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Abstract

We consider the problem of constructing optimal designs for population pharmacoki-
netics which use random effect models. It is common practice in the design of experiments
in such studies to assume uncorrelated errors for each subject. In the present paper a new
approach is introduced to determine efficient designs for nonlinear least squares estimation
which addresses the problem of correlation between observations corresponding to the same
subject. We use asymptotic arguments to derive optimal design densities, and the designs
for finite sample size are constructed from the quantiles of the corresponding optimal dis-
tribution function. It is demonstrated that compared to the optimal exact designs, whose
determination is a hard numerical problem, these designs are very efficient. Alternatively,
the designs derived from asymptotic theory could be used as starting designs for the nu-
merical computation of exact optimal designs. Several examples of linear and nonlinear
models are presented in order to illustrate the methodology.
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1 Introduction

The work presented in this paper is motivated by some problems encountered in the optimal

design of a clinical trial to establish the pharmacokinetics of Uzara R©, a digoxin related herbal

diarrhea medication [based on Thürmann et al. (2004)]. These kinds of trials pose methodological

design challenges because they combine both the estimation of global population parameters and

correlated measurement errors. The trial in question included a number of patients each given an

oral application of Uzara R©, with the resulting serum concentration of digitoxin being measured

repeatedly during the next 36 hours.

Situations of this kind are rather common in the evaluation of the pharmacokinetics and the

pharmacodynamics of drugs (see Buelga et al. (2005), Colombo et al. (2006) among others) and

are usually modeled by linear or nonlinear random effects models, which allow the estimation

of population parameters, that is, the mean and the inter-individual variability of the parame-

ters. Under the additional assumption of a normal distribution, the population characteristics

are usually estimated by maximum likelihood methods. In many cases the likelihood cannot be

evaluated explicitly and approximations are used for the calculation of the estimate. Efficient

algorithms are available for this purpose [see Aarons (1999)]. Loosely speaking, under a Gaus-

sian assumption this approach corresponds to weighted nonlinear least squares estimation. It

was pointed out by several authors that the application of an appropriate design in these studies

can increase the efficiency of the population approach substantially. Usually the choice of an

appropriate design is based on the Fisher information matrix which cannot be derived explic-

itly in pharmacokinetic models with random effects. For this reason many authors propose an

approximation of the likelihood [see for example Retout et al. (2002), Mentré et al. (1997) or

Retout and Mentré (2003) or Schmelter (2007a) oder Schmelter (2007b) among others], which is

then used to derive an approximation for the Fisher information matrix. This matrix is the basis

of various optimality criteria, which have been proposed in the literature for the construction of

optimal designs for random effect regression models.

The relation between time and concentration in the analysis of the Uzara R© trial can be described

using the theory of one compartment models with oral application (Atkinson et al. (1993), Shargel

(1993)). More precisely, the digitoxin concentration was modeled using the 3 parameter Bateman

function

η(t, b) = b3(e
−b1t − e−b2t)(1.1)
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where η(t, b) denotes the measured concentration, t is the time (in hours) and b = (b1, b2, b3)

is the vector of parameters (Garrett (1994)). The parameters are assumed to vary between

patients and it is the aim to estimate their global means (and sometimes variances) over all

patients. Measurements within the same patient are correlated, and we assume this correlation

to be proportional to the time lag between measurements. More precisely, if t1 < . . . < tn
denote the time points of measurements, then the (n× n) covariance matrix of the observations

corresponding to a patient is given by

Vε = σ2(γ exp(−λ|ti − tj|) + (1− γ)δi,j)i,j=1,...,n(1.2)

where δi,j denotes Kronecker’s symbol and γ ∈ [0, 1] is a constant. In a follow-up trial Thrmann

considered n = 15 measurements each on K = 18 patients. Measurements for different patients

are assumed to be independent and were taken at non-optimized time points 0, 0.5, 1, 1.5, 2, 3,

4, 5, 6, 8, 10, 12, 15, 24, 36 (hours). If β = (β1, β2, β3)
T denotes the vector of the population mean

of the parameters b, Vp the corresponding population covariance, an approximation of the co-

variance of a single patient can be expressed as

Σpop =
∂η(t, β)

∂β

T

Vp
∂η(t, β)

∂β
+ Vε,(1.3)

where η(t, β) = (η(t1, β), ..., η(tn, β))T denotes the vector of expected responses at t1, ..., tn. We

have received the estimates β̂ = (0.2, 0.135, 28)T ,

V̂p =




0.0025 0.0019 0

0.0019 0.0016 0

0 0 144




for the population parameters, while the estimates of the parameters in the covariance matrix

(1.3) are given by γ̂ = 0.8, λ̂ = 0.01, σ̂2 = 0.2.

