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Abstract

We consider the moment space Mn corresponding to p × p real or complex matrix
measures defined on the interval [0, 1]. The asymptotic properties of the first k components
of a uniformly distributed vector (S1,n, . . . , Sn,n)∗ ∼ U(Mn) are studied if n → ∞. In
particular, it is shown that an appropriately centered and standardized version of the vector
(S1,n, . . . , Sk,n)∗ converges weakly to a vector of k independent p× p Gaussian ensembles.
For the proof of our results we use some new relations between ordinary moments and
canonical moments of matrix measures which are of own interest. In particular, it is shown
that the first k canonical moments corresponding to the uniform distribution on the real or
complex moment spaceMn are independent multivariate Beta distributed random variables
and that each of these random variables converge in distribution (if the parameters converge
to infinity) to the Gaussian orthogonal ensemble or to the Gaussian unitary ensemble,
respectively.
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1 Introduction

A real (complex) matrix measure µ on the interval [0, 1] is a p × p matrix µ = (µi,j)
p
i,j=1 of

signed real (complex) measures µi,j, such that for each Borel set A ⊂ [0, 1] the matrix µ(A) =

1



(µi,j(A))pi,j=1 is symmetric (hermitian) and nonnegative definite. Additionally, we require the

matrix measure to be normalized, that is µ([0, 1]) = Ip, where Ip denotes the p × p identity

matrix. In recent years considerable interest has been shown in generalizing many of the results

on classical moment theory, orthogonal polynomials quadrature formulas etc. to the case of

matrix measures. Among many others we refer to the early paper of Krein (1949) and to the

more recent works of Geronimo (1982), Aptekarev and Nikishin (1983), Rodman (1990), Sinap

and van Assche (1994), Duran and van Assche (1995), Duran (1995, 1996, 1999) and Duran and

Lopez-Rodriguez (1996, 1997), Grünbaum (2003), Grünbaum et al. (2005) and Damanik et al.

(2008) among many others.

The aim of the present paper is to explore the relations between moments of matrix measures

and Gaussian ensembles, an important distribution in the area of random matrices [see Mehta

(2004)]. Both fields have been investigated rather independently and in this paper we demon-

strate that there exists a deep connection between random moments and Gaussian ensembles, if

the “dimension” of the moment space converges to infinity. To be precise, consider the real case

and recall that the moments of a real matrix measure µ on the interval [0, 1] are defined by

Sk =

∫ 1

0

xkdµ(x) ∈ Sp(R); k = 0, 1, 2, . . .(1.1)

and the nth moment space is given by

Mn(R) =

{
(S1, . . . , Sn)T

∣∣∣∣ Sj =

∫ 1

0

xjdµ(x), j = 1, . . . , n

}
⊂ (Sp(R))n ,(1.2)

where Sp(R) denotes the set of all real symmetric p × p matrices. In the scalar case p = 1

this space has been investigated by numerous authors [see Karlin and Shapeley (1953), Karlin

and Studden (1966), Skibinsky (1967), Dette and Studden (1997)] and some of these results

have been generalized to the matrix case [see Chen and Li (1999), Dette and Studden (2002)

among others]. In order to understand the geometric properties of the moment space Mn(R)

in the case p = 1, Chang et al. (1993) proposed to consider a uniform distribution on Mn(R)

and studied the asymptotic properties of random moment vectors. In particular, these authors

showed that an appropriately centered and standardized uniformly distributed vector on the set

Mn(R) converges weakly to a multivariate normal distribution. This work was continued and

substantially extended by Gamboa and Lozada-Chang (2004) and Lozada-Chang (2005), who

derived a corresponding large deviation principle in the one-dimensional case.

In the present paper we will investigate related questions for the moment space (1.2) corre-

sponding to the matrix measures on the interval [0, 1]. More precisely, we consider a uniformly

distributed vector (S1,n, . . . , Sn,n)T onMn(R) ⊂ (Sp(R))n (for a precise definition see Section 2)

and show that the vector of the first k matrices converges weakly after an appropriate standard-

ization, that is

√
n(A−1 ⊗ Ip)(S1,n − S0

1 , . . . , Sk,n − S0
k)
T D−−−→

n→∞
(G1, . . . , Gk)

T ,
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where A ∈ Rk×k is a matrix which will be specified in Section 2, ⊗ denotes the Kronecker

product, S0
j = s0

jIp,

s0
j =

∫ 1

0

xjdx

π
√
x(1− x)

=
1

22j

(
2j

j

)
, j = 0, 1, 2, . . . ,(1.3)

are the moments of the arcsine distribution and G1, . . . , Gk are independent random p×p matri-

ces, each distributed as the Gaussian orthogonal ensemble. The proof is based on the introduction

of new “coordinates” for the moment spaceMn(R). More precisely, we define a one to one map

from the interior of Mn(R) onto the product space (0p, Ip)
n, where 0p is the p × p matrix with

vanishing entries and (0, Ip) denotes the set of all positive definite p× p matrices C ∈ Sp(R) for

which C < Ip with respect to the Loewner ordering, that is Ip −C is positive definite. The new

coordinates are called canonical moments [see Dette and Studden (2002)], and they are related

to the Verblunsky coefficients, which have been discussed for matrix measures on the unit circle

[see Damanik et al. (2008)]. We show that for a uniformly distributed vector on the nth moment

spaceMn(R) the corresponding canonical moments are independent and have multivariate p×p
Beta distributions. Each canonical moment converges weakly (after centering and standardizing

it appropriately) to the Gaussian orthogonal ensemble, and this result will be used to obtain a

corresponding asymptotic result for the vector
√
n(S1,n − S0

1 , . . . , Sk,n − S0
k)
T .

The remaining part of this paper is organized as follows. In Section 2 we introduce the basic

notation, define a uniform distribution on the moment space Mn(R) and state our main result.

We also determine the volume of Mn(R) defined by (1.2). In particular, it is shown that the

volume behaves asymptotically as 2−n
2p(p+1)/2, which means that the moment space Mn(R)

defines a very small part of (Sp(R))n. Canonical moments of matrix measures on the interval

[0, 1] are introduced in Section 3. The proof of our main result is given in Section 4, which contains

several results which are of own interest. In particular we prove the weak convergence of the

(appropriately standardized) multivariate Beta distribution to the Gaussian ensemble. Section

5 extends these results to random moment sequences corresponding to matrix measures with

complex entries. Roughly speaking, a corresponding weak convergence result is still available,

where the Gaussian orthogonal ensemble has to be replaced by the Gaussian unitary ensemble.

Finally, the proofs of some technical results are deferred to an Appendix in Section 6.

