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Abstract

A common problem in Phase II clinical trials is the comparison of dose response curves

corresponding to different treatment groups. If the effect of the dose level is described by

parametric regression models and the treatments differ in the administration frequency (but

not in the sort of drug) a reasonable assumption is that the regression models for the different

treatments share common parameters.

This paper develops optimal design theory for the comparison of different regression models

with common parameters. We derive upper bounds on the number of support points of

admissible designs, and explicit expressions for D-optimal designs are derived for frequently

used dose response models with a common location parameter. If the location and scale

parameter in the different models coincide, minimally supported designs are determined and

sufficient conditions for their optimality in the class of all designs derived. The results are

illustrated in a dose-finding study comparing monthly and weekly administration.

Keywords and Phrases: Nonlinear regression, different treatment groups, D-optimal design, mod-

els with common parameters, admissible design, Bayesian optimal design
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1 Introduction

Adequately describing the dose-response relationship of a pharmaceutical compound is of paramount

importance for achieving a successful clinical development. Sacks et al. (2014) recently conducted

a review of the reasons for delay or denial of approval of drugs by the Food and Drug Administra-

tion (FDA). For those drug submissions that were not approved in the first-time application, one
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of the most frequent deficiencies was a statistical uncertainty related to the selected dose, illus-

trating the importance of clearly determining an efficacious and safe dose in Phase II dose-finding

trials.

Efforts to improve this situation have led to the introduction of dose-response modeling approaches

in a prospective manner as the primary analysis method in dose finding studies, and have become

increasingly widespread in the past few years [see among many others, Grieve and Krams (2005),

Bretz et al. (2005), Thomas (2006), Dragalin et al. (2007), Bornkamp et al. (2007), Thomas et al.

(2014)]. These methods can more adequately address the main questions of interest in Phase

II dose-finding studies (i.e. determination of the dose-response curve and estimation of target

doses of interest) than AN(C)OVA based pairwise comparisons. Moreover, it was pointed out by

numerous authors that an appropriate choice of the experimental conditions can improve the sta-

tistical accuracy in dose-finding studies substantially. For this reason there exists a large amount

of literature discussing the problem of constructing optimal experimental designs for regression

models, which are commonly used to describe the dose relationships [see Dragalin et al. (2007),

Dette et al. (2008), Dragalin et al. (2008), Fang and Hedayat (2008), Gilbert (2010), or Bretz

et al. (2010) among many others].

For many compounds a question closely related to “dose”, the amount of drug, is the administra-

tion frequency of the drug. In most situations it is not adequate to assume that the same amount

of drug per time unit (e.g. total daily dose) administered at different dosing intervals (e.g. once

a day or twice a day) will lead to the same pharmacological effect. For example for once a day

administration the drug exposure inside the body will generally be higher just after administration

and lower just before the next administration, compared to a twice a day administration, where

the same amount of drug is split into two doses in the morning and the evening, leading to more

uniform drug exposure over the day.

These considerations often lead to the need of evaluating the question of finding the right dose as

well as dosing frequency dose-finding studies in Phase II. One way of modeling the dose-response

curves in the different treatment groups is to estimate the dose response curve corresponding to

each of them separately. This can, however, be wasteful as certain aspects of the dose-response

curves for different group can be similar for both groups, suggesting a borrowing of strength. When

dose-response modeling is done in terms of parametric dose-response models, one can often assume

that certain parameters of the dose-response curves for the two (or more) groups are shared, while

other parameters might be assumed to be different between the curves. For example, if the Emax

function

f(d, θ1, θ
(i)
2 ) = θ

(i)
0 +

θ
(i)
1 d

θ
(i)
2 + d

, i = 1, 2 (1.1)

is used to model the dose response relationship for both groups [see Gabrielsson and Weiner

(2007) or Thomas et al. (2014)], it is often reasonable to assume that the placebo effect is the

same between groups, that is θ
(1)
0 = θ

(2)
0 = ϑ11. In some situations it might also make sense to
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assume that the maximum efficacy for high doses is similar, i.e. θ
(1)
1 = θ

(2)
1 = ϑ12, as a biological

maximum attainable effect might exist. However it might not be adequate to assume that the

dose providing half of the maximum efficacy is the same for different treatment frequencies, which

means θ
(1)
2 6= θ

(2)
2 . The common parameters can then be estimated more precisely allowing for a

more accurate statistical analysis. An example motivating the research of this paper can be found

in Section 5.

The major question when planning such a dose-finding study then is which doses to utilize in the

different treatment groups and how to split the total sample size between the groups. Statistically,

this corresponds to the construction of optimal designs for different regression models (modeling

the effect of the drug in the different groups) which share some common parameters. To our best

knowledge, design problems in this case have not been considered in the literature, and the goal

of the present paper is to derive optimal designs for such situations. In Section 2 the model (in

the context of M treatment groups) is introduced and the main differences between the situation

considered in the paper and the common optimal design problems are explained. In Section 3

we derive some results on the comparison of different designs for regression models with common

parameters with respect to the Loewner ordering. In particular we generalize recent results of

admissible designs as presented in Yang (2010), Dette and Melas (2011) and Yang and Stufken

(2012) and derive upper bounds on the number of support points which cannot be improved upon

in the Loewner ordering. Section 4 is devoted to the construction of D-optimal designs which

are well suited for a “global” inference as they minimize the maximum confidence interval length

around the predicted dose-response curve. Explicit expressions for locally D-optimal designs for

the commonly used dose response models are derived, if some parameters of the models for the

different groups coincide. We also discuss minimally supported optimal designs and investigate if

these designs are optimal within the class of all designs. In Section 5 we illustrate the developed

methods in a particular clinical dose-finding study investigating two different treatment groups.

Finally, all technical details and proofs are given in Section 6 while Section 7 provides some more

background on the modeling problem discussed in Section 5.

For the sake of brevity and transparency, most parts of this paper consider locally optimal designs

which require a-priori information about the unknown model parameters if the models are non-

linear [see Chernoff (1953)]. In several situations preliminary knowledge regarding the unknown

parameters of a nonlinear model is available but not in a form that is accurate enough to specify

one parameter guess. As illustrated in Section 5, locally optimal designs can be used as bench-

marks for commonly used designs and also serve as basis for constructing optimal designs with

respect to more sophisticated optimality criteria, which are robust against a misspecification of

the unknown parameters (and model) [see Pronzato and Walter (1985) or Chaloner and Verdinelli

(1995), Dette (1997) among others]. Following this line of research the methodology introduced

in the present paper can be further developed to address uncertainty in the preliminary informa-

tion on the unknown parameters, and we will illustrate this approach in Section 5, where we also
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discuss robust designs for the data example under consideration.

2 Models with common parameters

Consider the regression models

Yij` = f(d
(i)
j , θ1, θ

(i)
2 ) + εij` i = 1, . . . ,M ; j = 1, . . . , ki; ` = 1, . . . , nij, (2.2)

where εij` are independent centered normally distributed random variables, i.e. εij` ∼ N (0, σ2
i ).

The assumption of a normal distribution in (2.2) is made for the sake of transparency. Other

distributional assumptions can be treated exactly in the same way. This means that M different

groups are investigated and in each group observations are taken at different experimental condi-

tions d
(i)
1 , . . . , d

(i)
ki

, which vary in possibly different design spaces, say Xi = [0, d
(i)
max] (i = 1, . . . ,M).

At each dose level d
(i)
j the experimenter can take nij observations and ni =

∑ki
j=1 nij denotes

the number of observations in the i-th group (i = 1, . . . ,M). Moreover, the total sample size is

given by n =
∑M

i=1 ni. In general, the regression model f(·, θ1, θ
(i)
2 ) with a (p + q)-dimensional

parameter vector θ(i) = (θ1, θ
(i)
2 ) is used to describe the dependency between the response and

the effect in every group. We consider the same parametric form for all groups. Moreover, the

parameter vector θ1 ∈ Rp is assumed to be the same in all groups (i = 1, . . . ,M), while θ
(i)
2 ∈ Rq

is different for different groups. Consequently, the vector of unknown parameters is given by

θ = (θ1, θ
(1)
2 , . . . , θ

(M)
2 ) ∈ Rm, where m = p + qM . The components of the vector are denoted by

θ1 = (ϑ1, . . . , ϑp) and θ
(i)
2 = (ϑ

(i)
1 , . . . , ϑ

(i)
q ) (i = 1, . . . ,M).

Following Kiefer (1974) we define for i = 1, . . . ,M approximate designs ξi (on the design space Xi)
as probability measures with masses ξij at the experimental conditions d

(i)
j ∈ Xi (j = 1, . . . , ki)

and a design µ as a probability measure on the set {1, . . . ,M} assigning mass λi to the ith

group. We collect these designs in the vector ξ = (ξ1, . . . , ξM , µ), which is also called design (on

the design space X1 × . . . × XM × {1, . . . ,M}) throughout this paper. If an approximate design

ξ = (ξ1, . . . , ξM , µ) is given and N observations can be taken, a rounding procedure is applied

to obtain integers ni and nij (i = 1, . . .M, j = 1, . . . , ki) from the not necessarily integer valued

quantities λin and ξijni, respectively [see Pukelsheim and Rieder (1992)]. Then, under common

assumptions of regularity and the assumption

lim
ni→∞

nij

ni
= ξij ∈ (0, 1) and lim

n→∞
ni

n
= λi ∈ (0, 1) (2.3)

(i = 1, . . . ,M , j = 1, . . . , ki), the maximum likelihood estimate θ̂ = (θ̂1, θ̂
(1)
2 , . . . , θ̂

(M)
2 ) satisfies (as

n→∞) √
n(θ̂ − θ) D−→ N (0,M−1(ξ, θ)) ,

where the symbol
D−→ denotes weak convergence. Here the matrix

M(ξ, θ) =

∫ ∫
Xz

hz(d)hTz (d)dξz(d)dµ(z) =
M∑
i=1

λiM
(i)(ξi, θ) (2.4)
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is called the information matrix of the design ξ = (ξ1, . . . , ξM , µ) and will be derived in Section

6.1. In (2.4) the matrices M (i) are defined by

M (i)(ξi, θ) =

∫
Xi

hi(d)hTi (d)dξi(d) (2.5)

(i = 1, . . . ,M) and

hTi (d) =
1

σi

(
∂
∂θ1
f(d, θ1, θ

(i)
2 ), 0Tq , . . . , 0

T
q︸ ︷︷ ︸

i−1

, ∂

∂θ
(i)
2

f(d, θ1, θ
(i)
2 ), 0Tq , . . . , 0

T
q︸ ︷︷ ︸

M−i

)
∈ Rm (2.6)

is the gradient of the function f(d, θ1, θ
(i)
2 ) with respect to the parameter θ ∈ Rm, where, m =

p+ qM , 0q ∈ Rq denotes a vector with all entries equal to 0.

Example 2.1 We assume that M = 2 and that the regression functions f(·, θ1, θ
(i)
2 ) can be written

as

f(·, θ1, θ
(i)
2 ) = ϑ1 + ϑ2f0(·, θ(i)

2 ) (2.7)

with a given function f0 [see Bretz et al. (2005)]. Here the location and scale parameters θ1 =

(ϑ1, ϑ2)T ∈ R2 are the same for all groups, while the parameters θ
(i)
2 ∈ Rq are different. In this

case we have p = 2 and the vectors h1(d) and h1(d) are given by

hT1 (d) =
1

σ1

(
1, f0(d, θ

(1)
2 ), ∂

∂θ
(1)
2

f0(d, θ
(1)
2 ), 0Tq

)
,

hT2 (d) =
1

σ2

(
1, f0(d, θ

(2)
2 ), 0Tq ,

∂

∂θ
(2)
2

f0(d, θ
(2)
2 )
)
.