While we were considering optimal design problems for trials of this type, several questions

appeared which motivated the research presented in this paper. First, the estimation of the

population mean and the construction of corresponding optimal designs for population pharma-

cokinetics depends sensitively on the Gaussian assumption, which is usually made for computa-

tional convenience. The maximum likelihood estimates may be inconsistent if basic distributional

assumptions are violated. As a consequence, the derived optimal designs might be inefficient.

Second, most authors derive the approximation for the Fisher information matrix under the

additional assumption that the random errors corresponding to the measurements of each indi-

vidual are uncorrelated [see e.g. Retout et al. (2001), Retout et al. (2002) or Retout and Mentré

(2003) among many others]. However, this is not a realistic assumption for many applications

in population pharmacokinetics and a general concept for constructing optimal designs in the

general context is still missing. Third, even if the Gaussian assumption and the assumption of
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uncorrelated errors for each subject can be justified, the numerical construction of the estimate

and the corresponding optimal design is extremely hard.

In the present paper we try to address these problems, in particular the problem of correlation

caused by measurements at the same individual. We consider nonlinear least squares estimation

in random effect regression models which does not require a specification of the underlying dis-

tributions. For this estimate we introduce a new methodology which can be, say, used to derive

efficient or optimal designs in very general situations. More precisely, we embed the discrete

optimal design problem in a continuous optimal design problem, where a nonlinear functional

of the design density has to be minimized or maximized. This approach allows us to address

the problem of correlation and yields to an asymptotic optimal design density which has to be

determined numerically in all cases of practical interest. We propose an efficient algorithm based

on approximations by polynomials. For a fixed sample size, say n, for each individual an exact

design can finally be obtained from the quantiles of the corresponding optimal distribution func-

tion. It will be demonstrated in concrete examples that these designs are extremely efficient.

Moreover, if the experimenter really wants to find the optimal exact design, the designs derived

from the asymptotic optimal design density are very good starting designs for any numerical

procedure. To our knowledge this is the first systematic approach to determine optimal designs

for linear and nonlinear mixed effect models with correlated errors.

The remaining part of this paper is organized as follows. In Section 2 we consider the case of a

linear random effect model and explain the basic concepts in this context. In Section 3 we also

introduce the idea of asymptotic optimal designs for linear regression models with correlated

observations, which was first considered by Bickel and Herzberg (1979). Some examples for

linear and quadratic regression models are presented in Section 4. Finally, Section 5 deals with

the case of nonlinear random effect models. In particular, we consider a compartmental model

with correlated random errors and derive D-optimal designs and optimal designs for estimating

the area under the curve. Finally, the Uzara R© example is re-analyzed and optimal designs for

model (1.1) are determined.

2 Preliminaries

In this Section we consider the common random-effect linear regression model

Yij = bT
i f(tij) + εij , i = 1, . . . , K; j = 1, . . . ni ;(2.1)

where Yij denotes the jth observation of the ith subject at the experimental condition tij,

ε11, . . . , εK,nK
are centered random variables, f(t) = (f1(t), . . . , fp(t))

T is a given vector of linearly

independent regression functions, bi is a p-dimensional random vector representing the individual

parameters of the ith subject, i = 1, . . . , K. The explanatory variables variables tij can be cho-
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sen by the experimenter from a compact interval, say T , which will be specified in the concrete

examples. We assume that errors εi = (εi1, . . . , εi,ni
) for different subjects are independent but

the errors for the same subject are correlated, that is

Cov(εij, εis) = σ2(γr(tij − tis) + (1− γ)δj,s),(2.2)

where γ ∈ [0, 1] is a constant, r(t) a given correlation function such that r(0) = 1 and δj,s

denotes Kronecker’s symbol. The corresponding covariance matrix is denoted by Vε. Moreover,

we also assume that random variables bi representing the individual parameters bi have mean

β, covariance matrix Vp and are independent of the random variables εi. This means that the

covariance between two observations at time tij and tis (j 6= s) is

Cov(Yij, Yis) = fT (tij)Vpf(tis) + σ2γr(tij − tis) ,

while the variance of Yij is given by fT (tij)Vpf(tij)+σ2. It was shown by Schmelter (2007b) that

an optimal design necessarily advices the experimenter to investigate all subjects at the same

experimental settings, i.e. tij = tj (i = 1, . . . , K, j = 1, . . . , n). Consequently in the situation

under consideration an exact design ξ = {t1, . . . , tn} is an n-dimensional vector which describes

the experimental conditions for each subject. Without loss of generality we assume that the

components are ordered, i.e. t1 < . . . < tn.

