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Abstract

In environmental sciences, it is often of interest to assess whether the dependence between
extreme measurements has changed during the observation period. The aim of this work
is to propose a statistical test that is particularly sensitive to such changes. The resulting
procedure is also extended to allow the detection of changes in the extreme-value dependence
under the presence of known breaks in the marginal distributions. Simulations are carried
out to study the finite-sample behavior of both versions of the proposed test. Illustrations
on hydrological data sets conclude the work.
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1 Introduction

The study of extremes is of importance in many environmental applications. Prominent exam-
ples are the analysis of floods (Hosking and Wallis, 2005), heavy rainfalls (Cooley et al., 2007)
and extreme temperatures (Katz and Brown, 1992). Many of these problems are intrinsically
multivariate; for instance, the severity of a flood depends not only on its peak flow, which is
considered in many univariate flood studies, but also on its volume and its duration (Yue et al.,
1999). Catastrophic flood events typically occur when more than one of these variables is taking
a high value and therefore, the analysis of the joint behavior is of key importance. In a river
system, where flood data are collected from a number of stations, inference at a specific loca-
tion can be greatly improved by incorporating observations from neighboring stations (Hosking
and Wallis, 2005). Similarly, extreme temperatures are commonly studied at several stations
simultaneously.

In most of these environmental applications, it is common practice to assess the extreme
observations by (modifications of) the annual block maxima method, popularized in the classi-
cal monograph by Gumbel (1958). Univariate observations collected on, say, a daily basis are
aggregated by taking maxima over a longer time period, usually a year for stationarity consider-
ations, resulting in a sample of maxima capturing most of the extreme outcomes. Thanks to the
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extremal types theorem, univariate block maxima are approximately distributed according to
the (parametric) generalized extreme distribution, while the dependence within a vector of block
maxima can be described approximately by a (nonparametric) extreme-value copula (de Haan
and Ferreira, 2006). The resulting joint distributions are called multivariate extreme-value
distributions and serve as a widely accepted model for multivariate block maxima.

In statistical applications, it is common practice to assume that the time series of block
maxima is stationary, temporarily independent and that its stationary distribution is exactly
of the extreme-value type. Except for stationarity, the above assumptions are theoretically
justified by the results of Bücher and Segers (2014) if the focus is solely on the dependence
structure. In the current paper, we address the issue of stationarity by developing tests for
change-point detection within the multivariate contemporary distribution.

More precisely, assuming that we observe a sample of independent multivariate observations
X1, . . . ,Xn, where each Xi follows a multivariate extreme-value distribution whose c.d.f. is
denoted Hpiq, we develop a test for the hypothesis

H0 : Hp1q “ . . . “ Hpnq (1.1)

against alternatives involving the non-constancy of the c.d.f.s. Since the univariate version of
this problem has been treated, for instance, in Jaruškova and Rencová (2008) using results from
Chapter 1 of Csörgő and Horváth (1997), we will be particularly interested in the multivariate
setting throughout this paper.

Outside of the extreme-value framework, there is a huge amount of literature on detecting
deviations from H0, see the classical monograph of Csörgő and Horváth (1997) or Aue and
Horváth (2013) for a recent review. It is useful to note that, by Sklar’s theorem (Sklar, 1959),
we can rewrite H0 as H0,m XH0,c, where

H0,m : Hp1q, . . . ,Hpnq have time-homogeneous marginal c.d.f.s, (1.2)

H0,c : Hp1q, . . . ,Hpnq have the same copula (i.e., dependence). (1.3)

Roughly speaking, tests for H0 can be divided into two groups: tests that are powerful against
deviations from H0,m but which are rather insensitive to deviations from H0,c, and vice versa, see
Bücher et al. (2014) for a discussion. In the present setting of observing data from a multivariate
extreme-value distribution, the tests considered for instance in Jaruškova and Rencová (2008)
can be used to detect deviations from H0,m, whence it will be our main concern to design a
test that is particularly sensitive to deviations from H0,c when C is known to be an extreme-
value copula. Note that none of the existing tests for changes in the copula (see, e.g., Bücher
et al., 2014; Kojadinovic et al., 2015, among others) incorporates the latter information, whence
an improvement in the power properties seems possible. In fact, our simulation study partially
reported in Section 5 suggests that our proposed testing procedure is indeed superior to existing
methods.

The test tailored to deal with extreme-value dependence that we propose is however affected
by the same limitations as the aforementioned more general testing procedures: it can be used
to reject H0,c only if H0,m holds. In some situations, although there are reasons to consider
that H0,m is not true, it is still of interest to assess whether H0,c holds or not. For instance, in
the hydrological applications to be presented in Section 6, the construction of dams during the
observation period suggests that there might be potential breaks in the marginal distributions
of extreme peak flows or volumes, while it is still of interest to assess whether the dependence
between the variables of interest has changed or not. A second contribution of this work is thus
to propose an extension of the studied testing procedure that can be used to detect deviations
from H0,c under certain types of simple departures from H0,m.
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The remaining part of the paper is organized as follows: The second section is devoted
to mathematical preliminaries about extreme-value copulas. In Section 3, a first version of
the testing procedure is presented along with theoretical results establishing its asymptotic
validity under H0. An extension of the studied test that can be used to detect change in the
extreme-value dependence under known marginal breaks is proposed in Section 4 along with
generalizations of the theoretical results of Section 3. Section 5 partially reports the results
of extensive Monte Carlo experiments. Two illustrations on hydrological data sets are finally
presented in Section 6. All proofs are deferred to a sequence of appendices.

2 Notation and mathematical preliminaries

In this section, we set the notation and gather some mathematical preliminaries needed through-
out the paper. Let X “ pX1, . . . , Xdq be a d-dimensional random vector with continuous
marginal c.d.f.s F1, . . . , Fd. By Sklar’s theorem (Sklar, 1959), the joint c.d.f. H of X can be
uniquely decomposed as

Hpxq “ C tF1px1q, . . . , Fdpxdqu , x “ px1, . . . , xdq P Rd, (2.1)

where the so-called copula C : r0, 1sd Ñ r0, 1s is the joint c.d.f. of U “ pU1, . . . , Udq with
Uj “ FjpXjq.

Throughout the paper, we will assume that the copula C in (2.1) is an extreme-value copula.
As a consequence of the results in Pickands (1981), these copulas can be parametrized by a
function A : Sd´1 Ñ r1{d, 1s on the pd´ 1q-dimensional unit simplex Sd´1 “ tt “ pt2, . . . , tdq P
r0, 1sd´1 : t2 ` . . . ` td ď 1u, usually referred to as the Pickands dependence function. More
precisely, we have

Cpuq “ exp

#˜

d
ÿ

j“1

log uj

¸

A

˜

log u2
řd
j“1 log uj

, . . . ,
log ud

řd
j“1 log uj

¸+

(2.2)

for any u P p0, 1sdztp1, . . . , 1qu. If relation (2.2) is met, then A is necessarily convex and satisfies
the boundary condition maxt1 ´

řd
j“2 tj , t2, . . . , tdu ď Aptq ď 1 for all t “ pt2, . . . , tdq P Sd´1.

The latter two conditions are, however, not sufficient to characterize the class of Pickands
dependence functions unless d “ 2, see, e.g., Beirlant et al. (2004) for a counterexample and
Ressel (2013) for recent results concerning the case d ą 2.

Assuming to observe a sample Xi, i “ 1, . . . , n, of serially independent random vectors such
that Xi has copula Cpiq and corresponding Pickands dependence function Apiq, we can use the
representation in (2.2) to rewrite H0,c in (1.3) equivalently as

H0,c : Ap1q “ ¨ ¨ ¨ “ Apnq “ A. (2.3)

The test statistics in the subsequent sections will be particularly designed for detecting devia-
tions from this hypothesis.

In the rest of the paper, for notational convenience, we will work mostly in dimension d “ 2.
Furthermore, given a set T , p`8pT q, }¨}8q will denote the space of real-valued, bounded functions
on T equipped with the supremum norm } ¨ }8. The arrow ù denotes weak convergence in
the sense of Hoffmann-Jørgensen, see van der Vaart and Wellner (1996).
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3 Test statistics for d “ 2 under stationarity of the marginals

We begin by restricting ourselves to the case of dimension d “ 2 and assume to observe an
independent sample pXi, Yiq, i “ 1, . . . , n, such that pXi, Yiq has unknown c.d.f. Hpiq, copula Cpiq

and continuous margins F piq and Gpiq, respectively, where each Cpiq is assumed to be an extreme-
value copula with Pickands dependence function Apiq : r0, 1s Ñ r1{2, 1s.

We aim at developing tests for change-point detection that are consistent against deviations
form H0,c in (2.3) provided H0,m in (1.2) holds.

Our test statistic will be of the CUSUM-type and will be based on the rank-based estimator
of A proposed by Ferreira (2013). The underlying idea of that estimator is as follows: if pU, V q
is distributed according to some extreme-value copula C with Pickands dependence function A,
then

Aptq “
E
 

max
`

U1{p1´tq, V 1{t
˘(

1´ E
 

max
`

U1{p1´tq, V 1{t
˘( , t P r0, 1s,

with the convention that u1{0 “ 0 for any u P p0, 1q. The function

Sptq “ E
!

max
´

U1{p1´tq, V 1{t
¯)

, t P r0, 1s, (3.1)

is simply an expected value, whence defining an estimator for S under the null hypothesis
H0 “ H0,m XH0,c in (1.1) is straightforward once we have estimated the unobservable sample
pUi, Viq “ pF pXiq, GpYiqq, i “ 1, . . . , n. To do so, it is common to compute the scaled ranks

Û1:n,i “
1

n` 1

n
ÿ

j“1

1 pXj ď Xiq , V̂1:n,i “
1

n` 1

n
ÿ

j“1

1 pYj ď Yiq , i “ 1, . . . , n, (3.2)

frequently referred to as pseudo-observations from the unknown copula C. Then, a natural
estimator of S is simply

Ŝ1:nptq “
1

n

n
ÿ

i“1

max
´

Û
1{p1´tq
1:n,i , V̂

1{t
1:n,i

¯

, t P r0, 1s.

The corresponding estimator of A, namely

Â1:nptq “ Ŝ1:nptq{t1´ Ŝ1:nptqu, t P r0, 1s,

was shown to be consistent and was investigated empirically in Ferreira (2013). As a by-product
of our work, we establish the asymptotic distribution of the process

?
npÂ1:n´Aq in the following

proposition proved in Appendix A. To the best of our knowledge, this result is new and might
be of independent interest, for instance for the construction of uniform confidence bands.

Proposition 3.1. Suppose that pXi, Yiq, i “ 1, . . . , n, are i.i.d. from a bivariate distribution
with continuous marginal c.d.f.s and extreme-value copula C whose Pickands dependence func-
tion A is continuously differentiable on p0, 1q. Then, in the normed space p`8pr0, 1sq, } ¨ }8q,?
npÂ1:n ´Aq ù LC , where

LCptq “ ´t1`Aptqu2
ż 1

0
CCp0, 1, y1´t, ytq dy

and CCp0, 1, ¨, ¨q is the weak limit of the empirical copula process (see, e.g., Segers, 2012) as
defined in Proposition 3.2 below.
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In order to define a CUSUM-type procedure for testing H0 in (1.1), we consider the following
subsample analogues of Ŝ1:n based on subsequences pXk, Ykq, . . . , pX`, Y`q, 1 ď k ď ` ď n,
namely

Ŝk:`ptq “
1

`´ k ` 1

ÿ̀

i“k

max
´

Û
1{p1´tq
k:l,i , V̂

1{t
k:l,i

¯

, t P r0, 1s, (3.3)

where

Ûk:`,i “
1

`´ k ` 2

ÿ̀

j“k

1 pXj ď Xiq , V̂k:`,i “
1

`´ k ` 2

ÿ̀

j“k

1 pYj ď Yiq , (3.4)

with the convention that Ŝk:` “ 0 for k ą `. The corresponding subsample estimators of A are
then simply

Âk:`ptq “ Ŝk:`ptq{t1´ Ŝk:`ptqu, t P r0, 1s. (3.5)

Under H0, the difference between Â1:k and Âk`1:n should be small for any k “ 1, . . . , n´ 1,
which suggests to base test statistics for H0 on the process

Dnps, tq “
tnsupn´ tnsuq

n3{2

!