As a further example, consider a regression function f(·, θ1, θ
(i)
2 ) of the form

f(·, θ1, θ
(i)
2 ) = θ1 + f0(·, θ(i)

2 ); i = 1, 2, (2.8)

with a given function f0. If the location parameter θ1 is the same for the two groups and the

parameters θ
(i)
2 ∈ Rq are different, we have p = 1 and the vectors h1(d) and h1(d) are given by

hT1 (d) = 1
σ1

(1, ∂

∂θ
(1)
2

f0(d, θ
(1)
2 ), 0Tq ) and hT2 (d) = 1

σ2
(1, 0Tq ,

∂

∂θ
(2)
2

f0(d, θ
(2)
2 )).

3 Comparing designs in the Loewner ordering

An optimal design ξ = (ξ1, . . . , ξM , µ) maximizes a concave real valued function, say Φ, of the

information matrix. Numerous criteria have been proposed in the literature (see Pukelsheim (2006)

among others) which can be used to discriminate between competing designs and the particular

case of D-optimality will be discussed in the subsequent section. The commonly used optimality

criteria are monotone with respect to the Loewner ordering, that is the relation M(ξ1, θ) ≤
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M(ξ2, θ) implies Φ(M(ξ1, θ)) ≤ Φ(M(ξ2, θ)). For this reason we discuss at first some results for

this ordering, which will be very helpful for the explicit determination of optimal designs in the

following sections.

Throughout this paper let |A| denote the cardinality of a set A and we denote by supp(ξ) the

support of the design ξ = (ξ1, . . . , ξM , µ). Moreover, we define the index I(ξi) of the design ξi on

the interval [0, d
(i)
max] as the number of support points, where the boundary points 0 and d

(i)
max are

only counted by 1/2 if they are support points of the design ξi (i = 1, . . . ,M).

Note that the gradient (2.6) can be rewritten in the form

hi(d) = 1
σi


Ip×p 0p×q

0(i−1)q×p 0(i−1)q×q

0q×p Iq×q
0(M−i)q×p 0(M−i)q×p


(

∂
∂θ1
f(d, θ1, θ

(i)
2 )

∂

∂θ
(i)
2

f(d, θ1, θ
(i)
2 )

)
:= Pi g(d, θ1, θ

(i)
2 ) (3.1)

where Pi is a (p + Mq) × (p + q) block matrix, Ip×p is the p-dimensional identity matrix and

g(d, θ1, θ
(i)
2 ) is the p+q-dimensional gradient of f(d, θ1, θ

(i)
2 ) with respect to (θ1, θ

(i)
2 ) (i = 1, . . . ,M).

Consequently, for the information matrix (2.5) the representation

M (i)(ξi, θ) = Pi

∫
Xi

g(d, θ1, θ
(i)
2 )g(d, θ1, θ

(i)
2 )dξi(d) P T

i := Pi C(ξi, θ1, θ
(i)
2 ) P T

i

holds, where the (p+ q)× (p+ q) matrix C(ξi, θ1, θ
(i)
2 ) is defined by

C(ξi, θ1, θ
(i)
2 ) =

∫
Xi

 Ψ1,1(d, θ1, θ
(i)
2 ) . . . Ψ1,p+q(d, θ1, θ

(i)
2 )

...
. . .

...

Ψp+q,1(d, θ1, θ
(i)
2 ) . . . Ψp+q,p+q(d, θ1, θ

(i)
2 )

 dξi(d)

for i = 1, . . . ,M .

In the following we will present a generalization of results in Yang (2010), Dette and Melas

(2011) and Yang and Stufken (2012). To be precise for i = 1, . . . ,M we define Ψ0(d) ≡ 1 and

choose a basis, say {Ψ0(·),Ψi
1(·), . . . ,Ψi

k−1(·),Ψi
k(·)} for the space span(Ψs,t(·, θ1, θ

(i)
2 )|1 ≤ s, t ≤

p + q} ∪ {1}), where the dependence on the parameters is reflected by the upper index i for the

sake of a transparent notation. We also assume that the function Ψi
k(·) is a diagonal element of

the matrix C(ξi, θ1, θ
(i)
2 ), does not coincide with any of the other elements Ψs,t(·, θ1, θ

(i)
2 ) and that

{Ψ0(·),Ψi
1(·), . . . ,Ψi

k−1(·)} is a basis of the space

span
(
{Ψs,t | s, t ∈ {1, . . . , p+ q}; Ψs,t 6= Ψi

k} ∪ {1}
)
.

For our first results we require the notation of Chebyshev system [see Karlin and Studden (1966)].

A set of k real valued functions f0, . . . , fk−1 : [A,B]→ R is called Chebychev system on the interval

[A,B] if and only if it fulfills the inequality

det

 f0(x0) . . . f0(xk−1)
...

. . .
...

fk−1(x0) . . . fk−1(xk−1)

 > 0
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for any points x0, . . . , xk−1 with A ≤ x0 < x1 . . . < xk−1 ≤ B.

Lemma 3.1

(1) If for all i = 1, . . . ,M the sets {Ψ0(·),Ψi
1(·), . . . ,Ψi

k−1(·)} and {Ψ0(·),Ψi
1(·), . . . ,Ψi

k−1(·),Ψi
k(·)}

are Chebychev systems on the interval Xi = [0, d
(i)
max], then for any design ξ there exists a design

ξ+ = (ξ+
1 , . . . , ξ

+
M , µ) with |supp(ξ+

i )| ≤ k+2
2

(i = 1, . . . ,M), such that M(ξ+, θ) ≥ M(ξ, θ). If

the index of the design ξi satisfies I(ξi) <
k
2

the design coincides with the design ξ. In the case

I(ξi) ≥ k
2
, the following two assertions are valid.

(1a) If k is odd, then ξ+
i has at most k+1

2
support points and ξ+

i can be chosen such that its support

contains d
(i)
max (i = 1, . . . ,M).

(1b) If k is even, then ξ+
i has at most k+2

2
support points and ξ+

i can be chosen such that its

support contains the points 0 and d
(i)
max (i = 1, . . . ,M).

(2) If for all i = 1, . . . ,M the sets {Ψ0(·),Ψi
1(·), . . . ,Ψi

k−1(·)} and {Ψ0(·),Ψi
1(·), . . . ,Ψi

k−1(·),−Ψi
k(·)}

are Chebychev systems on the interval Xi = [0, d
(i)
max], then for any design ξ there exists a design

ξ− = (ξ−1 , . . . , ξ
−
M , µ) with |supp(ξ−i )| ≤ k+2

2
(i = 1, . . . ,M), such that M(ξ−, θ) ≥ M(ξ, θ). If

the index of the design ξi satisfies I(ξi) <
k
2

the design coincides with the design ξ. In the case

I(ξi) ≥ k
2
, the following two assertions are valid.

(2a) If k is odd, then ξ−i has at most k+1
2

support points and ξ−i can be chosen such that its support

contains 0.

(2b) If k is even, then ξ−i has at most k
2

support points.

Lemma 3.1 provides an upper bound for the maximal number of support points if the functions

Ψ0(·),Ψi
1(·), . . . ,Ψi

k−1(·) and Ψ0(·),Ψi
1(·), . . . ,Ψi

k−1(·),Ψi
k(·) are Chebychev systems for the differ-

ent groups i = 1, . . . ,M . Note that this bound is the same independently from the dimension of

θ1, since the number of support points is bounded in every group 1, . . . ,M separately. The next

lemma shows that (for the commonly used dose response models) it is sufficient to allocate only

patients from the group with the smallest population variance to placebo.

Lemma 3.2 Assume that the design spaces are given by Xi = [0, d
(i)
max] (i = 1, . . . ,M) and that

the regression models are given by (2.7) or by (2.8), where the function f0 is differentiable with

respect to θ
(i)
2 (i = 1, . . . ,M). Moreover, assume that f0(0, θ2) = 0 and ∂

∂θ2
f0(0, θ2) = 0. If

η = (η1, . . . , ηM , ν) denotes a design with 0 ∈ supp(ηj) for (at least) one index j, then there exists

a design ξ = (ξ1, . . . , ξM , µ) with the following properties

M(η, θ) ≤M(ξ, θ), 0 ∈ supp(ξj∗), 0 6∈ supp(ξj) for all j 6= j∗,

where j∗ ∈ argmini=1,...,Mσ
2
i .
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model

Emax

Linear-in-log

Exponential

location

θ1 + ϑ
(i)
1

d

ϑ
(i)
2 +d

(3.2)

θ1 + ϑ
(i)
1 log(d/ϑ

(i)
2 + 1) (3.3)

θ1 +ϑ
(i)
1 (exp(d/ϑ

(i)
2 )−1) (3.4)

location and scale

ϑ1 + ϑ2
d

θ
(i)
2 +d

(3.5)

ϑ1 + ϑ2 log(d/θ
(i)
2 + 1) (3.6)

ϑ1 + ϑ2

(
exp(d/θ

(i)
2 )− 1

)
(3.7)

Table 1: Commonly used dose response models for i = 1, . . . ,M . Left column: The placebo effect

is the same in every group (common location). Right column: Both the placebo effect and the scale

parameter coincide in every group (common location and scale).

In the following discussion we will apply the previous results to some of the commonly used dose

response models, namely the Emax model, linear-in-log and exponential model [see Gabrielsson

and Weiner (2007)], which are listed in Table 1. In this table we also illustrate our notation again.

The left part of the table corresponds to a model with a common location parameter (namely θ1),

while the right part of the table shows a model with a common location (ϑ1) and scale parameter

(ϑ2). We note that all these models satisfy the conditions of Lemma 3.1 and Lemma 3.2.

Corollary 3.3 Let ξ = (ξ1, . . . , ξM , µ) denote an arbitrary design with |supp(ξi)| ≥ 3 (i =

1, . . . ,M) and assume (w.l.o.g) that σ2
1 = mini=1,...,M σ2

i .

(1) If the regression model is given by the Emax model (3.2) or (3.5), then there exists a de-

sign ξ+ = (ξ+
1 , . . . , ξ

+
M , µ) with at most 2M+1 support points such that M(ξ+, θ) ≥ M(ξ, θ).

Moreover, ξ+ can be chosen such that |supp(ξ+
1 )| = 3 with 0, d

(1)
max ∈ supp(ξ+

1 ) and |supp(ξ+
i )| =

2 with d
(i)
max ∈ supp(ξ+

i ) (i = 2, . . . ,M).

(2) If the regression model is given by the linear-in-log model (3.3) or (3.6), then there exists

a design ξ+ = (ξ+
1 , . . . , ξ

+
M , µ) with at most 2M + 1 support points such that M(ξ+, θ) ≥

M(ξ, θ). Moreover, ξ+ can be chosen such that |supp(ξ+
1 )| = 3 with 0, d

(1)
max ∈ supp(ξ+

1 ) and

|supp(ξ+
i )| = 2 with d

(i)
max ∈ supp(ξ+

i ) (i = 2, . . . ,M).

