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Abstract

In a recent paper Fermanian (2005) studied a goodness-of-fit test for the parametric form
of a copula, which is based on an L2-distance between a parametric and nonparametric
estimate of the copula density. In the present paper we investigate the asymptotic properties
of the proposed test statistic under fixed alternatives. We also study the impact of different
estimates for the parameters of the finite dimensional family of copulas specified by the
null hypothesis and illustrate the performance of a parametric bootstrap procedure for the
approximation of the critical values.
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1 Introduction

Nowadays copulas are widely used by practitioners to analyze dependence structures in various

applications including finance, actuarial science and hydrology [see e.g. Frees and Valdez (1998),

Embrechts, McNeil and Straumann (2002), McNeil, Frey and Embrechts (2005) and Genest and

Favre (2007)]. The copula of a multivariate distribution describes its dependence structure as a

complement to the behaviour of its margins, and as a consequence the estimation of the distribution

can be splitted into the estimation of the marginals and the copula. Several parametric families of

copulas

C = {Cθ | θ ∈ Θ}(1.1)
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(here Θ ⊂ Rq denotes an arbitrary subset) have been proposed in the literature in order to reflect

various aspects of dependency [see e.g. the monographs of Joe (1997) or Nelsen (2006)]. Because

misspecification of the copula function can have a serious impact on the statistical analysis, several

authors have pointed out the importance of goodness-of-fit tests for the hypothesis of a parametric

family (1.1) [see e.g. Malevergne and Sornette (2003), Cui and Sun (2004), Fermanian (2005),

Scaillet (2007), Dobric and Schmid (2007), Genest and Rémillard (2008) among many others].

In a recent paper Fermanian (2005) proposed a test for the hypothesis

H0 : C ∈ C , H1 : C /∈ C(1.2)

where C denotes the copula of a d-dimensional distribution and C the parametric class defined by

(1.1). The test is based on an L2-distance between a nonparametric and parametric estimate of

the copula density, and Fermanian (2005) proved asymptotic normality of the corresponding test

statistic under the null hypothesis H0 and specific assumptions on the estimates of the parameters

of the copula density.

The present paper has several purposes. First we provide a more sophisticated analysis of the

test proposed by Fermanian (2005) and study the asymptotic properties of the test statistic under

fixed alternatives. It is shown that in this case an appropriately standardized version of the test

statistic is also asymptotically normal distributed. Moreover, in contrast to the null hypothesis, it

turns out that under the alternative the form of the parametric estimate has a substantial impact

on the asymptotic distribution of the test statistic. In particular, we investigate two estimation

methods for the parameter of the copula density, namely the common maximum likelihood and

minimum L2-distance estimation technique. For these estimates we prove asymptotic normality of

the standardized test statistic under the null hypothesis and fixed alternatives with different rates

of convergence in both cases. These results can be used for the construction of confidence regions

for a measure of deviation, say M2, between the parametric family of copulas and the ”true”

copula or for testing precise hypotheses of the form H0 : M2 ≤ ∆ vs. H1 : M2 > ∆, where ∆ ≥ 0

is a preassigned measure of accuracy [see Berger and Delampady (1987)]. These hypotheses are

motivated by the observation that in practice a copula will never be exactly of a given parametric

form (which would correspond to the case ∆ = 0), but in the best case approximately given by a

parametric form (which would correspond to a small value of ∆).

Secondly it has been pointed out by several authors that under the null hypothesis the normal

approximation of test statistics based on L2-distances is not very accurate [see e.g. Härdle and

Mammen (1993) or Fan and Linton (2003)]. Therefore we propose a parametric bootstrap pro-

cedure for the approximation of the critical values and investigate its performance by means of a

simulation study. In particular, it is demonstrated that the bootstrap test based on the L2-distance

yields a reliable approximation of the nominal level and has similar power properties as several

goodness-of-fit tests, which were investigated in a recent paper by Genest, Rémillard and Beaudoin

(2008).

The remaining part of the paper is organized as follows. In Section 2 we introduce the necessary

notation and define the test statistic. The asymptotic properties of the maximum likelihood and

the minimum L2-distance in the parametric family of copulas are investigated in Section 3 under
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a correct and incorrect specification of the parametric family of copulas. In Section 4 we prove

asymptotic normality of the test statistic under the null hypothesis and fixed alternatives with

different rates of convergence in both cases. Section 5 is devoted to a small simulation study in

order to investigate the finite sample properties of a parametric bootstrap procedure based on the

L2-distance. Finally, some more technical results are presented in the Appendix.

2 Testing for the form of the copula with the L2-distance

Throughout this paper let X1, . . . , Xn denote independent identically distributed d-dimensional

random variables with joint continuous distribution function H and copula C, which has a density

τ0 supported in the cube [0, 1]d. We denote by Xi = (Xi,1, . . . , Xi,d)
T the components of the vector

Xi (i = 1, . . . , n) and by Fj the marginal distribution of the jth component (j = 1, . . . , d), which

yields by Sklar’s theorem [see e.g. Nelsen (2006)]

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) a.e. .(2.1)

We define by

Fn,r(x) =
1

n

n∑
j=1

1{Xj,r ≤ x}(2.2)

the empirical distribution function of the r-th marginal distribution Fr (r = 1, . . . , d) and

Yi := (F1(Xi,1), . . . , Fd(Xi,d))
T(2.3)

Yn,i := (Fn,1(Xi,1), . . . , Fn,d(Xi,d))
T,(2.4)

(note that the distribution function of the random variable Yi is given by the copula C). We

assume for the parametric class of copulas defined by (1.1) that the parameter space Θ is compact

with non empty interior and that Cθ has a density supported in [0, 1]d, say τ(·, θ), which is two and

three times continuously differentiable with respect to the first and second argument, respectively.