Â1:tnsuptq ´ Âtnsu`1:nptq
)

, (3.6)

for ps, tq P r0, 1s2. Typical test statistics would be given by Kolmogorov–Smirnov or L2-type
functionals of Dn. Throughout this paper, we focus on the hybrid version

Sn,A “ max
1ďkăn

ż

r0,1s
tDnpk{n, tqu2 dµptq, (3.7)

where µ denotes some finite measure on r0, 1s. In the finite-sample experiments of Section 5,
we use µ “ T´1

ř

tPΓ δt for some finite grid Γ “ tt1, . . . , tT u Ă r0, 1s, where δt is the Dirac mass
at t. A related two-sample statistic for detecting breaks at some pre-specified time point k‹ is
simply given by

Sn,Apk
‹q “

ż

r0,1s
tDnpk‹{n, tqu2 dµptq. (3.8)

Note that the aforementioned test statistics do not incorporate the information that the marginal
distributions are (or should be close to) generalized extreme-value (GEV) distributions. There
are several reasons for ignoring that information: First of all, since we are only interested in
the dependence, it seems natural to ignore any marginal information. This is theoretically
justified by results in Genest and Segers (2010), where it is shown that rank-based estimation
of copulas may be substantially more efficient than estimation based on even exact knowledge
of the marginal distributions. Second, even if we opt for a semiparametric estimation of the
dependence structure based on a parametric estimation of the marginal distributions, we could
expect the estimation of the copula to be quite negatively affected by the fact that estimators
of GEV parameters have frequently a large variance. Last but not least, extreme-value copulas
are also of interest outside of the genuine extreme-value framework, where margins are not
necessarily of the GEV-type.

The following proposition, proved in Appendix A, establishes weak convergence of the key
process Dn in (3.6) under H0 in (1.1). It is essential for deriving the weak limit of the preceding
test statistics.
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Proposition 3.2. Suppose that H0 holds and that A is continuously differentiable on p0, 1q.
Then, in the normed space p`8pr0, 1s2q, } ¨ }8q, Dn ù DC , where

DCps, tq “ t1`Aptqu2
ż 1

0
sCCps, 1, y1´t, ytq ´ p1´ sqCCp0, s, y1´t, ytq dy. (3.9)

Here, CC denotes a centered Gaussian process on ∆ˆr0, 1s2, with ∆ “ tps, s1q P r0, 1s2 : s ď s1u,
defined through

CCps, s1, u, vq “ tBCps1, u, vq ´ BCps, u, vqu ´ 9C1pu, vqtBCps1, u, 1q ´ BCps, u, 1qu

´ 9C2pu, vqtBCps1, 1, vq ´ BCps, 1, vqu

if pu, vq P p0, 1q2 and CCps, s1, u, vq “ 0 else, where BC denotes a tight, centered Gaussian
process on p`8pr0, 1s3q, } ¨ }8q with covariance kernel

EtBCps, u, vqBCps1, u1, v1qu “ minps, s1qrCtminpu, u1q,minpv, v1qu ´ Cpu, vqCpu1, v1qs,

and where 9Cj, j “ 1, 2, denotes the jth first-order partial derivative of C.

The limit process DC in (3.9) depends in an intractable way on the unknown copula C, and,
as a consequence, so do the limit distributions of the test statistics Sn,A in (3.7) and Sn,Apk

‹q

in (3.8). The following multiplier bootstrap approximations, initially proposed by Scaillet (2005)
and Rémillard and Scaillet (2009) in a copula setting, allow for the derivation of suitable ap-
proximations of the critical values.

Let B be some large integer and let ξ
pbq
i , i “ 1, . . . , n, b “ 1, . . . , B, denote i.i.d. standard

normal random variables. Motivated by recent results in Bücher and Kojadinovic (2014) and
Bücher et al. (2014) on the multiplier bootstrap in a sequential setting, we can approximate the
Gaussian process BC appearing in the limit DC defined in (3.9) by

B̌pbqn ps, s1, u, vq “
1
?
n

tns1u
ÿ

i“tnsu`1

ξ
pbq
i

!

1
`

Ûtnsu`1:tns1u,i ď u, V̂tnsu`1:tns1u,i ď v
˘

´Ctnsu`1:tns1upu, vq
)

,

(3.10)

for ps, s1, u, vq P ∆ ˆ r0, 1s2, where, for 1 ď k ď ` ď n, Ck:` denotes the empirical copula based
on the sample pXk, Ykq, . . . , pX`, Y`q, that is,

Ck:`pu, vq “
1

`´ k ` 1

ÿ̀

i“k

1
`

Ûk:`,i ď u, V̂k:`,i ď v
˘

, pu, vq P r0, 1s2, (3.11)

with the convention that Ck:` “ 0 if k ą `. If we replace BC by B̌pbqn and all other unknown
quantities in the definition of DC by natural estimators, then some standard calculations, carried
out explicitly in the proof of the next proposition, suggest to define bootstrap replicates of Dn
as

Ďpbqn ps, tq “ t1 ` Â1:nptqu
2 ˆ

"

tnsu

n3{2

n
ÿ

i“tnsu`1

ξ
pbq
i ŵtnsu`1:n,iptq ´

n´ tnsu

n3{2

tnsu
ÿ

i“1

ξ
pbq
i ŵ1:tnsu,iptq

*

,

(3.12)
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for ps, tq P r0, 1s2, where, for any 1 ď k ď ` ď n,

ŵk:`,iptq “ smk:`ptq ´ m̂k:`,iptq ` tûk:`,iptq ´ suk:`ptqu
âk:`ptq

b̂k:`ptq
` tv̂k:`,iptq ´ svk:`ptqu

ĉk:`ptq

d̂k:`ptq
, (3.13)

with smk:`, suk:` and svk:` denoting the arithmetic mean (over i “ k, . . . , `) of

m̂k:`,iptq “ maxpÛ
1{p1´tq
k:`,i , V̂

1{t
k:`,iq, ûk:`,iptq “ Û

b̂k:`ptq{p1´tq
k:`,i , v̂k:`,iptq “ V̂

d̂k:`ptq{t
k:`,i ,

respectively, and with

âk:`ptq “ Âk:`ptq ´ tÂ
1
k:`,nptq, b̂k:`ptq “ Âk:`ptq ` t,

ĉk:`ptq “ Âk:`ptq ` p1´ tqÂ
1
k:`,nptq, d̂k:`ptq “ Âk:`ptq ` 1´ t,

where, for some positive sequence hn Ó 0 such that infně1 hn
?
n ą 0,

Â1k:`,nptq “ minrmaxtA1k:`,nptq,´1u, 1s, t P r0, 1s, (3.14)

with

A1k:`,nptq “
1

2hn

!

Âk:`pt` hnq ´ Âk:`pt´ hnq
)

, (3.15)

for t P phn, 1 ´ hnq, while A1k:`,nptq “ A1k:`,nphnq for t ď hn and A1k:`,nptq “ A1k:`,np1 ´ hnq for
t ě 1´ hn.

The following proposition, proved in Appendix B, establishes the asymptotic validity of the
above resampling scheme under H0 in (1.1).

Proposition 3.3. Under the conditions of Proposition 3.2,
´

Dn, Ďp1qn , . . . , ĎpBqn

¯

ù

´

DC ,D
p1q
C , . . . ,DpBqC

¯

in p`8pr0, 1s2q, } ¨ }8q
B`1, where Dp1qC , . . . ,DpBqC denote independent copies of DC .

Bootstrap analogues of the test statistics in (3.7) and (3.8) can be defined by replacing
Dn by Ďpbqn in the corresponding definitions. Through the continuous mapping theorem, we
immediately obtain that, under H0, the random vector pSn,A, Š

p1q

n,A, . . . , Š
pBq

n,Aq P RB`1 weakly
converges to a vector with i.i.d. components, each component having the same distribution
as supsPr0,1s

ş

r0,1sD
2
Cps, tq dµptq. Hence, a test rejecting H0 at the significance level α if Sn,A

exceeds the tp1 ´ αqBu-th order statistic of Šp1qn,A, . . . , Š
pBq

n,A asymptotically keeps its level for
nÑ8 followed by B Ñ8 (see Appendix F in Bücher and Kojadinovic, 2014).

At the cost of a more complex notation, the results presented in this section can be extended
to the case d ą 2. The main steps are given in Appendix C.

4 Test statistics for d “ 2 under known marginal breaks

It is only if H0,m in (1.2) holds that the tests developed in the previous section can be used to
reject H0,c in (2.3). Empirical evidence of the latter fact will be given in Section 5. In some
applications, such as those presented in Section 6, there might be reasons to believe that (1.2)
does not hold. The aim of this section is to propose an adaptation of the tests derived in
the previous section that will be consistent against H0,c in (2.3) when there are known abrupt
changes in the margins.
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Recall that we assume to observe an independent sequence pXi, Yiq, i “ 1, . . . , n, where
pXi, Yiq has copula Cpiq and continuous marginal c.d.f.s F piq and Gpiq, respectively. Before
considering a more general framework, we shall first focus, for pedagogical reasons, on the
following simple hypothesis for the margins:

H1,m :

$

&

%

there exists a known θ P p0, 1q such that

F p1q “ ¨ ¨ ¨ “ F ptnθuq ‰ F ptnθu`1q “ ¨ ¨ ¨ “ F pnq,

Gp1q “ ¨ ¨ ¨ “ Gptnθuq ‰ Gptnθu`1q “ ¨ ¨ ¨ “ Gpnq,

(4.1)

that is, both margins change abruptly at the same time point tnθu. As we continue, we shall
also use the notation m “ tnθu. In the illustrative applications presented in Section 6, this time
point corresponds to the construction of a dam on a river.

In order to adapt the testing procedures derived in the previous section to the above setting,
we need to propose an appropriate version of the test statistics Sn,A in (3.7) and Sn,Apk

‹q in (3.8)
under H1,mXH0,c, where H0,c is defined in (2.3). Mimicking the developments carried out in the
previous section, it is natural to start from adequate versions of the estimators in (3.3). Hence,
assume that H1,mXH0,c holds, and let pXi, Yiq, i “ k, . . . , `, be some subsample. If k ă m ă `,
a natural estimator for S in (3.1) is given by a convex combination of the estimators defined
in (3.3), one based on the subsample from k to m, the other on the subsample from m` 1 to `.
In other words, meaningful analogues of the estimators in (3.3) are, for any t P r0, 1s,

Ŝθk:`ptq “

#

m´k`1
`´k`1 Ŝk:mptq `

`´m
`´k`1 Ŝm`1:`ptq, if k ă m ă `,

Ŝk:`ptq, otherwise.
(4.2)

Proceeding as in the previous section, the corresponding subsample estimators of A are then
simply

Âθk:`ptq “
Ŝθk:`ptq

1´ Ŝθk:`ptq
, t P r0, 1s. (4.3)

It is easy to verify that the formulas in (4.2) and (4.3) coincide with those in (3.3) and (3.5),
respectively, provided that the pseudo-observations in (3.4) are replaced by appropriates ones
taking into account the break in the margins at time point m, namely, for i “ k, . . . , `,

Ûθ,k:`,i “

$

’

&

’

%

Ûk:`,i if m R tk, . . . `u,

Ûk:m,i if m P tk, . . . , `u and i ď m,

Ûm`1:`,i if m P tk, . . . , `u and i ą m,

(4.4)

and similarly for V̂θ,k:`,i. Thus, from a practical perspective, once the above adapted pseudo-
observations are computed, the computer code for the simpler setting considered in the previous
section can be fully reused.