2 The uniform distribution on the moment space of ma-

trix measures

Throughout this paper let (Sp(R),B(Sp(R))) denote the measurable set of all symmetric p× p
matrices with real entries, where B(Sp(R)) is the Borel field corresponding to the Frobenius

norm on Sp(R). In order to define a uniform distribution on the matrix moment space Mn(R)
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we consider on Sp(R) the integration operator

dX =
∏
i≤j

dxi,j ,(2.1)

the product Lebesgue measure with respect to the independent entries of a symmetric matrix.

For an integrable function f : Sp(R)→ R the integral∫
f(X)dX(2.2)

is thus the iterated integral with respect to each element xi,j, i ≤ j [see e.g. Muirhead (1982)

or Gupta and Nagar (2000)]. We will repeatedly integrate functions F : Sp(R)→ Sp(R), in this

case we define ∫
F (X)dX =

(∫
(F (X))i,jdX

)p
i,j=1

.(2.3)

It was shown in Dette and Studden (2002) that the moment spaceMn(R) is compact and has non

empty interior, say Int(Mn(R)), which enables us to define a uniform distribution on Mn(R).

To be precise we introduce the matrix valued Hankel matrices

(2.4) H2m =

 S0 · · · Sm
...

...

Sm . . . S2m

 H2m =

 S1 − S2 · · · Sm − Sm+1

...
...

Sm − Sm+1 . . . S2m−1 − S2m


and

(2.5) H2m+1 =

 S1 · · · Sm+1

...
...

Sm+1 . . . S2m+1

 H2m+1 =

 S0 − S1 · · · Sm − Sm+1

...
...

Sm − Sm+1 . . . S2m − S2m+1

 .

Dette and Studden (2002) showed that the point (S1, . . . , Sn)T is in the interior of the moment

space Mn(R) if and only if the matrices Hn and Hn are positive definite.

For a point (S1, . . . , Sn)T ∈Mn(R) we define

hT2m = (Sm+1, · · · , S2m)

hT2m−1 = (Sm, · · · , S2m−1)

h̄T2m = (Sm − Sm+1, · · · , S2m−1 − S2m)

h̄T2m−1 = (Sm − Sm+1, · · · , S2m−2 − S2m−1)

and consider the p× p matrices

S−n+1 = hTnH
−1
n−1hn, n ≥ 1 ,(2.6)

S+
n+1 = Sn − h̄Tn H̄−1

n−1h̄n, n ≥ 2 ,(2.7)
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(for the sake of completeness we also define S−1 = 0 and S+
1 = Ip, S

+
2 = S1). Note that S−n+1

and S+
n+1 are continuous functions of the moments S1, . . . , Sn and that S−n+1 < S+

n+1 if and only

if (S1, . . . , Sn)T ∈ Int(Mn(R)). Moreover it follows that

Mn(R) = {(S1, . . . , Sn)T | S−1 ≤ S1 ≤ S+
1 , . . . , S

−
n ≤ Sn ≤ S+

n },(2.8)

Int(Mn(R)) = {(S1, . . . , Sn)T | S−1 < S1 < S+
1 , . . . , S

−
n < Sn < S+

n } 6= ∅(2.9)

[see Dette and Studden (2002) for more details]. Consequently the 1
2
np(p+1)-dimensional volume

V(Mn(R)) =

∫
Mn(R)

dS1 . . . dSn(2.10)

of the moment space is positive and a uniform distribution on Mn(R) is well defined by the

density

f(S1, . . . , Sn) =
1

V(Mn(R))
IMn(R)(S1, . . . , Sn) .(2.11)

For the sake of brevity we use the notation (S1, . . . , Sn)T ∼ U(Mn(R)) throughout this paper.

The following result gives the volume of the moment space Mn(R). The proof will be given in

Section 3 where more powerful tools have been developed for this purpose [see Remark 3.6].

Theorem 2.1. For the real moment space Mn(R) defined in (1.2) we have

V(Mn(R)) =
n∏
k=1

Bp

(
1
2
k(p+ 1), 1

2
k(p+ 1)

)
,(2.12)

where Bp(a, b) denotes the multivariate Beta function

Bp(a, b) :=
Γp(a)Γp(b)

Γp(a+ b)
a, b > 1

2
(p− 1) .(2.13)

and Γp(a) the multivariate Gamma function

Γp(a) : =

∫
X>0

detXa−(p+1)/2e−tr(X)dX

= πp(p−1)/4

p∏
i=1

Γ(a− 1
2
(i− 1)) , a >

1

2
(p− 1).

As a simple consequence of Theorem 2.1 we obtain by Stirling’s formula the following approxi-

mation for the volume of the nth moment space

lim
n→∞

logV(Mn(R))

−n2 p(p+1)
2

log(2)
= 1 ,
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which shows that Mn(R) consists only of a very small part of (Sp(R))n. We will conclude this

section with the main result of this paper, which gives the asymptotic distribution of the vector

of the first k components of a uniform distribution on Mn(R). For this purpose recall that a

random symmetric matrix X is governed by the Gaussian orthogonal ensemble (GOE), if its

density is given by

f(X) = (2π)−p/2π−p(p−1)/4 e−
1
2
trX2

.(2.14)

Theorem 2.2. If Sn,n = (S1,n, . . . , Sn,n)T ∼ U(Mn(R)), then an appropriate standardization

of the vector Sk,n = (S1,n, . . . , Sk,n)T converges weakly to a vector of independent Gaussian

orthogonal ensembles, that is√
4n(p+ 1)(A−1 ⊗ Ip)(Sk,n − S0

k)
D−−−→

n→∞
G .

Here S0
k = (s0

1Ip, . . . , s
0
kIp)

T , s0
m denotes the mth moment of the arcsine distribution on the

interval [0, 1] defined in (1.3), A is a k× k lower triangular matrix with elements ai,j defined by

ai,j = 2−2i+2

(
2i

i− j

)
j ≤ i ,(2.15)

and G = (G1, . . . , Gk)
T ∈ (Sp(R))k is a vector of k independent Gaussian orthogonal ensembles,

i.e. G1, . . . , Gk i.i.d. ∼ GOE.

The proof of Theorem 2.2 is complicated and stated in Section 4, which contains also several

results of own interest. It requires some explanation of the relation between the ordinary and

canonical moments of a matrix measure, which will be presented in the following section.