Suppose that n observations are taken according to the design ξ. Then the model (2.1) for the

ith subject can be written as

Yi = Xbi + εi ; i = 1, . . . , K,(2.3)

where Yi = (Yi1, . . . , Yin)T and the matrix X is given by X = (f(t1), . . . , f(tn))T . This model is a

special case of the random-effect models discussed in Harville (1976), which are called generalized

MANOVA . The ordinary least squares estimate of the parameter β (i.e. the mean of the random

variables bi) is given by

β̂OLS =
1

K

K∑
i=1

(XT X)−1XT Yi,(2.4)

where each summand is the least squares estimate corresponding to the individual effect bi. The

covariance matrix of β̂OLS is given by

D(β̂OLS) =
1

K
(XT X)−1XT (Vε + XVpX

T )X(XT X)−1

=
1

K

(
(XT X)−1XT VεX(XT X)−1 + Vp

)
.(2.5)

If the covariance matrix Vε of the errors and the covariance matrix of the random effects Vp were

known (or can be well estimated) the weighted least squares statistic

β̂WLS =
1

K

K∑
i=1

(
XT (Vε + XVpX

T )−1X
)−1

XT (Vε + XVpX
T )−1Yi,(2.6)
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could alternatively be used to estimate the parameter β. The covariance matrix of the estimate

β̂WLS is given by

D(β̂WLS) =
1

K
(XT (Vε + XVpX

T )−1X)−1.

Optimal designs minimize appropriate functionals of the covariance matrix of the ordinary or

weighted least squares estimate. For this reason we assume throughout this paper without loss

of generality K = 1 for the design problem for the random effect model (2.3). We consider the

problem of constructing optimal designs for ordinary least squares estimation, because on the

one hand it is our experience that in applications it is usually difficult to specify the matrices

Vp and Vε with sufficient precision, such that the improvement in the quality of the estimates is

significant. On the other hand, we will also investigate the efficiency of the constructed optimal

designs for ordinary squares estimation if these are used for weighted least squares estimation

(see Section 3 and 4). In particular, it is demonstrated that these designs are also rather efficient

for weighted least squares.

3 Asymptotic optimal designs

Although the theory of optimal design has been discussed intensively for uncorrelated obser-

vations [see for example Fedorov (1972), Pázman (1986) and Atkinson and Donev (1992)] less

results can be found for dependent observations. For linear and nonlinear random effect mod-

els several authors have investigated optimal design problems under the additional assumption

of uncorrelated errors [see e.g. Schmelter (2007a), Schmelter (2007b), Mentré et al. (1997) or

Retout and Mentré (2003) among others]. For fixed effect regression models with correlated

errors numerous authors suggest to derive optimal designs by asymptotic considerations. Sacks

and Ylvisaker (1966, 1968), considered a fixed design space, where the number of design points

in this set tends to infinity. As a result of this assumption the asymptotic optimal designs de-

pend only on the behavior of the correlation function in a neighborhood of the point 0. In the

present paper we use an approach of Bickel and Herzberg (1979) and Bickel et al. (1981), who

considered a design interval expanding proportionally to the number of observation points. This

case is equivalent to the consideration of a fixed interval with correlation function depending on

the sample size. To be precise, we assume that the design space is given by an interval, say T ,

and that the design points are are generated by a sequence of designs ξn = {t11, . . . , tnn}, where

tjn = a ((j − 1)/(n− 1)) , j = 1, . . . , n;(3.1)

and a : [0, 1] → T denotes the inverse of a distribution function. Note that the function a

is obtained from the density of the weak limit of the sequence ξn as n → ∞. For example,
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if T = [−1, 1], the function a(u) = (2u − 1) corresponds to the equally-spaced design with

distribution function a−1(x) = x+1
2

and density (a−1)′(x) = 1
2
I[−1,1](x). Furthermore, we assume

that the correlation function r(t) of the errors εi in (2.2) depends on n in the form

rn(t) = ρ(nt),(3.2)

such that ρ(t) = o(t) as t → ∞. For the numerical construction of asymptotic optimal designs

we derive in the following Lemma an asymptotic representation for the covariance matrix of the

ordinary least squares estimate. For this purpose we make the following regularity assumptions.

(C1) The regression functions f1(t), . . . , fp(t) are linearly independent and bounded on the in-

terval T and satisfy a first order Lipschitz condition,i.e.

|fi(t)− fi(s)| ≤ M |t− s| and |fi(t)| ≤ M for all t, s ∈ T , i = 1, . . . , p.