It follows that natural generalizations of the process Dn and the statistics Sn,A and Sn,Apk
‹q,

defined in (3.6), (3.7) and (3.8), respectively, are simply

Dθnps, tq “
tnsupn´ tnsuq

n3{2

!

Âθ1:tnsuptq ´ Â
θ
tnsu`1:nptq

)

, ps, tq P r0, 1s2

and

Sθn,A “ max
1ďkăn

ż

r0,1s

!

Dθnpk{n, tq
)2

dµptq, Sθn,Apk
‹q “

ż

r0,1s

!

Dθnpk‹{n, tq
)2

dµptq, (4.5)

respectively.

The following proposition, proved in Appendix A, establishes the limit distribution of Dθn
under H0,c XH1,m, where H0,c and H1,m are defined in (2.3) and (4.1), respectively.
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Proposition 4.1. Assume that H0,c X H1,m holds and that the Pickands dependence func-
tion A associated with C is continuously differentiable on p0, 1q. Then, in the normed space
p`8pr0, 1s2q, } ¨ }8q, Dθn ù DC , where DC is defined in (3.9).

Hence, we see that the limit distribution of the process Dθn under H0,c X H1,m does not
depend on the marginal break point θ and coincides with that of the process Dn in (3.6) whose
asymptotics were studied in Proposition 3.2 under H0,c XH0,m, where H0,m is defined in (1.2).

To carry out the tests based on Sθn,A and Sθn,Apk
‹q, we need bootstrap replicates of the pro-

cess Dθ
n. The latter are denoted by Ďθ,pbq

n , b “ 1, . . . , B, and are defined exactly as in (3.12),
except for the underlying pseudo-observations which are computed as in (4.4). The next result,
proved in Appendix B, establishes the asymptotic validity of the proposed resampling scheme
under H0,c XH1,m.

Proposition 4.2. Under the conditions of Proposition 4.1, in p`8pr0, 1s2q, } ¨ }8q
B`1,

´

Dθn, Ďθ,p1qn , . . . , Ďθ,pBqn

¯

ù

´

DC ,D
p1q
C , . . . ,DpBqC

¯

,

where DC is defined in (3.9) and Dp1qC , . . . ,DpBqC denote independent copies of DC .

Multiplier bootstrap replicates of the test statistics in (4.5) are defined mutatis mutandis, the
only difference with the formulas of Section 3 being again the pseudo-observations which are
computed using (4.4). As previously, the null hypothesis is rejected at the significance level α
if Sθn,A (resp. Sθn,Apk

‹q) exceeds the tp1´ αqBu-th order statistic computed from the sample of
its B multiplier bootstrap replicates.

We end this section by three remarks on further possible extensions.

Remark 4.3. (More than one marginal break) In the preceding parts of this section,
we restricted ourselves to the case of exactly one abrupt break that affects both marginal
distributions. At the cost of a more complex notation, the previous results can all be simply
extended to a more general setting. For R P N, R ě 1, let

ΘR “ tpθ0, θ1, . . . , θR`1q P RR`2 : 0 “ θ0 ă θ1 ă ¨ ¨ ¨ ă θR ă θR`1 “ 1u.

A vector θ P ΘR should be interpreted as encoding (rescaled) time points where at least one of
the marginal distributions changes abruptly. Specifically, let

HpRq1,m :

$

’

’

’

’

&

’

’

’

’

%

there exists a known θ P ΘR such that, for any r “ 0, . . . , R,

F ptnθru`1q “ . . . “ F ptnθr`1uq

Gptnθru`1q “ . . . “ Gptnθr`1uq

and such that, for at least one of the margins,
the c.d.f.s at tnθru and tnθru` 1 are different.

Identifying the parameter θ P p0, 1q used previously in this section with the vector θ “ p0, θ, 1q P

Θ1, we see that H1,m in (4.1) implies Hp1q1,m above. To derive an extension of the test based

on Sθn,A in (4.5) that can be used to reject H0,c in (2.3) under HpRq

1,m above, it merely suffices
to adapt the definition of the pseudo-observations in (4.4) to this more complex situation. For
that purpose, let mr “ tnθru for all r “ 0, . . . , R` 1, and, for any i “ 1, . . . , n, let

m^ “ m^piq “ maxtmr P tm0, . . . ,mRu : mr ă iu,

m_ “ m_piq “ mintmr P tm1, . . . ,mR`1u : mr ě iu,

9



such that i P tm^ ` 1, . . . ,m_u. Then, analogously to (4.4), we can define pseudo-observations

adapted to HpRq1,m, for 1 ď k ď ` ď n and i “ k, . . . , `, as

Ûθ,k:`,i “

$

’

’

’

’

&

’

’

’

’

%

Ûk:`,i if m^ ă k and ` ă m_,

Ûm^`1:`,i if m^ ě k and ` ă m_,

Ûk:m_,i if m^ ă k and ` ě m_,

Ûm^`1:m_,i if m^ ě k and ` ě m_,

and similarly for V̂θ,k:`,i. All the formulas from Section 3 remain identical up to the use of the
above definition for the pseudo-observations. In addition, the proofs of the theoretical results
stated in this section extend easily but are more cumbersome to write. For the sake of brevity,
we omit further details.

Remark 4.4. (Extension to PQD copulas)The previously studied tests could be extended
to copulas that are not necessary of the extreme-value type, for instance to positive quad-
rant dependent (PQD) copulas (see, e.g., Nelsen, 2006, Chapter 5), that is, copulas satisfying
Cpu, vq ě uv for all pu, vq P r0, 1s2. Starting from (2.2), it can be easily verified that extreme-
value copulas are PQD. The extension of the tests to PQD copulas relies on the fact (used in
the proofs given in Appendices A and B) that the Pickands dependence function associated
with an extreme-value copula C can be expressed as

Aptq “
1´

ş1
0 Cpy

1´t, ytq dy
ş1
0 Cpy

1´t, ytq dy
, t P r0, 1s.

The previous functional of C remains well-defined outside of the extreme-value framework as
long as

ş1
0 Cpy

1´t, ytqdy ‰ 0. The PQD condition, for instance, ensures that Cpy1´t, ytq ě y for
all py, tq P p0, 1q ˆ r0, 1s, and therefore the existence of A.

The only change necessary to extend the previously studied tests to PQD copulas concerns
the estimation of the partial derivatives 9C1 and 9C2 of the copula C that is required for car-
rying out the multiplier resampling scheme. The approach adopted in Section 3 (see (3.15))
could be replaced by the more classical one consisting of using finite-differences based on the
empirical copula. This would however lead to significantly less convenient formulas as far as
implementation is concerned. Given that the meaning of the functional A is unclear outside of
the extreme-value framework and that tests for change-point detection for non extreme-value
copulas already exist (see, e.g., Bücher et al., 2014; Kojadinovic et al., 2015), we do not pursue
this further.

Remark 4.5. (Estimation of the marginal change-points)An even more general frame-
work regarding marginal change-points is to assume that their number is known but not their
position. For instance, under the assumption of one unknown marginal (scaled) change-point
θ P p0, 1q in the first margin, its value could be estimated under some additional assumption on
the nature of the change-point (change in mean, in variance, etc). A sensible estimator θ̂n of θ is
then given by k̂{n, where k̂ is the value of k P t1, . . . , n´1u that maximizes a corresponding nat-
ural max-type change-point statistic. Under the additional assumption that θ̂n ´ θ “ OPp1{nq
(see, e.g., Dümbgen, 1991), we conjecture that the limiting behavior of the statistic S θ̂nn,A is the

same as that of Sθn,A in (4.5). The theoretical justification seems to be quite involved, and, since
we do not need this extension for the hydrological applications presented in Section 6, we do
not pursue this further.
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5 Simulation study

Simulations were carried out in order to evaluate the finite-sample performance of the tests
studied in Sections 3 and 4. For the sake of simplicity, we only focused on the tests based on
Sn,A in (3.7) and Sθn,A in (4.5), as the finite-sample behavior of the corresponding two-sample
tests should be strongly related. Recall that the tests based on Sn,A and Sθn,A are procedures for
testing H0 in (1.1) designed to be particularly sensitive to departures from H0,c in (2.3). The
former (resp. latter) should not be used to reject H0,c unless H0,m in (1.2) (resp. H1,m in (4.1))
holds.

The rejection rates of the two tests were estimated from samples drawn from bivariate dis-
tributions whose copulas are of the form

Ca,ϑpu, vq “ ua1va2Cϑpu
1´a1 , v1´a2q, pu, vq P r0, 1s2, (4.6)

where Cϑ is a symmetric extreme-value copula with parameter ϑ P R and a “ pa1, a2q P r0, 1s
2

is a parameter controlling the amount of asymmetry. The above copula construction principle
is frequently referred to as Khoudraji’s device (Khoudraji, 1995; Genest et al., 1998; Liebscher,
2008). As long as Cϑ is an extreme-value copula, so is its potentially asymmetric version Ca,ϑ.
Given that there is hardly any practical difference among the existing bivariate symmetric
parametric families of extreme-value copulas (see Genest et al., 2011, for more details), Cϑ
in (4.6) was taken to be the Gumbel–Hougaard copula with parameter ϑ.

The finite-sample performance of the tests based on Sn,A and Sθn,A was compared with that
of two other tests for H0 designed to be particularly sensitive to H0,c in (1.3): the test based
on the empirical copula studied in Bücher et al. (2014) (statistic Šn) and the test based on
Spearman’s rho considered in Kojadinovic et al. (2015) (statistic S̃n,1). Both tests rely on
multiplier bootstraps for the computation of approximate p-values. They will be referred to as
the test based on Sn,C and the test based on Sn,ρ, respectively. These procedures however do
not assume the underlying dependence structures to be of the extreme-value type. The former
is sensitive to all kind of changes in the underlying copula, while the latter is only sensitive to
changes in Spearman’s rho. As for the test based on Sn,A, they should not be used to reject
H0,c unless H0,m in (1.2) holds.

All the tests considered in our numerical experiments were carried out at the 5% significance
level using B “ 1000 multiplier bootstrap replicates. The values 50, 100 and 200 were considered
for the sample size n. The measure µ involved in the definition of Sn,A in (3.7) and Sθn,A in (4.5)

was taken equal to 9´1
ř9
i“1 δi{10. The bandwidth hn in (3.15) was set to 10´2{

?
n. With

the illustrations of Section 6 in mind, the values 0.25 and 0.5 were considered for θ. The
computations were carried out using the R statistical system (R Core Team, 2015), and the R
packages copula (Hofert et al., 2015) and npcp (Kojadinovic, 2014).