In the following discussion θ̂ denotes an (under the null hypothesis consistent) estimate of the

parameter θ, which will be specified in the following section, and we denote by τ̂(·) = τ(·, θ̂)
the corresponding parametric estimate of the copula density. Moreover, the nonparametric kernel

estimate of the copula density is defined by

τn(u) :=
1

nhd

n∑
i=1

K

(
u− Yn,i

h

)
(2.5)

[see e.g. Charpentier, Fermanian and Scaillet (2007)] and ω : [0, 1]d −→ IR+
0 denotes a two

times continuously differentiable weight function with compact support contained in the cube

[ε1, 1 − ε1]
d ⊂ [0, 1]d, where ε1 > 0. We further assume that τ(·, ·) is uniformly continuous on
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[ε0, 1−ε0]
d×Θ for some ε0 ∈ (0, ε1). For testing the parametric hypothesis (1.2) Fermanian (2005)

proposed the test statistic

Jn = Jn(θ̂) :=

∫
(τn −Kh ∗ τ̂)2(u) ω(u) du.(2.6)

where ∗ denotes convolution and Kh(x) = K(x/h)/h. Here K denotes the kernel of the density

estimate (2.5), and the convolution operator is applied to the parametric estimate of the copula

density in order to reduce the bias [see e.g. Bickel and Rosenblatt (1973) or Härdle and Mammen

(1993)]. Because the asymptotic properties of the test statistic, especially under a fixed alternative,

depend sensitively on the specific choice of the parametric estimate, we study in the following

section two estimation methods for the parameter θ of the family of copula densities.

3 Estimation of the parameter of the copula density

Throughout this paper let τ0 denote the “true” density of the copula C and consider the Kulback

Leibler distance

DKL(τ0, τ(·, θ)) =

∫
log(τ0(u))τ0(u) du−

∫
log(τ(u, θ))τ0(u) du,(3.1)

We define L(θ) =
∫

log τ(u, θ)τ0(u) du and

θ∗ML = argmax
θ∈Θ

L(θ)(3.2)

as the parameter corresponding to the best approximation of the copula density τ0 by the para-

metric class {τ(·, θ) | θ ∈ Θ} with respect to the Kulback Leibler distance and assume that θ∗ML

is attained at an unique interior point of Θ. The maximum likelihood estimate of the parameter

θ is defined as

θ̂ML := argmax
θ∈Θ

Ln(θ).(3.3)

where Ln(θ) := 1
n

∑n
i=1 log τ(Yn,i, θ) denotes the likelihood function [see Genest, Ghoudi and Rivest

(1995)]. We assume that θ̂ML is also attained at an interior point of the parameter space Θ and

that the parametric class of copula densities satisfies the following assumptions of regularity:

(a) E
[‖∂θ log τ(Yi, θ

∗
ML)‖+

∥∥∂2
yθ log τ(Yi, θ

∗
ML)

∥∥ +
∥∥∂3

yyθ log τ(Yi, θ
∗
ML)

∥∥]
< ∞

(b) There exist constants α, β > 0, such that for any point Y ∗
ni with ‖Y ∗

ni − Yi‖ ≤ ‖Yni − Yi‖
∥∥∂3

yyθ log(Y ∗
ni, θ

∗
ML)

∥∥ ≤ α
∥∥∂3

yyθ log τ(Yi, θ
∗
ML)

∥∥ + β
∥∥∂3

yyθ log τ(Yni, θ
∗
ML)

∥∥

(c) For all u ∈ (0, 1)d we have with the notation r(t) := t(1− t)
∥∥∂3

yyθ log τ(u, θ∗ML)
∥∥ ≤ const r(u1)

a1 . . . r(ud)
ad ,

where ak = δ−1
pk

mit 1
p1

+ · · ·+ 1
pd

= 1 and δ > 0.
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(d) For all u ∈ (0, 1)d ∥∥∂2
θθ log τ(u, θ∗ML)

∥∥ ≤ const r(u1)
b1 . . . r(ud)

bd ,

where bk = ζ−1
qk

and 1
q1

+ · · ·+ 1
qd

= 1, ζ > 0.

(e) For all u ∈ (0, 1)d we have in a neighbourhood V (θ∗ML) of the point θ∗ML

sup
θ∈V (θ∗ML)

∥∥∂3
θθθ log τ(u, θ)

∥∥ ≤ const r(u1)
c1 . . . r(ud)

cd ,

where ck = η−1
p′k

and 1
p′1

+ · · ·+ 1
p′d

= 1, η > 0.

Fermanian (2005) states that these assumptions are satisfied for most of the commonly used copula

families [see also Hu (1998), who proved some of these assumptions for Clayton-, Frank- and Gauß-

copulas]. Our first result establishes a stochastic expansion for the maximum likelihood estimate,

from which asymptotic normality can be derived.

Theorem 3.1. If the assumptions stated in Section 2 and 3 are satisfied and the maximum

likelihood estimate θ̂ML is consistent, i.e. θ̂ML
P−→ θ∗ML, then

√
n(θ̂ML − θ∗ML) =

1√
n

n∑
i=1

D(Yi) + oP (1)
D−→ N (0, Σ) ,(3.4)

where

D(Yi) = A−1(∂θ log τ(Yi, θ
∗
ML) + h(Yi)),

h(Yi) =

∫
∂2

yθ log τ(u, θ∗ML)(1(Yi ≤ u)− u) τ0(u) du,

A = −E [
∂2

θ log τ(Yi, θ
∗
ML)

]
,

Σ = Var(D(Yi)).