3 Symmetric canonical moments of matrix measures

Let (S1, . . . , Sn)T ∈ Int(Mn(R)) be a vector of moments of a real matrix measure on the interval

[0, 1] and recall that the matrices S+
k and S−k given in (2.7) and (2.6), respectively, depend

only on the moments S1, . . . Sk−1. The corresponding canonical moments of the moment point

(S1, . . . , Sn)T are defined by

Ūk = (S+
k − S

−
k )−1(Sk − S−k ), k = 1, . . . , n ,(3.1)

whenever S+
k −S

−
k > 0p, otherwise they are left undefined [see Dette and Studden (2002)]. Note

that in general the matrices Ū1, . . . , Ūn are not symmetric and a symmetric version of canonical

moments, say (U1, . . . , Un)T , can easily be obtained by the transformation

Uk := (S+
k − S

−
k )1/2Ūk(S

+
k − S

−
k )−1/2 = (S+

k − S
−
k )−1/2(Sk − S−k )(S+

k − S
−
k )−1/2 .(3.2)
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Throughout this paper we will work with both definitions of these matrices (note that the

matrices Ūk and Uk are similar). It is shown in Theorem 2.7 in Dette and Studden (2002) that

the “range” of the kth moment can be expressed in terms of the canonical moments Ūi and

V̄i = Ip − Ūi for i = 1, . . . , k − 1:

S+
k − S

−
k = Ū1V̄1 . . . Ūk−1V̄k−1 , k = 2, . . . , n(3.3)

Furthermore, the moment spaceMn(R) is convex and by the discussion in Section 2 it follows that

Mn(R) has non empty interior. Consequently, any random variable (S1, . . . , Sn)T ∼ U(Mn(R))

with density (2.11) satisfies P ((S1, . . . , Sn)T ∈ Int(Mn(R))) = 1 and the corresponding canonical

moments Ū1, . . . , Ūn and U1, . . . , Un are well defined with probability 1. Moreover, it is easy to

see that S−k < Sk < S+
k implies 0p < Uk < Ip whenever (S1, . . . , Sn)T ∈ Int(Mn(R)), since the

Loewner ordering is not changed by the multiplication with positive definite matrices. Therefore

equation (3.2) defines a one to one mapping

(3.4) ϕp :

{
Int(Mn(R)) −→ (0p, Ip)

n

(S1, . . . , Sn)T 7→ ϕp(S1, . . . , Sn) = (U1, . . . , Un)T ,

from the interior of the moment space onto the “cube” (0p, Ip)
n, where the open interval is defined

by

(0p, Ip) = {A ∈ Sp(R) | 0p < A < Ip}.

In the following Lemma we collect some interesting properties of the matrix valued canonical

moments, which will be useful in the following discussion. The proof can be found in the

Appendix.

Lemma 3.1.

(a) If µ is a matrix measure on the interval [0, 1] with corresponding canonical moments Uµ
n

and ν = µγ is the measure induced on the interval [a, b] by the transformation γ(x) =

(b− a)x+ a (a < b) with corresponding canonical moments Uν
n , then

U ν
n = Uµ

n ,

whenever the canonical moments are defined. In other words: the canonical moments are

invariant under linear transformations.

(b) If the matrix measure is symmetric, then

U2n−1 = 1
2
Ip,

whenever the canonical moments are defined.
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(c) Let µ denote a matrix measure on the interval [0, 1] with canonical moments Uµ
n and define

σ as the symmetric matrix measure on the interval [−1, 1] induced by the transformation

σ([−x, x]) = µ([0, x2])(3.5)

with corresponding canonical moments Uσ
n , then

Uσ
2n−1 = 1

2
Ip , Uσ

2n = Uµ
n ,(3.6)

whenever the canonical moments are defined.

The following result shows that the ordinary moments of a matrix measure can be calculated

recursively from the canonical moments Ūj. A similar result in the scalar case was shown by

Skibinsky (1968).

Theorem 3.2. For a moment point (S1, . . . , Sn)T ∈ Int(Mn(R)) with corresponding canonical

moments Ū1, . . . , Ūn, define ζ0 = 0p, ζ1 = Ū1 and

ζj = V̄j−1Ūj , j = 2, . . . , n.(3.7)

Then we have

Sn = Gn,n,

where {Gi,j, i, j ∈ (1, . . . , n)} denotes an array of p × p matrices defined by Gi,j = 0p if i > j,

G0,j = Ip and recursively by

(3.8) Gi,j = Gi,j−1 + ζj−i+1Gi−1,j ,

whenever j ≥ i ≥ 1. In particular, we have

Sn =
∑
i∈I

ζin · . . . · ζi1 ,

where the index set is defined by I = {(i1, . . . , in)|ik ∈ {1, . . . , n}, i1 = 1, ik ≤ ik−1 + 1} .

Proof: We consider the (infinite dimensional) block Hankel matrix

M = (Si+j)i,j≥0 ,(3.9)

which contains the moments of the matrix measure µ. Let {Pn(x)}n≥0 denote the sequence of

monic (this means that Pn(x) has leading term xnIp) orthogonal matrix polynomials with respect

to µ, that is

(3.10)

∫
Pn(x)dµ(x)P T

m(x) =

{
0p ∈ Rp×p if n 6= m

Dn ∈ Rp×p if n = m

8



It was shown by Sinap and van Assche (1994) that these polynomials satisfy a three term

recurrence relation

P0(x) = Ip, P1(x) = xIp − A1,

xPn(x) = Pn+1(x) + An+1Pn(x) +Bn+1Pn−1(x), n ≥ 1 .

We define P(x) = (P T
0 (x), P T

1 (x), P T
2 (x), . . . )T , and

J =


A1 Ip 0p · · ·
B2 A2 Ip 0p
0p B3 A3 Ip
...

. . . . . . . . .

 ,(3.11)

then the recursion can be rewritten in the form

JP(x) = xP(x) .(3.12)

If F(x) = (Ip, xIp, x
2Ip, . . . )

T denotes the vector of matrix valued monomials, then it follows that

P(x) = LF(x) ,(3.13)

where L is a lower triangular block matrix containing the coefficients of the matrix polynomials

Pn(x). The following Lemmata are proved in the Appendix. The first specifies the inverse of the

matrix L.

Lemma 3.3. The matrix L defined in (3.13) is non singular and its inverse K := L−1 is defined

by

RK = KJ ,(3.14)

where the matrix R is given by

R =


0p Ip 0p

0p Ip 0p
. . . . . . . . .

 .

Moreover K is a lower triangular block matrix with the matrices Ip on the diagonal. If D =

diag(D0, D1, . . . ) is the block diagonal matrix with entries Dj defined by (3.10), then the Hankel

matrix M defined by (3.9) has the representation

M = KDKT .(3.15)
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Lemma 3.4. If µ denotes a matrix measure on the interval [0, 1] and σ the corresponding

symmetric measure on the interval [−1, 1] defined by (3.5), then the monic orthogonal matrix

polynomials {Pn(x)}n≥0 with respect to the matrix measure σ satisfy the recurrence relations

P0(x) = Ip, P1(x) = xIp,

xPn(x) = Pn+1(x) + ζTn Pn−1(x), n ≥ 1 ,(3.16)

where ζn = V̄n−1Ūn and Ūn are the canonical moments of the measure µ.