Empirical levels of the tests based on Sn,A, Sn,C and Sn,ρ Columns 5-7 of Table 1 report
the rejection rates of the three tests estimated from 4000 random samples generated under H0

from c.d.f. Ca,ϑ in (4.6) for various values of a and ϑ. As one can see, the empirical levels are
overall reasonably close to the 5% nominal level in all settings for which Kendall’s tau τ of Ca,ϑ

is strictly smaller than 0.6. For τ ě 0.6, the three tests are overall too conservative, although,
as expected, the empirical levels improve as n increases.

Empirical power of the tests based on Sn,A, Sn,C and Sn,ρ under changes in the
copula only The right plot of Figure 1 displays the rejection rates of the three tests estimated
from 2000 samples of size n “ 100 generated under H0,m X  H0,c such that, for each sample,
the first (resp. last) 50 observations were drawn from c.d.f. (4.6) with pa, ϑq “ p0, 0, 2q (resp.
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n a ϑ τ Sn,A Sn,C Sn,ρ S0.25
n,A S0.5

n,A

50 p0, 0q 1 0 4.9 6.3 5.6 7.6 4.2
1.25 .2 6.7 6.2 5.8 7.9 7.0
1.67 .4 5.8 4.4 3.9 6.6 6.1
2.5 .6 4.0 3.7 2.4 5.6 4.7
5 .8 3.6 2.4 0.9 8.2 2.7

p0, .3q 4 .56 4.5 4.7 3.1 5.2 5.5

100 p0, 0q 1 0 5.5 5.1 5.8 7.7 5.4
1.25 .2 6.3 5.4 6.2 7.4 6.9
1.67 .4 6.2 4.3 4.4 6.2 6.6
2.5 .6 5.4 3.0 2.9 6.0 5.5
5 .8 2.0 2.2 1.0 4.0 2.6

p0, .3q 4 .56 4.5 4.2 3.8 4.5 5.0

200 p0, 0q 1 0 5.0 4.3 4.8 6.2 5.6
1.25 .2 6.0 4.8 5.8 6.4 6.4
1.67 .4 5.9 4.0 4.9 6.4 6.2
2.5 .6 3.6 2.8 3.1 4.4 4.4
5 .8 2.6 1.3 2.0 3.4 3.4

p0, .3q 4 .56 4.8 4.0 4.3 5.2 5.2

Table 1: Rejection rates of H0 in % estimated from 4000 random samples generated under H0

from c.d.f. Ca,ϑ in (4.6). The column τ gives the value of Kendall’s tau of the copula Ca,ϑ.
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Figure 1: Left: Pickands dependence function of the Gumbel–Hougaard copula with parameter
2 ` dϑ. Right: Rejection rates of the tests based on Sn,A p˝q, Sn,C p4q and Sn,ρ p`q versus
dϑ estimated from 2000 bivariate samples of size n “ 100 such that, for each sample, the first
(resp. last) 50 observations were drawn from a Gumbel–Hougaard copula with parameter 2
(resp. 2` dϑ).
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Figure 2: Left: Pickands dependence function associated with the copula Ca,ϑ in (4.6) with
a “ pmaxp0.4´da, 0q,maxpda´0.4, 0qq, for da P t0, 0.4, 0.8u, and ϑ set to keep Kendall’s tau of
Ca,ϑ equal to 0.5. Right: Rejection rates of the tests based on Sn,A p˝q, Sn,C p4q and Sn,ρ p`q
versus da estimated from 2000 bivariate samples of size n “ 200 such that, for each sample, the
first (resp. last) 100 observations were drawn the above mentioned copula with da “ 0 (resp.
da P t0, 0.1, . . . , 0.8u).

p0, 0, 2 ` dϑq). As expected, the test based on Sn,A is more powerful than its two competitors
in this simple setting.

To investigate the influence of asymmetry on the power of the three tests, as a second ex-
periment, we considered again the copula Ca,ϑ in (4.6), but this time with parameter a defined
as pmaxp0.4 ´ da, 0q,maxpda ´ 0.4, 0qq, for da P t0, 0.1, . . . , 0.8u, and with parameter ϑ set to
keep Kendall’s tau of Ca,ϑ equal to 0.5. The corresponding Pickands dependence functions for
da P t0, 0.4, 0.8u are represented in the left plot of Figure 2. The right plot displays the rejection
rates of the tests based on Sn,A, Sn,C and Sn,ρ versus da estimated from 2000 samples of size
n “ 200 such that, for each sample, the first (resp. last) 100 observations were drawn from the
above mentioned copula with da “ 0 (resp. da P t0, 0.1, . . . , 0.8u). Although the rejection rates
are overall relatively low, the test based Sn,A is by far the best. The fact that the test based on
Sn,ρ has no power against such alternatives is due to the fact that Spearman’s remains almost
constant.

Empirical power of the tests based on Sn,A, Sn,C and Sn,ρ under an abrupt change in
one margin only Table 2 reports rejection rates of H0 estimated from 1000 bivariate samples
of size n generated under H1,m X H0,c where H0,c and H1,m are defined in (1.3) and (4.1),
respectively, such that, for each sample, the first tnθu (resp. last n ´ tnθu) observations were
drawn from a c.d.f. whose copula is the Gumbel–Hougaard, whose first margin is GEV with
parameters µ “ 20, σ “ 10 and γ “ 0.25 (resp. µ “ 20` dµ, σ “ 10 and γ “ 0.25), and whose
second margin is standard normal (the results are unaffected by the choice of the second margin
since the test is rank-based).

All three tests have little power against such alternatives when the shift dµ in the location
parameter of the first margin is relatively small (dµ “ 5). This is a desirable property since
the tests were designed to be sensitive to departures from H0,c. Higher rejection rates were
obtained for dµ “ 15 and when the dependence is moderate or high, in particular if the (scaled)
change-point in the first margin is non-central pθ “ 0.25q. The latter results illustrate the fact
that the procedures based on Sn,A, Sn,C and Sn,ρ are tests for H0 and that one should not use
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θ “ 0.5 θ “ 0.25
dµ n τ Sn,A Sn,C Sn,ρ Sn,A Sn,C Sn,ρ

5 50 0 5.5 6.2 6.0 5.5 6.3 6.2
0.25 6.6 6.1 6.2 5.2 4.1 3.7
0.5 4.3 3.3 2.5 4.4 2.8 2.7
0.75 3.9 2.2 1.2 2.7 2.5 1.1

100 0 5.1 5.1 5.4 5.0 5.9 6.0
0.25 5.1 3.6 5.1 6.7 4.0 4.9
0.5 5.5 4.1 4.3 4.7 2.9 3.3
0.75 3.3 1.0 0.6 4.5 2.8 1.5

200 0 5.6 4.8 5.5 5.6 5.8 5.4
0.25 4.8 5.1 5.1 3.9 3.6 3.4
0.5 4.6 2.5 2.9 5.2 3.4 4.0
0.75 4.0 0.8 1.0 5.0 3.0 2.1

15 50 0 4.5 5.6 5.3 4.7 5.3 5.3
0.25 7.6 5.7 5.0 6.8 6.5 6.8
0.5 5.2 2.8 2.1 8.6 6.7 5.3
0.75 18.3 1.5 0.3 20.0 15.9 4.6

100 0 4.3 4.4 4.9 4.2 4.2 4.6
0.25 4.7 3.4 3.9 5.9 4.3 4.9
0.5 7.2 3.8 3.0 9.0 8.4 6.5
0.75 40.6 10.0 1.8 42.0 36.9 23.0

200 0 4.3 3.8 5.4 4.2 4.3 4.3
0.25 6.4 5.5 5.2 7.7 5.5 6.5
0.5 9.3 7.4 6.3 14.1 15.7 14.7
0.75 75.2 56.5 36.8 79.2 79.3 71.5

Table 2: Rejection rates of H0 in % estimated from 1000 bivariate samples of size n generated
under H1,m XH0,c, where H0,c and H1,m are defined in (1.3) and (4.1), respectively, such that,
for each sample, the first tnθu (resp. last n´ tnθu) observations were drawn from a c.d.f. whose
copula is the Gumbel–Hougaard, whose first margin is GEV with parameters µ “ 20, σ “ 10
and γ “ 0.25q (resp. µ “ 20` dµ, σ “ 10 and γ “ 0.25), and whose second margin is standard
normal. The value of the parameter of the Gumbel–Hougaard copula is set through its one-to-
one relationship with Kendall’s tau τ .

14



0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 100,  s* = 0.25

θ

P
ow

er

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 200,  s* = 0.25

θ

P
ow

er

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 100,  s* = 0.5

θ

P
ow

er

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 200,  s* = 0.5

θ

P
ow

er

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 100,  s* = 0.75

θ

P
ow

er

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n = 200,  s* = 0.75

θ

P
ow

er

Figure 3: Rejection rates of the test based on Sθn,A (˝) against θ P t0.2, 0.3, . . . , 0.8u estimated
from 1000 bivariate samples of size n P t100, 200u, such that, for each sample, the first tns‹u
(resp. last n´ tns‹u) observations are generated from a Gumbel–Hougaard copula with param-
eter 2 (resp. 3). The dashed line marks the corresponding estimated rejection rate of the test
based on Sn,A.

them to reject H0,c unless H0,m holds. Additional changes in the dispersion or scale parameter
of the first margin might even increase the phenomenon.

Empirical levels of the test based on Sθn,A A consequence of Proposition 4.2 is that the

test based on Sθn,A will hold its level asymptotically under one abrupt marginal change only, such
as those considered in the previous experiment. To evaluate the corresponding finite-sample
behavior, we considered again the setting of Table 1. Indeed, because of the rank-based nature
of the test based on Sθn,A, samples generated under H0 can equivalently be regarded as generated

from H0,c X H1,m. From the last two columns of Table 1, we see that the test based on S0.5
n,A

holds its level equally well as the test based on Sn,A. The test based on S0.25
n,A is however slightly

too liberal for n “ 50, although the agreement of its empirical levels with the 5% nominal level
improves as n increases.

Empirical power of the test based on Sθn,A As a last experiment, we investigated the

influence of the value θ on the power of the test based on Sθn,A. Figure 3 displays the rejection

rates of the test based on Sθn,A against θ P t0.2, 0.3, . . . , 0.8u estimated from 1000 bivariate
samples of size n P t100, 200u, such that, for each sample, the first tns‹u (resp. last n ´ tns‹u)
observations are generated from a Gumbel–Hougaard copula with parameter 2 (resp. 3). The
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Figure 4: Left: Annual maximal peak flows and volumes of discharges measured in Streckewalde,
Germany. Right: Corresponding pseudo-observations computed using (3.2).

values 0.25, 0.5 and 0.75 were considered for s‹. As one can see, the rejections rates are not too
much affected by the value of θ. In addition, the power of the test based on Sθn,A remains overall
reasonably close to that of the test based on Sn,A. From a practical perspective, the latter result
suggests that, under H0,m in (1.2), the somehow “non optimal” use of the test based on Sθn,A
instead that based on Sn,A does not incur a large power loss, if any. As a consequence, if one
hesitates about which of H0,m in (1.2) or H1,m in (4.1) holds, it seems safer to use the test
based on Sθn,A as, should H1,m be actually true, the latter test is more likely to hold its level by
construction, and should H0,m be true, the power loss, if any, should not be too large.