Proof. The proof follows by similar arguments as presented in part D of the paper by Fermanian

(2005). Because this author only considers the null hypothesis and some of the arguments in this

reference seem to be incorrect (see our Remark 3.2), we present here the main steps. Because θ̂ML

is an interior point of the parameter space, we obtain by means of Taylor expansions

0 = ∂θ Ln(θ̂ML) = S0 + S1 + S2(3.5)

+∂2
θθ Ln(θ∗ML) (θ̂ML − θ∗ML) +

1

2
(θ̂ML − θ∗ML)T ∂3

θθθLn(θ̃) (θ̂ML − θ∗ML) ,

where the terms S0, S1, S2 are defined by

S0 =
1

n

n∑
i=1

∂θ log τ(Yi, θ
∗
ML),(3.6)

S1 =
1

n

n∑
i=1

∂2
yθ log τ(Yi, θ

∗
ML)(Yn,i − Yi),(3.7)

S2 =
1

2n

n∑
i=1

(Yn,i − Yi)
T ∂3

yyθ log τ(Y ∗
n,i, θ

∗
ML) (Yn,i − Yi),(3.8)
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and θ̃ and Y ∗
ni satisfy ‖θ̃ − θ∗ML‖ ≤ ‖θ̂ML − θ̂∗ML‖ and

∥∥Y ∗
n,i − Yi

∥∥ ≤ ‖Yn,i − Yi‖ (i = 1, . . . , n),

respectively. Note that E[S0] = 0 and therefore S0 is a sum of centered, independent and identically

distributed random variables. Using a Hoeffding approximation it follows for the second term

S1 =
1

n

n∑
i=1

h(Yi) + oP

(
1√
n

)
,(3.9)

where the random variable h(Yi) is defined in Theorem 3.1. Finally, we have (using the assumptions

(a) - (c)) that S2 = OP ( log2 n
n

) = oP ( 1√
n
). Combining these estimates we obtain

∂θ Ln(θ∗ML) = S0 + S1 + S2 =
1

n

n∑
i=1

A ·D(Yi) + oP

(
1√
n

)
,(3.10)

where we have again used the notation of Theorem 3.1. Note that it follows from Proposition

A.1 in Genest, Ghoudi and Rivest (1995) that ∂2
θθLn(θ∗ML)

P→ −A, which implies (observing that

∂3
θθθLn(θ̃) is bounded in probability, because of assumption (e) and θ̃

P→ θ∗ML)

−∂θLn(θ∗ML) = (−A + oP (1)) (θ̂ML − θ∗ML)(3.11)

The assertion of the Theorem now follows from (3.5) and (3.10) by a standard argument. 2

Remark 3.2.

(a) Note that Theorem 3.1 requires the consistency of the maximum likelihood estimate θ̂ML
P→

θ∗ML, where θ∗ML is the best approximation of the “true” copula density τ0 by the parametric

class {τ(·, θ)|θ ∈ Θ} with respect to the Kulback Leibler distance. If the parametric model

has been correctly specified, this was proved in Theorem 4.2.1 of Hu (1998) and similar

arguments could be used to establish consistency of θ̂ML if the model has been misspecified.

(b) It should be pointed out here that Fermanian (2005) considered estimates of the parameter

θ satisfying

θ̂ − θ0 =
1

n
A−1(θ0)

n∑
i=1

B(θ0, Yi) + op(n
−1/2(log n)−1/2)

where θ0 is the “true” parameter of the copula (this means that the model has been correctly

specified). However, we were not able to find estimates in the literature satisfying this

assumption (in particular the proof presented in Appendix D of Fermanian (2005) seems to

be not correct).

In the remaining part of this section we derive a similar expansion for an estimate minimizing an

L2-distance between the “true” copula density and the parametric class of densities specified by

the null hypothesis. To be precise we define

θ∗L2 := argmin
θ∈Θ

∫ (
τ(u, θ)− τ0(u)

)2
ω(u) du(3.12)
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as the parameter corresponding to the best L2-approximation of τ0 by the parametric class {τ(·, θ)|θ ∈
Θ} and we assume that it is attained at an unique interior point of the parameter space Θ. If the

model is correctly specified and θ0 the true parameter corresponding to the density τ0(·) = τ(·, θ0),

then θ∗L2 = θ0. The empirical analogue of (3.12) is given by

θ̂L2 = argmin
θ∈Θ

∫ (
τ(u, θ)− τn(u)

)2
ω(u) du ,(3.13)

where τn denotes the kernel estimate of the copula defined by (2.5). The following result provides

a stochastic expansion for the difference θ̂L2 − θ∗L2 .

Theorem 3.3. If the L2-estimate is consistent, i.e. θ̂L2
P−→ θ∗L2, and the conditions h −→ 0,

nhd −→∞,

log2
2 n

nh4+ d
2

−→ 0(3.14)

log(h−d)

nhd
→ 0(3.15)

log(h−d)

log2 n
→ ∞(3.16)

n1−αhd −→ ∞(3.17)

are satisfied for some α ∈ (0, 3
4
), then it follows that

θ̂L2 − θ∗L2 + B =
1

n

n∑
i=1

Dn(Yi) + oP (
1√
n

),(3.18)

where the bias is given by

B :=

∫
(Kh ∗ τ0(u)− τ0(u))C−1 ∂θτ(u, θ∗L2) ω(u) du = O(h2).(3.19)

and

δ(u) := τ(u, θ∗L2)− τ0(u)(3.20)

C =

∫
{∂θτ(u, θ∗L2)∂T

θ τ(u, θ∗L2) + δ(u) ∂2
θθτ(u, θ∗L2)}ω(u) du.(3.21)

Dn(Yi) := C−1

[∫
(Kh(u− Yi)− E [Kh(u− Yi)]) ∂θτ(u, θ∗L2) ω(u) du + rn(Yi)

