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Abstract

This paper deals with the comparison of several stationary processes with unequal sample

sizes. We provide a detailed theoretical framework on the testing problem for equality of spectral

densities in the bivariate case, but also present the generalization to the m dimensional case and to

other statistical applications like testing for zero correlation or clustering of time series data with

different length. We prove asymptotic normality of an appropriately standardized version of the

test statistic both under the null and the alternative and investigate the finite sample properties of

our method in a comprehensive simulation study. Furthermore we apply our approach to cluster

financial time series data with different sample length.

AMS subject classification: 62M10, 62M15, 62G10

Keywords and phrases: spectral density, integrated periodogram, cluster analysis, time series, stationary

process, unequal length

1 Introduction

The comparison and clustering of different time series is an important topic in statistical data analysis

and has various application in fields like economics, marketing, medicine and physics, among many
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others. Examples are the grouping of stocks in several categories for portfolio selection in finance or the

identification of similar birth and death rates in population studies. One approach to identify similarities

or dissimilarities between two stationary processes is to compare the spectral densities of both time

series, which directly yields to the testing problem for equality of spectral densities in multivariate time

series data. This problem has found considerable interest in the literature [see for example Jenkins

(1961) or De Souza and Thomson (1982) for some early results], but in the nonparametric situation

nearly all proposed procedures are only reasoned by simulation studys or heuristic proofs, see Coates

and Diggle (1986), Pötscher and Reschenhofer (1988), Diggle and Fisher (1991) and Maharaj (2002)

among many others. Most recently Eichler (2008), Dette and Paparoditis (2009), Dette et al. (2010)

and Dette and Hildebrandt (2011) provided mathematical details for the above testing problem using

different L2-type statistics, but nevertheless in all mentioned articles it is always required that the

different time series have the same length, which is typically not the case in practice. Caiado and Pena

(2009) considered different metrics for the comparison of time series with unequal sample sizes in a

simulation study and Jentsch and Pauly (2011) provided a theoretical result, which however does not

yield a consistent test as it was also pointed out by the authors.

This paper generalizes the approach of Dette et al. (2010) to the case of unequal sample sizes and yields

a consistent test for the equalness of spectral densities for time series with different length. For the sake

of brevity we will focus on the case of two (not necessarily independent) stationary processes, but the

results can be easily extended to the case of an m dimensional process [see Remark 2.5]. Basically we

want to estimate the L2-distance

D2 :=
1

4π

∫ π

−π
(f11(λ)− f22(λ))2dλ(1.1)

where f11(λ) and f22(λ) are the spectral densities of the first and the second process respectively. Under

the null hypothesis

H0 : f11(λ) = f22(λ)(1.2)

the distance D2 equals zero while it is strictly positive if f11(λ) 6= f22(λ) for λ ∈ A, where A is

a subset of [−π, π] with positive Lebesgue measure. We will estimate D2 by sums of the (squared)

periodogram, where the sum goes over the Fourier coefficents of the smaller time series. Asymptotic

normality both under the null and the alternative will be derived and since the variance terms can be

easily estimated also under the alternative, asymptotic confidence intervalls and a precise hypothesis

test can be constructed next to the test for (1.2) [see Remark 2.2]. Furthermore our approach has much

wider application like testing for no correlation, discriminant analysis or clustering of time series with

unequal length [see Remark 2.3] and a simulation study will indicate that some of our assumptions are

in fact not necessary (for example our method seems to work also for Long Memory processes).

The remainder of the paper is organized as follows. In section 2 we will introduce the necessary notations

and derive the asymptotic distribution of our test statistic. In section 3 we will provide a comprehensive

simulation study and an application to real-world data, while all technical details are deferred to an

appendix in section 4.
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2 The test statistic

Let n1, n2 ∈ IN with n1 ≤ n2 and consider the two stationary time series

X
(1)
t =

∞∑
l=−∞

ψ
(1)
l Z

(1)
t−l t = 1, ..., n1(2.1)

X
(2)
t =

∞∑
l=−∞

ψ
(2)
l Z

(2)
t−l t = 1, ..., n2(2.2)

where the Z
(j)
t are independent and identically standard normal distributed for j = 1, 2 and

E(Z
(1)
t1 Z

(2)
t2 ) =

ρ if t2 = bt1qn1,n2c − bqn1,n2 − 1c
0 else

(2.3)

where qn1,n2 = n2

n1
and ρ ∈ [0, 1]. This roughly speaking means that changes in the time series with less

observations influence the more frequently observed series but not vice versa, which is for example the

case if interest rates and stock returns are compared. Throughout the paper we also assume that the

technical condition

∞∑
l=−∞

ψ
(j)
l |l|

α <∞(2.4)

is satisfied for an α > 1/2 (j = 1, 2). Note that the assumption of Gaussianity is only imposed to

simplify technical arguments and that the results can be easily extended to more general independent

and indentically distributed innovations Z
(j)
t [see Remark 2.6]. Furthermore innovations with variances

different to 1 can be included by choosing other coefficents ψ
(j)
l .

We define the spectral densities fjj(λ) (j = 1, 2) by

fjj(λ) :=
1

2π
|
∞∑

l=−∞

ψ
(j)
l exp(−iλl)|

and the cross-spectra f12(λ) and f21(λ) through

f12(λ) : =
ρ

2π

∞∑
l,m=−∞

ψ
(1)
l ψ(2)

m exp(−iλ(l −m))

and

f21(λ) : = f12(λ).
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An unbiased (but not consistent) estimator for fjj(λ) is given by the periodogram

Ij(λ) :=
1

2πnj

∣∣∣ nj∑
t=1

X
(j)
t exp(−iλt)

