yields the estimate

P (3)(λ) =
{

OP

( log h−1
r

nhr

)1/2[

OP (1) +OP

( log h−1
r

nh3
r

)1/2

+O(h2
d)

]

+O(h2
d)

}

×
{

OP

( log h−1
r

nhr

)[

OP (1) +OP

( log h−1
r

nh5
r

)1/2

+O(h2
d)

]

+OP

( log h−1
r

nhr

)1/2[

OP

( log h−1
r

nh3
r

)1/2

+O(h2
d)

]}

+
{

OP

( log h−1
r

nhr

)1/2

+O(h2
d)

}{

OP

( log h−1
r

nhr

)3/2[

OP (1) +OP

( log h−1
r

nh7
r

)1/2

+ o(hd)
]

+OP

( log h−1
r

nhr

)[

OP

( log h−1
r

nh5
r

)1/2

+O(h2
d)

]}

= oP

( h4
d

nh
9/2
r

)

by using the last two conditions on the bandwidths specified in (B). This proves assertion (3.12)

and therefore the proof of Theorem 3.1 is completed. 2

Remark 3.2 If a local polynomial estimate instead of the Nadaraya-Watson estimator is used

Theorem 3.1 still holds with a different bias and variance. If we use the representation of the local

polynomial estimate of order p

m̂p(x) =
1

nh f(x)

n
∑

i=1

K∗
r

(x−Xi

h

)

Yi(1 + oP (1))

with K∗
r denoting the corresponding equivalent kernel [see Fan and Gijbels (1997)], we get under

the assumptions of Theorem 3.1

nh
9/2
r

h4
d

(

Tn − h4
dκ

2
2(Kd)(B̃

[1]
n +B[2]

n )
)

D
→ N (0, Ṽ ),

where the asymptotic bias and variance are given by

B̃[1]
n =

1

nh5
r

∫ 1

0

σ2(x)

f(x)(m′(x))6
dx

∫ 1

−1

(K∗
r )

′′2(y)dy

B[2]
n =

∫ 1

0

(m′′(x))2

(m′(x))6
dx

and

Ṽ = 4κ4
2(Kd)

(

∫ 1

0

σ2(y)f 2(y)(m′(y))−8dy
)(

∫ 1

0

(

∫ 1

0

(K∗
r )′′(x)(K∗

r )′′(x+ z)dx)2dz
)

.
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Appendix: Some auxiliary results

In this section we present several auxiliary results which are required for a proof of Theorem 3.1.

The first one generalizes a result of Hall (1984), who proved asymptotic normality of the integrated

squared error between the Nadaraya-Watson estimate and the unknown regression function. The

proof is similar to the corresponding statement in Hall (1984) for the case k = 0 and therefore not

presented here.

Theorem A.1. Let k ∈ {0, 1, 2} and denote by w a nonnegative weight function. Assume that

A ⊂ R is compact and define

Aε := {x ∈ IR| inf
a∈A

|x− a| < ε}.

Suppose that the variance function σ2 in model (1.1) is bounded and continuously differentiable

on Aε, w is bounded and continuous on Aε, m is (k + 2)-times continuously differentiable on Aε

and f is (k + 1)-times continuously differentiable such that f (k+1) is uniformly continuous on Aε.

If hr → 0;nhr → ∞, nh
3/2+k
r → ∞, hr = O(n−1/5) we have for k = 0, 1, 2

T (k)
n := (n−1h−4k−1α1,k + nh2k−4α2,k)

−1/2
(

∫

A

(m̂(k)(x) −m(k)(x))2w(x)dx− Bn,k

)

D
→ N (0, 1),

where the constants αj,k, γk and Bn,k are given by

α1,k = 2
(

∫

A

σ4(x)w2(x)f−2(x)dx
)(

∫

(

∫

K(k)
r (x)K(k)

r (x+ y)dx
)2

dy
)

, k = 0, 1, 2,

α2,k =

{

4
∫

A
σ2(x)γ2

0(x)w
2(x)f−4(x)dx if k = 0

0 else

γk(x) = κ2(Kr)
(

m(k+2)(x)f(x) + 2m(1)(x)f (k+1)(x) +

k−1
∑

j=0

( k

j + 1

)k + 2 + j

k − j
m(k+2−j)(x)f (j)(x)