(C2) The function a is twice differentiable and there exists a positive constant M < ∞ such

that for all u ∈ (0, 1)

1

M
≤ a′(u) ≤ M, |a′′(u)| ≤ M.(3.3)

(C3) The correlation function ρ is differentiable with bounded derivative and satisfies ρ′(t) ≤ 0

for sufficiently large t.

The following result is obtained by similar arguments as given in Bickel and Herzberg (1979)

and its proof therefore omitted.

Lemma. Assume that conditions (C1), (C2) and (C3) are satisfied, then the covariance matrix

of the ordinary least squares estimate defined in (2.4) satisfies

D(β̂OLS) =
σ2

n

(
W−1(a) + 2γW−1(a)R(a)W−1(a)

)
+ Vp + o(

1

n
),(3.4)

and the matrices W and R are defined by

W (a) =

(∫ 1

0

fi(a(u))fj(a(u)) du

)p

i,j=1

,

R(a) =

(∫ 1

0

fi(a(u))fj(a(u))Q(a′(u)) du

)p

i,j=1

,

and the function Q is given by

Q(t) =
∞∑

j=1

ρ(jt).
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Note that only the first term in (2.5) (and (3.4)) depends on the underlying (asymptotic) design,

and this term will be the basis for the construction of optimal designs in the following discussion.

If the function a is the inverse of a continuous distribution with density, say ϕ, then a′(t) = 1/ϕ(t)

and for large n the first term of the covariance matrix of the ordinary least squares estimate can

be approximated by the matrix V (ϕ)/n, where the p× p matrix V is given by

V (ϕ) := σ2
(
W−1(ϕ) + 2γW−1(ϕ)R(ϕ)W−1(ϕ)

)
.(3.5)

Here the matrices W and R are defined by

W (ϕ) =

(∫

T

fi(t)fj(t)ϕ(t) dt

)p

i,j=1

,

R(ϕ) =

(∫

T

fi(t)fj(t)Q(1/ϕ(t))ϕ(t) dt

)p

i,j=1

,

respectively. An asymptotic optimal density density ϕ∗ minimizes an appropriate functional of

the matrix V (ϕ). For this purpose numerous criteria have been proposed in the literature [see

Silvey (1980), Atkinson and Donev (1992), Pukelsheim (1993)] and exemplarily we consider in

the following section the D- and c-optimality criterion which minimize det V (ϕ) and cT V (ϕ)c

for a given vector c ∈ Rp, respectively. The application of our methodology for other optimality

criteria will be obvious from these examples. The general procedure for constructing an efficient

design minimizing a given functional of the covariance matrix of the ordinary least squares

estimate is as follows:

(1) The correlation structure (i.e. the function ρ in (3.2)) has to be specified.

(2) The exact design problem is embedded in an asymptotic design problem and an appropriate

functional of the matrix V (ϕ) in (3.5) is minimized with respect to ϕ. This yields the

asymptotic optimal design density ϕ∗.

(3) If ϕ∗ denotes the density minimizing the functional specified in step (2) the exact designs

for a fixed sample size n are derived from the quantiles of the corresponding distribution

function, say Φ∗. This gives:

ti,n = (Φ∗)−1

(
i− 1

n− 1

)
; i = 1, . . . , n.(3.6)

The optimal density ϕ∗ in step (2) of this procedure is determined numerically as follows. We

use a parametric representation of the density by a polynomial of the form

ϕ(t) =
(p0 + p1t + . . . + prt

r)+∫
T
(p0 + p1t + . . . + prtr)+dt
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and apply the Nelder-Mead algorithm to find the optimal density minimizing the specified func-

tional of the matrix V (ϕ) in this parametric class. We run the algorithm for different degrees of

the polynomial and different initial values and chose as result the density corresponding to the

minimal value of the optimality criterion. All integrals are calculated by the Simpson quadrature

formula. Usually no substantial improvements are obtained for polynomials of degree larger than

r = 6. We also investigated the performance of similar algorithms if the density is represented in

terms of rational or exponential functions. The results were very similar and on the basis of our

numerical experiments we conclude that the optimal density ϕ∗ can be very well approximated

of polynomials of degree 6.

The derived designs from asymptotic theory can, on the one hand, be used to construct efficient

designs for a given sample size as specified in step (3) of the algorithm. On the other hand, these

designs can also be used to determine exact optimal designs by using them as initial values in

a further (discrete) optimization procedure. More precisely for the determination of an exact

optimal design we propose to add a fourth step in the above algorithm:

(4) The Nelder-Mead algorithm is used for the determination of an exact optimal design [min-

imizing a functional of the covariance matrix in (2.5)], where the n-point design obtained

in step (3) is used as an initial design.