]
(3.22)

rn(Yi) := E [hn(Yk, Yi) |Yi](3.23)

hn(Yk, Yi) :=
−1

h

∫
(dK)h(u− Yk)(1(Yi ≤ Yk)− Yk) ∂θτ(u, θ∗L2) ω(u) du.(3.24)

In particular, we have

1√
n

n∑
i=1

Dn(Yi)
D−→ Nq(0, Σ),(3.25)
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where the asymptotic variance is given by

Σ = C−1 E
[
∂θτ(Yi, θ

∗
L2) ∂T

θ τ(Yi, θ
∗
L2) ω2(Yi)(3.26)

−E [∂θ τ(Yi, θ
∗
L2) ω(Yi)] E

[
∂T

θ τ(Yi, θ
∗
L2) ω(Yi)

]

−2
d∑

r=1

∫
∂θτ(Yi, θ

∗
L2) ω(Yi) (τ0 ∂T

θ τ(·, θ∗L2) ω)(v1, . . . , Yir . . . , vd) dv−r

+
d∑

r,s=1

∫
(τ0 ∂θ(·, θ∗L2) ω)(u1, . . . , Yir, . . . , ud)(τ0 ∂T

θ (·, θ∗L2) ω)

(v1, . . . , Yis, . . . , vd) du−r dv−s

]
C−1

and the symbol du−r means integration with respect to the (d − 1)-dimensional variable u−r =

(u1, . . . , ur−1, ur+1, . . . , ud).

Proof. With the notation

Qn(θ) = −
∫ (

τ(u, θ)− τn(u)
)2

ω(u) du,

Q(θ) = −
∫ (

τ(u, θ)− τ0(u)
)2

ω(u) du,

ψn(θ) = ∂θQn(θ)

ψ(θ) = ∂θ Q(θ)

we obtain for same θ̃ with ‖θ̃ − θ∗L2‖ ≤ ‖θ̂L2 − θ∗L‖ the expansion

0 = ∂θ Qn(θ̂L2) = ∂θ Qn(θ∗L2)

+∂2
θQn(θ∗L2) (θ̂L2 − θ∗L2) +

1

2
(θ̂L2 − θ∗L2)T ∂3

θ Qn(θ̃) (θ̂L2 − θ∗L2) .(3.27)

Moreover,

∂θ Qn(θ∗L2) =
2

n

n∑
i=1

∫ (
Kh(u− Yn,i)− τ(u, θ∗L2)

)
∂θτ(u, θ∗L2) ω(u) du(3.28)

= 2

(
An1 + An2 + An3 + An4

)
,
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where the random variables Anj (j = 1, . . . , 4) are defined by

An1 =
1

n

n∑
i=1

∫
(Kh(u− Yi)− (Kh ∗ τ0)(u))∂θ τ(u, θ∗L2) ω(u) du,

An2 =
1

n

n∑
i=1

∫
βni(u)∂θ τ(u, θ∗L2) ω(u) du,

An3 =
1

n

n∑
i=1

∫
γ∗ni(u)∂θ τ(u, θ∗L2) ω(u) du,

An4 =

∫
(Kh ∗ τ0(u)− τ(u, θ∗L2))∂θ τ(u, θ∗L2) ω(u) du,

and

αi(u) := Kh(u− Yi),(3.29)

βni(u) :=
−1

h
(dK)h(u− Yi)(Yn,i − Yi),

γ∗ni(u) : =
1

2 h2
(d2K)h(u− Y ∗

n,i)(Yn,i − Yi)
(2).

Here djK denotes the jth derivative of the kernel K (note that Kh(u−Yni) = αi(u)+βni(u)+γ∗ni(u)).

Observing the estimate ‖Yn,i − Yi‖∞ = OP

(
( log2 n

n
)

1
2

)
it follows that An3 = Op(

log2 n
nh2 ) = op(

1√
n
).

For the term An2 we obtain by a straightforward but tedious calculation (see Appendix A)

An2 =
1

n

n∑
i=1

rn(Yi) + op(
1√
n

) ,(3.30)

where we used the notation in (3.23). Finally, An4 = O(h2) by a standard calculation, which yields

∂θ Qn(θ∗L2)− 2

∫
(Kh ∗ τ0(u)− τ0(u)) ∂θ τ(u, θ∗L2) ω(u) du =

2

n

n∑
i=1

C Dn(Yi) + oP (
1√
n

),

(3.31)

where the matrix C is defined in (3.21). Under the assumptions of Theorem 3.3 it can be shown

that the kernel estimate of the copula density converges uniformly in probability to the “true”

density τ0 on [ε, 1− ε]d (for any ε > 0), and it follows

∂2
θ Qn(θ∗L2) = 2

∫ ((
τn(u)− τ(u, θ∗L2)

)
∂2

θθ τ(u, θ∗L2)− ∂θ τ(u, θ∗L2)∂T
θ τ(u, θ∗L2)

)
ω(u) du

P−→ −2 C.(3.32)

Observing (3.27) this gives

∂θ Qn(θ∗L2) = 2
(
C + oP (1)

)
(θ̂L2 − θ∗L2).(3.33)
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and the assertion (3.18) follows because the matrix C is positive definite (note that θ∗L2 minimizes

the function Q(θ) and θ∗L2 is an interior point of Θ).