(3) If the regression model is given by the exponential model (3.4) or (3.7), then there exists a

design ξ+ = (ξ+
1 , . . . , ξ

+
M , µ) with at most 3M support points such that M(ξ+, θ) ≥ M(ξ, θ).

Moreover, ξ+
i can be chosen such that |supp(ξ+

i )| = 3 and d
(i)
max ∈ supp(ξ+

i ) (i = 1, . . . ,M).

4 D-optimal designs

When one of the major purposes of the study is to determine the dose-response curve, D-optimal

designs are well suited as they minimize the maximum confidence interval length around the

predicted dose-response curve [see Silvey (1980)]. Following Chernoff (1953), a design ξ =
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(ξ1, . . . , ξM , µ) is called (locally) D-optimal for the information matrix given in (2.4) if it max-

imizes the determinant of the information matrix det(M(ξ, θ)) in the class of all designs ξ on

X1 × . . . × XM × {1, . . . ,M}. A main tool of optimal design theory are equivalence theorems

which, on the one hand provide a simple checking condition for the optimality of a given de-

sign, and on the other hand, are the basis of many procedures for their numerical construction.

Moreover, these characterizations of optimality can also be used to derive structural properties

of optimal designs. The following result provides the equivalence theorem for the D-optimality

criterion corresponding to the matrix given in (2.4). The proof follows by standard arguments of

optimal design theory and is therefore omitted.

Theorem 4.1 The design ξ? = (ξ?1 , . . . , ξ
?
M , µ

?) is D-optimal if and only if the M inequalities

κi(d, ξ
?, θ) = hTi (d)M−1(ξ?, θ)hi(d) ≤ m = p+ qM, (4.1)

are satisfied for all d ∈ Xi, i = 1, . . . ,M . Equality holds in (4.1) for any points (d1, . . . , dM , z) ∈
supp(ξ?1)× . . .× supp(ξ?M)× supp(µ?).

Denote

ΞM
m =

{
ξ = (ξ1, . . . , ξM , µ)

∣∣∣ M∑
i=1

|supp(ξi)| = m
}

(4.2)

as the set of all designs on X1× . . .×XM ×{1, . . . ,M} with exactly m different dose levels in the

M groups. The proof of the next lemma follows by similar arguments as in the standard case [see

Silvey (1980) among others], and is therefore also omitted.

Lemma 4.2 Let ξ = (ξ1, . . . , ξM , µ) ∈ ΞM
m denote a design on X1× . . .×XM ×{1, . . . ,M} and mi

denote the number of support points of ξi (i = 1, . . . ,M). Assume that the m =
∑M

i=1mi vectors

h1(d
(1)
1 ), . . . , h1(d

(1)
m1), . . . , hM(d

(M)
1 ), . . . , hM(d

(M)
mM ) are linearly independent where d

(i)
j ∈ supp(ξi)

j = 1, . . . ,mi, i = 1, . . . ,M .

If ξ is locally D-optimal in the class ΞM
m , then each component ξi has equal weights at its support

points. Moreover, the weights of µ at the points 1, . . . ,M are given by m1

m
, . . . , mM

m
, respectively.

In the following two sections we present some locally D-optimal designs for the Emax, the ex-

ponential and the linear-in-log model. The proofs of these results are complicated and therefore

deferred to Section 6.

4.1 Models with the same location parameter

First, we consider the case where only the location parameter is the same in the different models.

In applications this reflects the situation of a common placebo effect for all groups (cf. the first

column of Table 1), and we are able to identify the locally D-optimal design explicitly. We begin
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with a general result for the regression functions of the form (2.8) where the unknown parameter

vector is given by θ = (θ1, θ
(1),T
2 , . . . , θ

(M),T
2 )T ∈ Rm with m = 1 + Mq. The following result

provides a solution of the D-optimal design problem if the D-optimal design for the single models

are known.

Theorem 4.3 Let σ2
1 = mini=1,...,M σ2

i and consider the model given by (2.8), which satisfies

f0(0, θ
(i)
2 ) = 0 , ∂

∂θ
(i)
2

f0(d, θ
(i)
2 )|d=0 = 0q (4.3)

(i = 1, . . . ,M). If the design

ξ̃(i) =

(
0 d

(i)
1 . . . d

(i)
q

1
q+1

1
q+1

. . . 1
q+1

)
(4.4)

is locally D-optimal for the single model f(d, θ1, θ
(i)
2 ) (i = 1, . . . ,M), then the locally D-optimal

design for model (2.8) is given by ξ? = (ξ?1 , . . . , ξ
?
M , µ

?) where

ξ?1 = ξ̃(1), ξ?i =

(
d

(i)
1 . . . d

(i)
q

1
q

. . . 1
q

)
, i = 2, . . . ,M, µ? =

(
1 2 . . . M
q+1
m

q
m
. . . q

m

)
. (4.5)

Using Theorem 4.3 the placebo effect θ1 is estimated in the group where the variance is smallest

(see also Lemma 3.2 and Corollary 3.3). Moreover, it follows from the proof of Lemma 3.2 that

the D-optimal design given by Theorem 4.3 is not unique if there exist two groups, say j∗1 and

j∗2 , with σ2
j∗1

= σ2
j∗2

= minMj=1 σ
2
j . We now use these results to determine D-optimal designs for the

Emax, exponential and linear-in-log model explicitly.

Corollary 4.4 Let σ2
1 = mini=1,...,M σ2

i . The locally D-optimal design for the Emax, exponential

and linear-in-log model (3.2) is of the form ξ? = (ξ?1 , . . . , ξ
?
M , µ

?), where

ξ?1 =

(
0 x?,(1) d

(1)
max

1
3

1
3

1
3

)
, ξ?i =

(
x?,(i) d

(i)
max

1
2

1
2

)
, i = 2, . . . ,M, µ? =

(
1 2 . . . M
3
m

2
m
. . . 2

m

)
.

and the point x?,(i) is given by

x?,(i) = x?,(i)emax =
ϑ

(i)
2 d

(i)
max

d
(i)
max + 2ϑ

(i)
2

, (i = 1, . . . ,M) (4.6)

for the Emax model, by

x?,(i) = x?,(i)exp =

(
d

(i)
max − ϑ(i)

2

)
exp

(
d

(i)
max/ϑ

(i)
2

)
+ ϑ

(i)
2

exp
(
d

(i)
max/ϑ

(i)
2

)
− 1

, (i = 1, . . . ,M) (4.7)

for the exponential model and by

x?,(i) = x
?,(i)
log =

(
d

(i)
max + ϑ

(i)
2

)
ϑ

(i)
2 log

(
d

(i)
max/ϑ

(i)
2 + 1

)
− ϑ(i)

2 d
(i)
max

d
(i)
max

, (i = 1, . . . ,M) (4.8)

for the linear-in-log model.
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It is worthwhile to mention that the locally D-optimal design for model (2.8) with an Emax curve

consists of the designs which are locally D-optimal for the models given by an individual Emax

model with parameter (θ1, θ
(1)
2 ) and by an Emax model with location parameter equal to zero

and parameter θ
(i)
2 , i = 2, . . . ,M . This effect can also be observed for the exponential and the

linear-in-log model.

4.2 Models with the same location and scale parameters

In this section we consider model (2.7) and assume that the location and scale parameter coincide

across the different models (cf. the second column in Table 1). It turns out that in this case the

D-optimal design problem is substantially harder, and for the sake of a transparent presentation,

we restrict ourselves to the case of M = 2 groups. Similar results can be obtained in the case

M > 2 with an additional amount of notation. We begin with some general properties of locally

D-optimal designs for the model (2.7) in the case of an Emax, linear-in-log and exponential curve.

For this purpose we define

r =
σ2

1

σ2
2

as the ratio of the two population variances.

Lemma 4.5

(A) The locally D-optimal design ξ? = (ξ?1 , ξ
?
2 , µ) for the Emax model (3.5) and the linear-in-log

(3.6) have the following properties:

(A1) |supp(ξ?1)|+ |supp(ξ?2)| ∈ {4, 5}.

(A2) If |supp(ξ?1)|+ |supp(ξ?2)| = 5, then d
(i)
max ∈ supp(ξ?i ), i = 1, 2.

(A3) If |supp(ξ?1)|+ |supp(ξ?2)| = 4, then d
(1)
max ∈ supp(ξ?1) or d

(2)
max ∈ supp(ξ?2).

(B) The locally D-optimal design ξ? = (ξ?1 , ξ
?
2 , µ) for the exponential model (3.7) satisfies

|supp(ξ?1)|+ |supp(ξ?2)| ∈ {4, 5, 6}.

By the previous lemma the number of support points of the locally D-optimal designs is at most

5 for the Emax and linear-in-log model and at most 6 for the exponential model. On the other

hand, at least four support points are required to estimate all parameters in both models (note

that the scale and location are assumed to be the same throughout this section). In the following

discussion we determine such “minimally” supported D-optimal designs explicitly for the Emax,

exponential and linear-in-log model.
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4.2.1 Minimally supported designs

Recall the definition of the set ΞM
m in (4.2). We call a design of the ξ = (ξ1, ξ2, µ) minimally

supported (for the Emax, linear-in-log and exponential model) if ξ ∈ Ξ2
4 (note that for these

models the information matrix is of size 4×4 as the scale and location parameter coincide in both

models). It turns out the the minimally supported D-optimal designs for the three models under

consideration have a very similar structure. On the other hand the question, if these designs are

D-optimal in the class of all designs does not have a simple answer and will be discussed in the

following section.

Theorem 4.6 Let θ̄
(i)
2 =

θ
(i)
2

d
(i)
max

, i = 1, 2 and 0 < θ̄
(1)
2 < θ̄

(2)
2 < 1, define y? = θ

(2)
2 , z? = θ

(1)
2 and

x?,(i) = x
?,(i)
emax by (4.6) (i = 1, 2).

(1) If r ≤ 1, the locally D-optimal design for model (3.5) in the class Ξ2
4 is given by

ξa,?1 =

(
0 x?,(1) d

(1)
max

1
3

1
3

1
3

)
, ξa,?2 =

(
y?

1

)
, µa,? =

(
1 2
3
4

1
4

)
. (4.9)

(2) If 1 < r ≤
(

1+θ̄
(2)
2

1+θ̄
(1)
2

)6

, the locally D-optimal design for model (3.5) in the class Ξ2
4 is given by

ξb,?1 =

(
x?,(1) d

(1)
max

1
2

1
2

)
, ξb,?2 =

(
0 y?

1
2

1
2

)
, µb,? =

(
1 2
1
2

1
2

)
. (4.10)

(3) If r >
(

1+θ̄
(2)
2

1+θ̄
(1)
2

)6

, the locally D-optimal design for model (3.5) in the class Ξ2
4 is given by

ξc,?1 =

(
z?

1

)
, ξc,?2 =

(
0 x?,(2) d

(2)
max

1
3

1
3

1
3

)
, µc,? =

(
1 2
1
4

3
4

)
. (4.11)

We can also obtain the minimally supported D-optimal designs for the exponential model and the

linear-in-log with common location and scale parameter.