By Lemma 3.4 the orthogonal polynomials Pn(x) with respect to the matrix measure σ on the

interval [−1, 1] are even (if n is even) or odd (if n is odd) functions. Consequently it follows from

Lemma 3.3 and the representation (3.13) for the block Ki,j ∈ Rp×p in the position (i, j) of the

matrix K = L−1 that Ki,j = 0p if i + j is odd. Moreover, for the elements of the corresponding

matrix J in (3.11) we have An+1 = 0p and Bn+1 = ζTn , where ζn corresponds to the matrix

measure µ. Observing (3.14) we obtain the recursion

Ki+2j,i = Ki+2j−1,i−1 +Ki+2j−1,i+1ζ
T
i+1 .(3.17)

With the definiton

Gm,n = KT
n+m,n−m for 1 ≤ m ≤ n,

(if m > n we define Gm,n = 0p) one easily sees that the matrices Gm,n satisfy the recursion (3.8).

Finally the representation (3.15) yields for the moments Sµn and Sσn of the matrix measures µ

and σ the relation

Sµn = Sσ2n = M2n,0 = K2n,0D0K0,0 = K2n,0 = Gn,n ,

where Mi,j denotes the p × p matrix in the position (i, j) of the matrix M corresponding to

the matrix measure σ. This proves the first part of Theorem 3.2. The remaining statement is

obvious. 2

In the following we will study the distribution of the canonical moments corresponding to a

random moment vector uniformly distributed on Mn(R).

Theorem 3.5. If (S1, . . . , Sn)T ∼ U(Mn(R)) is a random vector with a uniform distribution

on the nth moment space Mn(R), then the distribution of the corresponding random vector

of matrix valued canonical moments (U1, . . . , Un)T is absolute continuous with respect to the

Lebesgue measure and its density is given by

f(U1, . . . , Un) =
1

V(Mn(R))

n∏
k=1

det((Uk(Ip − Uk))(p+1)(n−k)/2I(0p,Ip)(Uk) ,(3.18)
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where V(Mn(R)) is defined in (2.10).

Note that Theorem 3.5 shows that the random variables U1, . . . , Un corresponding to a ran-

dom moment vector (S1, . . . , Sn)T ∼ U(Mn(R)) are independent and have a multivariate Beta

distribution, that is

Uk ∼ Betap(
1
2
(n− k + 1)(p+ 1), 1

2
(n− k + 1)(p+ 1)) ,

where the density of a random variable X ∼ Betap(a, b) with a matrix valued Beta distribution

with parameters a and b is given by

f(X) = Bp(a, b)
−1(detX)a−(p+1)/2(det(I −X))b−(p+1)/2I(0p,Ip)(X)(3.19)

[see Olkin and Rubin (1964) or Muirhead (1982)] and the normalizing constant Bp(a, b) is defined

in (2.13). Note that this definition requires a, b > (p− 1)/2.

Proof of Theorem 3.5: We first calculate the Jacobi determinant of the mapping ϕp in (3.4)

from the ordinary to the canonical moments, which we denote by J(ϕp). By the transformation

formula (3.2) we can write ϕp(S1, . . . , Sn) = (ϕ
(1)
p (S1), . . . , ϕ

(n)
p (Sn)), where

ϕ(k)
p : (S−k , S

+
k ) −→ (0p, Ip) ,

ϕ(k)
p (Sk) = (S+

k − S
−
k )−1/2Sk(S

+
k − S

−
k )−1/2 − (S+

k − S
−
k )−1/2S−k (S+

k − S
−
k )−1/2 .

Note that the transformation ϕ
(k)
p is one to one and depends only on the moments S1, . . . , Sk−1.

This implies that the Jacobian J(ϕp) is the product of the Jacobians of the transformations ϕ
(k)
p .

For fixed nonsingular matrices A and B with B ∈ Sp(R) the Jacobian of the transformation

X 7→ AXAT + B is equal to (detA)p+1, see Theorem 2.1.6 in Muirhead (1982). Consequently

we obtain with the aid of equality (3.3)

J(ϕp) =
n∏
k=1

J(ϕ(k)
p ) =

n∏
k=1

det(S+
k − S

−
k )−(p+1)/2

=
n∏
k=2

det(Ū1V̄1 . . . Ūk−1V̄k−1)−(p+1)/2

=
n∏
k=2

det(U1V1 . . . Uk−1Vk−1)−(p+1)/2 =
n−1∏
k=1

det(UkVk)
−(n−k)(p+1)/2 .

This gives for the density of the vector (U1, . . . Un)T

f(U1, . . . , Un) =
1

V(Mn(R))
I{(U1, . . . , Un)T ∈ ϕp(Int(Mn(R)))}

n−1∏
k=1

det(UkVk)
(n−k)(p+1)/2 ,
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where ϕp(Int(Mn(R))) = (0p, Ip)
n. 2

Remark 3.6. Note that the proof of Theorem 3.5 provides also a proof of the formula for the

volume of the nth moment space in Theorem 2.1, because

V(Mn(R)) =

∫
(0p,Ip)n

n−1∏
k=1

det(Uk(Ip − Uk)(n−k)(p+1)/2dU1, . . . dUn

=
n∏
k=1

Bp

(
1
2
k(p+ 1), 1

2
k(p+ 1)

)
.

4 The multivariate Beta distribution and a proof of The-

orem 2.2

The proof of Theorem 2.2 is separated in two steps. First we investigate the asymptotic properties

of the multivariate Beta distribution (Section 4.1). In particular, we show that a standardized

version of the random matrix Xn ∼ Betap(an, an) converges in distribution to the GOE if the

parameter an tends to infinity. From this result and Theorem 3.5 we obtain a weak convergence of

the vector Uk,n = (U1,n, . . . , Uk,n)T of canonical moments corresponding to the first k components

of a vector Sn,n = (S1,n, . . . , Sn,n)T ∼ U(Mn(R)) if n tends to infinity.

Secondly, we use the relation between ordinary and canonical moments of matrix measures on

the interval [0, 1] to prove a corresponding statement regarding the weak convergence of the

vector Sk,n = (S1,n, . . . , Sk,n)T (Section 4.2).