∣∣∣2(2.5)

and although the periodogram does not estimate the spectral density consistently, a Riemann-sum over

the Fourier coefficents of an exponentiated periodogram is (up to a constant) a consistent estimator for

the corresponding integral over the exponentiated spectral density. For example similar arguments as

in the proof of Theorem 2.1 in Dette et al. (2010) yield that

D̂1,n1 :=
1

n1

bn1
2
c∑

k=1

I21 (λ1,k)
P−−→ 1

2π

∫ π

−π
f 2
11(λ)dλ =: D1(2.6)

where λ1,k := 2πk
n1

(k = 1, ..., bn1

2
c) are the Fourier coefficents of the smaller time series X

(1)
t . If we can

show that

D̂2,n1 :=
1

n1

bn1
2
c∑

k=1

I22 (λ1,k)
P−−→ 1

2π

∫ π

−π
f 2
22(λ)dλ =: D2(2.7)

and

D̂12,n1 :=
1

n1

bn1
2
c−1∑

k=1

I1(λ1,k)I2(λ1,k+1)
P−−→ 1

4π

∫ π

−π
f11(λ)f22(λ)dλ =: D12,(2.8)

we can construct an consistent estimator for D2 through

D̂2
n1

:=
1

2
(D̂1,n1 + D̂2,n1)− 2D̂12,n1 .(2.9)

Although (2.7) looks very much like (2.6), note that the convergence in (2.7) is different since the

coefficents λ1,k are not necessarily the Fourier coefficents of the time series X
(2)
t . Nevertheless the

convergence in (2.6) - (2.8) will be implied by the following theorem.

Theorem 2.1 If f11(λ), f22(λ) and f12(λ) are Hölder continuous of order L > 1/2 and

n2

n1

→ Q(2.10)

for a Q ∈ IR, then as n1 →∞

√
n1


D̂1,n1 −D1

D̂12,n1 −D12

D̂2,n1 −D2

 D−−→ N(0,Σ)
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with

Σ =
1

π


Σ11 Σ12 Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33


and

Σ11 = 5

∫ π

−π
f 4
11(λ)dλ

Σ12 =

∫ π

−π
f 3
11(λ)f22(λ)dλ+

∫ π

−π
f 2
11(λ)|f12(λ)|2

Σ13 =

∫ π

−π
f 2
12(λ)f 2

21(λ) + 4

∫ π

−π
f11(λ)|f12(λ)|2f22(λ)

Σ22 =
3

4

∫ π

−π
f 2
11(λ)f 2

22(λ)dλ+
1

2

∫ π

−π
f11(λ)|f12(λ)|2f22(λ)dλ

Σ23 =

∫ π

−π
f11(λ)f 3

22(λ)dλ+

∫ π

−π
f 2
22(λ)|f12(λ)|2

Σ33 = 5

∫ π

−π
f 4
22(λ)dλ.

Although condition (2.10) imposes some restrictions on the growth rate of n1 and n2, it is not very

restrictive, since in practice there usually occur situations where even n2 = Qn1 holds for a Q ∈ IN (if

for example daily data are compared with monthly data) and on the other hand this condition needs

only to be satisfied in the limit.

From Theorem 2.1 it now follows by a straightforward application of the Delta-Method that

√
n1(D̂

2
n1
−D2)

D−−→ N(0, σ2)(2.11)

where

σ2 :=
1

π

{
Σ11 + Σ33

4
+ 4Σ22 +

Σ13

2
− 2Σ12 − 2Σ23

}
,

which becomes

σ2
H0

=
3

2π

∫ π

−π
f 4
11(λ)dλ+

1

2π

∫ π

−π
|f12|4dλ

under H0. To obtain a consistent estimator under the null hypothesis we define

I12(λ) : =
1

2π
√
n1n2

n1∑
p1=1

X(1)
p1

exp(−iλp1)
n2∑
p2=1

X(2)
p2

exp(iλp2)

I21(λ) : = I12(λ)
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and analogous to the proof of Theorem 2.1 it can be shown that

1

n1

bn1
2
c∑

k=1

(
I41 (λ1,k) + I42 (λ1,k)

)
P−−→ 6

π

∫ π

−π
(f 4

11(λ) + f 4
22(λ))dλ(2.12)

and

1

2n1

bn1/2c−1∑
k=1

I212(λ1,k)I
2
21(λ1,k+1)

P−−→ 1

2π

∫ π

−π
|f12|4dλ.(2.13)

Now (2.12) and (2.13) imply that under the null hypothesis

σ̂2
H0

:=
1

4n1

bn1
2
c∑

k=1

(
I41 (λ1,k) + I42 (λ1,k)

)
+Re

( 1

2n1

bn1/2c−1∑
k=1

I212(λ1,k)I
2
21(λ1,k+1)

)
P−−→ σ2

H0
.

and therefore an asymptotic niveau-α-test for (1.2) is given by: reject (1.2) if

√
n1

D̂2
n1√
σ̂2
H0

> u1−α,(2.14)

where u1−α denotes the (1−α) quantile of the standard normal distribution. By using (2.11) we obtain

that this test has asymptotic power

Φ
(√

n1
D2

σ
−

√
σ̂2
H0

σ
u1−α

)
,(2.15)

where Φ is the distribution function of the standard normal distribution. From (2.15) it follows that

the test (2.14) has asymptotic power one for all alternatives with D2 > 0.

Remark 2.2

In order to estimate the variance σ2 in (2.11) also under the alternative, we define

Σ̂11 =
5π

6n1

bn1
2
c∑

k=1

I41 (λ1,k)(2.16)

Σ̂12 =
2π

3n1

bn1
2
c−1∑

k=1

I31 (λ1,k)I2(λ1,k+1) +
π

n1

bn1
2
c−1∑

k=1

I21 (λ1,k)|I12(λ1,k+1)|2(2.17)

Σ̂13 =
π

n1

bn1
2
c−1∑

k=1

|I12(λ1,k)|2|I12(λ1,k+1)|2 +
8π

n1

bn1
2
c−2∑

k=1

I1(λ1,k)|I12(λ1,k+1)|2I2(λ1,k+2)(2.18)
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Σ̂22 =
3π

4n1

bn1
2
c−1∑

k=1

I21 (λ1,k)I
2
2 (λ1,k+1) +

π

n1

bn1
2
c−2∑

k=1

I1(λ1,k)|I12(λ1,k+1)|2I2(λ1,k+2)(2.19)

Σ̂23 =
2π

3n1

bn1
2
c−1∑

k=1

I1(λ1,k)I
3
2 (λ1,k+1) +

π

n1

bn1
2
c−1∑

k=1

I22 (λ1,k)|I12(λ1,k+1)|2(2.20)

Σ̂33 =
5π

6n1

bn1
2
c∑

k=1

I42 (λ1,k).(2.21)

A consistent estimator for σ2 is now given by

σ̂2 :=
1

π

{
Σ̂11 + Σ̂33

4
+ 4Σ̂22 +

Σ̂13

2
− 2Σ̂12 − 2Σ̂23

}
(2.22)

which enables us to construct asymptotic (1− α) confidence intervals for D2 through

[
0, D̂2

n1
+

√
σ̂2

n1

u1−α

]
.