Theorem 4.7 Let θ̄
(i)
2 =

θ
(i)
2

d
(i)
max

, i = 1, 2, 0 < θ̄
(1)
2 < θ̄

(2)
2 < 1, define

g(θ, x) =
(
1 + (x− 1) exp(x

θ
)− x exp(x−1

θ
)
)2

and y? = d
(2)
max, z? = d

(1)
max and the point x?,(i) = x

?,(i)
exp by (4.7) for i = 1, 2.

(1) If r ≤ 1, the D-optimal design for model (3.7) in the class Ξ2
4 is given by (4.9).

(2) If 1 < r ≤ g(θ
(1)
2 ,x

?,(1)
exp )

g(θ
(2)
2 ,x

?,(2)
exp )

, the D-optimal design for model (3.7) in the class Ξ2
4 is given by (4.10).
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(3) If r >
g(θ

(1)
2 ,x

?,(1)
exp )

g(θ
(2)
2 ,x

?,(2)
exp )

, the D-optimal design for model (3.7) in the class Ξ2
4 is given by (4.11).

Theorem 4.8 Let θ̄
(i)
2 =

θ
(i)
2

d
(i)
max

i = 1, 2, 0 < θ̄
(1)
2 < θ̄

(2)
2 < 1, define

g(θ, x) = (1 + θ)2
(

log(1
θ

+ 1) log(x
θ

+ 1)
)2
( x

(x+ θ) log(x
θ

+ 1)
− 1

(1 + θ) log(1
θ

+ 1)

)2

and y? = d
(2)
max, z? = d

(1)
max and the point x?,(i) = x

?,(i)
log by (4.8) for i = 1, 2.

(1) If r ≤ 1, the D-optimal design for model (3.6) in the class Ξ2
4 is given by (4.9).

(2) If 1 < r ≤ g(θ
(1)
2 ,x

?,(1)
log )

g(θ
(2)
2 ,x

?,(2)
log )

, the D-optimal design for model (3.6) in the class Ξ2
4 is given by (4.10).

(3) If r >
g(θ

(1)
2 ,x

?,(1)
log )

g(θ
(2)
2 ,x

?,(2)
log )

, the D-optimal design for model (3.6) in the class Ξ2
4 is given by (4.11).

4.2.2 D-optimal designs in the class of all designs

The question if a minimally supported D-optimal design for one of the models considered in

Section 4.2.1 is in fact D-optimal in the class of all designs is an extremely difficult one. Its

answer depends sensitively on the particular parameters in the model under consideration and

differs for the three dose response models under consideration. We exemplarily state a result

for the Emax model, which provides sufficient conditions for the D-optimality of a minimally

supported D-optimal design, and illustrates the general structure and difficulties in results of this

type. The proof is based on the equivalence Theorem 4.1 and given in the appendix. Similar

but substantially more complicated statements can also be obtained of the linear-in-log and the

exponential model (note that in contrast to the Emax model these models contain transcendental

functions).

Theorem 4.9 Let θ̄
(i)
2 =

θ
(i)
2

d
(i)
max

, i = 1, 2 and assume 0 < θ̄
(1)
2 < θ̄

(2)
2 < 1.

(1) Let r ≤ 1. The design ξa,? defined in (4.9) is locally D-optimal for model (3.5) if the

condition

θ̄
(2)
2 ≥

r
(
6θ̄

(1)
2 (θ̄

(1)
2 + 1)(2θ̄

(1)
2 + 1)2

)
−
(
1− r

)
(6 + 2rθ̄

(1)
2 (1 + 2θ̄

(1)
2 ))

(4.12)

is satisfied.

(2) Let r > 1. The design ξb,? defined in (4.10) is locally D-optimal for model (3.5) if and only

if the condition

θ̄
(2)
2 ≥

(θ̄
(1)
2 )2(1 + 2θ̄

(1)
2 )2 + r(1 + θ̄

(1)
2 )2(1 + 4θ̄

(1)
2 + 20(θ̄

(1)
2 )2)− 1

6 + 2θ̄
(1)
2 (1 + 2θ̄

(1)
2 )

(4.13)

is satisfied.
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Figure 1: The marked regions describe the parameter spaces, where the minimally supported D-

optimal design is optimal in the Emax model (3.5) (see Theorem 4.9). The different figures

correspond to different values of r = σ2
1/σ

2
2. The domain for the first case of Theorem 4.9 is

represented in gray for the case r = 1/10, r = 1/2 and r = 1 (see the first three panels from the

left). In the right panel we display the case r = 2 of Theorem 4.9 (here the gray region corresponds

to case (2), while the dark gray region corresponds to case (3)).

(3) Let r > 1. The design ξc,? defined in (4.11) is locally D-optimal for model (3.5) if the

condition

θ̄
(1)
2 ≥

1
r

(
6θ̄

(2)
2 (θ̄

(2)
2 + 1)(2θ̄

(2)
2 + 1)2

)
−
(

1− 1
r

)
(6 + 21

r
θ̄

(2)
2 (1 + 2θ̄

(2)
2 ))

(4.14)

is satisfied.

Figure 1 illustrates the parameter domains for different ratios r =
σ2
1

σ2
2
. The case where the variance

is equal in both groups is presented in the third panel. Obviously, there are several parameter

constellations θ
(1)
2 ≥ θ

(2)
2 where the minimally supported D-optimal design ξa,? is not optimal in

the class of all designs.

5 Application to a dose-finding study

In this section we illustrate the application of the results of the previous sections and discuss the

problem of designing experiments for a dose finding study with different treatment groups. Our

example refers to a Phase II study on a drug that works by increasing the level of a biomarker

that induces a beneficial clinical effect in patients. The dosing groups under consideration are

monthly and weekly administration. The primary objective of the study is the characterization of
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dose-response relationships at a given time-point, say T , after initiation of treatment for each of

these two dosing groups. This will support the selection of an appropriate dose level and group to

be used in phase III clinical trials. To maintain the confidentiality of the trial the dose-range has

been rescaled and the considered range (in terms of total monthly dose) is [0, 400] for the weekly

group and [0, 1000] for the once-a-month group. The natural questions for the design of this study

are (i) which doses should be studied in each treatment group and (ii) how to split the total sample

size between the two treatment groups. Here the objectives of the study are addressed by deriving

the best estimates of the dose response curves, a task for which a D-optimal design is best suited.

To arrive at a suitable design for the Phase II study, we need to quantify the information. This

quantification can generate a best guess for the dose-response curves, but, even better, it can

be used to obtain a candidate set of dose-group-response scenarios to reflect the uncertainty

about the true dose-group-response relationship. The available information was data from a very

small early trial, which was used to develop a nonlinear mixed effects pharmacokinetics (PK) /

pharmacodynamics (PD) model linking drug concentrations to biomarker levels. Using this model,

data of the new trial were predicted for the time-point T of the dose-response analysis and dose-

group-response models were fitted to the data. Under the assumption of a normal distribution for

the logarithm of the biomarker level, it turned out that the Emax function was able to adequately

describe the population average predicted by the PK/PD model. The Emax model utilized total

monthly dose as input and had different ED50 parameters in the two groups (θ
(1)
2 and θ

(2)
2 ), but

the same placebo ϑ11 and Emax parameter ϑ12, so that the model function in the weekly and

monthly group is given by

f(d, θ1, θ
(i)
2 ) = ϑ11 + ϑ12

d

θ
(i)
2 + d

, i = 1, 2,

Here group i = 1 contains patients receiving monthly administration and the group i = 2 the

weekly administration. The parameter estimates can be found in Table 2 as model 1, which can

be considered as population average fit. We now use these estimates as a guess and determine

the locally D-optimal design for these values. The variability is expected to be the same in both

treatment groups. Recalling the design spaces for the monthly and weekly doses are X1 = [0, 1000]

and X2 = [0, 400], respectively, we obtain from Theorem 4.6 and Theorem 4.9 the (locally) D-

optimal design ξ? = (ξ?1 , ξ
?
2 , µ

?) as

ξ?1 =

(
0 x

?,(1)
emax d

(1)
max

1
3

1
3

1
3

)
=

(
0 13.45 1000
1
3

1
3

1
3

)
, ξ?2 =

(
θ

(2)
2

1

)
=

(
10.46

1

)
, µ? =

(
1 2
3
4

1
4

)
.

It can be seen that based on the population average fit, it is sufficient to investigate the low

dose-range in both groups and a high dose in one of the two groups. Here the maximum dose is

placed in the monthly group because θ
(1)
2 /d

(1)
max < θ

(2)
2 /d

(2)
max, so relative to the allowed maximum

dose a larger ED50 parameter exists for the weekly group and thus patients are allocated to the

monthly group.
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Figure 2: Candidate models for the dose-response curve in monthly and weekly group. In the

first row models 1-5 are depicted and in the second row models 6-10 (see Table 2). The solid line

represents the population average of the new trial data generated with the PK/PD model. The grey

area represents the biomarker level between the 25th and 75th quantiles of the patient responses

of the new trial data. Dotted curves correspond to the Emax models. Sigmoid Emax models are

depicted as dotted-dashed lines and the linear-in-log models as dashed lines.

In practice, it is not realistic to assume that the data and model from previous small trials com-

pletely represent the underlying truth (otherwise no further study would need to be conducted).

So it is important to derive ranges covering the uncertainty about the available information to

use for the design of the new study. In particular, because the population to be included in the

Phase II trial will cover a broader range of characteristics than in the small proof of concept

trial. For this purpose the PK/PD model was used to predict individual dose-response curves and

the Emax model was fitted to the individual dose-response curves to derive a range of plausible

dose-response parameters. Quantiles of the derived parameter distributions were used to derive

four additional candidate model shapes. More details on how these candidate shapes were derived

can be found in Appendix 7. The parameters for these four additional candidate models can be

found in Table 2 under the numbers 2-5. These models are depicted in the first row of Figure 2.

With this set of candidate models, the design maximizing the mean efficiency

gc(ξ, s) =
s∑
i=1

πiEffi(ξ) (5.1)
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model type id ϑ11 ϑ12 θ
(1)
2 θ

(2)
2 γ

Emax 1 5.48 0.90 13.82 10.46 1

Emax 2 5.47 0.93 2.93 2.39 1

Emax 3 5.47 0.93 2.93 40.40 1

Emax 4 5.47 0.93 53.49 2.39 1

Emax 5 5.47 0.93 53.49 40.40 1

Sigmoid Emax 6 5.48 0.90 13.82 10.46 3

Model type id θ1 ϑ
(1)
1 ϑ

(2)
1 ϑ

(1)
2 ϑ

(2)
2 γ

Emax 7 5.48 0.85 0.95 13.82 10.46 1

Sigmoid Emax 8 5.48 0.65 0.75 2.93 2.39 3

Sigmoid Emax 9 5.48 0.95 1.05 53.49 40.40 3

Log 10 5.44 0.13 0.14 0.32 0.41

Table 2: Set of candidate models used in the robust criterion (5.1)

can be calculated, where s is the number of candidate models (here 5 or 10), π1, . . . , πs are non-

negative model weights chosen to reflect prior probability associated the model function 1, . . . , s

(throughout this paper we will use πi = 1/s, i = 1, . . . , s). The efficiencies Effi(ξ) of the exper-

imental design ξ with respect to the (locally) D-optimal design ξ?,i associated to the model i is

defined as

Effi(ξ) =

(
|Mi(ξ, θi))|
|Mi(ξ?,i, θi)|

)1/mi

,

where Mi is the Fisher information matrix associated to the model i with parameter specification

θi and mi is the number of parameters of this model. The criterion (5.1) is called Bayesian

or compound optimality criterion in the literature [see Dette (1990), Cook and Wong (1994) or

Tsai and Zen (2004); Zen and Tsai (2004) among many others]. In the following we will denote

the designs maximizing (5.1) by ξ?c,s = (ξ?1,c,s, ξ
?
2,c,s, µ

?
c,s) and call it compound optimal design.