6 Illustrations

To illustrate the proposed tests, we consider two hydrological data sets. The first one consists
of n “ 86 bivariate annual maxima measured between 1921 and 2011 (five years of data are
missing) at a station located on the river Preßnitz in Streckewalde, Germany. The variables of
interest are Q, the annual maximal peak flow (in m3{s), and V , the annual maximal volume of
discharge (in 106m3). Their observations are represented in Figure 4. The joint distribution of
Q and V is of strong interest to hydrologists as it can be used to assess the risk of catastrophic
flood levels. For a recent case study, we refer to Mitková and Halmová (2014).

Because we are dealing with bivariate block maxima, it is natural to assume that the data
arise from one or more bivariate extreme-value distributions. The aim of our analysis is to
test for possible changes in the dependence between Q and V that might have occurred during
the long period of observation. An additional element to be taken into account here is that a
dam was built on the river Preßnitz in 1973 (which corresponds to the 48th observation) a few
kilometers upstream from the measurement station. We make the hypothesis that, if there are
changes in the two components series, then, they are unique and they occurred simultaneously
after observation 48 due to the construction of the dam. In other words, we assume that either
H0,m in (1.2) holds or H1,m in (4.1) with θ “ 48{86 holds. In the former case, it is natural to use
the test for change-point detection based on Sn,A in (3.7), while in the latter case, the extension
based on Sθn,A in (4.5) with θ “ 48{86 should be preferred. As mentioned in the previous
section (see Figure 3 and the related discussion), using the test based on Sθn,A for some value
of θ when H0,m in (1.2) actually holds does not seem to result in a strong power loss, if any. For
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Figure 5: Left: Peak flows in m3{s of 164 summer flood events simultaneously measured at
gauges in Aue and Niederschlema, Germany. Right: Corresponding pseudo-observations com-
puted using (3.2).

that reason, we carried out the test based on Sθn,A with θ “ 48{86. The resulting approximate
p-value of 0.068, obtained from B “ 10000 multiplier bootstrap replicates, indicates that there
is some weak evidence of change in the dependence between Q and V . Interestingly enough,
the maximum of the test statistic was not obtained for observation 48 but for observation 32
corresponding to year 1953.

The second data set consists of peak flows (in m3{s) simultaneously measured at two neigh-
boring gauges for n “ 164 physically independent summer flood events. The two gauges are
located in Germany, in Aue and Niederschlema, respectively, and the corresponding measure-
ments will thus be denoted by QA and QN , respectively. The observations, chronologically
ordered, span the period 1929-2011 and are represented in Figure 5. An event was classified as
a flood, if each peak flow exceeded the smallest annual maximal peak flow measured between
1929 and 2011 in Aue and Niederschlema, respectively. The period of each flood event was iden-
tified by hand and only the largest value (peak flow) was included in the data set. Hence, by
construction, the observations are formed subject to a block maximal procedure, with possibly
slightly differing block sizes for each of the flood events. It therefore seems sensible to assume
that the data-generating distribution(s) are extreme-value distributions.

There were two reasons why only summer events were included in the analysis. First, typical
winter floods are produced from melting snow, whereas summer floods are due to short but heavy
rainfalls. These very different physical mechanisms lead to different peak flow distributions.
Second, very high peak flows, which are of particular interest, almost exclusively occur during
the summer time. The joint distribution of peak flows is of interest, for instance, to evaluate
the efficiency of water reservoirs (Schulte and Schumann, 2015).

The aim of our analysis is to assess whether the dependence between QA and QN changed dur-
ing the long observation period. As for the previous illustration, it might be important to take
into account the fact that dams where constructed on the river Mulde and one of its tributary
upstream of the two gauges Aue and Niederschlema. A first dam, called Schönheiderhammer,
was put in service in 1980 (which corresponds to observation 108) and a second dam, named
Eibenstock, was put into service in 1982. As previously, we make the hypothesis that, if there
are changes in the two components series, then, they are unique and they occurred simultane-
ously after observation 108 due to the construction of the dams. Following the same reasoning
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as for the first illustration, we apply the test based on Sθn,A in (4.5) with θ “ 108{164 and obtain
an approximate p-value of 0.195 based on B “ 10000 multiplier bootstrap replicates. Hence,
there is no evidence for a change in the dependence between QA and QN .

A Proofs of Propositions 3.1, 3.2 and 4.1

Propositions 3.1 and 3.2 will be corollaries of a more general result. Recall that ∆ “ tps, s1q P
r0, 1s : s ď s1u and let λnps, s

1q “ ptns1u´ tnsuq{n for ps, s1q P ∆. Also, consider the process

Anps, s1, tq “
?
nλnps, s

1qtÂtnsu`1:tns1uptq ´Aptqu, ps, s1, tq P ∆ˆ r0, 1s, (A.1)

where Âtnsu`1:tns1u is defined in (3.5), and note that

Anp0, 1, tq “
?
ntÂ1:nptq ´Aptqu, t P r0, 1s (A.2)

is the process of interest in Proposition 3.1.

Theorem A.1. Under the conditions of Proposition 3.2, in the normed space p`8p∆ˆr0, 1sq, }¨
}8q, we have An ù AC , where

ACps, s1, tq “ ´t1`Aptqu2
ż 1

0
CCps, s1, y1´t, ytq dy. (A.3)

Proof. Since
ş1
0 1pm ď yqdy “ p1´mq for 0 ď m ď 1, we can write, for 1 ď k ď ` ď n,

Ŝk:`ptq “ 1´

ż 1

0

1

`´ k ` 1

ÿ̀

i“k

1
 

maxpÛ
1{p1´tq
k:`,i , V̂

1{t
k:`,iq ď y

(

dy

“ 1´

ż 1

0

1

`´ k ` 1

ÿ̀

i“k

1
`

Ûk:`,i ď y1´t, V̂k:`,i ď yt
˘

dy

“ 1´

ż 1

0
Ck:`py

1´t, ytq dy,

where Ck:` denotes the empirical copula, see (3.11). Similarly, for t P r0, 1s,

Sptq “ 1´ t1`Aptqu´1 “ 1´

ż 1

0
yAptq dy “ 1´

ż 1

0
Cpy1´t, ytq dy.

Therefore, introducing the notation

Bnps, s
1, tq “

ż 1

0
Ctnsu`1:tns1upy

1´t, ytq dy ˆ

ż 1

0
Cpy1´t, ytq dy,

we obtain, for any ps, s1q P ∆ such that tnsu ă tns1u,

Anps, s1, tq “
?
nλnps, s

1q

#

Ŝtnsu`1:tns1uptq

1´ Ŝtnsu`1:tns1uptq
´

Sptq

1´ Sptq

+

“

?
nλnps, s

1q

Bnps, s1, tq

ż 1

0
Cpy1´t, ytq ´ Ctnsu`1:tns1upy

1´t, ytq dy

“ ´
1

Bnps, s1, tq

ż 1

0
Cnps, s1, y1´t, ytq dy, (A.4)
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where, for any ps, s1, u, vq P ∆ˆ r0, 1s2,

Cnps, s1, u, vq “
?
nλnps, s

1q

!

Ctnsu`1tns
1upu, vq ´ Cpu, vq

)

denotes the two-sided sequential empirical copula process studied in Bücher and Kojadinovic
(2014). Since A is continuously differentiable on p0, 1q, we have, from Example 5.3 in Segers
(2012), that the first-order partial derivatives 9C1 and 9C2 of C exist and are continuous on
p0, 1qˆr0, 1s and r0, 1sˆp0, 1q, respectively. Hence, from Theorem 3.4 in Bücher and Kojadinovic
(2014),

sup
ps,s1,u,vqP∆ˆr0,1s2

|Cnps, s1, u, vq ´ C̄nps, s1, u, vq| “ oPp1q, (A.5)

where, for any ps, s1, u, vq P ∆ˆ r0, 1s2,

C̄nps, t, u, vq “ B̄nps, s1, u, vq ´ 9C1pu, vqB̄nps, s1, u, 1q ´ 9C2pu, vqB̄nps, s1, 1, vq, (A.6)

with the convention that 9C1px, ¨q “ 9C2p¨, xq “ 0 if x P t0, 1u, and where

B̄nps, s1, u, vq “
1
?
n

tns1u
ÿ

i“tnsu`1

t1
`

Ui ď u, Vi ď v
˘

´ Cpu, vq
)

with pUi, Viq “ pF pXiq, GpYiqq, i “ 1, . . . , n. From (A.5), the fact that B̄np0, ¨, ¨, ¨q ù BC in
p`8pr0, 1s3q, } ¨ }8q under H0,c (see, e.g., van der Vaart and Wellner, 1996, Theorem 2.12.1), the
fact that | 9C1| ď 1 and | 9C2| ď 1 and the continuous mapping theorem, it follows that the process

Ãnps, s1, tq “ ´t1`Aptqu2 ˆ
ż 1

0
Cnps, s1, y1´t, ytq dy (A.7)

weakly converges in p`8p∆ ˆ r0, 1sq, } ¨ }8q to AC in (A.3). The theorem is thus proved if we
show that

sup
ps,s1,tqP∆ˆr0,1s

|Anps, s1, tq ´ Ãnps, s1, tq| “ oPp1q. (A.8)

For that purpose, let us first show that, for any ps, s1q P ∆ with tnsu ă tns1u and any t P r0, 1s,

Bnps, s
1, tq ě

1

16
. (A.9)

First of all, we have, for any u, v P r3{4, 1s and any 1 ď k ă ` ď n,

Ck:`pu, vq ě Ck:`p3{4, 3{4q “
1

`´ k ` 1

ÿ̀

i“k

1tÛk:`,i ď 3{4, V̂k:`,i ď 3{4u.

The number of Ûk:`,i is p`´k` 1q, and of those, exactly t3p`´k` 2q{4u do not exceed 3{4. The

same is true for the V̂k:`,i. Hence, for at least

t3p`´ k ` 2q{4u´ tp`´ k ` 1q ´ t3p`´ k ` 2q{4uu

of the pairs, both pseudo-observations do not exceed 3{4. As a consequence,

Ck:`p3{4, 3{4q ě
2t3p`´ k ` 2q{4u´ p`´ k ` 1q

`´ k ` 1
ě

3

2

`´ k ` 2

`´ k ` 1
´ 1 ě

1

2
.
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In particular, we have Ck:`py
1´t, ytq ě 1{2 for all y such that minpy1´t, ytq ě 3{4. Since

minpy1´t, ytq ě y, we get that

ż 1

0
Ck:`py

1´t, ytq dy ě

ż 1

3{4

1

2
dy “

1

8
. (A.10)

Together with the fact that
ş1
0 Cpy

1´t, ytq dy “ t1`Aptqu´1 ě 1{2, the last display implies the
bound in (A.9).

In order to prove (A.8), notice first that, by (A.4), (A.7), the triangle inequality and (A.9),

sup
ps,s1,tqP∆ˆr0,1s

|Anps, s1, tq ´ Ãnps, s1, tq| ď 20 sup
ps,s1,u,vqP∆ˆr0,1s2

|Cnps, s1, u, vq|,

both sides of the inequality being zero if the suprema are restricted to ps, s1q P ∆ such that
tnsu “ tns1u. Next, fix ε, η ą 0. Using the fact that that Cn vanishes when s “ s1 and that Cn
is asymptotically uniformly equicontinuous in probability, there exists δ P p0, 1q such that, for
all sufficiently large n,

P

$

&

%

sup
ps,s1,tqP∆ˆr0,1s

s1´săδ

|Anps, s1, tq ´ Ãnps, s1, tq| ą ε

,

.

-

ď P

$

&

%

20 sup
ps,s1,u,vqP∆ˆr0,1s2

s1´săδ

|Cnps, s1, u, vq| ą ε

,

.

-

ă η.