Since it is more reasonable to estimate a normalized measure, we also defne the alternative distance

R2 :=
2D2

D1 +D2

which can be estimated by

R̂2
n1

:=
2D̂2

n1

D̂1,n1 + D̂2,n1

.

From Theorem 2.1 and a straightforward application of the delta method, it follows that

√
n1(R̂

2
n1
−R2)

D−−→ N(0, σ2
1)(2.23)

with

σ2
1 :=

16

(D1 +D2)2

(
D2

12

(D1 +D2)2
(Σ11 + 2Σ13 + Σ33)−

2D12

D1 +D2

(Σ12 + Σ23) + Σ22

)
and by using (2.16) - (2.22) and Theorem 2.1, a consistent estimator σ̂2

1 for σ2
1 can be easily constructed,

which yields the following asymptotic (1− α) confidence intervals for R2

[
0, R̂2

n1
+

√
σ̂2
1

n1

u1−α

]
.

Furthermore (2.23) provides an asymptotic level α test for the so called precise hypothesis

(2.24) H0 : R2 > ε versus H1 : R2 ≤ ε ,
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where ε > 0 [see Berger and Delampady (1987)]. This hypothesis is of interest, because spectral densities

of time series in real-world applications are usually never exactly equal and a more realistic question is

then to ask, if the processes have approximately the same spectral measure. An asymptotic level α test

for (2.24) is obtained by rejecting the null hypothesis, whenever

R̂2
n1
− ε < σ̂1√

n1

uα .(2.25)

Remark 2.3

Theorem 2.1 can also be used for a cluster and a discriminant analysis of time series data with different

length, since it yields an estimator for the distance measure d(f11, f22), where

d(f, g) =

(
1−

2
∫ π
−π f(λ)g(λ)dλ∫ π

−π f
2(λ)dλ+

∫ π
−π g

2(λ)dλ

)1/2

,

which can take values between 0 and 1. A value close to 0 indicates some kind of similarities between

two processes, whereas a value close to 1 exhibits dissimilarities in the second-order structure. The

distance measure d(f11, f22) can be estimated by

d̂12 =

(
max

(
1− 2D̂12,n1

D̂1,n1 + D̂2,n1

, 0

))1/2

,(2.26)

where the maximum is necessary, because the term 1− 2D̂12,n1

D̂1,n1+D̂2,n1

can be negative.

Remark 2.4

The main ideas of the proof of Theorem 2.1 can be furthermore employed to construct tests for various

other hypothesis. For example a test for zero correlation can be derived by testing for

H0 : f12 ≡ 0

which can be done by estimating
∫ π
−π |f12(λ)|2dλ. An estimator for this quantity is easily derived using

the above approach and furthermore the calculation of the variance is straightforward which we omit

for the sake of brevity.

Remark 2.5

Although we only considered the bivariate case, our method can be easily extended to an m dimensional

process. Let us consider m stationary processes

X
(j)
t =

∞∑
l=−∞

ψ
(j)
l Z

(j)
t−l t = 1, ..., nj

with j ∈ {1, ...,m} and n1 ≤ n2 ≤ ... ≤ nm. We define Ij(λ) for j = 1, ...,m and Iij(λ) for i 6= j

exactly as in the bivariate case, which results in an analogous definition of D̂j,n1 for j = 1, ...,m and
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D̂ij,n1 for i 6= j. Now an extension of Theorem 2.1 can be proved, which states that a standardized

version of V̂n1 := (D̂1,n1 , ..., D̂m,n1 , D̂12,n1 , ..., D̂m(m−1),n1)
T ∈ IR

m(m+1)
2 converges to a multivariate normal

distribution with

E(D̂j,n1 −Dj) =o(1/
√
n1) for j = 1, ...,m

E(D̂ij,n1 −Dij) =o(1/
√
n1) for i 6= j

and for the variances and covariances we obtain

n1Cov(D̂j1,n1 , D̂j2,n1)→
1

π

∫ π

−π
f 2
j1j2

(λ)f 2
j2j1

(λ)dλ+
4

π

∫ π

−π
fj1j1(λ)|fj1j2(λ)|2fj2j2(λ)dλ for j1, j2 = 1, ...,m

n1Cov(D̂i1j1,n1 , D̂i2j2,n1)→
1

4π

∫ π

−π
fi1i1(λ)fi2i2(λ)|fj1j2(λ)|2dλ+

1

4π

∫ π

−π
fj1j1(λ)fj2j2(λ)|fi1i2(λ)|2dλ

+
1

4π

∫ π

−π
|fi1i2(λ)|2|fj1j2(λ)|2dλ+

1

4π

∫ π

−π
fi1i1(λ)fj2j2(λ)|fi2j1(λ)|2

+
1

4π

∫ π

−π
fj1j1(λ)fi2i2(λ)|fi1j2(λ)|2dλ for i1 6= j1 and i2 6= j2

and

n1Cov(D̂i1,n1 , D̂i2j,n1)→
1

π

∫ π

−π
f 3
i1i1

(λ)fjj(λ) +
1

π

∫ π

−π
fi1i1(λ)fi2i2(λ)|fi1j(λ)|2 for i2 6= j.

Then a test for

H0 : f11(λ) = ... = fmm(λ)

versus

H1 : fii(λ) 6= fjj(λ) for at least one pair (i, j) with i 6= j.

can be easily constructed as in the bivariate case by estimating

D̃2 :=
1

4π

∑
1≤i<j≤m

∫ π

−π
(fii(λ)− fjj(λ))2dλ,

which we do not present for the sake of brevity.