We emphasize that the definition of the criterion (5.1) requires knowledge of the locally optimal

designs ξ?,i, which have been determined in Section 4.

The compound optimal design based on the first 5 models in Table 2 can be calculated numerically

and is given by ξ?c,5 = (ξ?1,c,5, ξ
?
2,c,5, µ

?
c,5), where

ξ?1,c,5 ≈

(
0 3.02 43.67 1000

0.26 0.24 0.25 0.25

)
, ξ?2,c,5 =

(
2.53 37.51

0.48 0.52

)
, µ?c,5 =

(
1 2

0.67 0.33

)
,

and its optimality can be proved by an analogue of Theorem 4.1 for the Bayesian optimality

criterion (5.1). Compared to the design using only the best guess model, now the low dose-range

is investigated in finer granularity by using two instead of one dose (safeguarding against different
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gc(·, s) 1 2 3 4 5 6 7 8 9 10

ξ?c,5 0.823 0.708 0.835 0.877 0.845 0.847 0.098 0.795 0.927 0.906 0.625

ξ?c,10 0.747 0.831 0.749 0.779 0.767 0.786 0.749 0.903 0.760 0.749 0.747

Table 3: Efficiency Effi(ξ
?
c,s) of the two compound optimal designs compared to each of the locally

D-optimal designs for the 10 models.

possible values of the ED50). In addition still more patients are evaluated for the monthly group,

as the high dose is only used there.

Based on general plausibility considerations five further candidate shapes were included as example

of models different from the Emax function (e.g. the sigmoid Emax and the linear-in-log function),

or of models where the maximum efficacy differed between the two groups. These models are shown

in the second row of Figure 2 and the corresponding parameters are given in the rows with ids

6-10 in Table 2. First a sigmoid Emax model

f(d, θ1, θ
(i)
2 , γ) = ϑ11 + ϑ12

dγ

(θ
(i)
2 )γ + dγ

, i = 1, 2,

with Hill coefficient γ = 3 (model 6) is also considered as a possible dose response function. Note

that this model provides a steeper dose-response curve compared to the Emax model, but with

the same ED50 values as model 1. Furthermore, an Emax and a sigmoid Emax model

f(d, θ1, θ
(i)
2 , γ) = θ1 +

ϑ
(i)
1 d

γ

(ϑ
(i)
2 )γ + dγ

, i = 1, 2.

is added that allows for different Emax parameters in the two treatment group (models 7, 8, 9). In

addition a linear-in-log model (id 10) is utilized. The locally D-optimal designs for these models

can be computed using the results of Section 4. For the sigmoid Emax models, a transformation

has to be used to reduce it to the case of an Emax model, such that the derived theory is applicable

(note that the parameter γ is assumed to be fixed).

When using all s = 10 candidate models we obtain ξ?c,10 = (ξ?1,c,10, ξ
?
2,c,10, µ

?
c,10) where

ξ?1,c,10 ≈

(
0 2.90 12.98 41.91 1000

0.27 0.13 0.22 0.13 0.24

)
, ξ?2,c,10 =

(
3.01 13.16 49.46 400

0.33 0.21 0.31 0.15

)
,

µ?c,10 =

(
1 2

0.58 0.42

)
.

This design investigates the lower dose range comparably to the previous design based on the first

five candidate models, but the maximum dose is studied in both groups. The efficiencies of the

two designs ξ?c,5 and ξ?c,10 in the different models are displayed in Table 3. We observe that the

design ξ?c,5 has reasonable efficiencies in all models except in the sigmoid Emax (6). Note that
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this design has been constructed on the basis of the models (1) - (5). On the other hand the

the design ξ?c,10 maximizes the criterion (5.1), where uncertainty with respect to all models (1)

- (10) is addressed. As a consequence this design has efficiencies varying between 75% - 90% in

all competing models under consideration. Moreover, it can be used for a goodness-of-fit test of

the Emax model, as both components have more than 3 support points. For these reasons we

recommend this design for the Phase II study under consideration.
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6 Appendix: technical details

6.1 Deviation of the information matrix

Assuming a normal distribution of the errors (εij` ∼ N (0, σ2
i ) independent) partial derivatives of

the corresponding log-likelihood function `(θ) with respect to θ1 and θ
(i)
2 are given by

∂

∂θ1

`(θ) =
M∑
i=1

ki∑
j=1

nij∑
`=1

1

σ2
i

(
Yij` − f(d

(i)
j , θ1, θ

(i)
2 ))

) ∂

∂θ1

f(d
(i)
j , θ1, θ

(i)
2 ),

∂

∂θ
(i)
2

`(θ) =

ki∑
j=1

nij∑
`=1

1

σ2
i

(
Yij` − f(d

(i)
j , θ1, θ

(i)
2 )
) ∂

∂θ
(i)
2

f(d
(i)
j , θ1, θ

(i)
2 ),

(i = 1, . . . ,M). Note that

E
[ ∂

∂θ
(i)
2

`(θ)
( ∂

∂θ
(i)
2

`(θ)
)T]

=

{
0 if i 6= i′∑ki

j=1

∑nij

`=1
1
σ2
i
ηi(d

(i)
j )ηTi (d

(i)
j ) if i = i′

E
[ ∂

∂θ1

`(θ)
( ∂

∂θ
(i)
2

`(θ)
)T]

=
1

σ2
i

ki∑
j=1

nij∑
`=1

ηi(d
(i)
j )ηi(d

(i)
j )

and

E
[ ∂

∂θ1

`(θ)
( ∂

∂θ1

`(θ)
)T]

=
M∑
i=1

ki∑
j=1

nij∑
`=1

1

σ2
i

ηi(d
(i)
j )ηTi (d

(i)
j ),
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where ηTi (d) = ∂
∂θ1
f(d

(i)
j , θ1, θ

(i)
2 ), ηTi (d) = ∂

∂θ
(i)
2

f(d
(i)
j , θ1, θ

(i)
2 ). Consequently, we obtain for the

Fisher information

Mn :=
M∑
i=1

ki∑
j=1

nijhi(d
(i)
j )hTi (d

(i)
j ) = n

M∑
i=1

ni
n

ki∑
j=1

nij
ni
hi(d

(i)
j )hTi (d

(i)
j ),

where the vector hi is defined in (2.6). Observing the assumption (2.3) it follows that 1
n
Mn

converges to the matrix M(ξ, θ) defined in (2.4).

6.2 Proof of main results

Proof of Lemma 3.1: We only discuss the first part of the proof. The second assertion follows

by similar argument. Let ξ = (ξ1, . . . , ξM , µ) be an arbitrary design with |supp(ξi)| ≥ (k+2)
2

(i = 1, . . . ,M) and assume that there exists a design ξ+ = (ξ+
1 , . . . , ξ

+
M , µ) such that

C(ξ+, θ1, θ
(i)
2 ) ≥ C(ξ, θ1, θ

(i)
2 )

for all i = 1, . . . ,M . Recalling the definition of the matrix Pi in (3.1) it then follows by Theorem

14.2.9 of Harville (1997) that

M (i)(ξ+, θ) = PiC(ξ+, θ1, θ
(i)
2 )P T

i ≥ PiC(ξ, θ1, θ
(i)
2 )P T

i = M (i)(ξ, θ) i = 1, . . . ,M.

This implies

M(ξ+, θ) =
M∑
i=1

λiM
(i)(ξ+

i , θ) ≥
M∑
i=1

λiM
(i)(ξi, θ) = M(ξ, θ)

and the design ξ+ increases the information matrix M(·, θ) with respect to the Loewner ordering.

It now follows from Theorem 3.1 of Dette and Melas (2011) that there exists a design ξ+ with

components ξ+
i with at most k+2

2
support points (i = 1, . . . ,M). The statements (1a) and (1b) in

Lemma 3.1 also follows from Theorem 3.1 in Dette and Melas (2011).

Proof of Lemma 3.2: We only prove the Lemma for the model given by (2.7). The proof for

model (2.8) is analogous. Note that in the model under consideration we have ∂
∂θ1
f(d, θ1, θ

(i)
2 ) =(

1, f0(d, θ
(i)
2 )
)

for the gradient in (2.6). Consequently, if δ0 denotes the Dirac measure at the point

0, it follows for the matrices M (i) defined in (2.5) that

σ2
iM

(i)(δ0, θ) = σ2
1M

(1)(δ0, θ) , i = 1, . . . ,M. (6.1)

Now, we consider the design η = (η1, . . . , ηM , ν) and represent its components as

ηi = ω
(i)
0 δ0 + (1− ω(i)

0 )η0
i i = 1, . . . ,M, ν =

M∑
i=1

λiδi .
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Here δt is the Dirac measure at the point t, λi, ω
(i)
0 ∈ [0, 1], i = 1, . . . ,M and η0

1, . . . , η
0
M denote

designs with 0 /∈ supp(η0
i ). Moreover, at least for one i ∈ {1, . . . ,M} we have λiω

(i)
0 > 0.

We now assume without loss of generality that j∗ = 1 and construct a “better” design ξ =

(ξ1, . . . , ξM , µ) as follows

ξ1 = ω?δ0 + (1− ω?)η0
1, ξi = η0

i , (i = 2, . . . ,M), µ =
M∑
i=1

λ?i δi,

where

λ?1 = λ1 +
M∑
i=2

λiω
(i)
0 ∈ [0, 1], λ?i = λi(1− ω(i)

0 ) (i = 2, . . . ,M), ω? =
∑M

i=1 λiω
(i)
0

λ1+
∑M

i=2 λiω
(i)
0

.

Note that we shift the weights of the measures ηi at the point 0 to the design for the group with

the smallest population variance. Observing (6.1) gives for the difference

M(ξ, θ)−M(η, θ) = ω?λ?1M
(1)(δ0, θ) + (1− ω?)λ?1M (1)(η0

1, θ) +
M∑
i=2

λ?iM
(i)(η0

i , θ)

−
( M∑
i=1

ω
(0)
i λiM

(i)(δ0, θ) +
M∑
i=1

λi(1− ω(0)
i )M (i)(η0

i , θ)
)

=
(
ω?λ?1 −

M∑
i=1

σ2
1

σ2
i
ω

(0)
i λi

)
M (1)(δ0, θ) ≥

(
ω?λ?1 −

M∑
i=1

λiω
(i)
0

)
M (1)(δ0, θ) = 0,

since σ2
1 ≤ σ2

i (i = 1, . . . ,M).

Proof of Corollary 3.3: Lemma 3.1 can be applied in the case of an Emax model or linear-in-log

model with k = 4 [see Yang (2010)]. Consequently, there exists a design ξ+ with 3M support points

and each component ξ+
i contains the placebo 0 and d

(i)
max i = 1, . . . ,M . Now we apply Lemma

3.2 with η = ξ+ and we allocate the placebo 0 in the group with the smallest variance. For the

exponential model Lemma 3.1 can be applied with k = 5 [see Yang (2010)]. Consequently, there

exists a design ξ+ with 3M support points and each component ξ+
i contains d

(i)
max i = 1, . . . ,M .