4.1 Some properties of the multivariate Beta distribution

By Theorem 3.5 the multivariate Beta distribution will play a particular role in the analysis of

random moment sequences of matrix measures on the interval [0, 1]. This distribution on Sp(R)

can easily be defined by its density (3.19). Since the density depends on X only through the

determinant of X or Ip−X, the distribution of a multivariate Beta distributed random variable

X is invariant under the transformation X 7→ OXOT for any orthogonal matrix O ∈ O(p),

where

O(p) = {O ∈ Rp×p| OOT = Ip}

denotes the orthogonal group. For some properties following from this invariance see Gupta and

Nagar (2000), chapter 9.5. The eigenvalues of a multivariate Beta distributed random variable

follow the law of the Jacobi ensemble. To be precise recall that the Jacobi ensemble is defined

12



as the distribution of a vector λ = (λ1, . . . , λp)
T with density

(4.1) cJ |∆(λ)|β
p∏
i=1

λa−1
i (1− λi)b−1I(0,1)(λi)

where ∆(λ) =
∏

i<j(λj − λi) is the Vandermonde determinant, a, b, β > 0 and the constant cJ is

given by

(4.2) cJ =

p∏
j=1

Γ(1 + β
2
)Γ(a+ b+ β

2
(p+ j − 2))

Γ(1 + β
2
j)Γ(a+ β

2
(j − 1))Γ(b+ β

2
(j − 1))

,

see for example Dumitriu and Edelman (2002). For the sake of simplicity we write

(4.3) λ ∼ J (a,b)
β

if a random vector λ = (λ1, . . . , λp)
T has density (4.1). Usually only the cases β = 1, 2 and 4

are considered corresponding to matrices with real, complex and quaternion entries, respectively

[see Dyson (1962)]. A symmetric random variable X ∼ Betap(a, b) can be factorized as X =

Odiag(λ)OT , where O ∈ O(p) and diag(λ) is a diagonal matrix containing the eigenvalues

of X. Integration with respect to the orthogonal matrix O shows that the eigenvalues are

distributed according to the Jacobi ensemble J (a−(p−1)/2,b−(p−1)/2)
1 , for the calculation we refer to

Muirhead (1982). We now make use of the invariance of the multivariate Beta distribution and

the distribution of the eigenvalues and calculate the first moments

E[Xk] =

∫
Xkf(X)dX(4.4)

of a multivariate Beta distribution.

Lemma 4.1. Suppose X ∼ Betap(a, b), then the moments defined by (4.4) satisfy

E[Xk] = ckIp ,(4.5)

where the constant ck ∈ R depends on the parameters a, b and p. In particular, we obtain for the

first two moments of X

E[X] =
a

a+ b
Ip ,(4.6)

E[X2] =
a

(a+ b)(a+ b+ 1)

(
a+ 1 + (p− 1)

b

2a+ 2b− 1

)
Ip .(4.7)

Proof: Because of the invariance of the multivariate Beta distribution we obtain for any orthog-

onal matrix U

E[Xk]U = E[UXkUT ]U = UE[Xk] .(4.8)

13



Therefore E[Xk] commutes with all orthogonal matrices, which gives E[Xk] = ckIp. The real

constant ck can be determined by

ck =
1

p
trE[Xk] =

1

p
E[trXk] =

1

p
E[λk1 + · · ·+ λkp] ,(4.9)

where the distribution of the eigenvalues λ1, . . . , λp is the Jacobi ensemble with paramters a −
1
2
(p− 1), b− 1

2
(p− 1) and β = 1. Therefore the moment E[Xk] is given by

E[λk1] · Ip = cJ

∫ 1

0

. . .

∫ 1

0

λk1|∆(λ)|
p∏
j=1

λ
a−(p+1)/2
j (1− λj)b−(p+1)/2dλ · Ip .(4.10)

This integral is known as Aomoto’s generalization of the Selberg-integral [see Aomoto (1988)].

Aomoto showed that the eigenvalues of the Jacobi ensemble J (α,β)
2γ satisfy

E[λ1 · . . . · λm] =
m∏
i=1

α + γ(p− i)
α + β + γ(2p− i− 1)

(4.11)

for 1 ≤ m ≤ p. By a similar method Mehta (2004) gets the recursion

(α + β + 1 + 2γ(p− 1))E[λ2
1] = (α + 1 + 2γ(p− 1))E[λ1]− γ(p− 1)E[λ1λ2] .(4.12)

We combine equation (4.11) and (4.12) and obtain

E[λ2
1] =

α + γ(p− 1)

(α + β + 2γ(p− 1))(α + β + 1 + 2γ(p− 1))
(4.13)

×
(

(α + 1 + γ(p− 1)) + γ(p− 1)
β + γ(p− 1)

α + β + 2γ(p− 1)− γ

)
.(4.14)

This completes the proof of Lemma 4.1 if we set α = a− 1
2
(p− 1), β = b− 1

2
(p− 1) and γ = 1

2
.

2

As a next step we state a result concerning the asymptotic properties of the multivariate Beta

distribution if the parameters tend to infinity.

Theorem 4.2. Assume that Xn ∼ Betap(an, an) for a sequence an/n→ γ ∈ R+, then

(i) Xn
L2

−−−→
n→∞

1
2
Ip ,

(ii)
√

8γn
(
Xn − 1

2
Ip
) D−−−→

n→∞
G ,

where the random variable G is distributed according to the GOE.
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Proof: Let || · || denote the Frobenius norm, then we obtain by Lemma 4.1

E[||Xn − 1
2
Ip||2] = trE[(Xn − E[Xn])2] = tr(E[X2

n]− E[Xn]2)

=
p

8an + 4

(
1 + (p− 1)

2an
4an − 1

)
−−−→
n→∞

0 .

The proof of (ii) is based on the convergence theorem of Scheffé (1947), by which it suffices

to show that the density fn of the standardized random variable
√

8γn(Xn − 1
2
Ip) converges

pointwise to the density f of the GOE given in (2.14). The density fn is given by

fn(X) =B−1
p (an, an)(8γn)−p(p+1)/4

× det

(
1√
8γn

X +
1

2
Ip

)an−(p+1)/2

det

(
1

2
Ip −

1√
8γn

X

)an−(p+1)/2

I(−
√

2γnIp,
√

2γnIp)(X)

=B−1
p (an, an)(8γn)−p(p+1)/42−2pan+p(p+1)

× det

(
Ip −

1

2γn
X2

)an−(p+1)/2

I(−
√

2γnIp,
√

2γnIp)(X) .

We can diagonalize a fixed matrix X ∈ Sp(R) as X = Odiag(λ)OT , where O ∈ O(p) is an

orthogonal matrix and λ = (λ1, . . . λp)
T are the eigenvalues of X. Therefore is easy to see that

each factor in the last formula satisfies

det

(
Ip −

1

2γn
X2

)an−(p+1)/2

I(−
√

2γnIp,
√

2γnIp)(X)

=

p∏
i=1

(
1− 1

2γn
λ2
i

)an−(p+1)/2

I(−
√

2γn,
√

2γn)(λi)

−−−→
n→∞

p∏
i=1

e−
1
2
λ2
i = e−

1
2
trX2

.