Remark 2.6

A cumbersome but straightforward examination yields that for general independent and identically

distributed innovations with existing moments of all orders, the limit theorem (2.11) still holds with σ2

replaced by

σ2
g := σ2 +

κ1
4π2

(∫ π

−π
f11(λ)2dλ−

∫ π

−π
f11(λ)f22(λ)dλ

)2

+
κ2
4π2

(∫ π

−π
f22(λ)2dλ−

∫ π

−π
f11(λ)f22(λ)dλ

)2

+
κ3

(2πρ)2

((∫ π

−π
f11(λ)f22(λ)dλ

)2

+

∫ π

−π
f 2
11(λ)dλ

∫ π

−π
f 2
22(λ)dλ−

∫ π

−π
f 2
11(λ)dλ

∫ π

−π
f11f22(λ)dλ

−
∫ π

−π
f 2
22(λ)dλ

∫ π

−π
f11f22(λ)dλ

)
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where κ1 = E

((
Z

(1)
t

)4)
− 3, κ2 = E

((
Z

(2)
t

)4)
− 3 and

κ3 := cum
(
Z

(1)
t , Z

(1)
t , Z

(2)
btqn1,n2c−bqn1,n2−1c

, Z
(2)
btqn1,n2c−bqn1,n2−1c

)
are the corresponding fourth order cumulants. Note that σ2

g and σ2 does not differ under the null

hypothesis so that the test (2.14) does not change at all in the more general case. A similar phenomenon

can be observed for the tests proposed by Eichler (2008), Dette et al. (2010), Dette and Hildebrandt

(2011) and Dette et al. (2011).

n1 n2 α X1 X2 X3 X4 X5 X6 X7

256 256 0.05 0.041 0.038 0.039 0.048 0.045 0.053 0.053

0.1 0.088 0.109 0.128 0.098 0.106 0.117 0.131

256 384 0.05 0.049 0.031 0.049 0.042 0.034 0.047 0.054

0.1 0.106 0.104 0.128 0.098 0.099 0.114 0.147

256 512 0.05 0.043 0.030 0.047 0.030 0.026 0.045 0.031

0.1 0.085 0.105 0.139 0.079 0.069 0.109 0.126

256 640 0.05 0.050 0.040 0.044 0.036 0.030 0.037 0.046

0.1 0.109 0.125 0.112 0.093 0.081 0.097 0.122

384 384 0.05 0.036 0.036 0.047 0.036 0.037 0.054 0.043

0.1 0.092 0.099 0.120 0.101 0.103 0.110 0.117

384 512 0.05 0.048 0.038 0.039 0.037 0.045 0.061 0.065

0.1 0.110 0.091 0.120 0.075 0.091 0.131 0.136

384 640 0.05 0.037 0.033 0.045 0.039 0.046 0.050 0.062

0.1 0.078 0.091 0.128 0.091 0.096 0.124 0.149

512 512 0.05 0.037 0.034 0.034 0.037 0.048 0.044 0.027

0.1 0.096 0.105 0.111 0.085 0.106 0.097 0.100

512 640 0.05 0.037 0.035 0.054 0.041 0.046 0.055 0.061

0.1 0.094 0.093 0.137 0.082 0.103 0.119 0.131

640 640 0.05 0.044 0.034 0.035 0.046 0.037 0.045 0.043

0.1 0.106 0.092 0.101 0.098 0.089 0.104 0.110

Table 1: Rejection frequencies of the test (2.14) under the null hypothesis for ρ = 0.
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3 Finite sample study

3.1 Size and power of the test

In this section we study the size and the power of test (2.14) in the case of finite samples. All simulations

are based on 1000 iterations and we consider all different combinations of n1, n2 ∈ {256, 384, 512, 640}
with n1 ≤ n2. At first we set ρ = 0, but it will be demonstrated later that the results do not change

with a non-zero correlation of the innovations. To study the approximation of the nominal level, the

seven processes

X1 : Xt = Zt

X2 : Xt = 0.8Xt−1 + Zt

X3 : Xt = −0.8Xt−1 + Zt

X4 : Xt = Zt + 0.8Zt−1

X5 : Xt = Zt − 0.8Zt−1

X6 : Xt ∼ FARIMA(0.45, 0, 0.8)

X7 : Xt = Zt1[t≤0.5T ] + 0.8Xt−11[0.5T≤t≤0.75T ] + Zt1[t≥0.75T ] for t = 1, ..., T.

were simulated, where the FARIMA(0.45, 0, 0.8)-model corresponds to a LongMemory-process given

by

(1−B)0.45Xt = (1− 0.8B)Zt

with the backshift-operator B (i.e. BjXt = Xt−j) and

(1−B)d =
∞∑
k=0

(
d

k

)
(−B)k.

Note that the models X6 and X7 both do not fit into the theoretical framework considered in section

2, since for the FARIMA(0.45, 0, 0.8)-process we obtain

∞∑
l=−∞

|ψl| =∞

which contradicts (2.4) and the structural-break model X7 does not even has a stationary solution.

Nevertheless since these models are of great interest in practice, we investigate the performance of our

approach in these cases as well. The results are given in Table 1 and it can be seen that the test (2.14)

is very robust against different choices of n1 and n2. Furthermore our method also seems to work for

the models X6 and X7 although the convergence seems to be slightly slower.

To study the power of the test we additionally simulated the LongMemory-process

X8 : Xt ∼ FARIMA(0.45, 0, 0.5)
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n1 n2 α X1X5 X3X5 X4X5 X4X6 X6X8 X1X7

256 256 0.05 0.773 0.628 1 1 0.286 0.523

0.1 0.894 0.875 1 1 0.509 0.685

256 384 0.05 0.758 0.619 1 1 0.299 0.551

0.1 0.877 0.841 1 1 0.620 0.719

256 512 0.05 0.776 0.650 1 1 0.255 0.539

0.1 0.892 0.848 1 1 0.499 0.739

256 640 0.05 0.777 0.636 1 1 0.294 0.563

0.1 0.904 0.859 1 1 0.565 0.755

384 384 0.05 0.920 0.804 1 1 0.361 0.693

0.1 0.969 0.936 1 1 0.644 0.814

384 512 0.05 0.895 0.828 1 1 0.384 0.699

0.1 0.956 0.938 1 1 0.710 0.836

384 640 0.05 0.917 0.788 1 1 0.393 0.702

0.1 0.968 0.925 1 1 0.721 0.858

512 512 0.05 0.975 0.877 1 1 0.426 0.800

0.1 0.994 0.967 1 1 0.707 0.889

512 640 0.05 0.971 0.890 1 1 0.506 0.811

0.1 0.987 0.973 1 1 0.787 0.906

640 640 0.05 0.993 0.959 1 1 0.489 0.906

0.1 0.999 0.993 1 1 0.759 0.934

Table 2: Rejection frequencies of the test (2.14) for several alternatives for ρ = 0.

to also investigate the finite sample behaviour if different LongMemory-models are compared. We

exemplarily present the results of a comparison of X5 with Xj for j ∈ {1, 3, 4}, X6 with Xj for

j ∈ {4, 8} and X1 with X7 (all other comparison between the eight processes yield better results than

the depicted ones). The results are given in Table 2 for the uncorrelated case and again we see that our

method also works for LongMemory- and structural-break models although again the power seems to

grow more slowly with n1.