Note that the dominating term of the right hand side of (3.18) is a sum of centered i.i.d. random

variables and the asymptotic normality now follows from the central limit theorem for triangular

arrays and the Cramér-Wold device. For the calculation of the asymptotic covariance we note that

Σn = E
[
Dn(Yi)Dn(Yi)

T
]

= C−1 E
[
C Dn(Yi)(C Dn(Yi))

T
]
C−1(3.34)

= C−1{E(1)
D + 2E

(2)
D + E

(3)
D }C−1 ,

where

E
(1)
D = E

[ ∫
(Kh(u− Yi)− E Kh(u− Yi)) ∂θ τ(u, θ∗L2)

(Kh(v − Yi)− E Kh(v − Yi)) ∂T
θ τ(v, θ∗L2) ω(u) ω(v) du dv

]
,

2 E
(2)
D = E

[ ∫
(Kh(u− Yi)− E Kh(u− Yi)) ∂θ τ(u, θ∗L2)ω(u) du rT

n (Yi)
]
,

E
(3)
D = E

[
rn(Yi) rT

n (Yi)
]
.

The assertion of the theorem now follows by a straightforward but tedious evaluation of the ex-

pressions E
(j)
D (j = 1, 2, 3) observing that

rn(Yi) = −
d∑

i=1

∫
(τ0∇τ(·, θ∗L2) ω)(u1, . . . , ur−1, Yir, ur+1, . . . , ud) du−r, + O(h)

2

Remark 3.4. If the condition

‖∂θQ(θ) |θ=θ∗
L2
‖ < inf{‖∂θQ(θ)‖ | θ ∈ Θ; ‖θ − θ∗L2‖ ≥ ε}

is satisfied for all ε > 0, then it has been shown by Bücher (2008) (using Theorem 5.9 in van

der Vaart (1998)) that under the bandwidth conditions stated in Theorem 3.3 the estimate θ̂L2 is

consistent, that is θ̂L2
P−→ θ∗L2 .

4 Weak convergence of the statistic Jn(θ̂)

In this section we study the asymptotic properties of the goodness-of-fit test for the parametric

form of the copula which is based on the L2-distance Jn with the estimator θ̂ML or θ̂L2 . We begin

with a statement of the asymptotic properties of the statistic Jn(θ̂) under the null hypothesis of a

correct specification of the copula family.

Theorem 4.1. If the assumptions stated in Section 2 and 3 are satisfied and

nhd →∞,
log2

2 n

nh4+ d
2

→ 0
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, then

nh
d
2

(
Jn(θ̂ML)− 1

nhd

∫
K2(t) τ0(u− ht) ω(u) dt du +

1

nh

∫
τ 2
0 ω

d∑
r=1

∫
K2

r

)
DH0−→ N (0, 2σ2),

(4.1)

where the asymptotic variance is given by

σ2 =

∫
τ 2
0 ω(u) du

∫ (∫
K(u)K(u + v) du

)2

dv.(4.2)

If additionally nh4+d → 0, nh6+ d
2 → 0, then

nh
d
2

(
Jn(θ̂L2)− 1

nh
d
2

∫
K2(t)τ0(u− ht) ω(u) dt du +

1

nh

∫
τ 2
0 ω

d∑
r=1

∫
K2

r

−
∫ (

∂T
θ τ(u, θ0) B

)2
ω(u) du

)
DH0−→ N (0, 2σ2),

where σ2 is given as above and

B =

∫
(Kh ∗ τ0(u)− τ0(u))C−1 ∂θ τ(u, θ0) ω(u) du = O(h2),(4.3)

C =

∫
∂θτ(u, θ0) ∂T

θ τ(u, θ0) ω(u) du.

The proof of this result follows by similar arguments as given by Fermanian (2005), where some

modifications are necessary, because the estimators θ̂ML and θ̂L2 do not satisfy the assumptions

(3.1) of this paper. The details are omitted for the sake of brevity.

We now concentrate on the corresponding results under fixed alternatives.

Theorem 4.2. If the assumptions of Theorem 4.1 are satisfied and the null hypothesis is not valid,

that is τ0(·) 6= τ(·, θ) for all θ ∈ Θ, then

√
n

(
Jn(θ̂ML)− b1

)
DH1−→ N (0, σ2

H1
).

where the bias is given by

b1 =

∫
(Kh ∗ (τ0 − τ ∗))2(u) ω(u) du.

The asymptotic variance is given by

σ2
H1

= 4 · {σ11 + σ22 + σ33 + 2σ12 − 2σ13 − 2σ23}

11



where

σ11 := Var((τ0 − τ ∗) ω(Yi)),

σ12 := −E
[
(τ0 − τ ∗)(Yi) ω(Yi)

d∑
r=1

∫
(τ0 − τ ∗)τ0 ω(u1, . . . , Yir, . . . , ud) du−r

]
,

σ13 := βT
ML A−1E

[
(τ0 − τ ∗) ω(Yi)

(
∂θ log τ(Yi, θ

∗
ML)

+∂2
yθ log τ(Yj, θ

∗
ML)(1(Yi ≤ Yj)− Yj)

)]
,

σ22 := E
[ d∑

r,s=1

∫
(τ0 − τ ∗)τ0 ω(u1, . . . , Yir, . . . , ud)

(τ0 − τ ∗)τ0 ω(v1, . . . , Yis, . . . , vd) du−r dv−s

]
,

σ23 := βT
ML A−1E

[ ∑

r=1d

∫
(τ0 − τ ∗)τ0 ω(v1, · · · , Yir, · · · , vd) dv−r

(
∂θ log τ(Yi, θ

∗
ML) + ∂2

yθ log τ(Yj, θ
∗
ML)(1(Yi ≤ Yj)− Yj)

)]
,

σ33 := βT
ML Var(D(Yi)) βML

and we have used the notation τ ∗(u) = τ(u, θ∗ML),

βML =

∫
(τ0 − τ ∗) ω(u) ∂θ τ(u, θ∗ML) du.