As n tends to infinity, we obtain by Stirling’s formula

B−1
p (an, an)(8γn)−p(p+1)/42−2pan+p(p+1)

=(8γn)−p(p+1)/42−2pan+p(p+1) Γp(2an)

Γp(an)2

=π−p(p−1)/4(8γn)−p(p+1)/42−2pan+p(p+1)

p∏
i=1

Γ(2an − 1
2
(i− 1))

Γ(an − 1
2
(i− 1))2

=π−p(p−1)/4(2π)−p/2(1 + o(1)) .

In other words, the normalization constant of the density fn converges to the normalization

constant of the GOE, which completes the proof. 2
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By Theorem 3.5 it follows that for a vector of matrix-valued moments Sn,n = (S1,n, . . . , Sn,n)T ∼
U(Mn(R)) chosen uniformly from the moment space Mn(R) the corresponding canonical mo-

ments U1,n, . . . , Un,n are independent multivariate Beta distributed. As n tends to infinity the

parameters of the Beta distributions behave as n
2
(p+ 1). The following Theorem is thus a direct

consequence of Theorem 4.2 with γ = 1
2
(p+ 1).

Theorem 4.3. Assume that Sn,n = (S1,n, . . . , Sn,n)T ∼ U(Mn(R)) and let Uk,n = (U1,n, . . . , Uk,n)T

denote the vector of the first k canonical moments corresponding to the random variable Sn,n.

Then √
4(p+ 1)n

(
Uk,n −U0

k

) D−−−→
n→∞

Gk ,

where U0
k = 1

2
(Ip, . . . , Ip)

T and Gk consists of k independent matrices of the GOE.

It follows from calculations in the scalar case that the canonical moments of the arcsine distri-

bution defined in (1.3) are all equal 1/2 [Skibinsky (1969)]. Therefore we obtain

U0
n = 1

2
(Ip, . . . , Ip)

T .

= ϕp(((s
0
1Ip, . . . , s

0
nIp)

T )

= ϕp(S
0
n)

In other words the vector U0
k used in the centering of Theorem 4.3 contains the canonical

moments corresponding to the matrix measure µ defined by

dµ(x) =
1

π
√
x(1− x)

Ipdx .(4.15)

For this reason the sequence of moments S0
n of the matrix measure defined by (4.15) can be

viewed as the “center” of the moment space Mn(R).

4.2 Asymptotic properties of random moments

In this Section we will use the results of Section 4.1 to prove Theorem 2.2. The basic idea of the

proof consists of two steps. First we show that the inverse of the mapping

ϕp : Int(Mk(R)) −→ (0p, Ip)
k(4.16)

defined as in (3.4) is differentiable in a sense defined below, secondly we use this property and

Theorem 4.3 to establish the weak convergence of the vector Sk,n of the first k components of

Sn,n = (S1,n, . . . , Sn,n)T ∼ U(Mn(R)). For this purpose recall that

√
n(Sk,n − S0

k) =
√
n(ϕ−1

p (Uk,n)− ϕ−1
p (U0

k)) .(4.17)
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where Uk,n = (U1,n, . . . , Uk,n)T denotes the vector of canonical moments corresponding to Sk,n

and U0
k = 1

2
(Ip, . . . , Ip)

T . In the scalar case p = 1 the quantity in (4.17) can be reduced by

differentiating the mapping ϕ−1
1 , that is

√
n(sk,n − s0

k) =
√
n(ϕ−1

1 (uk,n)− ϕ−1
1 (u0

k))(4.18)

=
√
n
∂ϕ−1

1

∂uk,n

(u0
k)(uk,n − u0

k) +
√
n o(||uk,n − u0

k) ,

where for the sake of readability the lower capital symbols sk,n, s0
k, uk,n and u0

k denote the

moment vectors Sk,n, S0
k, Uk,n and U0

k in the case p = 1. Note that

∂ϕ−1
1

∂uk,n

(u0
k) = A ,

where the elements of the matrix A were found by Chang et al. (1993) and are defined by (2.15).

In order to study the general matrix case we introduce the following concept of differentiability.

Definition 4.4. Assume that S ⊂ (Sp(R))n is an open set. A mapping Φ : S → (Rp×p)m is

called matrix differentiable in a point M0 ∈ S, if there exists a matrix L ∈ Rmp×np such that

Φ(M0 + H)− Φ(M0) = LH + o(||H||) .(4.19)

In this case the matrix derivative of Φ at the point M0 is defined by ∂Φ
∂M

(M0) := L .

Note that matrix differentiability is a stronger concept than total differentiability and that a

linear mapping Φ1(M) = AM +B is matrix differentiable with ∂Φ1

∂M
= A. On the other hand the

mapping Φ2(M) = M2 is only matrix differentiable at the points M0 = mIp. It is easy to see

that matrix differentiability has the usual properties and we note for later reference

∂Φ

∂M
=

(
∂Φ1

∂M

T

, . . . ,
∂Φm

∂M

T)T
,(4.20)

if Φ = (ΦT
1 , . . . ,Φ

T
m)T is matrix differentiable, and

∂(Φ ·Ψ)

∂M
(M0) = Ψ(M0)

∂Φ

∂M
(M0) + Φ(M0)

∂Ψ

∂M
(M0) .(4.21)

if m = 1 , Φ and Ψ are matrix differentiable in M0 and Ψ(M0) = cIp with c ∈ R. Our next

result shows that the inverse of the mapping ϕp defined in (3.4) is matrix differentiable and gives

the derivative. The proof is complicated and given at the end of this Section.

Theorem 4.5. The mapping ϕ−1
p : (0p, Ip)

k → Int(Mk(R)) defined by (3.4) is matrix differen-

tiable at the point U0 = 1
2
(Ip, . . . , Ip)

T with

∂ϕ−1
p

∂U
(U0) = A⊗ Ip ,(4.22)
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where A is the lower triangular matrix defined in (2.15).

With the aid of Theorem 4.5 we are now in a position to complete the proof of Theorem 2.2.