Proof of Theorem 4.3: For the sake of transparency we restrict ourselves to the case M = 2

such that m = Mq+1 = 2q+1. We use the equivalence Theorem 4.1 to establish the D-optimality

of the design ξ?. In the present situation this means that the D-optimality of the design ξ? defined

in (4.5) for model (2.8) with assumption (4.3) can be proved by checking the two inequalities

κ1(t, ξ?, θ) = 1
σ2
1

(
1, ηT0 (t, θ

(1)
2 ), 0Tq

)
M−1(ξ?, θ)

(
1, ηT0 (t, θ

(1)
2 ), 0Tq

)T ≤ 2q + 1, t ∈ [0, d(1)
max], (6.2)

κ2(t, ξ?, θ) = 1
σ2
2

(
1, 0Tq , η

T
0 (t, θ

(2)
2 )
)
M−1(ξ?, θ)

(
1, 0Tq , η

T
0 (t, θ

(2)
2 )
)T ≤ 2q + 1, t ∈ [0, d(2)

max], (6.3)
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where η0(d, θ
(i)
2 ) = ∂

∂θ
(i)
2

f0(d, θ
(i)
2 ). A straightforward calculation shows that the information of the

design ξ? can be represented as

M(ξ?, θ) =
1

m
X(σ1, θ

(1)
2 , σ2, θ

(2)
2 )XT (σ1, θ

(1)
2 , σ2, θ

(2)
2 ) , (6.4)

where the matrix X(σ1, θ
(1)
2 , σ2, θ

(2)
2 ) is given by

X(σ1, θ
(1)
2 , σ2, θ

(2)
2 ) =

(
X11

(
σ1, 0, d

(1)
1 , . . . , d

(1)
q , θ

(1)
2

)
X12(σ2)

0 X22

(
σ2, d

(2)
1 , . . . , d

(2)
q , θ

(2)
2

)) ,
and the matrices X11

(
σ, 0, d

(1)
1 , . . . , d

(1)
q , θ

(1)
2

)
∈ R(q+1)×(q+1), X22(σ, d

(2)
1 , . . . , d

(2)
q , θ

(2)
2 ) ∈ Rq×q and

X12(σ) ∈ R(q+1)×q are defined by

X22(σ, d
(2)
1 , . . . , d(2)

q , θ
(2)
2 ) =

1

σ

(
η0(d

(2)
1 , θ

(2)
2 ), . . . , η0(d(2)

q , θ
(2)
2 )
)
,

X11(σ, 0, d
(1)
1 , . . . d(1)

q , θ
(1)
2 ) =

1

σ

(
1 1Tq
0q X22(σ, d

(1)
1 , . . . , d

(1)
q , θ

(1)
2 )

)
, X12(σ) =

1

σ

(
1 . . . 1

0q . . . 0q

)
.

Consequently, the inverse of M(ξ?, θ) is obtained as

M−1(ξ?, θ) = m(XT (σ1, θ
(1)
2 , σ2, θ

(2)
2 ))−1X−1(σ1, θ

(1)
2 , σ2, θ

(2)
2 ),

where

X−1(σ1, θ
(1)
2 , σ2, θ

(2)
2 ) =(

X−1
11 (σ, 0, d

(1)
1 , . . . d

(1)
q , θ

(1)
2 ) −X−1

11 (σ, 0, d
(1)
1 , . . . d

(1)
q , θ

(1)
2 )X12(σ2)X−1

22 (σ, d
(2)
1 , . . . , d

(2)
q , θ

(2)
2 , θ

(2)
2 )

0 X−1
22 (σ, d

(2)
1 , . . . , d

(2)
q , θ

(2)
2 )

)
.

Using these block structures the function κ1(t, ξ?, θ) defined in (6.2) reduces for the design ξ? =

(ξ?1 , ξ
?
2 , µ

?) to

κ1(t, ξ?, θ) = m
σ2
1

(
1, ηT0 (t, θ

(1)
2 )
)(
X−1

11 (σ, 0, d
(1)
1 , . . . d(1)

q )
)T
X−1

11 (σ, 0, d
(1)
1 , . . . d(1)

q )
(
1, ηT0 (t, θ

(1)
2 )
)T

= m
(q+1)σ2

1

(
1, ηT0 (t, θ

(1)
2 )
)
M−1

1 (ξ?1 , θ
(1))
(
1, ηT0 (t, θ

(1)
2 )
)T

,

where M1(ξ?1 , θ1, θ
(1)
2 ) = 1

σ2
1

∫ 1

0

(
1, ηT0 (t, θ

(1)
2 )
)T (

1, ηT0 (t, θ
(1)
2 )
)
dξ?1(t) denotes the information ma-

trix of the design ξ?1 in the single model with parameter (θ1, θ
(1)
2 ). Consequently, the function

κ1(t, ξ?, θ1, θ
(1)
2 ) only depends on the first component ξ?1 and is proportional to the left-hand

side of the standard equivalence theorem for D-optimality for the single model. The inequal-

ity κ1(t, ξ?, θ) ≤ m for all t ∈ [0, d
(1)
max] follows from the fact that the design ξ?1 given in (4.4) is

locally D-optimal for the single model with parameter (θ1, θ
(1)
2 ) and this proves (6.2).

In order to show the remaining inequality (6.3) for all t ∈ [0, d
(2)
max] we use the fact that the

information matrix in (6.4) can be represented as

M(ξ?, θ) = SX(σ2, θ
(2)
2 , σ1, θ

(1)
2 )diag(

σ2
2

mσ2
1
, 1
m
, . . . , 1

m
)XT (σ2, θ

(2)
2 , σ1, θ

(1)
2 )S,
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where S denotes a m×m permutation matrix, defined by

S =

 1 0Tq 0Tq
0q 0q×q Iq×q
0q Iq×q 0q×q

 ,

0q×q denotes a matrix with all entries equal to zero and Iq×q the q × q identity matrix. Observ-

ing that Sh2(t) = 1
σ2

(
1, ηT0 (t, θ

(2)
2 ), 0Tq

)T
it follows that the function κ2(t, ξ?, θ) in (6.3) can be

represented as

κ2(t, ξ?, θ) = 1
σ2
2

(
1, ηT0 (t, θ

(2)
2 )
)(
X−1

11

(
σ2, 0, d

(2)
1 , . . . , d(2)

q , θ
(2)
2

))T[
mIq+1×q+1

− m(1− σ2
1

σ2
2
)diag(1, 0q)

]
X−1

11

(
σ2, 0, d

(2)
1 , . . . , d(2)

q , θ
(2)
2

)(
1, ηT0 (t, θ

(2)
2 )
)T

= m
(q+1)σ2

2

(
1, ηT0 (t, θ

(2)
2 )
)
M−1

2 (ξ̃2, θ1, θ
(2)
2 )
(
1, ηT0 (t, θ

(2)
2 )
)T

−m(1− σ2
1

σ2
2
) 1
σ2
2

[
(1, 0Tq )X−1

11

(
σ2, 0, d

(2)
1 , . . . , d(2)

q , θ
(2)
2

)(
1, ηT0 (t, θ

(2)
2 )
)T]2

,

where M2(ξ̃2, θ1, θ
(2)
2 ) is the information matrix of the design ξ̃2 given by (4.4) for the single model.

The first term of this expression is proportional to the left hand side of the equivalence theorem

corresponding to the D-optimality in the single model with parameter (θ1, θ
(2)
2 ). Moreover, it

follows that the design ξ̃2 is D-optimal for the single model with parameter (θ1, θ
(2)
2 ), which

implies that the first term is always smaller than m. By the assumption σ2
1 ≤ σ2

2 we obtain that

the second term of this expression is nonpositive, which shows κ2(t, ξ?, θ) ≤ m for all t ∈ [0, d
(2)
max].

This proves the inequality (6.3) and completes the proof of Theorem 4.3 in the case M = 2.

Proof of Corollary 4.4: The locally D-optimal designs for the (single) Emax, the linear-in-log

and the exponential model were calculated by Dette et al. (2010). The corollary now follows by

an application of Theorem 4.3.

Proof of Lemma 4.5: Let ξ? = (ξ?1 , ξ
?
2 , µ

?) denote the locally D-optimal design for the Emax,

the linear-in-log or the exponential model. Since the information matrix M(ξ?, θ) of a locally

D-optimal design must be nonsingular one can easily deduce the following implications

|supp(ξ?1)|+ |supp(ξ?2)| ≥ 4 (6.5)

If |supp(ξ?1)|+ |supp(ξ?2)| = 4 , then 0 /∈ supp(ξ?1) ∩ supp(ξ?2) (6.6)

If |supp(ξ?i )| = 1 , then 0 /∈ supp(ξ?i ), i = 1, 2.

Moreover, it follows by Corollary 3.3 that the locally D-optimal design has at most 5 support

points for the Emax and the linear-in-log model and at most 6 support points for the exponential

model. This proves Assertion (A1) and (B). Assertion (A2) also follows by Corollary 3.3.

For a proof of (A3) we note that (|supp(ξ?1)|, |supp(ξ?2)|) ∈ {(1, 3), (2, 2), (3, 1)} if the locally D-

optimal design is given by a design in Ξ4
2. If (|supp(ξ?1)|, |supp(ξ?2)|) = (1, 3), ξ?2 must contain the
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boundary points 0, d
(2)
max, otherwise it could be improved with respect to the Loewner ordering (see

Theorem 3.1). If (|supp(ξ?1)|, |supp(ξ?2)|) = (2, 2), both designs must contain at least one of the

boundary points, otherwise I(ξ?i ) = 2 (i = 1, 2) and the designs could be improved with respect

to the Loewner ordering (see again Theorem 3.1). Using (6.6) it follows that at least one of the

designs contains the corresponding upper boundary point. If (|supp(ξ?1)|, |supp(ξ?2)|) = (3, 1), ξ?1
must contain the boundary points 0, d

(1)
max, otherwise it could be improved with respect to the

Loewner ordering (see Theorem 3.1). Assertion (A3) now follows.

Proof of Theorem 4.6: For the sake of brevity we restrict the discussion to the Emax model.

The proof consists of two steps. At first we show that it is sufficient to prove the result on the

design space [0, 1]. Secondly, we determine the D-optimal design in the class Ξ4
2.