Similarly, we have
√

n

(
Jn(θ̂L2)− b1 − 2 b2

)
DH1−→ N (0, σ2

H1
),

where

b1 =

∫
(Kh ∗ (τ0 − τ ∗))2(u) ω(u) du,

b2 =

∫
Kh(u− t)(τ0 − τ ∗)(t)Kh(u− s) ∂T

θ τ(s, θ∗L2) B ω(u) du ds dt = O(h3),

σ2
H1

= 4(σ11 + σ22 + 2σ12),

12



with

σ11 := Var((τ0 − τ ∗) ω(Yi)),

σ12 := −E
[ d∑

r=1

∫
(τ0 − τ ∗)τ0 ω(u1, . . . , Yir, . . . , ud)(τ0 − τ ∗)(Yi) ω(Yi) du−r

]
,

σ22 := E
[ d∑

r,s=1

∫
(τ0 − τ ∗)τ0 ω(u1, . . . , Yir, . . . , ud)

(τ0 − τ ∗)τ0 ω(v1, . . . , Yis, . . . , vd) du−r dv−s

]
.

Remark 4.3. Note that the choice ω(·) = τ(·, θ∗ML)−1 yields

βML =

∫
τ0(u)

∂θ τ(u, θ∗ML)

τ(u, θ∗ML)
du−

∫
∂θ τ(u, θ∗ML)du

=

∫
τ0(u)∂θ log τ(u, θ) |θ=θ∗ML

du

and the term βML in the first part of Theorem 4.2 vanishes. By a careful inspection of the proof

of Theorem 4.2 it can be shown that for the choice ω(·) = τ(·, θ̂ML)−1 the asymptotic variance of

the statistic
√

n(Jn(θ̂ML)− b1) simplifies substantially and is given by

σ2
H1

= 4(σ11 + 2σ12 + σ22) .

Proof of Theorem 4.2. We restrict ourselves to a proof of the first part, the corresponding result

for the estimator θ̂L2 is derived similarly [see Bücher (2008)]. We use the decomposition

(4.4) Jn(θ̂ML) = Wn1 + Wn2 + Wn3 + Wn4 + Wn5 + Wn6,

where the quantities Wnj are given by

Wn1 =

∫
(τn −Kh ∗ τ0)

2(u) ω(u) du,

Wn2 =

∫
(Kh ∗ (τ0 − τ ∗))2(u) ω(u) du,

Wn3 =

∫
(Kh ∗ (τ ∗ − τ̂))2(u) ω(u) du,

Wn4 = 2

∫
(τn −Kh ∗ τ0)(u)(Kh ∗ (τ0 − τ ∗))(u) ω(u) du,

Wn5 = 2

∫
(τn −Kh ∗ τ0)(u)(Kh ∗ (τ ∗ − τ̂))(u) ω(u) du,

Wn6 = 2

∫
(Kh ∗ (τ0 − τ ∗))(u)(Kh ∗ (τ ∗ − τ̂))(u) ω(u) du,

13



τ ∗(·) = τ(·, θ∗ML) denotes the best approximation of the “true” copula density τ0 by the parametric

family with respect to the Kulback Leibler distance and τ̂(θ) = τ(·, θ̂ML) its corresponding estimate.

From the proof of Theorem 4.1 [see Fermanian (2005)] we obtain

Wn1 = op(n
−1/2), Wn3 = op(n

−1/2),

and the assertion of the theorem follows, if the weak convergence

√
n (Wn4 + Wn5 + Wn6)

D−→ N (0, σ2
H1

)(4.5)

can be established. In order to prove this result we investigate the term Wn4,Wn5 and Wn6

separately. Recalling the notation in (3.29) we obtain the decomposition

Wn4 = W
(1)
n4 + W

(2)
n4 + W

(3)
n4 ,

where

W
(1)
n4 =

2

n

n∑
i=1

Zi =
2

n

n∑
i=1

(Kh ∗ gh)(Yi)− E [(Kh ∗ gh)(Yi)],(4.6)

W
(2)
n4 =

2

n

n∑
i=1

∫
βnigh(u) du,(4.7)

W
(3)
n4 =

2

n

n∑
i=1

∫
γ∗nigh(u) du,(4.8)

gh(u) = (Kh ∗ (τ0 − τ ∗))(u)ω(u) and equation (4.6) defines the random variables Zi in an obvious

manner. Obviously, the term W
(1)
n4 is a sum of i.i.d. random variables, and a straightforward but

tedious calculation shows that W
(3)
n4 = op(n

−1/2) (for this estimate we use the conditions on the

bandwidth and the estimate ‖Yn,i − Yi‖2 = Op(
log2 n

n
)). For the remaining term we use a further

decomposition

W
(2)
n4 =

2

n

n∑
i=1

∫
βnigh du = W

(2,1)
n4 + W

(2,2)
n4 ,(4.9)

where

W
(2,1)
n4 =

−2

n2h

n∑
i=1

∫
(dK)h(u− Yi)(1− Yi)gh(u) du = oP

(
1√
n

)
,

W
(2,2)
n4 =

2

n2

∑

k 6=i

−1

h

∫
(dK)h(u− Yi)(1(Yk ≤ Yi)− Yi)gh(u) du.

The second term can be approximated by

W
(2,2)
n4 =

2

n

n∑
i=1

sn(Yi) + oP

(
1√
n

)
,(4.10)

14



where

sn(Yi) = E [kn(Yk, Yi) |Yi](4.11)

and

kn(Yk, Yi) :=
−1

h

∫
(dK)h(u− Yk)(1(Yi ≤ Yk)− Yk)gh(u) du.