Subsequently we took a look at the case where the innovations have non-zero correlations and for the

sake of brevity we again only display some of the results. Under the nullhypothesis we provide the

results for X2 and X4, while under the alternative only the comparisons between X4 and Xj for j = 1, 2

are depicted. All other comparison yield similar results and the rejection frequencies are given in Table

3 for the null hypothesis and in Table 4 under the alternative respectively. It can be seen that the power

does not seem to change very much (if at all) for different correlations.
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n1 n2 α X2 X4

ρ ρ

−0.7 −0.3 0.3 0.7 −0.7 −0.3 0.3 0.7

256 256 0.05 0.038 0.038 0.042 0.039 0.030 0.030 0.036 0.043

0.1 0.123 0.116 0.116 0.111 0.082 0.087 0.092 0.104

256 384 0.05 0.040 0.045 0.037 0.033 0.035 0.033 0.041 0.043

0.1 0.118 0.113 0.115 0.111 0.091 0.086 0.099 0.103

256 512 0.05 0.041 0.041 0.030 0.040 0.035 0.030 0.035 0.034

0.1 0.118 0.119 0.116 0.122 0.092 0.086 0.084 0.090

256 640 0.05 0.028 0.043 0.032 0.031 0.031 0.038 0.040 0.038

0.1 0.110 0.118 0.102 0.098 0.086 0.094 0.093 0.083

384 384 0.05 0.034 0.034 0.031 0.036 0.039 0.032 0.034 0.036

0.1 0.110 0.091 0.099 0.097 0.085 0.082 0.084 0.090

384 512 0.05 0.035 0.041 0.035 0.032 0.035 0.018 0.048 0.029

0.1 0.102 0.107 0.103 0.096 0.084 0.062 0.104 0.080

384 640 0.05 0.033 0.033 0.035 0.034 0.034 0.031 0.028 0.032

0.1 0.103 0.111 0.097 0.107 0.093 0.083 0.087 0.082

512 512 0.05 0.029 0.046 0.042 0.038 0.035 0.039 0.030 0.040

0.1 0.080 0.108 0.115 0.094 0.086 0.094 0.078 0.097

512 640 0.05 0.031 0.030 0.044 0.039 0.031 0.036 0.031 0.049

0.1 0.092 0.098 0.089 0.091 0.089 0.077 0.084 0.106

640 640 0.05 0.030 0.036 0.033 0.035 0.050 0.034 0.039 0.057

0.1 0.092 0.088 0.101 0.100 0.099 0.087 0.090 0.100

Table 3: Rejection frequencies of the test (2.14) under the null hypothesis for different ρ.

Finally we considered two time series with non-Gaussian innovations a non-linear GARCH process.

These examined models are given by

X9
a : Xt = aXt−1 + Ut with Ut ∼ U [−1, 1]

X10
a : Xt = aXt−1 +

√
5/48 (Pt − E(Pt)) with Pt ∼ Pareto(1, 5)

X11
a : Xt ∼ GARCH(1,1)(0.3, a, 0.85),
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n1 n2 α X4X1 X4X2

ρ ρ

−0.7 −0.3 0.3 0.7 −0.7 −0.3 0.3 0.7

256 256 0.05 0.771 0.799 0.807 0.784 0.668 0.640 0.613 0.638

0.1 0.893 0.901 0.904 0.893 0.888 0.858 0.849 0.888

256 384 0.05 0.755 0.748 0.771 0.781 0.658 0.613 0.620 0.630

0.1 0.888 0.862 0.880 0.887 0.872 0.830 0.835 0.858

256 512 0.05 0.798 0.759 0.749 0.764 0.634 0.614 0.603 0.673

0.1 0.902 0.870 0.885 0.884 0.860 0.831 0.841 0.871

256 640 0.05 0.759 0.769 0.755 0.769 0.591 0.630 0.586 0.636

0.1 0.895 0.896 0.885 0.892 0.846 0.837 0.848 0.884

384 384 0.05 0.921 0.901 0.910 0.920 0.843 0.788 0.805 0.852

0.1 0.969 0.965 0.968 0.973 0.958 0.929 0.942 0.965

384 512 0.05 0.922 0.906 0.890 0.908 0.848 0.815 0.801 0.830

0.1 0.971 0.957 0.955 0.961 0.959 0.932 0.938 0.948

384 640 0.05 0.904 0.904 0.898 0.901 0.818 0.803 0.815 0.794

0.1 0.966 0.968 0.960 0.960 0.943 0.927 0.926 0.947

512 512 0.05 0.968 0.964 0.966 0.984 0.935 0.916 0.890 0.937

0.1 0.994 0.992 0.990 0.995 0.991 0.982 0.977 0.992

512 640 0.05 0.967 0.959 0.972 0.974 0.921 0.906 0.915 0.921

0.1 0.991 0.979 0.988 0.994 0.983 0.979 0.975 0.980

640 640 0.05 0.977 0.993 0.990 0.994 0.977 0.966 0.961 0.970

0.1 0.998 0.996 0.997 1.000 0.997 0.995 0.991 0.995

Table 4: Rejection frequencies of the test (2.14) for several alternatives for different ρ.

where a GARCH(p,q)(α0, α1, ..., αq, β1, ..., βp) process is defined through the equations

Xt = σtZt

σ2
t = α0 +

q∑
k=1

αkX
2
t−k +

p∑
l=1

βlσ
2
t−l

Zt ∼ N(0, 1).