(1) Recall the definition of the information matrix in (2.4) (with M = 2) in model (3.5) with

the parameter vector θ = (ϑ11, ϑ12, θ
(1)
2 , θ

(2)
2 )T ∈ R4. Let ξ = (ξ1, ξ2, µ) denote an arbitrary design

with components ξ1 and ξ2 defined on the design space [0, d
(1)
max] and [0, d

(2)
max], respectively, and

denote by ξ̃1 and ξ̃2 the corresponding measures on the interval [0, 1] induced by the transformation

t→ t/d
(i)
max (i = 1, 2). Now a straightforward calculation gives

M(ξ, θ) = λ

∫ d
(1)
max

0

h1(t1)hT1 (t1)dξ1(t1) + (1− λ)

∫ d
(2)
max

0

h2(t2)hT2 (t2)dξ2(t2),

= λ

∫ 1

0

h̃1(t1)h̃T1 (t1)dξ̃1(t1) + (1− λ)

∫ 1

0

h̃2(t2)h̃T2 (t2)dξ̃2(t2),

where

h̃T1 (t1) =
1

σ1

(
1,

t1

t1 + θ
(1)
2 /d

(1)
max

,
−t1

(t1 + θ
(1)
2 /d

(1)
max)2

, 0
)
P,

h̃T2 (t2) =
1

σ2

(
1,

t2

t2 + θ
(2)
2 /d

(2)
max

, 0,
−t2

(t2 + θ
(2)
2 /d

(2)
max)2

)
P ,

where

P = diag
(
1, 1, ϑ1

d
(1)
max

, ϑ2

d
(2)
max

)
is a 4×4 matrix. This shows that the components ξ?1 and ξ?2 of the locally D-optimal design for the

Emax model on the design spaces [0, d
(1)
max] and [0, d

(2)
max] can be obtained by a linear transformation

of the corresponding locally D-optimal designs on the design space [0, 1], where the parameters

in the Emax model are given by θ̃ =
(
θ1, 1, θ

(1)
2 /d

(1)
max, 1, θ

(2)
2 /d

(2)
max

)T
. Therefore it is sufficient to

consider the case X1 = X2 = [0, 1] in the following discussion.

(2) According to (1) we restrict ourselves to the case d
(1)
max = d

(2)
max = 1 and θ1 = 1. Therefore the

main assumption of the theorem reduces to 0 < θ
(1)
2 < θ

(2)
2 < 1. Because a D-optimal design in

the class Ξ2
4 must have a nonsingular information matrix it follows that

|supp(ξi)| ≥ 1, i = 1, 2 .
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By an application of Lemma 4.2 we obtain the following candidates for the D-optimal design in

the class Ξ2
4

ξa1 =

(
d

(1)
1 d

(1)
2 d

(1)
3

1
3

1
3

1
3

)
, ξa2 =

(
d

(2)
1

1

)
, µa =

(
1 2
3
4

1
4

)
, (6.7)

ξb1 =

(
d

(1)
1 d

(1)
2

1
2

1
2

)
, ξb2 =

(
d

(2)
1 d

(2)
2

1
2

1
2

)
, µb =

(
1 2
1
2

1
2

)
, (6.8)

ξc1 =

(
d

(1)
1

1

)
, ξc2 =

(
d

(2)
1 d

(2)
2 d

(2)
3

1
3

1
3

1
3

)
, µc =

(
1 2
1
4

3
4

)
. (6.9)

Next we evaluate the determinants for these three candidate designs and maximize them with

respect to the support points. For example we obtain for the design D-optimal ξa = (ξa1 , ξ
a
2 , µ

a)

det(M(ξa, θ)) =
(

1
σ2
1

)3( 1
σ2
2

)(
1
4

)4
det2


1 1 1 1
d
(1)
1

d
(1)
1 +θ

(1)
2

d
(1)
2

d
(1)
2 +θ

(1)
2

d
(1)
3

d
(1)
3 +θ

(1)
2

d
(2)
1

d
(2)
1 +θ

(2)
2

−d(1)1

(d
(1)
1 +θ

(1)
2 )2

−d(1)2

(d
(1)
2 +θ

(1)
2 )2

−d(1)3

(d
(1)
3 +θ

(1)
2 )2

0

0 0 0
−d(2)1

(d
(2)
1 +θ

(2)
2 )2


=
(

1
σ2
1

)3( 1
σ2
2

)(
1
4

)4(
θ

(1)
2

)4
(

(d
(1)
2 −d

(1)
1 )(d

(1)
3 −d

(1)
1 )(d

(1)
3 −d

(1)
2 )

(d
(1)
1 +θ

(1)
2 )2(d

(1)
2 +θ

(1)
2 )2(d

(1)
3 +θ

(1)
2 )2

)2(
d
(2)
1

(d
(2)
1 +θ

(2)
2 )2

)2

.

Observing that θ
(2)
2 < 1 we obtain that the factor

( d
(2)
1

(d
(2)
1 +θ

(2)
2 )2

)2
is maximized for d

(2)
1 = θ

(2)
2 , and it

follows by a straightforward calculation that the support points of the design ξa1 and ξa2 in (6.7)

maximizing the determinant are given by

d
(1)
1 = 0, d

(1)
2 =

θ
(1)
2

1+2θ
(1)
2

, d
(1)
3 = 1, d

(2)
1 = θ

(2)
2 ,

respectively. The resulting determinant of the information matrix of the corresponding design,

say ξa,?, is obtained as

det(M(ξa,?, θ)) =

(
1
σ2
1

)3( 1
σ2
2

)1(1
4

)8(
θ

(1)
2 θ

(2)
2

)2(
1 + θ

(1)
2

)6 .

Analogously, we get that the support points

d
(1)
1 = θ

(1)
2 , d

(2)
1 = 0, d

(2)
2 =

θ
(2)
2

1+2θ
(2)
2

, d
(2)
3 = 1,

yield a maximal determinant for the designs ξc1, ξc2 in (6.9), respectively, and the determinant of

the information matrix of the corresponding design, say ξc,? is given by

det(M(ξc,?, θ)) =

(
1
σ2
1

)(
1
σ2
2

)3(1
4

)8(
θ

(1)
2 θ

(2)
2

)2(
1 + θ

(2)
2

)6 .
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Finally, we consider the determinant of the candidate design (6.8), that is

det(M(ξb, θ)) =
(

1
σ2
1

)2( 1
σ2
2

)2(1
4

)4 (d
(1)
2 − d

(1)
1 )2(d

(2)
2 − d

(2)
1 )2(d

(2)
2 d

(2)
1

(
θ

(1)
2

)2 − d(1)
2 d

(1)
1

(
θ

(2)
2

)2
)2

(d
(1)
1 + θ

(1)
2 )4(d

(1)
2 + θ

(1)
2 )4(d

(2)
1 + θ

(2)
2 )4(d

(2)
2 + θ

(2)
2 )4

.

We assume without loss of generality that d
(i)
1 < d

(i)
2 i = 1, 2. Note that for D-optimality of

the design ξb the smallest support points d
(1)
1 and d

(2)
1 of the components ξb1 and ξb2 must satisfy

d
(1)
1 + d

(2)
1 > 0 (otherwise the determinant vanishes). Consequently there exist two possible cases

for the design ξb,? corresponding to the cases d
(1)
1 = 0 or d

(2)
1 = 0, namely

ξb11 =

(
0 d

(1)
2

1
2

1
2

)
, ξb12 =

(
d

(2)
1 d

(2)
2

1
2

1
2

)
, µb1 =

(
1 2
1
2

1
2

)
,

ξb21 =

(
d

(1)
1 d

(1)
2

1
2

1
2

)
, ξb22 =

(
0 d

(2)
2

1
2

1
2

)
, µb2 =

(
1 2
1
2

1
2

)
.

Now a straightforward calculation gives for the design ξb11

det(M(ξb1 , θ)) =
(

1
σ2
1

)2( 1
σ2
2

)2(1
4

)4
det2


1 1 1 1

0
d
(1)
2

d
(1)
2 +θ

(1)
2

d
(2)
1

d
(2)
1 +θ

(2)
2

d
(2)
2

d
(2)
2 +θ

(2)
2

0
−d(1)2

(d
(1)
2 +θ

(1)
2 )2

0 0

0 0
−d(2)1

(d
(2)
1 +θ

(2)
2 )2

−d(2)2

(d
(2)
2 +θ

(2)
2 )2


=
(

1
σ2
1

)2( 1
σ2
2

)2(1
4

)4
(

(d
(2)
2 −d

(2)
1 )d

(2)
1 d

(2)
2

(d
(2)
1 +θ

(2)
2 )(d

(2)
2 +θ

(2)
2 )

)2(
d
(1)
2

(d
(1)
2 +θ

(1)
2 )2

)2

Maximizing with respect to the support points yields

d
(1)
1 = 0, d

(1)
2 = θ

(1)
2 , d

(2)
1 =

θ
(2)
2

1+2θ
(2)
2

, d
(2)
2 = 1,

and we obtain for the determinant of the design ξb1,?

det(M(ξb1,?, θ)) =

(
1
σ2
1

)2( 1
σ2
2

)2(1
4

)8(
θ

(1)
2 θ

(2)
2

)2(
1 + θ

(2)
2

)6 (6.10)

A similar optimization of the determinant of the information matrix of the design ξb2,? gives

det(M(ξb2,?, θ)) =

(
1
σ2
1

)2( 1
σ2
2

)2(1
4

)8(
θ

(1)
2 θ

(2)
2

)2(
1 + θ

(1)
2

)6 . (6.11)

By a comparison of (6.10) and (6.11) it follows that the determinant of design ξb2,? is always larger

than the determinant of the design ξb1,?, since θ
(1)
2 < θ

(2)
2 . Finally, the assertion of the theorem
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follows by straightforward calculations comparing the determinants of the designs ξa,?, ξb,?, ξc2,? in

the different scenarios for the ratio r =
σ2
1

σ2
2
.

Proof of Theorem 4.9: By similar arguments as given in the proof of Theorem 4.6 we obtain

that it is sufficient to consider the case d
(1)
max = d

(2)
max = 1.

(1) In the case r ≤ 1 it follows from Theorem 4.1 that the design ξa,? defined in (4.9) is locally

D-optimal for model (3.5) if and only if the two inequalities

κ1(t, ξa,?, θ) = 1
σ2
1

(
1, t

t+θ
(1)
2

, −t
(t+θ

(1)
2 )2

, 0
)
M−1(ξa,?, θ)

(
1, t

t+θ
(1)
2

, −t
(t+θ

(1)
2 )2

, 0
)T
≤ 4 (6.12)

κ2(t, ξa,?, θ) = 1
σ2
2

(
1, t

t+θ
(2)
2

, 0, −t
(t+θ

(2)
2 )2

)
M−1(ξa,?, θ)

(
1, t

t+θ
(2)
2

, 0, −t
(t+θ

(2)
2 )2

)T
≤ 4 (6.13)

hold for all t ∈ [0, 1] [see Theorem 4.1]. The information matrix of the design ξa,? can be repre-

sented as

M(ξa,?, θ) = 1
4
X̃(σ1, θ

(1)
2 , σ2, θ

(2)
2 )X̃T (σ1, θ

(1)
2 , σ2, θ

(2)
2 ),

where

X̃(σ1, θ
(1)
2 , σ2, θ

(2)
2 ) =

X11(σ1, 0,
θ
(1)
2

2θ
(1)
2 +1

, 1) X̃12(σ2, θ
(2)
2 )

0 X̃22(σ2, θ
(2)
2 )


and the matrices X11, X̃12 and X̃22 are defined by

X11(σ1, d
(1)
1 , d

(1)
2 , d

(1)
3 ) =


1 1 1
d
(1)
1

d
(1)
1 +θ

(1)
2

d
(1)
2

d
(1)
2 +θ

(1)
2

d
(1)
3

d
(1)
3 +θ

(1)
2

−d(1)1

(d
(1)
1 +θ

(1)
2 )2

−d(1)2

(d
(1)
2 +θ

(1)
2 )2

−d(1)3

(d
(1)
3 +θ

(1)
2 )2

 ,

X̃12(σ2, θ
(2)
2 ) =

(
1
σ2
1

2σ2

)
, X̃12(σ2, θ

(2)
2 ) =

(
−1

4θ
(2)
2 σ2

)
,

respectively. A straightforward calculation of the inverse of the matrix X̃ yields

X̃−1(σ1, θ
(1)
2 , σ2, θ

(2)
2 ) =

X−1
11 (σ1, 0,

θ
(1)
2

2θ
(1)
2 +1

, 1) −X−1
11 (σ1, 0,

θ
(1)
2

2θ
(1)
2 +1

, 1)X̃12(σ2, θ
(2)
2 )X̃−1

22 (σ2, θ
(2)
2 )

0 X̃−1
22 (σ2, θ

(2)
2 )

 ,

and we obtain for the function κ1(t, ξa,?, θ) in (6.12) the representation

κ1(t, ξa,?, θ) = 4
3σ2

1

(
1, t

t+θ
(1)
2

, −t
(t+θ

(1)
2 )2

)
3X−T11 (σ1, 0,

θ
(1)
2

2θ
(1)
2 +1

, 1)X−1
11 (σ1, 0,

θ
(1)
2

2θ
(1)
2 +1

, 1)
(

1, t

t+θ
(1)
2

, −t
(t+θ

(1)
2 )2

)T
= 4

3σ2
1

(
1, t

t+θ
(1)
2

, −t
(t+θ

(1)
2 )2

)
M−1

1 (ξa,?1 , θ(1))
(

1, t

t+θ
(1)
2

, −t
(t+θ

(1)
2 )2

)T
,

where M1(ξa,?1 , θ(1)) is the information matrix of the design ξa,?1 in the Emax model with parameter

vector (θ1, θ
(1)
2 )T . Because the design ξa,?1 given in (4.9) is in fact locally D-optimal for this model,
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it follows that κ1(t, ξa,?, θ) ≤ 4, which proves the first inequality of the equivalence theorem.