The proof of (A.8) will thus be complete if we show that

sup
ps,s1,tqP∆ˆr0,1s

s1´sěδ

|Anps, s1, tq ´ Ãnps, s1, tq| “ oPp1q,

which, in view of (A.9), would be an immediate consequence of the fact that

sup
ps,s1,tqP∆ˆr0,1s

s1´sěδ

|Bnps, s
1, tq ´ t1`Aptqu´2| “ oPp1q.

Using again the identity t1`Aptqu´1 “
ş1
0 Cpy

1´t, ytq dy, the last display follows from the fact
that

sup
ps,s1,tqP∆ˆr0,1s

s1´sěδ

ˇ

ˇ

ˇ

ˇ

ż 1

0
Ctnsu`1:tns1upy

1´t, ytq dy ´ t1`Aptqu´1

ˇ

ˇ

ˇ

ˇ

“ n´1{2 sup
ps,s1,tqP∆ˆr0,1s

s1´sěδ

1

λnps, s1q

ˇ

ˇ

ˇ

ˇ

ż 1

0
Cnps, s1, y1´t, ytq dy

ˇ

ˇ

ˇ

ˇ

“ oPp1q,

which completes the proof.

Proof of Proposition 3.1. The proposition immediately follows from (A.2) and Theorem A.1.

Proof of Proposition 3.2. The assertion is a mere consequence of the fact that, under H0,

Dnps, tq “ λnps, 1qAnp0, s, tq ´ λnp0, sqAnps, 1, tq, ps, tq P r0, 1s2, (A.11)

Theorem A.1, and the continuous mapping theorem.
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For the proof of Proposition 4.1, another lemma, generalizing the identity in (A.5), is needed.

Lemma A.2. Under H1,m XH0,c and if A is continuously differentiable on p0, 1q,

sup
ps,s1,u,vqPp∆Xr0,θs2qˆr0,1s2

|Cnps, s1, u, vq ´ C̄nps, s1, u, vq| “ oPp1q,

sup
ps,s1,u,vqPp∆Xrθ,1s2qˆr0,1s2

|Cnps, s1, u, vq ´ C̄nps, s1, u, vq| “ oPp1q.

Proof. Both suprema are measurable, and they are equal in distribution to the same suprema
calculated under H0,m XH0,c. The assertions then follow from (A.5).

Proof of Proposition 4.1. Let

Aθnps, s1, tq “
?
nλnps, s

1qtÂθtnsu`1:tns1uptq ´Aptqu, ps, s1, tq P ∆ˆ r0, 1s, (A.12)

where Âθ
tnsu`1:tns1u is defined in (4.3). We shall first show that

sup
ps,tqPr0,θsˆr0,1s

|Aθnps, 1, tq ´ Ãnps, θ, tq ´ Ãnpθ, 1, tq| “ oPp1q (A.13)

and that
sup

ps,tqPrθ,1sˆr0,1s
|Aθnp0, s, tq ´ Ãnp0, θ, tq ´ Ãnpθ, s, tq| “ oPp1q, (A.14)

where Ãn is defined in (A.7). Proceeding as in (A.4), for ps, tq P r0, θs ˆ r0, 1s, we have

Aθnps, 1, tq “
?
nλnps, 1q

Ŝθ
tnsu`1:nptq ´ Sptq

t1´ Ŝθ
tnsu`1:nptqut1´ Sptqu

“ ´

ş1
0 Cnps, θ, y

1´t, ytq ` Cnpθ, 1, y1´t, ytq dy

t1´ Ŝθ
tnsu`1:nptqut1´ Sptqu

.

Using the fact that 3{2 ď t1´ Sptqu´1 “ t1`Aptqu ď 2 for all t P r0, 1s, the supremum on the
left of (A.13) is smaller than 2I1,n ˆ I2,n, where

I1,n “ sup
ps,tqPr0,θsˆr0,1s

ˇ

ˇ

ˇ

ˇ

ż 1

0
Cnps, θ, y1´t, ytq ` Cnpθ, 1, y1´t, ytq dy

ˇ

ˇ

ˇ

ˇ

and
I2,n “ sup

ps,tqPr0,θsˆr0,1s

ˇ

ˇ

ˇ
t1´ Ŝθtnsu`1:nptqu

´1 ´ t1´ Sptqu´1
ˇ

ˇ

ˇ
.

From Lemma A.2, the weak convergence of C̄n ù CC in p`8p∆ ˆ r0, 1s2q, } ¨ }8q under H0,c,
and the continuous mapping theorem, I1,n “ OPp1q. Concerning I2,n, by the definition of Sθk:`

in (4.2), we have that

sup
ps,tqPr0,θsˆr0,1s

ˇ

ˇ

ˇ
Ŝθtnsu`1:nptq ´ Sptq

ˇ

ˇ

ˇ
“ I1,n ˆ n

´1{2 sup
sPr0,θs

tλnps, 1qu
´1 “ oPp1q.

Hence, tps, tq ÞÑ Ŝθ
tnsu`1:nptqu

P
Ñ tps, tq ÞÑ Sptqu in p`8pr0, θs ˆ r0, 1sq, } ¨ }8q, which, from the

continuous mapping theorem, implies that I2,n “ oPp1q. This completes the proof of (A.13).
The proof of (A.14) is similar.
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To finish the proof, notice first that, under H0,c XH1,m,

Dθnps, tq “ λnps, 1qAθnp0, s, tq ´ λnp0, sqAθnps, 1, tq, ps, tq P r0, 1s2,

where Aθn is defined in (A.12). Next, let

D̄θnps, tq “ λnps, 1qtĀnp0, s^ θ, tq ` Ānps^ θ, s, tqu
´ λnp0, sqtĀnps, s_ θ, tq ` Ānps_ θ, 1, tqu, ps, tq P r0, 1s2,

where ^ and _ denote the minimum and maximum operators, respectively,

Ānps, s1, tq “ ´t1`Aptqu2 ˆ
ż 1

0
C̄nps, s1, y1´t, ytq dy, (A.15)

and C̄n is defined in (A.6), and let

D̃θnps, tq “ λnps, 1qtÃnp0, s^ θ, tq ` Ãnps^ θ, s, tqu
´ λnp0, sqtÃnps, s_ θ, tq ` Ãnps_ θ, 1, tqu, ps, tq P r0, 1s2.

The desired result shall then follow from the fact that

sup
ps,tqPr0,1s2

|Dθnps, tq ´ D̃θnps, tq| “ oPp1q, (A.16)

sup
ps,tqPr0,1s2

|D̃θnps, tq ´ D̄θnps, tq| “ oPp1q, (A.17)

and
D̄θn ù DC in p`8pr0, 1s2q, } ¨ }8q, (A.18)

where DC is given in (3.9). To show that (A.16) holds, it suffices to restrict the supremum
in (A.16) successively to ps, tq P r0, θs ˆ r0, 1s and ps, tq P rθ, 1s ˆ r0, 1s and use the triangle
inequality, (A.8), and (A.13) and (A.14), respectively. The fact that (A.17) holds is obtained
from the triangle inequality and Lemma A.2. Finally, (A.18) follows from the fact that, for any
0 ď s ď s1 ď s2 ď 1, Ānps, s2, ¨q “ Ānps, s1, ¨q ` Ānps1, s2, ¨q, the weak convergence of C̄n under
H0,c and the continuous mapping theorem.

B Proofs of Propositions 3.3 and 4.2

Just as for the non-bootstrap results in Propositions 3.1 and 3.2, Propositions 3.3 and 4.2
can be conveniently proved using appropriate two-sided sequential processes. For ps, s1, u, vq P
∆ˆ r0, 1s2 and b “ 1, . . . , B, let

B̄pbqn ps, s1, u, vq “
1
?
n

tns1u
ÿ

i“tnsu`1

ξ
pbq
i

!

1
`

Ui ď u, Vi ď v
˘

´ Cpu, vq
)

, (B.1)

and

B̃pbqn ps, s1, u, vq “
1
?
n

tns1u
ÿ

i“tnsu`1

ξ
pbq
i

!

1
`

Ûtnsu`1:tns1u,i ď u, V̂tnsu`1:tns1u,i ď v
˘

´ Cpu, vq
)

. (B.2)
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Next, for ps, s1, u, vq P ∆ˆ r0, 1s2 and b “ 1, . . . , B, let

C̄pbqn ps, s1, u, vq “ B̄pbqn ps, s1, u, vq ´ 9C1pu, vqB̄pbqn ps, s1, y1´t, 1q ´ 9C2pu, vqB̄pbqn ps, s1, 1, ytq,

and

C̃pbqn ps, s1, u, vq “ B̃pbqn ps, s1, u, vq ´ 9C1pu, vqB̃pbqn ps, s1, u, 1q ´ 9C2pu, vqB̃pbqn ps, s1, 1, vq.

Furthermore, from (2.2), for py, tq P p0, 1q ˆ r0, 1s, we obtain that

9C1py
1´t, ytq “

 

Aptq ´ tA1ptq
(

yAptq´p1´tq (B.3)

and
9C2py

1´t, ytq “
 

Aptq ` p1´ tqA1ptq
(

yAptq´t, (B.4)

where A1 is extended by continuity at 0 and 1. Indeed, from the fact that maxpt, 1´tq ď Aptq ď 1
for all t P r0, 1s, we have that A1ptq P r´1, 1s for all t P p0, 1q, and, from the convexity of A on
r0, 1s, we have that A1 is increasing on p0, 1q. In addition, we adopt the usual convention that
00 “ 1. Finally, for b “ 1, . . . , B and ps, s1, tq P ∆ˆ r0, 1s, let

Āpbqn ps, s1, tq “ ´t1`Aptqu2 ˆ
ż 1

0
C̄pbqn ps, s1, y1´t, ytq dy. (B.5)

and

Ãpbqn ps, s1, tq “ ´t1`Aptqu2 ˆ
ż 1

0
C̃pbqn ps, s1, y1´t, ytq dy. (B.6)

Lemma B.1. Under H0,c and if A is continuously differentiable on p0, 1q,

´

Ān, Āp1qn , . . . , ĀpBqn

¯

ù

´

AC ,A
p1q
C , . . . ,ApBqC

¯

in p`8p∆ ˆ r0, 1sq, } ¨ }8q
B`1, where Ān is defined in (A.15), AC is defined in (A.3) and

Ap1qC , . . . ,ApBqC are independent copies of AC .

Proof. From Theorem 2.1 of Bücher and Kojadinovic (2014), the fact that | 9C1| ď 1 and | 9C2| ď 1,
the continuous mapping theorem and (A.5), we have that, under H0,c,

´

C̄n, C̄p1qn , . . . , C̄pBqn

¯

ù

´

CC ,C
p1q
C , . . . ,CpBqC

¯

,

in p`8p∆ ˆ r0, 1s2q, } ¨ }8q
B`1, where C̄n and CC are defined in (A.6) and Proposition 3.2,

respectively, and Cp1qC , . . . ,CpBqC are independent copies of CC . The desired follows from the
continuous mapping theorem.

Lemma B.2. Under H0 and if A is continuously differentiable on p0, 1q, for any b “ 1, . . . , B,

sup
ps,s1,tqP∆ˆr0,1s

|Ãpbqn ps, s1, tq ´ Āpbqn ps, s1, tq| “ oPp1q.