)

Bn,k =

{

1
nhr

∫ 1

0
σ2(x)w(x)

f(x)
dx

∫ 1

−1
K2

r (y)dy + h4
rκ

2
2(Kr)

∫ 1

0
(m′′(x)f(x)−m(x)f ′′(x))w(x)

f2(x)
dx if k = 0

1

nh2k+1
r

∫ 1

0
σ2(x)w(x)

f(x)
dx

∫ 1

−1
K

(k)
r

2
(y)dy if k = 1, 2

Theorem A.2. Define J := J (δ) = [m (0) + δ,m (1) − δ], where δ := δ (hd) > 0 is chosen such

that for all t ∈ J (δ): t+hdv ∈ [m (0) , m (1)], whenever v ∈ [−1, 1]. Assume that the assumptions

of Theorem 3.1 are satisfied, then almost surely

sup
t

|(φ̂hd
)(s)(t) − (m−1)(s)(t)| = O

( log h−1
r

nh2s+1
r

)1/2

+O(h2
d) for s = 0, 1, 2

sup
t

|(φ̂hd
)(3)(t) − (m−1)(3)(t)| = O

( log h−1
r

nh5
r

)1/2

+ o(hd).

12



Proof. Note that the supremum can be decomposed into two stochastic parts and one determin-

istic part, i.e.

sup
t∈J

|φ̂(s)
hd

(t) − (m−1)(s)(t)| ≤ sup
t∈J

|
∂s

∂ts
Ahd

(t)| + sup
t∈J

|
∂s

∂ts
∆(1)

n (t)| + sup
t∈J

|
∂s

∂ts
∆(2)

n (t)|,(A.1)

where Ahd
, ∆

(1)
n and ∆

(2)
n are defined in (3.4) - (3.6). From (3.5) we get the s-th derivative of

∆
(1)
n (t) as

∂s

∂ts
∆(1)

n (t) =

∫ 1

−1

Kd(v)
{

s
∑

j=0

∂j

∂tj
[d ◦m−1](t+ hdv)

∂s−j

∂ts−j
(m−1)′(t+ hdv)

}

dv,

where we again define d(x) = m̂(x) −m(x). Observing that the supremum of the j-th derivative

of d is almost surely of order O(log h−1
r /nh2j+1

r )1/2 it follows

sup
t∈J

|
∂s

∂ts
∆(1)

n (t)|
f.s.
= O

( log h−1
r

nh2s+1
r

)1/2

.(A.2)

For the consideration of ∂s/∂ts∆
(2)
n (t) when 0 ≤ s ≤ 2 we use integration by parts in a first step

and obtain the representation

∂s

∂ts
∆(2)

n (t) = −

∫ 1

−1

Kd(v)
∂s

∂ts
{2d(m−1(tn))d(1)(m−1(tn))(m−1)′ 2(tn) + d2(m−1(tn))(m−1)(2)(tn)}

= O
( log h−1

r

nhs+2
r

)

= o
( log h−1

r

nh2s+1
r

)1/2

(A.3)

with tn = t + hdv. If s = 3 a different representation is neccessary because m is only four times

differentiable. In this case it follows by directly differentiating in representation (3.6)

∂3

∂t3
∆(2)

n (t) = O
( log h−1

r

nh4
rhd

)

= o
( log h−1

r

nh7
r

)1/2

.(A.4)

A similar calculation as for (3.10) yields for the deterministic part

Ahd
(t) = hd

∫ 1

−1

vKd(v)(m
−1)′(t+ hdv) = h2

d(m
−1)(2)(t+ hdv)κ2(Kd) + o(h2

d).(A.5)

For 0 ≤ s ≤ 2 we get an estimate of the deterministic part by differentiating s times in (A.5).

Therefore the order is

sup
t∈J

|
∂s

∂ts
Ahd

(t)| = O(h2
d).(A.6)

If s = 3 differentiating in (A.5) yields

sup
t∈J

|
∂3

∂t3
Ahd

(t)| = o(hd).(A.7)

13



The assertion of Theorem A.2 finally follows by combining the results (A.1)-(A.4), (A.6) and

(A.7). 2
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