In the following section we will illustrate this procedure in the case of a linear and quadratic

regression model. In Section 5 we extend the methodology to nonlinear models and investigate

its performance in a compartmental model. In particular, it is demonstrated that the designs

derived from the asymptotic approach are very efficient compared to exact optimal designs.

4 Some numerical results for linear models

In this section we consider the linear and quadratic regression model. Efficient and optimal exact

designs are derived by the algorithm proposed in Section 3, where the D-optimality criterion is

used to compare competing designs.

4.1 Linear regression

We begin our investigations with the classical linear regression model, where p = 2, f1(t) = 1,

f2(t) = t and T = [−1, 1]. The correlation function in (3.2) is given by ρ(t) = e−λt, i.e.

(4.1) rn(t) = e−λnt, λ > 0.

The asymptotic D-optimal design densities have been calculated by the procedure described

in Section 2 and are given in Figure 1 for different choices of the parameters λ and γ. Note
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Figure 1: Asymptotic D-optimal design densities for ordinary least squares estimation in a ran-

dom effect linear regression model for different choices of parameters in the covariance function

(2.2) with r(t) defined by (4.1). Right part: γ = 0.6; Left Part: λ = 0.2

that the numerically calculated optimal design densities are symmetric, but we were not able to

prove the symmetry of the asymptotic optimal density. It can be seen from Figure 1 that the

optimal density approximates the density of the uniform distribution if γ → 1 or λ → 0. Note

that the case λ ≈ 0 corresponds to a more slowly decreasing correlation between the errors. If

γ → 0 or λ → ∞ the situation of uncorrelated errors is approximated and it can be observed

from Figure 1 that in this case the optimal design density puts more mass at the boundary of

the design space. Note that for uncorrelated observations the D-optimal design is concentrated

at the boundary of the design space [see Hohmann and Jung (1975)].

In the following we will investigate the efficiency of an exact design derived from the asymp-

totic theory for ordinary and weighted least squares estimation, where the parameters in the

correlation function (2.2) are given by

(4.2) γ = 0.6, σ2 = 0.5, Vp = diag(σ2
β1

, σ2
β2

) = diag(0.32, 0.32).

For this purpose let ξu
n be an n-point equidistant design and ξa

n be an n-point design obtained

by the transformation (3.6) from the asymptotic optimal density. The points of the design ξa
n

are displayed in the left part of Figure 2 for λ = 1.2, which also shows the exact optimal designs

for ordinary and weighted least squares estimation. These designs are calculated as described

in step (4) of our procedure using a discrete optimization routine with the design ξa
n as starting

design. In the right part of Figure 2 we present the efficiencies

effOLS(ξ) =

(
det[(XT X)−1XT VεX(XT X)−1 + Vp]

det[(XT
OLSXOLS)−1XT

OLSVεXOLS(XT
OLSXOLS)−1 + Vp]

)1/p

effWLS(ξ) =

(
det[XT (Vε + XVpX

T )−1X]

det[XT
WLS(Vε + XWLSVpXT

WLS)
−1XWLS]

)1/p
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of the design ξa
n derived from asymptotic theory and the uniform design ξu

n if they are used for

ordinary or weighted least squares estimation. Here X denotes the design matrix obtained from

the design ξ under consideration, while XOLS and XWLS correspond to the optimal exact design

for ordinary and weighted least squares estimation. We observe that - although the design points

of the optimal designs may be different - the D-efficiency of design ξa
n for ordinary or weighted

least squares estimation is very large. Note also that the D-efficiency of the uniform design ξu
n

is also large since the asymptotic optimal density is close to uniform density for the given choice

of parameters.

−1 −0.5 0 0.5 1
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8
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10
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0.965
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1 eff
OLS

(ξa
n
)

eff
OLS

(ξu
n
)

eff
WLS

(ξa
n
)

eff
WLS

(ξu
n
)

Figure 2: Left part: Various designs for ordinary and weighted least squares estimation in the

random effect linear regression model. Exact D-optimal designs derived from asymptotic theory:

ball; exact D-optimal for ordinary least squares estimation: diamond; exact D-optimal designs

for weighted least squares estimation: triangle. Right part: Efficiency of the designs ξa
n and the

equidistant design ξu
n for ordinary and weighted least squares estimation. The parameters are

given by (4.2), where λ = 1.2.