Proof. From the proof of Proposition 4.3 of Bücher et al. (2014) (see the term (B.3)), we have
that, for b “ 1, . . . , B,

sup
ps,s1,u,vqP∆ˆr0,1s2

|B̌pbqn ps, s1, u, vq ´ B̄pbqn ps, s1, u, vq| “ oPp1q,
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where B̌pbqn and B̄pbqn are defined in (3.10) and (B.1). The desired result will follow if we show
that

sup
ps,s1,u,vqP∆ˆr0,1s2

|B̃pbqn ps, s1, u, vq ´ B̌pbqn ps, s1, u, vq| “ oPp1q, (B.7)

where B̃pbqn is defined in (B.2). The supremum on the left of the previous display is smaller than

sup
ps,s1,u,vqP∆ˆr0,1s2

|Ctnsu`1:tns1upu, vq ´ Cpu, vq| ˆ sup
ps,s1qP∆

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

tns1u
ÿ

i“tnsu`1

ξ
pbq
i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Using the fact that the first supremum is bounded by 2, the asymptotic uniform equicontinuity

in probability of the process ps, s1q ÞÑ n´1{2
řtns1u
i“tnsu`1 ξ

pbq
i (by Donsker’s theorem) which vanishes

when s “ s1, and the weak convergence Cn ù CC in p`8p∆ ˆ r0, 1s2q, } ¨ }8q, we obtain that
the latter display is oPp1q. Hence, (B.7) holds.

For ps, s1, tq P ∆ˆ r0, 1s and for b “ 1, . . . , B, let

Ǎpbqn ps, s1, tq “ ´t1` Â1:nptqu
2 ˆ

1
?
n

tns1u
ÿ

i“tnsu`1

ξ
pbq
i ŵtnsu`1:tns1u,iptq, (B.8)

where ŵtnsu`1:tns1u,i is defined in (3.13). Furthermore, for 1 ď k ď ` ď n and py, tq P p0, 1qˆr0, 1s,
let

9C1,k:`,npy
1´t, ytq “

!

Âk:`ptq ´ tÂ
1
k:`,nptq

)

yÂk:`ptq´p1´tq, (B.9)

9C2,k:`,npy
1´t, ytq “

!

Âk:`ptq ` p1´ tqÂ
1
k:`,nptq

)

yÂk:`ptq´t, (B.10)

where Â1k:`,n is defined in (3.14) and with the convention that 9C1,k:`,npx, ¨q “ 9C2,k:`,np¨, xq “ 0 if

x P t0, 1u. Finally, for ps, s1, y, tq P ∆ˆ r0, 1s2 and b “ 1, . . . , B, let

Čpbqn ps, s1, y1´t, ytq “ B̌pbqn ps, s1, y1´t, ytq ´ 9C1,tnsu`1:tns1u,npy
1´t, ytqB̌pbqn ps, s1, y1´t, 1q

´ 9C2,tnsu`1:tns1u,npy
1´t, ytqB̌pbqn ps, s1, 1, ytq.

Lemma B.3. Let the pseudo-observations be either calculated as in (3.4) or in (4.4). For
ps, s1, tq P ∆ˆ r0, 1s and b “ 1, . . . , B,

Ǎpbqn ps, s1, tq “ ´t1`A1:nptqu
2

ż 1

0
Čpbqn ps, s1, y1´t, ytq dy. (B.11)

Proof. From the definitions of ân, b̂n, ĉn and d̂n given in Section 3, we have

ż 1

0
Čpbqn ps, s1, y1´t, ytq dy “

ż 1

0
B̌pbqn ps, s1, y1´t, ytq dy

´ âtnsu`1:tns1uptq

ż 1

0
yb̂tnsu`1:tns1uptq´1B̌pbqn ps, s1, y1´t, 1q dy

´ ĉtnsu`1:tns1uptq

ż 1

0
yd̂tnsu`1:tns1uptq´1B̌pbqn ps, s1, 1, ytq dy

“ pI1 ´ I2 ´ I3qps, s
1, tq,
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where I1, I2 and I3 are defined in an obvious manner. Observe that we can write

B̌pbqn ps, s1, y1´t, ytq “
1
?
n

tns1u
ÿ

i“tnsu`1

ξ
pbq
i

”

1
 

m̂tnsu`1:tns1u,iptq ď y
(

´
1

tns1u´ tnsu

tns1u
ÿ

j“tnsu`1

1
 

m̂tnsu`1:tns1u,jptq ď y
(

ı

.

Then, since
ş1
0 1pm ď yqdy “ p1´mq for 0 ď m ď 1, we obtain that

I1ps, s
1, yq “

1
?
n

tns1u
ÿ

i“tnsu`1

ξ
pbq
i

 

smtnsu`1:tns1uptq ´ m̂tnsu`1:tns1u,iptq
(

.

Similarly, since
ş1
0 y

b´11pm ď yq dy “ p1´mbq{b,

I2ps, s
1, yq “

âtnsu`1:tns1uptq

b̂tnsu`1:tns1uptq

1
?
n

tns1u
ÿ

i“tnsu`1

ξ
pbq
i

 

sutnsu`1:tns1uptq ´ ûtnsu`1:tns1u,iptq
(

and

I3ps, s
1, yq “

ĉtnsu`1:tns1uptq

d̂tnsu`1:tns1uptq

1
?
n

tns1u
ÿ

i“tnsu`1

ξ
pbq
i

 

svtnsu`1:tns1uptq ´ v̂tnsu`1:tns1u,iptq
(

.

Hence, (B.11) is proved.

Proof of Proposition 3.3. For ps, tq P r0, 1s2 and b “ 1, . . . , B, let

D̄pbqn ps, tq “ λnps, 1qĀpbqn p0, s, tq ´ λnp0, sqĀpbqn ps, 1, tq,

where Āpbqn is defined in (B.5), and let

D̃pbqn ps, tq “ λnps, 1qÃpbqn p0, s, tq ´ λnp0, sqÃpbqn ps, 1, tq,

where Ãpbqn is defined in (B.6). From Lemma B.2, we then immediately obtain that

sup
ps,tqPr0,1s2

|D̃pbqn ps, tq ´ D̄pbqn ps, tq| “ oPp1q.

The latter combined with Lemma B.1, the continuous mapping theorem, (A.5), (A.8) and (A.11)
gives

´

Dn, D̃p1qn , . . . , D̃pBqn

¯

ù

´

DC ,D
p1q
C , . . . ,DpBqC

¯

in p`8pr0, 1s2q, } ¨}8q
B`1, where DC is defined in (3.9) and Dp1qC , . . . ,DpBqC are independent copies

of DC . From the definitions in (3.12) and (B.8), we further have that, for ps, tq P r0, 1s2,

Ďpbqn ps, tq “ λnps, 1qǍpbqn p0, s, tq ´ λnp0, sqǍpbqn ps, 1, tq.

Hence, to complete the proof, it remains to show supps,tqPr0,1s2 |Ď
pbq
n ps, tq ´ D̃pbqn ps, tq| “ oPp1q,

which is implied by

sup
ps,s1,tqP∆ˆr0,1s

|Ǎpbqn ps, s1tq ´ Ãpbqn ps, s1, tq| “ oPp1q. (B.12)
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Having in mind the fact that A1:n converges uniformly in probability to A as a consequence of
Proposition 3.1, (B.7) and the fact | 9C1| ď 1 and | 9C2| ď 1, to prove (B.12), it suffices to show
that

sup
ps,s1qP∆

py,tqPr0,1s2

ˇ

ˇ

ˇ
t 9C1,tnsu`1:tns1u,npy

1´t, ytq ´ 9C1py
1´t, ytquB̃pbqn ps, s1, y1´t, 1q

ˇ

ˇ

ˇ
“ oPp1q (B.13)

and

sup
ps,s1qP∆

py,tqPr0,1s2

ˇ

ˇ

ˇ
t 9C2,tnsu`1:tns1u,npy

1´t, ytq ´ 9C2py
1´t, ytquB̃pbqn ps, s1, 1, ytq

ˇ

ˇ

ˇ
“ oPp1q, (B.14)

where 9C1,tnsu`1:tns1u,npy
1´t, ytq, 9C2,tnsu`1:tns1u,npy

1´t, ytq, 9C1py
1´t, ytq and 9C2py

1´t, ytq are given
in (B.9), (B.10), (B.3) and (B.4), respectively.

From (A.10), it can be verified that, for any n ě 1 and any t P r0, 1s, |Â1:nptq| ď 7. Since,
by definition, Â1k:`,n in (3.14) is also uniformly bounded, py, tq ÞÑ 9C1,k:`,npy

1´t, ytq and py, tq ÞÑ
9C2,k:`,npy

1´t, ytq are uniformly bounded.

To prove (B.13), we can then proceed as in the proof of Proposition 4.3 of Bücher et al. (2014)
(see the terms (B.4) and (B.5)). Using the asymptotic uniform equicontinuity in probability of

B̃pbqn which vanishes when s “ s1, and the fact that 9C1 and its estimator are uniformly bounded,
it remains to show that, for any δ P p0, 1q,

sup
ps,s1,y,tqP∆ˆr0,1s2

s1´sěδ

ˇ

ˇ

ˇ

9C1,tnsu`1:tns1u,npy
1´t, ytq ´ 9C1py

1´t, ytq
ˇ

ˇ

ˇ
“ oPp1q. (B.15)

The previous result is implied by the fact that

sup
ps,s1,tqP∆ˆr0,1s

s1´sěδ

ˇ

ˇ

ˇ
Âtnsu`1:tns1uptq ´Aptq

ˇ

ˇ

ˇ
“ sup

ps,s1,tqP∆ˆr0,1s

s1´sěδ

ˇ

ˇ

ˇ

ˇ

Anps, s1, tq
?
nλnps, s1q

ˇ

ˇ

ˇ

ˇ

“ oPp1q,

where An is defined in (A.1), and an analogue result for Â1
tnsu`1:tns1u,n defined in (3.14). The

latter can be seen as follows: for A1
tnsu`1:tns1u,n in (3.15), we have

sup
ps,s1,tqP∆ˆrhn,1´hns

s1´sěδ

|A1tnsu`1:tns1u,nptq ´A
1ptq| ď sup

tPrhn,1´hns

ˇ

ˇ

ˇ

ˇ

Apt` hnq ´Apt´ hnq

2hn
´A1ptq

ˇ

ˇ

ˇ

ˇ

` sup
ps,s1,tqP∆ˆrhn,1´hns

s1´sěδ

ˇ

ˇ

ˇ

ˇ

Anps, s1, t` hnq ´ Anps, s1, t´ hnq
2hn

?
nλnps, s1q

ˇ

ˇ

ˇ

ˇ

. (B.16)

Since A1, extended by continuity, is (uniformly) continuous on r0, 1s (see the discussion be-
low (B.4)), by the mean value theorem, the first term on the right converges to zero. The
second term on the right is smaller than

sup
ps,s1,t,t1qP∆ˆr0,1s2

|t´t1|ď2hn

ˇ

ˇAnps, s1, tq ´ Anps, s1, t1q
ˇ

ˇˆ sup
ps,s1qP∆

s1´sěδ

1

2hnλnps, s1q
“ oPp1q,

by asymptotic uniform equicontinuity in probability of An.

Hence, (B.15) holds and, thus, so does (B.13). The proof of (B.14) is similar. This completes
the proof of (B.12) and, therefore, of the proposition.
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Proof of Proposition 4.2. For b “ 1, . . . , B, let Ǎθ,pbqn be the analogue of Ǎpbqn in (B.8) based

on the adapted pseudo-observations defined in (4.4). Then, by definition of Ďθ,pbqn , we have

Ďθ,pbqn ps, tq “ λnps, 1qǍθ,pbqn p0, s, tq ´ λnp0, sqǍθ,pbqn ps, 1, tq, ps, tq P r0, 1s2.