More precisely we obtain from (4.17) and (4.22)

√
n(Sk,n − S0

k) =
√
n(ϕ−1

p (Uk,n)− ϕ−1
p (U0

k))

=
√
n(A⊗ Ip)(Uk,n −U0

k) +
√
n oP (||Uk,n −U0

k||)

and the assertion of Theorem 2.2 follows because (4.6) and (4.7) yield that the expectation of

n||Uk,n −U0
k||2 converges to pk/8, which implies that n||Uk,n −U0

k||2 = OP (1). Also note that

A⊗ Ip is nonsingular and (A⊗ Ip)−1 = A−1 ⊗ Ip. 2

Proof of Theorem 4.5: We first study for 1 ≤ m ≤ k the mapping

ψ :

{
(0p, Ip)

k → Rp×p

(U1, . . . , Uk) 7→ Ūm
(4.23)

where U = (U1, . . . , Uk)
T ∈ (0p, Ip)

k is a vector of (symmetric) canonical moments defined by

(3.2) and Ūm the mth non symmetric canonical moment defined by (3.1). Note that Ūm =

D
−1/2
m UmD

1/2
m where

Dm = Dm(U) = S+
m − S−m ,

and Dm satisfies the recursion Dm+1 = D
1/2
m UmVmD

1/2
m , D1 = Ip [see Theorem 2.7 in Dette and

Studden (2002)]. Obviously Dm depends continuously on U1, . . . , Um−1. At the point U0 we

have Dm(U0) = Dm(1
2
Ip, . . . ,

1
2
Ip) = (1

2
)2m−2Ip and ψ(U0) = 1

2
Ip. With the notation D̃m =

Dm(U0 + H) we obtain for H = (H1, . . . , Hk)
T ∈ Sp(R)k

ψ(U0 + H)− ψ(U0) = D̃−1/2
m (1

2
Ip +Hm)D̃1/2

m − 1
2
Ip

= D̃−1/2
m HmD̃

1/2
m

= IpHm +
(
D̃−1/2
m HmD̃

1/2
m −Hm

)
.

The remainder can be estimated as follows

D̃−1/2
m HmD̃

1/2
m −Hm = D̃−1/2

m HmD̃
1/2
m − D̃−1/2

m HmD
1/2
m + D̃−1/2

m HmD
1/2
m −Hm

= D̃−1/2
m Hm(D̃1/2

m −D1/2
m ) + (D̃−1/2

m D1/2
m − Ip)Hm

= o(||H||) .

This yields ∂ψ
∂U

(U0) = eTm ⊗ Ip and as a consequence

∂Ūm
∂U

(U0) =
∂um
∂u

(u0)⊗ Ip ,
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where as in (4.18) um denotes the mth component of the vector u of canonical moments in

the case p = 1 and u0 is the vector of scalar canonical moments corresponding to the arcsine

distribution in (1.3). A similar argument shows that

∂V̄m
∂U

(U0) = −eTm ⊗ Ip =
∂vm
∂u

(u0)⊗ Ip ,

where vm = 1 − um. By (4.21) products of canonical moments Ūm and V̄m are also matrix

differentiable at the point U0 (for sums this statement is trivial) and the derivative is the

Kronecker product of the derivative in the case p = 1 with the unit matrix. For example

we can calculate for m 6= 1

∂ζm
∂U

(U0) =
∂V̄m−1Ūm

∂U
(U0) = 1

2
Ip
∂V̄m−1

∂U
(U0) + 1

2
Ip
∂Ūm
∂U

(U0)

= 1
2
(em − em−1)T ⊗ Ip =

∂vm−1um
∂u

(u0)⊗ Ip

and for m = 1

∂ζ1

∂U
(U0) =

∂Ū1

∂U
(U0) =

∂u1

∂u
(u0)⊗ Ip .

Finally Theorem 3.2 shows that the mth moment Sm is equal to the sum over products of the

matrices ζm. Therefore the matrix derivative of Sm with respect the canonical moments U is

given by ∂Sm

∂U
(U0) = ∂sm

∂u
(u0)⊗ Ip and (4.20) yields

∂ϕ−1
p

∂U
(U0) =

∂ϕ−1
1

∂u
(u0)⊗ Ip = A⊗ Ip .

This completes the proof (note that A⊗ Ip is non singular). 2

5 Complex random moments

To a large extend, the case of complex matrix measures can be treated analogously to the case

of real matrix measures. For the sake of brevity we only state the results in this Section and

omit the proofs. The kth moment of a complex matrix measure on the interval [0, 1] is defined

as

Sk =

∫ 1

0

xkdµ(x) ∈ Sp(C); k = 0, 1, 2, . . .(5.1)

where Sp(C) denotes the space of p× p hermitian matrices. The complex nth moment space

(5.2) Mn(C) =

{
(S1, . . . , Sn)∗

∣∣∣∣ Sj =

∫ 1

0

xjdµ(x), j = 1, . . . , n

}
⊂ (Sp(C))n

19



is characterised by the equations (2.8) as well [see Dette and Studden (2002)]. Here A∗ = ĀT

denotes the conjugate transpose of the matrix A. For a point (S1, . . . , Sn)∗ ∈ Int(Mn(C)) the

complex canonical moments U1, . . . , Un are therefore well-defined, where as in the real case

Uk = (S+
k − S

−
k )−1/2(Sk − S−k )(S+

k − S
−
k )−1/2(5.3)

and the hermitian matrices S−k and S+
k are defined as in (2.6) and (2.7), respectively. The

integration operator changes on Sp(C) to

dX =

p∏
i=1

dxii
∏
i<j

dRexijdImxij ,(5.4)

that is, we integrate with respect to the p2 independent real entries of a hermitian matrix.

Note that in this case for a nonsingular matrix A ∈ Sp(C) the Jacobian of the transformation

X 7→ AXA is given by (detA)2p. The law of a random variable X ∈ Sp(C) is called complex

multivariate Beta distribution with parameters a, b > p− 1 if its density is given by

f(X) = (B(2)
p (a, b))−1 detXa−p det(Ip −X)b−pI(0p,Ip)(X)(5.5)

and we denote this property by X ∼ Beta
(2)
p (a, b). The normalizing constant is the complex

multivariate Beta function

B(2)
p (a, b) =

Γ
(2)
p (a)Γ

(2)
p (b)

Γ
(2)
p (a+ b)

,

where Γ
(2)
p (a) = πp(p−1)/2

∏p
i=1 Γ(a − i + 1). For a more general discussion of the complex

Beta distribution we refer to Khatri (1965) and Pillai and Jouris (1971). The eigenvalues of

a Beta
(2)
p (a, b)-distributed random variable follow the law of the Jacobi ensemble J (a−p+1,b−p+1)

2

[see Pillai and Jouris (1971)] and similar arguments as given in the proof of Lemma 4.1 show

that the first moments of a random variable X ∼ Beta
(2)
p (a, b) are given by

E[X] =
a

a+ b
Ip ,

E[X2] =
a

(a+ b)(a+ b+ 1)

(
a+ 1 + (p− 1)

b

a+ b− 1

)
Ip .

Proceeding as in Section 3, we get the following result for complex canonical moments.

Theorem 5.1. Let Sn,n = (S1,n, . . . , Sn,n)∗ be uniformly distributed on the complex moment

space Mn(C) defined in (5.2), then the corresponding canonical moments U1,n, . . . , Un,n are in-

dependent and for k = 1, . . . , n Uk,n is complex multivariate Beta distributed with parameters

(p(n− k + 1), p(n− k + 1)).