In order to show that the inequality in (6.13) holds for all t ∈ [0, 1] we note that this inequality is

equivalent to

P (t) = (t+ θ
(2)
2 )4

(
κ2(t, ξa,?, θ)− 4

)
= α21t

4 + α22t
3 + α23t

2 + α24t+ α25 ≤ 0, (6.14)

where the last identity defines the coefficients α2j in an obvious manner. For example, the leading

coefficient and the intercept are given by

α21 = 1
σ2
2
(1, 1, 0, 0)M−1(ξa,?, θ)(1, 1, 0, 0)T − 4 = 24rθ

(1)
2 (θ

(1)
2 + 1)(2θ

(1)
2 + 1)2 − 4

(
1− r

)
,

α25 = (θ
(2)
2 )4( 1

σ2
2
(1, 0, 0, 0)M−1(ξa,?, θ)(1, 0, 0, 0)T − 4) = 4(θ

(2)
2 )4

(
r − 1

)
,

respectively. Consider the case r < 1 (the case r ≤ 1 is finally obtained considering the corre-

sponding limit) and note that P (0) = α25 < 0. Consequently, (6.14) holds if either there are no

roots of P in the interval (0, 1) or all roots of P in the interval (0, 1) have multiplicity 2. The

roots of P (t) are easily calculated as

d
(2)
1 = θ

(2)
2 d̃1 = θ

(2)
2

3+rθ
(1)
2 (1+2θ

(1)
2 )−

√
s(θ

(1)
2 )

1
4
α21

d̃2 = θ
(2)
2

3+rθ
(1)
2 (1+2θ

(1)
2 )+

√
s(θ

(1)
2 )

1
4
α21

,

where we use the notation

s(θ
(1)
2 ) = 8− r2(1 + θ

(1)
2 )2(1 + 4θ

(1)
2 + 20(θ

(1)
2 )2) + 2r(1 + 6θ

(1)
2 + 21(θ

(1)
2 )2 + 24(θ

(1)
2 )3 + 12(θ

(1)
2 )4) .

Note that s(θ
(1)
2 ) is positive (because θ

(1)
2 > 0 and r ≤ 1) and that θ

(2)
2 ∈ (0, 1) is a root of

multiplicity 2. Moreover, P (−θ(2)
2 ) > 0 (since M−1(ξa,?, θ) is positive definite), and it follows from

P (0) < 0 that P has a root in the interval (−θ(2)
2 , 0). This is either d̃1 or d̃2 depending on the sign

of the leading coefficient α21. The inequality (6.14) holds, if the other root is neither in (0, 1).

In order to check the location of the roots d̃1 and d̃2 we consider the condition (4.12) and the

case that the right hand side of (4.12) is positive. This implies that the leading coefficient α21

is positive and the root d̃2 is also positive. We obtain from the condition d̃1 ∈ (−θ(2)
2 , 0) the

inequality

3 + r θ
(1)
2 (1 + 2θ

(1)
2 ) <

√
s(θ

(1)
2 ) .

This gives for the second root

d̃2 > θ
(2)
2

6 + 2r θ
(1)
2 (1 + 2θ

(1)
2 )

1
4
α21

.

Therefore it follows from (4.12) (with positive right hand side) that the inequality d̃2 ≥ 1 is

satisfied.

On the other hand, if the right hand side of (4.12) is negative, the leading coefficient α21 is negative
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and the conditions P (0) < 0 and P (−θ(2)
2 ) > 0 imply that both roots d̃1 and d̃2 must be negative,

because otherwise the polynomial P does not satisfy (6.14). Observing that d̃2 < d̃1 in this case,

it is easy to see that the condition (4.12) (with negative right hand side) implies d̃1 < 0.

Summarizing, in the case r ≤ 1 the inequality (4.12) implies (6.14) for all t ∈ [0, 1] and the

D-optimality of the designs ξa,? follows by an application of Theorem 4.1.

(2) At first, we show that the condition (4.13) and r > 1 imply that 1 < r ≤ (1+θ
(2)
2 )6

(1+θ
(1)
2 )6

. The last

inequality is equivalent to θ
(2)
2 ≥ r1/6(1 + θ

(1)
2 )− 1 and we have to show that:

(θ
(1)
2 )2(1 + 2θ

(1)
2 )2 + r(1 + θ

(1)
2 )2(1 + 4θ

(1)
2 + 20(θ

(1)
2 )2)− 1

6 + 2θ
(1)
2 (1 + 2θ

(1)
2 )

> r1/6(1 + θ
(1)
2 )− 1. (6.15)

This inequality can be rewritten by

(20r+4)(θ
(1)
2 )4 +(44r− 6

√
r+1)(θ

(1)
2 )3 +(29r−6 6

√
r+5)(θ

(1)
2 )2 +(6r−8 6

√
r+2)(θ

(1)
2 )+(r−6 6

√
r+5) > 0.

Note that the coefficients of the polynomial are positive for all r > 1. It follows by the rule of

Decartes that this polynomial has no positive roots and consequently, (6.15) is satisfied for all

positive θ
(1)
2 .

Thus, if r ≥ 1 and the inequality (4.13) holds, we investigate the D-optimality of the design ξb,?

defined by (4.10) checking the two inequalities

κ1(t, ξb,?, θ) = 1
σ2
1

(
1, t

t+θ
(1)
2

, −t
(t+θ

(1)
2 )2

, 0
)
M−1(ξb,?, θ)

(
1, t

t+θ
(1)
2

, −t
(t+θ

(1)
2 )2

, 0
)T
≤ 4 (6.16)

κ2(t, ξb,?, θ) = 1
σ2
2

(
1, 0, t

t+θ
(2)
2

, 0, −t
(t+θ

(2)
2 )2

)
M−1(ξb,?, θ)

(
1, t

t+θ
(2)
2

, 0, −t
(t+θ

(2)
2 )2

)T
≤ 4 (6.17)

on the interval [0, 1] [see Theorem 4.1].

Analogously to the proof of part (1) it can be shown that the first inequality (6.16) is satisfied for

all t ∈ [0, 1]. In order to establish the inequality (6.17) for all t ∈ [0, 1] we consider the polynomial

P (t) = (t+ θ
(2)
2 )4

(
κ2(t, ξb,?, θ)− 4

)
= α21t

4 + α22t
3 + α23t

2 + α24t+ α25,

where the leading coefficient and the intercept are now given by

α21 = α21(θ
(1)
2 ) = 4

(
(θ

(1)
2 )2(1 + 2θ

(1)
2 )2 + r(1 + θ

(1)
2 )2(1 + 4θ

(1)
2 + 20(θ

(1)
2 )2)

)
− 4,

α25 = 4(θ
(2)
2 )4

(
σ2
2

σ2
2
− 1
)

= 0.

Moreover, P (−θ(2)
2 ) > 0 (since M−1(ξb,?, θ) is positive definite) and the leading coefficient α21 is

always positive, since α21(0) = 4r− 4 > 0 and α21 is increasing for θ
(1)
2 ≥ 0. The roots of P (t) are

given by

d
(2)
1 = 0, d

(2)
2 = θ

(2)
2 , d̃1 = θ

(2)
2

6+2θ
(1)
2 (1+2θ

(1)
2 )

1
4
α21
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where d
(2)
2 is a root of second order. Now the inequality P (t) ≤ 0 holds for all t ∈ [0, 1] if and only

if d̃1 ≥ 1. It is easy to see that this condition is equivalent to

θ
(2)
2 ≥

(θ
(1)
2 )2(1 + 2θ

(1)
2 )2 + r(1 + θ

(1)
2 )2(1 + 4θ

(1)
2 + 20(θ

(1)
2 )2)− 1

6 + 2θ
(1)
2 (1 + 2θ

(1)
2 )

which coincides with (4.13).

(3) At first, one can show that the condition (4.14) and r > 1 imply that r ≥ (1+θ
(2)
2 )6

(1+θ
(1)
2 )6

. Then the

result follows by similar arguments as given in the proof of part (1), which are omitted for the

sake of brevity.

7 Appendix: Derivation of candidate models based on a

preliminary PK/PD model

The PK/PD model was a nonlinear mixed effects longitudinal model describing the PK of the

drug and linking this to the PD of the drug. The model was used to simulate longitudinal profiles

per patient. The simulation took into account parameter uncertainty from the model fit. Then an

Emax dose-group-response model was fitted to the cross-sectional data at time T , that assumed

that the placebo and maximum effect of the curve are the same, but the ED50 are different in the

two group. First this model was fit to the whole population of simulations to give a population

best guess, giving

ϑ11 = 5.48, ϑ12 = 0.90, θ
(1)
2 = 13.82, θ

(2)
2 = 10.46.

In addition 200 individual patient profiles were simulated (see Figure 3) and each individual dose-

response curve was fitted at time T to give 200 parameter estimates, representing the variability

on the dose-response curve in the population. These 200 parameter sets are used to compute the

distribution of each parameter (ϑ11, ϑ12, θ
(1)
2 , θ

(2)
2 ) and their summary statistics are given in Table

7. The logarithm of biomarker Y was modeled to achieve a better approximation through the

normal distribution.

Table 4: Summary statistics

Parameter 10% quantile median 90% quantile

ϑ11 5.47 5.09 5.84

ϑ12 0.93 0.66 1.20

θ
(1)
2 20.39 2.93 53.49

θ
(2)
2 14.99 2.39 40.40
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Based on that, we propose 4 extreme models using the 10% and 90% quantile for the ED50’s

parameter.

Figure 3: 200 simulated dose-response curves at timepoint T for monthly (group 1, right panel)

and for the weekly (group 2, left panel) in grey. In red is the fit of the population dose-response

curve.
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