4.2 Quadratic model

As second example of a random effect linear model we consider the quadratic regression model,

that is p = 3, f1(t) = 1, f2(t) = t, f2(t) = t2 and assume again that the design space is given

by the interval T = [−1, 1]. The asymptotic D-optimal densities for different choices of the

parameters λ and γ and the parameters specified in (4.2) are shown in Figure 3. We observe

again that the D-optimal density converges to the density of the uniform design, if γ → 1 or

λ → 0. On the other hand, if γ → 0 or λ → ∞ it can be seen that the asymptotic D-optimal

design density is more concentrated at the points −1, 0 and 1, which are the points of the

exact D-optimal design for a quadratic fixed effect model with uncorrelated observations [see

Gaffke and Krafft (1982)]. This corresponds to intuition because in this case the errors are less
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Figure 3: Asymptotic D-optimal design densities for ordinary least squares estimation in a

random effect quadratic model for different choices of parameters in the covariance function

(2.2) with r(t) defined by (4.1). Right panel γ = 0.6; Left panel λ = 0.2.

correlated. The points of the design ξa
n derived from the asymptotic D-optimal design density

and the exact D-optimal designs for ordinary and weighted least squares estimation are depicted

in the left part of Figure 4. The right part of this Figure shows the D-efficiencies for ordinary and

weighted least squares estimation in the quadratic regression model, where the parameters are

given by (4.2) with λ = 1.2. We observe that the design points concentrate in two regions located

at the points of the exact D-optimal design for a quadratic regression with uncorrelated errors.

It is also noteworthy that the designs derived from the asymptotic theory are very efficient for

ordinary and weighted least squares estimation.
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Figure 4: Left part: Various designs for ordinary and weighted least squares estimation in

the random effect quadratic regression model. Exact D-optimal designs derived from asymptotic

theory: ball; exact D-optimal for ordinary least squares estimation: diamond; exact D-optimal

designs for weighted least squares estimation: triangle. Right part: Efficiency of the designs ξa
n

and equidistant design ξu
n for ordinary and weighted least squares estimation. The parameters

are given by (4.2), where λ = 1.2.
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5 Nonlinear random effect models

In this section we illustrate how the theory can be extended to nonlinear random effect models,

which have found considerable interest in the literature on pharmacokinetics. In this case the

model under investigation is given by

Yij = η(tj, bi) + εij , i = 1, . . . , K; j = 1, . . . n.(5.1)

Since the model (5.1) is nonlinear with respect to the variables bi there exists no analytical

expression for the likelihood function and various approximations have been considered in the

literature [see Mentré et al. (1997), Retout et al. (2002), Retout and Mentré (2003) among oth-

ers]. These approximations are used for the calculation of the maximum likelihood estimate

and a corresponding Fisher information. Alternatively, an estimate of the population mean β

could easily be obtained as average of the nonlinear least squares estimates b̂i for the different

individuals, but due to the nonlinearity of the model an explicit representation of the corre-

sponding covariance matrix cannot be derived. Following Retout and Mentré (2003) we propose

to use a first-order Taylor expansion to derive an approximation of this covariance matrix. To

be precise we use (under suitable assumptions of differentiability of the regression function) the

approximation

η(t, b) ≈ η(t, β) + f(t, β)(b− β)T ,(5.2)

where

f(t, b) =
∂η(t, b)

∂b

denotes the gradient of the regression function with respect to b. This means that the nonlinear

model (5.1) is approximated by a the linear model (5.2), where for the construction of the design

we assume that knowledge about the parameter β is available from previous or similar exper-

iments. This corresponds to the concept of locally optimal designs as introduced by Chernoff

(1953) in the context of fixed effect nonlinear regression models. Usually locally optimal designs

serve as benchmarks for commonly used designs and are the basis for the construction of optimal

designs with respect to more sophisticated optimality criteria using a Bayesian or Minimax ap-

proach (see Chaloner and Verdinelli (1995) or Dette (1995)). As a consequence, the covariance

matrix of the nonlinear least squares estimate in the model (5.1) is approximated by replacing

the matrix X in model (2.1) with f(t) = f(t, b)|b=β, and the methodology described in Section

2 and 3 can be applied to determine efficient designs for ordinary and weighted nonlinear least

squares estimation. In the following we illustrate this concept in several examples and derive D-

and c-optimal designs for inference in a random effect model.
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5.1 D-optimal design for a random effect compartmental model

We consider a random effect compartmental model with first-order absorption, i.e.

η(t, b) =
b1

b1 − b2

(e−b2t − e−b1t).(5.3)

The model (5.3) is a special case of the Bateman function mentioned in the introduction [see

Garrett (1994)] and has found considerable attention in chemical sciences, toxicology or phar-

macokinetics [see for example Gibaldi and Perrier (1982)]. The optimal design problem in the

compartmental fixed effect model has also been studied by numerous authors [see for example

Box and Lucas (1959), Atkinson et al. (1993), Dette and O’Brien (1999), Biedermann et al.