[see Appendix B.] A standard calculation now shows that

sn(Yi) = −
d∑

r=1

E [(τ0 − τ ∗)τ0 ω(Yi)|Yir] + O(h),

which gives

Wn4 =
2

n

∑
(Zi + sn(Yi)) + op(n

−1/2),(4.12)

where Zi and sn(Yi) are defined by (4.6) and (4.11), respectively. An application of the Cauchy-

Schwarz inequality shows that

|Wn5| ≤ 2

(
Wn1 Wn3

) 1
2

= oP

(
1√
n

)
,(4.13)

and for the remaining term Wn6 we have

Wn6 = − 2

n

n∑
i=1

B(Yi) + oP

(
1√
n

)
,(4.14)

where B(Yi) := βT
ML D(Yi) as shown in Appendix C. Therefore we obtain from (4.5) that

√
n (Jn(θ̂ML)− b1) =

2√
n

n∑
i=1

(Zi + sn(Yi)−B(Yi)) + op(1),

and the assertion of the theorem now follows from the central limit theorem and a straightforward

but tedious calculation of Var(Zi + sn(Yi)−B(Yi)). 2

5 Simulation Study

In this section we study the performance of a parametric bootstrap goodness-of-fit test based on

the statistic Jn(θ̂ML). From Theorem 4.1 we get, using the notation τ̂(·) = τ(·, θ̂ML), that

Tn := nh
d
2
Jn − 1

nhd

∫
K2(t)τ̂(u− ht) ω(u) dt du + 1

nh

∫
τ̂ 2ω

∑d
r=1

∫
K2

r√
2
∫

τ̂ 2ω(u) du
∫ (∫

K(u)K(u + v) du
)2

dv

converges weakly to the standard normal distribution. With u1−α denoting the (1 − α)-quantile

of the N (0, 1)-distribution we therefore obtain, by rejecting H0 for Tn > u1−α, an asymptotic
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level-α test. Since this normal approximation does not provide sufficiently exact critical values for

small sample sizes [see e.g. Härdle and Mammen (1993) or Fan and Linton (2003)], we propose a

parametric bootstrap procedure in order to approximate the critical values. For this purpose we

proceed as follows.

In a first step compute the ML-estimate θ̂ML and simulate for each b = 1, . . . , B with B ∈ IN

independent identically distributed random vectors Y b∗
1 , . . . , Y b∗

n with distribution function Cθ̂ML
.

In a second step we calculate for every of the B samples the statistic

T b∗
n = T b∗

n (Y b∗
1 , . . . , Y b∗

n )

and denote by

H∗
n,b(t) =

1

B

B∑

b=1

1{T b∗
n ≤ t}

the empirical distribution function of T 1∗
n , . . . , TB∗

n . We determine the (1 − α)-quantile of this

distribution and use it as a critical value for the goodness-of-fit test statistic Tn = Tn(X1, . . . , Xn).

For our simulation study we use a similar setting as in Genest et. al. (2008). We choose a sample

size of n = 150 and check the performance of the parametric bootstrap-procedure for two copula

families, namely the Gauss- and the Clayton-Copula. The true copula is chosen from the Clayton-,

Gauss-, Frank- or Gumbel-Family with parameter determined by the Kendall’s-τ -coefficient taking

values in {0.25, 0.5, 0.75}. We use B = 100 Bootstrap-Replications and make 100 replications of the

whole procedure in order to estimate the power of the test. Considering the parameters emerging

in the definition of Tn we choose

ω = 1[0.25,0.975]

h = 0.7 n−1/6

K(u, v) = (15/16)2 (1− u2)2(1− v2)21[−1,1]2(u, v)

The results are presented in Table 1. From this table it can be seen that the level of the test is

well approximated in almost all cases, but there appears an effect of underestimation for larger

τ -coefficients.

Regarding the power of the test our results are quite comparable to other simulation studies

considering the goodness-of-fit testing for copula families, see e.g. Genest et al. (2008). With

stronger dependence, measured by the τ -coefficient, the test performs substantially better than in

case of weak dependence. In comparison to the tests studied in Genest et al. (2008) it is remarkable

that our bootstrap test outperforms all tests within that paper in case of the true copula family

being Frank. In the other cases a comparison is more difficult. For example, if the copula under

the null hypothesis is Gauss but the true copula is Gumbel, the L2-test proposed in this paper

yields similar results as most of the tests investigated by Genest et. al. (2008), but there exist also

more powerful tests. On the other hand, if the true copula is Clayton, the bootstrap version of

16



the test proposed by Fermanian (2005) yields a power comparable to the best tests investigated by

Genest et. al. (2008). A similar observation can be made if the copula under the null hypothesis

is Clayton. In this case the L2-test always yields a similar power as the best test considered by

Genest. et.al. (2008).

For further conclusions and interpretations of the results, especially in comparison to other tests,

we refer to the extensive simulation study in the paper of Genest et al. (2008).

6 Appendix

6.1 Proof of identity (3.30)

Using the notation

h∗nm(Yi, Yk) :=
−1

h

∫
(dK)h(u− Yi)(1(Yk ≤ Yi)− Yi) ∂θmτ(u, θ∗L2) ω(u) du(6.1)

(where ∂θm denotes the derivative with respect to the m-th component of the vector θ, for m =

1, . . . , q) we obtain the decomposition

An2m = A
(1)
n2m + A

(2)
n2m(6.2)

for the m-th component of the vector An2, where the random variables A
(i)
n2m (i = 1, 2) are defined

by

A
(1)
n2m =

−1

n2h

n∑
i=1

∫
(dK)h(u− Yi)(1− Yi)∂θmτ(u, θ∗L2) ω(u) du,(6.3)

A
(2)
n2m =

1

n2

∑

k 6=i

h∗nm(Yi, Yk).(6.4)