Next, let

D̃θ,pbqn ps, tq “ λnps, 1qtÃpbqn p0, s^ θ, tq ` Ãpbqn ps^ θ, s, tqu

´ λnp0, sqtÃpbqn ps, s_ θ, tq ` Ãpbqn ps_ θ, 1, tqu, ps, tq P r0, 1s2,

where Ãpbqn is defined in (B.6), and let us first show that

sup
ps,tqPr0,1s2

|Ďθ,pbqn ps, tq ´ D̃θ,pbqn ps, tq| “ oPp1q. (B.17)

To prove (B.17), we shall show that

sup
ps,tqPr0,θsˆr0,1s

ˇ

ˇ

ˇ
Ďθ,pbqn ps, tq ´ λnps, 1qÃpbqn p0, s, tq

`λnp0, sqtÃpbqn ps, θ, tq ` Ãpbqn pθ, 1, tqu
ˇ

ˇ

ˇ
“ oPp1q, (B.18)

and

sup
ps,tqPrθ,1sˆr0,1s

ˇ

ˇ

ˇ
Ďθ,pbqn ps, tq ´ λnps, 1qtÃpbqn p0, θ, tq ` Ãpbqn pθ, s, tqu

`λnp0, sqÃpbqn ps, 1, tq
ˇ

ˇ

ˇ
“ oPp1q. (B.19)

We start with the proof of (B.18). Under H0,cXH1,m, (B.12) continues to hold if the supremum
is restricted to ps, s1, tq P p∆Xr0, θs2qˆr0, 1s. This can be seen by essentially the same arguments
as in the proof of Lemma A.2. Therefore, (B.18) will hold if

sup
ps,tqPr0,θsˆr0,1s

ˇ

ˇ

ˇ
Ǎθ,pbqn ps, 1, tq ´ Ãpbqn ps, θ, tq ´ Ãpbqn pθ, 1, tq

ˇ

ˇ

ˇ
“ oPp1q,

that is, if

sup
sPr0,θs

pu,vqPr0,1s2

ˇ

ˇ

ˇ
B̌θ,pbqn ps, 1, u, vq ´ B̃pbqn ps, θ, u, vq ´ B̃pbqn pθ, 1, u, vq

ˇ

ˇ

ˇ
“ oPp1q, (B.20)

and, having in addition (B.3), (B.4), (B.9) and (B.10) in mind, if

sup
ps,tqPr0,θsˆr0,1s

|Âθtnsu`1:nptq ´Aptq| “ oPp1q, (B.21)

sup
ps,tqPr0,θsˆr0,1s

|Â1θtnsu`1:n,nptq ´A
1ptq| “ oPp1q, (B.22)

where Â1θk:`,n is the analogue of Â1k:`,n in (3.14) defined from the adapted pseudo-observations
in (4.4). The supremum on the left of (B.20) is smaller than

sup
ps,u,vqPr0,θsˆr0,1s2

ˇ

ˇ

ˇ

ˇ

tnθu´ tnsu

n´ tnsu
Ctnsu`1:tnθupu, vq

`
n´ tnθu

n´ tnsu
Ctnθu`1:npu, vq ´ Cpu, vq

ˇ

ˇ

ˇ

ˇ

ˆ sup
sPr0,θs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

i“tnsu`1

ξ
pbq
i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
ps,u,vqPr0,θsˆr0,1s2

|Cnps, θ, u, vq ` Cnpθ, 1, u, vq|
?
nλnps, 1q

ˆOPp1q “ oPp1q
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by Lemma A.2 and the weak convergence of C̄n under H0,c. The supremum on the left of (B.21)
is smaller than

n´1{2 sup
ps,tqPr0,θsˆr0,1s

tλnps, 1qu
´1|Aθnps, 1, tq|,

where Aθn is defined in (A.12), and is oPp1q because of (A.13), (A.7), Lemma A.2 and the weak
convergence of C̄n under H0,c. The proof of (B.22) is based on a decomposition similar to that
used in (B.16) and relies again on (A.13). Hence, (B.18) holds. The proof of (B.19) is similar.

Using arguments of the same nature as those employed in the proof of Lemma A.2, we obtain
the following extension of Lemma B.2 under H1,m XH0,c:

sup
ps,s1,tqPtp∆Xr0,θs2qYp∆Xrθ,1s2quˆr0,1s

|Ãpbqn ps, s1, tq ´ Āpbqn ps, s1, tq| “ oPp1q,

By the triangular inequality, this implies that

sup
ps,tqPr0,1s2

|D̃θ,pbqn ps, tq ´ D̄θ,pbqn ps, tq| “ oPp1q, (B.23)

where

D̄θ,pbqn ps, tq “ λnps, 1qtĀpbqn p0, s^ θ, tq ` Āpbqn ps^ θ, s, tqu

´ λnp0, sqtĀpbqn ps, s_ θ, tq ` Āpbqn ps_ θ, 1, tqu, ps, tq P r0, 1s2.

and Āpbqn is defined in (B.5). The desired result is then a consequence of Lemma B.1, the
continuous mapping theorem, (A.16), (A.17), (B.17) and (B.23).

C Test statistic and multiplier bootstrap for d ě 2

In Sections 3 and 4, we restricted ourselves to the case d “ 2. Results for arbitrary dimension d ě
2 can be established at the cost of a more complex notation but without significant additional
mathematical difficulties. We give the main steps of the generalization hereafter. Let X “

pX1, . . . , Xdq be a random vector with c.d.f. and extreme-value copula of the form (2.1) and (2.2),
respectively, and suppose that A is continuously differentiable on the interior of Sd´1 with partial
derivatives 9Ajptq “ BAptq{Btj , j “ 2, . . . , d. With the notation Uj “ FjpXjq, j “ 1, . . . , d, and

t1 “ t1ptq “ 1´
řd
j“2 tj , t P Sd´1, we have, just as for d “ 2,

Aptq “ Sptq{t1´ Sptqu and Sptq “ E
ˆ

max
1ďjďd

U
1{tj
j

˙

,

with the convention that u1{0 “ 0 for all u P p0, 1q.

Let Xi, i “ 1, . . . , n, be independent copies of X and let Ûk:`,i “ pÛk:`,i1, . . . , Ûk:`,idq be d-
variate generalizations of the “subsample” pseudo-observations in (3.4). We define a CUSUM-
type process Dn on r0, 1s ˆ Sd´1 by

Dnps, tq “
tnsupn´ tnsuq

n3{2

!

Â1:tnsuptq ´ Âtnsu`1:nptq
)

,

where, for 1 ď k ď ` ď n, Âk:`ptq “ Ŝk:`ptq{t1´ Ŝk:`ptqu, and

Ŝk:`ptq “
1

`´ k ` 1

ÿ̀

i“k

max
1ďjďd

´

Û
1{tj
k:`,ij

¯
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with the convention that Ŝk:` “ 0 if k ą `.

Let us introduce some additional notation. For any y P r0, 1s and t P Sd´1, we define yt

to be the vector pyt1 , . . . , ytdq P r0, 1sd with the convention that 00 “ 1. Furthermore, for any
u P r0, 1sd and any j “ 1, . . . , d, upjq denotes the vector of r0, 1sd whose components are all
equal to one, except the jth which is equal to uj .

Proposition C.1. Suppose that all of the above conditions are met. Then, in the normed
space `8pr0, 1s ˆ Sd´1q, Dn ù DC , where

DCps, tq “ t1`Aptqu2 ˆ
ż 1

0
sCCps, 1,ytq ´ p1´ sqCCp0, s,ytq dy.

Here, CC denotes a centered Gaussian process on ∆ˆ r0, 1sd defined through

CCps, s1,uq “ tBCps1,uq ´ BCps,uqu ´
d
ÿ

j“1

9CjpuqtBCps1,upjqq ´ BCps,upjqqu,

where BC is a tight, centered Gaussian process on p`8pr0, 1sd`1q, } ¨ }8q with covariance kernel
given by

EtBCps,uqBCps1,u1qu “ ps^ s1qtCpu1 ^ u
1
1, . . . , ud ^ u

1
dq ´ CpuqCpu

1qu,

and 9Cj, j “ 1, . . . , d, denotes the jth first-order partial derivative of C.

The proof is almost identical to that of Proposition 3.2. For a corresponding bootstrap
approximation of the limit DC , let ξpbqi , i “ 1, . . . , n, b “ 1, . . . , B, be i.i.d. standard normal
multipliers. Furthermore, from (2.2), we have that, for any y P p0, 1q and t P Sd´1,

9Cjpy
tq “

$

&

%

yAptq´t1
!

Aptq ´
řd
j1“2 tj1

9Aj1ptq
)

, j “ 1,

yAptq´tj
!

Aptq ` 9Ajptq ´
řd
j1“2 tj1

9Aj1ptq
)

, j “ 2, . . . , d.

The above quantities can be estimated consistently by plugging in subsample estimators of A
and 9Aj , j “ 1, . . . , d, respectively, namely Âk:` and

9Aj,k:`,nptq “
1

2hn

!

Âk:`pt` hnejq ´ Âk:`pt´ hnejq
)

, j “ 2, . . . , d,

with t˘hnej “ pt2, . . . , tj´1, tj˘hn, tj`1, . . . , tdq and a sequence hn Ó 0 such that infně1 hn
?
n ą

0 (boundary effects can be dealt with by generalizing the approach adopted below (3.15)). Then,
analogously to the bivariate case, we define

Ďpbqn ps, tq “ t1` Â1:nptqu
2 ˆ

"

tnsu

n3{2

n
ÿ

i“tnsu`1

ξ
pbq
i ŵtnsu`1:n,iptq ´

n´ tnsu

n3{2

tnsu
ÿ

i“1

ξ
pbq
i ŵ1:tnsu,iptq

*

,

where, for 1 ď k ď ` ď n,

ŵk:`,iptq “ smk:`ptq ´ m̂k:`,iptq `
d
ÿ

j“1

pûk:`,ijptq ´ suk:`,jptqqâk:`,jptq

b̂k:`,jptq
,

with m̄k:` and ūk:`,j denoting the arithmetic mean over i “ k, . . . , ` of

m̂k:`,iptq “ max
´

Û
1{t
k:`,i

¯

and ûk:`,ijptq “ Û
b̂k:`,j{tj
k:`,ij ,
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and where

âk:`,jptq “

#

Âk:`ptq ´
řd
j1“2 tj1

9Aj1,k:`,nptq, j “ 1,

Âk:`ptq ` 9Aj,k:`,nptq ´
řd
j1“2 tj1

9Aj1,k:`,nptq, j “ 2, . . . , d,

b̂k:`,jptq “ Âk:`ptq ` 1´ tj .

Test statistics and corresponding multiplier bootstrap replicates can be defined analogously to
Section 3, as functionals of Dn and Ďpbqn , b “ 1, . . . , B, respectively. In addition, generalizations
adapted to known breaks in the margins can be obtained by computing pseudo-observations
from the subsamples determined by the marginal change-points, as explained in Section 4. We
omit the details for the sake of brevity.

Acknowledgements. The authors would like to thank Markus Schulte and Andreas Schu-
mann for providing us with the hydrological data sets and Betina Berghaus and Roland Fried
for helpful discussions. This work has been supported by the Collaborative Research Cen-
ter “Statistical modeling of nonlinear dynamic processes” (SFB 823) of the German Research
Foundation (DFG) which is gratefully acknowledged.

References
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