(2004) among others], but much less results are available under the assumption of random ef-

fects. Recently optimal approximate designs for the random-effect compartmental model (5.3)

have been determined by Atkinson (2008), but we did not find references dealing with exact

designs for models with correlated errors. We will now derive such designs from the asymp-

totic optimal design density and compare these with the exact optimal designs for ordinary and

weighted least squares estimation.

Note that the gradient of the function η with respect to b is given by

f(t, b) =

(
b2(e−b1x − e−b2x) + (b1

2x− b1b2x)e−b1x

(b1 − b2)
2 ,

b1(e−b1x − e−b2x) + (b1
2x− b1b2x)e−b2x

(b1 − b2)
2

)T

.(5.4)

In order to illustrate the methodology we assume that the parameters of the population distri-

bution and the error distribution are given by β(0) = (1, 0.5)T ,

(5.5) γ = 0.6, σ2 = 0.01, Vp = diag(σ2
β1

, σ2
β2

) = diag(0.12, 0.052).

[see Atkinson (2008)] and that the design space is given by the interval T = [0, 10]. We assume

again that the function r(t) in (2.2) is given by (4.1). The asymptotic D-optimal design densities

for different choices of the parameters are shown in Figure 5. We observe again that for γ → 1

or λ → 0 the D-optimal design densities approximate the uniform design, while for larger values

of λ or smaller values of γ the asymptotic D-optimal designs put more weight at two specific

regions of the design space.

Again this corresponds to intuition, because the (approximate) D-optimal design for the model

(5.3) with uncorrelated observations is a two-point design [see e.g. Box and Lucas (1959)]. In

the following discussion we will investigate the performance of the uniform and an exact design

derived from asymptotic theory. For this purpose we define ξu
n as an n-point equidistant design

{10/n, 20/n, . . . , 10} and ξa
n as the n-point design obtained by the transformation

tj = (Φ∗)−1 (j/(n + 1)) , j = 1, . . . , n,
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Figure 5: Asymptotic D-optimal design densities for nonlinear least squares estimation in the

compartmental model (5.3) for different choices of the parameters in the covariance function

(2.2) with r(t) defined by (4.1). Left part: λ = 0.2; right part: γ = 0.6.

where Φ∗ denotes the distribution function corresponding to the asymptotic D-optimal design

density. Note this transformation is slightly different from the transformation (3.1) in order to

exclude the point 0 from the design points. Obviously, it is not reasonable to take observations

t = 0 in model (5.3), because in the model (5.3) it is assumed that the drug is administered at

time t = 0. The corresponding points of the exact designs are depicted in the left part of Figure

6 while the right part of the figure shows the D-efficiencies of the different designs. We observe

that the designs derived from the asymptotic theory have a substantially larger D-efficiency

compared to the uniform design. For example, if n = 6 the D-efficiency of the uniform design

is approximately 50% for ordinary and weighted nonlinear least squares estimation, while the

D-efficiency of the design ξa
n is close to 90%.

It is worthwhile to mention that in nonlinear random effect models the optimal designs depend

additionally on the mean β of the distribution of the population parameters bi. Therefore it

is also of interest to investigate the sensitivity of the designs with respect to a misspecification

of this parameter. For a study of the impact of such a misspecification on the efficiency of

the resulting designs we consider the case n = 4 and n = 6 and the corresponding designs

ξa
4 = {1.04, 2.01, 3.16, 4.33} and ξa

6 = {0.83, 1.47, 2.32, 3.30, 4.20, 5.20}, respectively. In Figure 7

we display the efficiencies

(
det[(XT X)−1XT VεX(XT X)−1 + Vp]

det[(XT
OLS,βXOLS,β)−1XT

OLS,βVεXOLS,β(XT
OLS,βXOLS,β)−1 + Vp]

)−1/p

(5.6)

for different values of β. Here X denotes the design matrix obtained from the design ξa
n under

the assumption that β(0) = (1, 0, 5)T , while the matrix XOLS,β corresponds to the exact D-

optimal design for ordinary nonlinear least squares estimation for a specific β. The efficiencies

16



0 1 2 3 4 5 6

3

4

5

6

7

8

9

10

n

3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eff
OLS

(ξa
n
)

eff
OLS

(ξu
n
)

eff
WLS

(ξa
n
)

eff
WLS

(ξu
n
)

Figure 6: Left part: Various designs for ordinary and weighted nonlinear least squares estima-

tion in the compartmental model (5.3). Exact D-optimal designs derived from asymptotic theory:

ball; exact D-optimal for ordinary least squares estimation: diamond; exact D-optimal designs

for weighted least squares estimation: triangle. Right part: Efficiency of the designs ξa
n and ξu

n

for ordinary and weighted least squares estimation. The parameters are given by (5.5), where

λ = 0.2.

are plotted in Figure 7 for the rectangle [β
(0)
i − 3σ

β
(0)
i

, β
(0)
i + 3σ

β
(0)
i

] = [0.7, 1.3]× [0.35, 0.65] . It

can be seen that the exact optimal designs derived from the asymptotic theory yield also very

good D-efficiencies over a broad range of the population mean.