Note that in the case p = q = 1 the GARCH model possesses a stationary solution if α1 + β1 < 1. For

these processes we obtain four possible null hypothesises and three alternatives, which are depicted in

Table 5, and it can be seen that our method works very well also in this cases.
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n1 n2 α X9
0.7 X10

0.7 X11
0.05 X9

0.7X
10
0.7 X9

0.7X
10
0.5 X10

0.7X
10
0.5 X11

0.05X
11
0.1

256 256 0.05 0.041 0.063 0.058 0.042 0.193 0.178 0.478

0.1 0.110 0.134 0.113 0.118 0.366 0.332 0.613

256 384 0.05 0.034 0.044 0.047 0.038 0.170 0.181 0.518

0.1 0.084 0.127 0.106 0.122 0.327 0.335 0.647

256 512 0.05 0.040 0.041 0.042 0.041 0.174 0.182 0.499

0.1 0.101 0.128 0.090 0.117 0.340 0.319 0.628

256 640 0.05 0.030 0.042 0.050 0.042 0.140 0.163 0.525

0.1 0.098 0.113 0.099 0.110 0.306 0.323 0.659

384 384 0.05 0.034 0.045 0.051 0.031 0.246 0.241 0.594

0.1 0.091 0.129 0.109 0.108 0.429 0.391 0.695

384 512 0.05 0.035 0.032 0.065 0.045 0.247 0.241 0.620

0.1 0.103 0.094 0.121 0.101 0.433 0.398 0.721

384 640 0.05 0.037 0.047 0.062 0.034 0.225 0.218 0.619

0.1 0.091 0.125 0.121 0.104 0.404 0.376 0.726

512 512 0.05 0.026 0.032 0.049 0.047 0.295 0.292 0.673

0.1 0.089 0.096 0.104 0.120 0.482 0.484 0.771

512 640 0.05 0.040 0.033 0.056 0.044 0.307 0.287 0.701

0.1 0.093 0.101 0.109 0.103 0.491 0.463 0.794

640 640 0.05 0.031 0.039 0.053 0.042 0.371 0.350 0.764

0.1 0.101 0.092 0.118 0.114 0.559 0.491 0.843

Table 5: Rejection frequencies of the test (2.14) under the null hypothesis and for several alternatives

in non-Gaussian and non-linear models [for ρ = 0].

3.2 Real world data

In this section we investigate how the clustering-method described in Remark 2.3 performs if it is applied

to real world data. Therefore we took three log-returns of stock prices from the financial sector, three

log-returns from the health sector and two key interest rates. Exemplarily for the finance sector we

choosed the stocks of Barclays, Deutsche Bank and Goldman Sachs and the health sector is represented

by GlaxoSmithKline, Novartis and Pfizer. The key interest rates were taken from Great Britain and

the EU and all time series data were recorded between March 1st, 2003 and July 29th, 2011. While the

interest rates data were observed monthly, the stock prices were recorded daily or weekly . However,

even if two stock prices were observed daily they might differ in length, since they are for example

traded on different stock exchanges with different trading days. The result of our cluster analysis using

(2.26) is presented in the dendrogram given in Figure 1. As expected we get three different groups
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which correspond to the finance sector, the health sector and the key interes rates.

Figure 1: Clustering of financial time series data.
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4 Appendix: Technical details

Proof of Theorem 2.1: By using the Cramer-Wold device, we have to show that

cT
√
n1

{
(D̂1,n1 , D̂12,n1 , D̂2,n1)

T − (D1, D12, D2)
T
}

D−−→ N(0, cTΣc)

for all vectors c ∈ IR3. For the sake of brevity, we restrict ourselve to the case c = (0, 1, 0)T since the

more general follows with exactly the same arguments. Therefore we show

T̂n1 :=
√
n1(D̂12,n1 −D12)

D−−→ N(0,Σ22)(4.1)

and we do that by using the method of cumulants, which is described in chapter 2.3. of Brillinger (1981)

(and whose notations we will make heavy use of), i.e. in the following it is proved that

cuml(T̂n1) = o(1)(4.2)
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for l = 1 and l ≥ 3 and that

cum2(T̂n1)
n1→∞−−−−→ Σ22,(4.3)

which will yield the assertion.

Proof of (4.2) for the case l = 1: Because of the symmetry of the periodogram, it is

E(D̂12,n1) =
1

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)2n1n2

n1∑
p1,q1=1

n2∑
p2,q2=1

∞∑
l1,m1=−∞

∞∑
l2,m2=−∞

ψ
(1)
l1
ψ(1)
m1
ψ

(2)
l2
ψ(2)
m2

E(Z
(1)
p1−l1Z

(1)
q1−m1

Z
(2)
p2−l2Z

(2)
q2−m2

)e−iλ1,k(p1−q1)−iλ1,k+1(p2−q2) +O(1/n1)

and because of the standard normality of the innovations we obtain

E(Z
(1)
p1−l1Z

(1)
q1−m1

Z
(2)
p2−l2Z

(2)
q2−m2

) =E(Z
(1)
p1−l1Z

(1)
q1−m1

)E(Z
(2)
p2−l2Z

(2)
q2−m2

) +E(Z
(1)
p1−l1Z

(2)
q2−m2

)E(Z
(1)
q1−m1

Z
(2)
p2−l2)

+E(Z
(1)
p1−l1Z

(2)
p2−l2)E(Z

(1)
q1−m1

Z
(2)
q2−m2

)

which yields that E(D̂12,n1) (without the O(1/n1)-term) can be divided into the sums of three terms

which are called A, B and C respectively. For the first term we obtain the conditions

p1 = q1 + l1 −m1

p2 = q2 + l2 −m2

(all others cases are equal to zero) which results in

A =
1

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)2n1n2

∞∑
l1,l2,m1,m2=−∞

n1∑
q1=1

1≤q1+l1−m1≤n1

n2∑
q2=1

1≤q2+l2−m2≤n2

ψ
(1)
l1
...ψ(2)

m2
e−iλ1,k(l1−m1)−iλ1,k+1(l2−m2)

=
1

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)2n1n2

n1∑
q1=1

n2∑
q2=1

∞∑
l1,l2,m1,m2=−∞

ψ
(1)
l1
...ψ(2)

m2
e−iλ1,k(l1−m1)−iλ1,k+1(l2−m2) + o

(
1√
n

)
,

where the last equality follows from

1

nj

∑
l:|l|<Mnj

ψ
(j)
l |l| =

1

nj

∑
l:|l|<Mnj

ψ
(j)
l |l|

α|l|1−α = o(1/nαj )(4.4)

with M ∈ IR, where (2.4) was used. It now follows by the Hölder continuity condition that A equals

1

2π

∫ π

−π
f11(λ)f22(λ)dλ+ o

(
1√
n

)
.