A straightforward standard calculation yields the estimate A
(1)
n2m = oP (n−

1
2 ). The second term

A
(2)
n2m can be identified as a non-degenerate U-statistic

A
(2)
n2m =

1

n2

∑
i<j

h̃nm =
n− 1

2n

(
n

2

)−1

Un,(6.5)

where h̃nm(Yi, Yk) = h∗nm(Yi, Yk) + h∗nm(Yk, Yi) denotes the symmetrized kernel of Un. A straight-

forward but tedious calculation yields the estimate E
[
h̃2

nm(Yi, Yk)
]

= O(h−2) = o(n), so that the

assumptions of Lemma 3.1 in Zheng (1996) are fulfilled. This result gives

Ã
(2)
n2m − A

(2)
n2m = oP (n−

1
2 ),(6.6)

where Ã
(2)
n2m denotes the orthogonal projection Ã

(2)
n2m = 1

n

∑n
i=1 r̃nm(Yi) and r̃nm(Yi) := E

[
h̃nm(Yi, Yk)|Yi

]
.

Finally, observing that E [h∗nm(Yi, Yk)|Yi = yi] = 0, it follows that rnm(Yi) = r̃nm(Yi) which yields

the assertion in equation (3.30).
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Copula under H0 True Copula τ -Coeff 0.15 0.1 0.05

Clayton Clayton 0.25 0.14 0.1 0.08

0.5 0.12 0.08 0.03

0.75 0.08 0.05 0.01

Frank 0.25 0.81 0.74 0.63

0.5 1 1 0.98

0.75 1 1 1

Gauss 0.25 0.63 0.54 0.41

0.5 0.96 0.95 0.91

0.75 1 1 0.98

Gumbel 0.25 0.89 0.83 0.73

0.5 0.99 0.99 0.98

0.75 1 1 1

Gauss Clayton 0.25 0.4 0.31 0.21

0.5 0.89 0.84 0.77

0.75 0.99 0.99 0.97

Frank 0.25 0.5 0.4 0.25

0.5 0.9 0.83 0.73

0.75 1 1 1

Gauss 0.25 0.15 0.07 0.02

0.5 0.12 0.1 0.04

0.75 0.15 0.04 0.01

Gumbel 0.25 0.2 0.18 0.14

0.5 0.41 0.31 0.17

0.75 0.37 0.26 0.16

Table 1: Simulated rejection probabilities of the L2-type test for various null hypotheses and alter-

natives. The sample size is n = 150 and B = 100 parametric Bootstrap-replications have been per-

formed. The last three columns show the percentage of rejection of H0 at level α ∈ {0.15, 0.1, 0.05}.
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6.2 Proof of identity (4.10)

The proof of equation (4.10) follows along the same lines as the one given in appendix A via

application of Lemma 3.1 in Zheng (1996). Using the notation k̃n(Yi, Yk) := k∗n(Yi, Yk) + k∗n(Yk, Yi)

for the symmetrizied kernel we obtain the following identification of W
(2,2)
n4 as a non-degenerate

U-statistic:

W
(2,2)
n4 =

2

n2

∑

i<k

k̃n(Yi, Yk) =
n− 1

n

(
n

2

)−1

Un.(6.7)

A straightforward calculation shows E[k̃2
n(Yi, Yk)] = O(h−2) = o(n), and an application of Lemma

3.1 in Zheng (1996) yields

Ŵ
(2,2)
n4 −W

(2,2)
n4 = oP (n−

1
2 ),(6.8)

where Ŵ
(2,2)
n4 denotes the orthogonal projection Ŵ

(2,2)
n4 = 2

n

∑n
i=1 s̃n(Yi) with s̃n(Yi) = E[k̃n(Yi, Yk)|Yi].

Observing that E [k∗n(Yi, Yk|Yi = yi] = 0 we obtain s̃n(Yi) = sn(Yi) and the assertion follows.

6.3 Proof of identity (4.14)

By means of a Taylor expansion we obtain the decomposition

Wn6 = W
(1)
n6 + W

(2)
n6 ,(6.9)

where the random variables W
(i)
n6 are defined by

W
(1)
n6 =− 2

∫
Kh(u− t)(τ0 − τ ∗)(t)Kh(u− s)∂T

θ τ(s, θ∗ML)(θ̂ML − θ∗ML) ω(u) dt ds du,

W
(2)
n6 =−

∫
Kh(u− t)(τ0 − τ ∗)(t)Kh(u− s)(θ̂ML − θ∗ML)T ∂2

θθτ(s, θ̃)

(θ̂ML − θ∗ML) ω(u) dt ds du,

for some θ̃ with ‖θ̃ − θ∗ML‖ ≤ ‖θ̂ML − θ∗ML‖. A straightforward calculation yields

W
(2)
n6 = OP

(∥∥∥θ̂ML − θ∗ML

∥∥∥
2
)

= OP (n−1) = oP (n−
1
2 ).

Using identity (3.4) from Theorem 3.1 we obtain

W
(1)
n6 = − 2

n

n∑
i=1

∫
Kh(u− t)(τ0 − τ ∗)(t)Kh(u− s)∂T

θ τ(s, θ∗ML) ω(u) du dt ds D(Yi) + oP

(
1√
n

)
.

Finally, considering expansions of (τ0 − τ ∗) and ω, the dominating sum can be estimated by
−2
n

∑n
i=1 βT

ML D(Yi) + oP (n−
1
2 ), which yields the assertion in equation (4.14).
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44 (in press).

20



Genest, C., Rémillard, B. and Beaudoin, D. (2008). Goodness-of-fit tests for copulas: A review

and a power study. Insurance: Mathematics and Economics, 42, in press.
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