0.7 0.8 0.9 1 1.1 1.2 1.3
0.35

0.4

0.45

0.5

0.55

0.6 0.95

0.8

0.9

0.9

0.
9

0.9

0.90.9

0.85

0.85

0.85

0.93

0.
93

b
1

b
2 eff(ξa

4
)

0.7 0.8 0.9 1 1.1 1.2 1.3
0.35

0.4

0.45

0.5

0.55

0.6

0.95

0.95
0.95

0.9

0.9

0.
9

0.93

0.
93

0.93

0.93

0.97

b
1

b
2 eff(ξa

6
)

Figure 7: D-efficiencies of the designs ξa
4 = {1.04, 2.01, 3.16, 4.33} (left part) and the de-

sign ξa
6 = {0.83, 1.47, 2.32, 3.30, 4.20, 5.20} (right part) (these designs are obtained from asymp-

totic density) for ordinary nonlinear least squares estimation in the random-effect compartmental

model (5.3), if the mean of the population distribution has been misspecified. The parameters of

the population distribution are given by (5.5) with λ = 0.2.
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5.2 Optimal designs for estimating the AUC

In bioavailability studies the experimenter is often interested in the estimation of the area under

curve (AUC), which is for the compartmental model (5.3) defined by

AUC =

∫ ∞

0

η(t, β) dt =
1

b2

.

Thus the locally AUC-optimal design minimizes the variance of the nonlinear least squares

estimate for the parameter β2, which can be approximated by

(0, 1)
(
(XT X)−1XT VεX(XT X)−1 + Vp

)
(0, 1)T .

This correspond to a c-optimality criterion, which has been discussed extensively in the literature

for fixed effect models with uncorrelated errors [see for example Ford et al. (1992), Fan and

Chaloner (2003) or Dette et al. (2008) among others]. The asymptotic optimal design densities

for estimating the area under the curve are shown in Figure 8. We observe again that the uniform

design density is approximated if λ → 0 or γ → 1. On the other hand, if λ is large or γ → 0,

the AUC-optimal design density is more concentrated, which reflects the fact that the optimal

design for estimating the area under the curve in the fixed effect compartmental model with

uncorrelated observations is a one-point design. In Figure 9 we show the designs derived from

the asymptotic optimal design densities and the exact optimal designs for estimating the area

under the curve in the compartmental model. We observe that the designs derived from the

asymptotic optimal design density are very close to the exact optimal designs for ordinary least

squares estimation of the area under the curve. Moreover, the design ξa
n yields a substantial

improvement in efficiency compared to the uniform design [see the right part of Figure 9].
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Figure 8: Asymptotic optimal densities for estimating the area under the curve in the compart-

mental model (5.3) for different choices of the parameters in the covariance function (2.2) with

r(t) defined by (4.1). Left part: λ = 0.2, right part: γ = 0.6.
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Figure 9: Left part: Various designs for estimating the area under the curve in the compart-

mental model (5.3). Designs derived from asymptotic theory: ball; exact optimal designs for least

squares estimation of the area under the curve: diamond; exact optimal designs for weighted least

squares estimation: triangle. Right part: Efficiency of the designs ξa
n and ξu

n for ordinary and

weighted least squares estimation. The parameters are given by (5.5), where λ = 1.2.

5.3 Optimal designs for estimating the AUC in the Uzara example

We finally consider the optimal design problem for estimating the AUC in the example presented

in the introduction. Original measurements were taken at non-optimized time points

0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 12, 15, 24, 36.

For the parameter estimates given in the introduction we have derived the asymptotic optimal

design density, which is depicted in Figure 10 for the design interval T = [0, 36]. The resulting

design from this density is given by

2.09, 4.55, 7.49, 10.8, 13.9, 16.8, 19.2, 21.5, 23.6, 25.7, 27.7, 29.8, 31.9, 34.0, 36

We observe that compared to original design the optimal design derived from the asymptotic

theory is closer to an equidistant allocation of the observations.
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