If we consider the summand B, we obtain the conditions
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q1 = b(p2 − l2)qn1,n2c+m1 − bqn1,n2 − 1c
q2 = b(p1 − l1)qn1,n2c+m2 − bqn1,n2 − 1c

which yields

B =
ρ2

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)2n1n2

∞∑
l1,m1,l2,m2=−∞

n1∑
p1=1

1≤b(p1−l1)qn1,n2c+m2−bqn1,n2−1c≤n2

n2∑
p2=1

1≤b(p2−l2)qn1,n2c+m1−bqn1,n2−1c≤n1

ψ
(1)
l1
...ψ(2)

m2
e−iλ1,k(p1−b(p2−l2)qn1,n2c+m1−bqn1,n2−1c)e−iλ1,k+1(p2−b(p1−l1)qn1,n2c+m2−bqn1,n2−1c).

If we now employ the identity

1

n1

bn1
2
c∑

k=−bn1−1
2
c

e−iλ1,kp =

1 if p = 0,±n1,±2n1, ...

0 else
,(4.5)

it follows with (2.10) that if p1 is chosen there are only finitely many p2 which yields a non-zero

summand. Therefore we obtain that B = o(1/
√
n1) and with the same arguments it can be shown that

C = o(1/
√
n1).

2

Proof of (4.3): It is

cum2(
√
n1D̂12,n1) =

1

n1

bn1
2
c−1∑

k=1

cum2(I1(λ1,k)I2(λ1,k+1)) +
1

n1

bn1
2
c−1∑

k1,k2=1
k1 6=k2

cum(I1(λ1,k1)I2(λ1,k1+1), I1(λ1,k2)I2(λ1,k2+1))

and the assertion follows if we show that

1

n1

bn1
2
c−1∑

k=1

cum2(I1(λ1,k)I2(λ1,k+1))
n1→∞−−−−→ 3

4π

∫ π

−π
f 2
11(λ)f 2

22(λ)dλ(4.6)

and

1

n1

bn1
2
c−1∑

k1,k2=1
k1 6=k2

cum(I1(λ1,k1)I2(λ1,k1+1), I1(λ1,k2)I2(λ1,k2+1))
n1→∞−−−−→ 1

2π

∫ π

−π
f11(λ)|f12(λ)|2f22(λ)dλ.(4.7)
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We present a detailed proof of (4.6) and then comment briefly on (4.7) since it is proved analogously.

Employing the symmetry of the periodogram again, we get

1

n1

bn1
2
c−1∑

k=1

cum2(I1(λ1,k)I2(λ1,k+1)) =
1

2n1

bn1
2
c∑

k=−bn1−1
2
c

cum2(I1(λ1,k)I2(λ1,k+1)) +O(1/n1)

=
1

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)4n2
1n

2
2

2∑
j=1

nj∑
pj ,qj ,rj ,sj=1

∞∑
aj ,bj ,cj ,dj=−∞

ψ(1)
a1
...ψ

(2)
d2

e−iλ1,k(p1−q1+r1−s1)−iλ1,k+1(p2−q2+r2−s2)

cum(Z
(1)
p1−a1Z

(1)
q1−b1Z

(2)
p2−a2Z

(2)
q2−b2 , Z

(1)
r1−c1Z

(1)
s1−d1Z

(2)
r2−c2Z

(2)
s2−d2) +O(1/n1)

=
∑
ν

1

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)4n2
1n

2
2

2∑
j=1

nj∑
pj ,qj ,rj ,sj=1

∞∑
aj ,bj ,cj ,dj=−∞

ψ(1)
a1
...ψ

(2)
d2

(4.8)

e−iλ1,k(p1−q1+r1−s1)−iλ1,k+1(p2−q2+r2−s2)

cum(Z
(j)
i ; (i, j) ∈ ν1) · · · cum(Z

(j)
i ; (i, j) ∈ ν4) +O(1/n1)

where the sum goes over all indecomposable partitions ν = ν1 ∪ ... ∪ ν4 of

Z
(1)
p1 Z

(1)
q1 Z

(1)
r1 Z

(1)
s1

Z
(2)
p2 Z

(2)
q2 Z

(2)
r2 Z

(2)
s2

with |νi| = 2 ∀i = 1, ..., 4 (we only have to consider partitions with two elements in each set, because

of the Gaussianity of the innovations). Every chosen partition will imply conditions for the choice of

pj, qj, rj, sj as in the calculation of the expectation. For some partitions there will not be a pj, qj, rj, sj
in the exponent of e after the substitution of the conditions and for other partitions there will still

remain one. Let us take an example of the latter one and consider the partitions which corresponds to

cum(Z
(1)
p1−a1 , Z

(1)
s1−d1)cum(Z

(1)
q1−b1 , Z

(1)
r1−c1)cum(Z

(2)
p2−a2 , Z

(2)
r2−c2)cum(Z

(2)
q2−b2 , Z

(2)
s2−d2).

We name the corresponding term of this partition in (4.8) with V2 and obtain the conditions

p1 = s1 + a1 − d1
q1 = r1 + b1 − c1
p2 = r2 + a2 − c2
q2 = s2 + b2 − d2
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which yields

V2 =
1

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)4n2
1n

2
2

2∑
j=1

∞∑
aj ,bj ,cj ,dj=−∞

n1∑
s1,r1=1

1≤s1+a1−d1≤n1
1≤r1+b1−c1≤n1

n2∑
r2,s2=1

1≤r2+a2−c2≤n2
1≤s2+b2−d2≤n2

ψ(1)
a1
...ψ

(2)
d2

e−iλ1,k(a1−d1+c1−b1)−iλ1,k+1(2r2−2s2+a2−c2+d2−b2)

=
1

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)4n2
1n

2
2

2∑
j=1

∞∑
aj ,bj ,cj ,dj=−∞

n1∑
s1,r1=1

n2∑
r2,s2=1

ψ(1)
a1
...ψ

(2)
d2

e−iλ1,k+1(2r2−2s2)e−iλ1,k(a1−d1+c1−b1)−iλ1,k+1(a2−c2+d2−b2) + o(1/
√
n1),

where the last equality again follows with (4.4). Now as in the handling of B in the calculation of the

expectation, (4.5) implies that V2 = o(1).