For a sequence of complex random variables Xn ∼ Beta
(2)
p (an, an) an analoge of Theorem 4.3

holds, where in the limit the Gaussian orthogonal ensemble has to be replaced by the Gaussian
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unitary ensemble (GUE). Recall that a p × p hermitian matrix of the GUE is characterized by

the density

f(X) = (2π)−p/2π−p(p−1)/2e−
1
2
trX2

.(5.6)

Theorem 5.2. Assume that Xn ∼ Beta
(2)
p (an, an) for a sequence an/n→ γ ∈ R+, then

(i) Xn
L2

−−−→
n→∞

1
2
Ip ,

(ii)
√

8γn
(
Xn − 1

2
Ip
) D−−−→

n→∞
G ,

where the random variable G is distributed according to the GUE.

The remaining arguments in Section 4 remain essentially unchanged, which yields the following

result on the weak convergence of random complex moments.

Theorem 5.3. If Sn,n = (S1,n, . . . , Sn,n)∗ ∼ U(Mn(C)), then the standardized vector of the

first k moments Sk,n = (S1,n, . . . , Sk,n)∗ converges weakly to a vector of independent Gaussian

unitary ensembles, that is √
8np(A−1 ⊗ Ip)(Sk,n − S0

k)
D−−−→

n→∞
G .

The matrix A and the vector S0
k are defined as in Theorem 2.2 and G = (G1, . . . , Gk)

∗, with

G1, . . . , Gk i.i.d. ∼ GUE.

6 Appendix: Proof of auxiliary results

6.1 Proof of Lemma 3.1

(a) We denote by Sn and Tn the nth moment of the matrix measure µ and ν, respectively, then

a straightforward calculation yields

Tn =
n−1∑
i=0

(
n

i

)
an−i(b− a)iSi + (b− a)nSn .(6.1)

Note that T+
n (T−n ) is the unique maximal (minimal) matrix with respect to the Loewner ordering

such that for fixed T0, . . . , Tn−1 the vector (T0, . . . , Tn) is an element of the moment space of
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the matrix measure on the interval [a, b]. Therefore we obtain (note that the specification of

T0, . . . , Tn−1 determines S0, . . . , Sn−1) that

T
+
−
n =

n−1∑
i=0

(
n

i

)
an−i(b− a)iSi + (b− a)nS

+
−
n .

This yields Tn − T
+
−
n = (b − a)n(Sn − S

+
−
n ), and the assertion (a) of Lemma 3.1 follows from the

definition of the canonical moments in (3.2).

(b) We consider the transformation φ(x) = 1 − x and the measure ν = µφ = µ. The same

arguments as in part (a) show

T2n − T
+
−
2n = S2n − S

+
−
2n , T2n−1 − T

+
−
2n−1 = S

−
+
2n−1 − S2n−1 ,

which implies for the corresponding canonical moments

Uν
2n = Uµ

2n , Uν
2n−1 = Ip − Uµ

2n−1 .(6.2)

Because µ = ν we obtain Uµ
2n−1 = Uν

2n−1 = Ip − Uµ
2n−1, which yields Uµ

2n−1 = 1
2
Ip.

(c) We obtain for the moments Sσk of the matrix measure σ

Sσ2n =
∫ 1

−1
t2ndσ(t) =

∫ 1

0
tndµ(t) = Sn ,

Sσ2n−1 =
∫ 1

−1
t2n−1dσ(t) = 0p ,

(6.3)

where S1, S2, . . . denote the moments of µ. The measure σ is obviously symmetric and (b) yields

Uσ
2n−1 = 1

2
Ip. From (6.3) we have for the even moments

S−n ≤ Sσ2n ≤ S+
n ,

which yields Sσ−2n = S−n , Sσ+
2n = S+

n . Consequently it follows

Uσ
2n−1 = 1

2
Ip , Uσ

2n = Uµ
n .(6.4)

2

6.2 Proof of Lemma 3.3 and 3.4

Proof of Lemma 3.3: From (3.13) and (3.12) we obtain (observing that the matrix R acts as

a shift operator) LRF(x) = xP(x) = JP(x) = JLF(x), which yields

LR = JL .(6.5)
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It is easy to see that the matrix L is non singular and that the inverse matrix K := L−1 is again

a lower triangular block matrix with matrices Ip on the diagonal. From (6.5) we therefore obtain

RK = KJ .

On the other hand F(x) = KP(x) and by the orthogonality relation (3.10) it follows

M =

∫
F(x)dµ(x)FT (x) = K ·

∫
P(x)dµ(x)PT (x) ·KT = KDKT ,

where the matrix D = diag(D0, D1, . . . ) is defined by (3.10). 2

Proof of Lemma 3.4: It follows from Favard’s theorem [see Sinap and van Assche (1994) or

Dette and Studden (2002)] that there exist matrices An, Bn such that the polynomials {Pn(x)}n≥0

orthogonal with respect to the matrix measure σ satisfy a three term recurrence relation

P0(x) = Ip, P1(x) = xIp − A1,

xPn(x) = Pn+1(x) + An+1Pn(x) +Bn+1Pn−1(x), n ≥ 1 .

We define y = 1
2
(x + 1) and obtain from Dette and Studden (2002) for the monic orthogonal

polynomials Rn(y) = 2−nPn(2y − 1) with respect to the measure σ̃ = σ
1
2

(x+1) on the interval

[0, 1] the recursion

R0(y) = Ip, R1(y) = yIp − ζ σ̃1
T
,

yRn(y) = Rn+1(y) + (ζ σ̃2n+1 + ζ σ̃2n)TRn(y) + (ζ σ̃2n−1ζ
σ̃
2n)TRn−1(y), n ≥ 1(6.6)

where ζ σ̃n = V̄ σ̃
n−1Ū

σ̃
n for n ≥ 2, ζ σ̃1 = Ū σ̃

1 and Ū σ̃
n denote the canonical moments of the measure σ̃.

Observing Lemma 3.1 (a) and (c) it follows that ζ σ̃1 = Ūσ
1 = 1

2
Ip and for n ≥ 1

ζ σ̃2n = V̄ σ̃
2n−1Ū

σ̃
2n = V̄ σ

2n−1Ū
σ
2n = 1

2
Ūn ,(6.7)

ζ σ̃2n+1 = 1
2
(Ip − Ūn) = 1

2
V̄n .(6.8)

This yields for the polynomials {Pn(x)}n≥0

P0(x) = Ip, P1(x) = xIp

and (6.6) simplifies to

1
2
(x+ 1)2−nPn(x) = 2−n−1

(
Pn+1(x) + Pn(x) + ζTn Pn−1(x)

)
, n ≥ 1

which proves the assertion of Lemma 3.4. 2
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