Every other indecomposable partition is treated in exactly the same way and there are only three

partitions which corresponding term in (4.8) does not vanish in the limit. These partitions correspond

to one of the following three terms:

1) cum(Z
(1)
p1−a1 , Z

(1)
q1−b1)cum(Z

(1)
r1−c1 , Z

(1)
s1−d1)cum(Z

(2)
p2−a2 , Z

(2)
s2−d2)cum(Z

(2)
q2−b2 , Z

(2)
r2−c2)

2) cum(Z
(1)
p1−a1 , Z

(1)
s1−d1)cum(Z

(1)
q1−b1 , Z

(1)
r1−c1)cum(Z

(2)
p2−a2 , Z

(2)
q2−b2)cum(Z

(2)
r2−c2 , Z

(2)
s2−d2)

3) cum(Z
(1)
p1−a1 , Z

(1)
s1−d1)cum(Z

(1)
q1−b1 , Z

(1)
r1−c1)cum(Z

(2)
p2−a2 , Z

(2)
s2−d2)cum(Z

(2)
q2−b2 , Z

(2)
r2−c2)

We will exemplarily present the calculation concerning the 1) partition and denote the corresponding

sum in (4.8) with V1. We get

V1 =
1

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)4n2
1n

2
2

2∑
j=1

∞∑
aj ,bj ,cj ,dj=−∞

n1∑
q1,s1=1

1≤q1+a1−b1≤n1
1≤s1+c1−d1≤n1

n2∑
r2,s2=1

1≤s2+a2−d2≤n2
1≤r2+b2−c2≤n2

ψ(1)
a1
...ψ

(2)
d2

e−iλ1,k(a1−b1+c1−d1)−iλ1,k+1(a2−d2+c2−b2)

=
1

2n1

bn1
2
c∑

k=−bn1−1
2
c

1

(2π)4n2
1n

2
2

2∑
j=1

∞∑
aj ,bj ,cj ,dj=−∞

n1∑
q1,s1=1

n2∑
r2,s2=1

ψ(1)
a1
...ψ

(2)
d2

e−iλ1,k(a1−b1+c1−d1)−iλ1,k+1(a2−d2+c2−b2) + o(1/
√
n1)

by using (4.4). Now the Hölder continuity condition implies

V1 =
1

4π

∫ π

−π
f11(λ)2f22(λ)2dλ+ o(1/

√
n1)

and since the partitions 2) and 3) yield the same result, we have shown (4.6).
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With the same arguments as in the proof of (4.6) it is shown that

1

n1

bn1
2
c−1∑

k1,k2=1
k1 6=k2

cum(I1(λ1,k1)I2(λ1,k1+1), I1(λ1,k2)I2(λ1,k2+1))

=
1

n1

bn1
2
c−1∑

k1=1

cum(I1(λ1,k1)I2(λ1,k1+1), I1(λ1,k1+1)I2(λ1,k1+2))

+
1

n1

bn1
2
c−1∑

k1=1

cum(I1(λ1,k1)I2(λ1,k1+1), I1(λ1,k1−1)I2(λ1,k1)) + o(1)

and it is shown completely analogously to the proof of (4.6) that

1

n1

bn1
2
c−1∑

k1=1

cum(I1(λ1,k1)I2(λ1,k1+1), I1(λ1,k1+1)I2(λ1,k1+2))

and

1

n1

bn1
2
c−1∑

k1=1

cum(I1(λ1,k1)I2(λ1,k1+1), I1(λ1,k1−1)I2(λ1,k1))

both converge to

1

4π

∫ π

−π
f11(λ)|f12(λ)|2f22(λ)dλ.

which yields (4.7).

2

Proof of (4.2) for the case l ≥ 3: Since the proof is done by combining standard cumulants methods

with the arguments that are used in the calculation of the expectation and the variance, we will restrict

ourselve to a brief explanation of the main ideas [a more detailed discussion in a similar situation can

be found in Dette et al. (2011)]. We obtain

cuml(
√
n1D12,n1) =

1

(2n1)l/2

l∑
j1=1

bn1
2
c∑

kj1=−b
n1−1

2
c

1

(2π)2lnl1n
l
2

2∑
j2=1

∞∑
aj1,j2 ,bj1,j2=−∞

nj2∑
pj1,j2 ,qj1,j2=1

ψ(1)
a1,1
· · ·ψ(2)

bl,2

exp(−iλ1,k(p11 − q11)− iλ1,k+1(p12 − q12)) · · · exp(−iλ1,k(pl1 − ql1)− iλ1,k+1(pl2 − ql2))

cum(Z
(1)
p11−a11Z

(1)
q11−b11Z

(2)
p12−a12Z

(2)
q12−b12 , ..., Z

(1)
pl1−al1Z

(1)
ql1−bl1Z

(2)
pl2−al2Z

(2)
ql2−bl2)

and if we now take a indecomposable partition of

Z
(1)
p11−a11 Z

(1)
q11−b11 Z

(2)
p12−a12 Z

(2)
q12−b12

...
...

...
...

Z
(1)
pl1−al1 Z

(1)
ql1−bl1 Z

(2)
pl2−al2 Z

(2)
ql2−bl2
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which consists only of sets with two elements (again this suffices because of the Gaussianity of the

innovations), it follows directly that at most 2l of the 4l variables pj1,j2 , qj1,j2 (j1 = 1, ..., l, j2 = 1, 2) are

free to choose. By using the same arguments as in the calculation of the variance and the expectation

it then follows by the indecomposability of the partition that in fact only l + 1 of the remaining 2l

variables pj1,j2 , qj1,j2 are free to choose. This implies that

cuml(
√
n1D12,n1) = O(n

1−l/2
1 )

which yields the assertion.

2
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