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This paper is concerned with testing rationality restrictions using quantile regression

methods. Specifically, we consider negative semidefiniteness of the Slutsky matrix, ar-

guably the core restriction implied by utility maximization. We consider a heterogeneous

population characterized by a system of nonseparable structural equations with infinite

dimensional unobservable. To analyze the economic restriction, we employ quantile re-

gression methods because they allow us to utilize the entire distribution of the data.

Difficulties arise because the restriction involves several equations, while the quantile is a

univariate concept. We establish that we may test the economic restriction by considering

quantiles of linear combinations of the dependent variable. For this hypothesis we develop

a new empirical process based test that applies kernel quantile estimators, and derive its

large sample behavior. We investigate the performance of the test in a simulation study.

Finally, we apply all concepts to Canadian individual data, and show that rationality is

an acceptable description of actual individual behavior.
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1 Introduction

Economic theory yields strong implications for the actual behavior of individuals. In the stan-

dard utility maximization model for instance, economic theory places strong restrictions on

individual responses to changes in prices and wealth, the so-called integrability constraints.

These restrictions are inherently restrictions on individual level: They have to hold for every

preference ordering and every single individual, at any price wealth combination. Other than

obeying these restrictions, the individuals’ idiosyncratic preference orderings may exhibit a lot

of differences. Indeed, standard parametric cross section mean regression methods applied to

consumer demand data often exhibit R2 between 0.1 and 0.2. Today, the consensus is that the

majority of the unexplained variation is precisely due to unobserved preference heterogeneity.

For this reason, the literature has become increasingly interested in exploiting all the informa-

tion about unobserved heterogeneity contained in the data, in particular using the quantiles of

the dependent variable.

To lay out our model, let y denote the L − 1 vector of quantities demanded. At this stage,

we have already imposed the adding up constraint (i.e., out of L goods we have deleted the

last). Let p denote the L vector of prices, and x denote income (total expenditure)1. For every

individual, define the cost function C(p, u) to give the minimum cost to attain utility level u

facing the L-vector of prices p. The Slutsky negative semidefiniteness restriction arises from the

fact that the cost function is concave, and hence the matrix of second derivatives is negative

semidefinite (nsd, henceforth). In slight abuse of notation, define the Marshallian demand

function for an individual with preferences u ∈ U , where U is a preference space, e.g., the

space of r times continuously differentiable utility functions, to be y = ψ(p, x;u). We consider

Slutsky nsd for a (L− 1) × (L− 1) submatrix of the Hessian of the cost function, denoted

Dp−Lψ(p, x;u) + ∂xψ(p, x;u)ψ(p, x;u)′ = S(p, x, u) = (sjk(p, x, u))1≤j≤L−1,1≤k≤L−1, where p−L

denotes the price vector without the L-th price. If this submatrix of second derivatives is not

nsd, the complete matrix involving all L equations cannot be nsd either. The null hypothesis

in the underlying unobservable heterogeneous populations is hence that

b′S(p, x, u)b ≤ 0,

for all b ∈ SL−1 (where here and throughout Sd denotes the d-dimensional unit sphere) and

any (u, p, x) ∈ U× RL+1. The hypothesis of Slutsky nsd translates therefore to an inequality

1This is the income concept commonly used in consumer demand. It is motivated by the assumption of

separability of preferences over time and from other decisions (e.g., the labor supply decision). We use the

phrases “total expenditure”, “income” and “wealth” interchangeably throughout this paper.
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restriction on an L− 1 dimensional system of equations, where each equation is characterized

by a nonseparable model.

Obviously, this hypothesis in question has to hold for any preference ordering u. However

we do not observe the individual’s preference ordering u, and only observe a B dimensional

vector of household covariates (denoted q). Specifically, we assume to have n iid observations

on individuals from an underlying heterogeneous population characterized by random variables

U, Y,X, P,Q which have a nondegenerate joint distribution FU,Y,X,P,Q.

The question of interest is now as follows: What can we learn from the observable part of

this distribution, i.e. FY,X,P,Q, about whether S is negative semidefinite across a heterogeneous

population, for all values of (p, x, u). In Hoderlein (2010), we consider testing negative semidefi-

niteness in such a setting with mean and second moment regressions only. However, these lower

order moment regressions have the disadvantage that they use only one feature of FY,X,P,Q, and

not the entire distribution. Therefore, in this paper we propose to exploit the distributional

information by using all the α-quantiles of the conditional distribution of observables, which

(with varying α) employ all the information that may be obtained from the data about the

economic hypothesis of interest, i.e., Slutsky negative semidefiniteness of the heterogeneous

population in question.

There are two immediate difficulties now, and solving them is the major innovation this paper

introduces. The first is how to relate a specific economic property in the (unobservable) world

of nonseparable functions to observable regression quantiles. The second one is how to use

quantiles in systems of equations. The solution for the second difficulty is to consider linear

combinations of the dependent variable, i.e. Y (b) = b′Y for all b ∈ SL−1 and consider the

respective conditional α-quantiles of this quantity. This can be thought of as an analogue to

the Cramer-Wold device, and is a strategy that is feasible more generally, e.g., when testing

omission of variables. As b and α vary, we exploit the entire distribution of observables.

The solution to the first of these two difficulties involves obviously identifying assumptions.

To this end, since we are dealing with nonseparable models we require full conditional inde-

pendence, i.e., we require that U⊥ (P,X) |Q, or versions of this assumption that control for

endogeneity. These assumptions are versions of the “selection on observables” assumptions in

the treatment effect literature. Essentially they require that, in every subpopulation defined

by Q = q, preferences as well as prices and income be independently distributed. Although

endogeneity is not relevant for our application, our treatment covers the control function ap-

proach to handle endogeneity in nonseparable models discussed in Altonji and Matzkin (2005),

Imbens and Newey (2009) or Hoderlein (2010), by simply adding endogeneity controls V to the

set of household control variables Q. From now on, we denote by W the set of all observable
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right hand side variables, i.e., (P ′, X,Q′), and potentially in addition V, if we are controlling

for endogeneity.

Under this assumption and some regularity conditions, our first main contribution is as follows:

Let k(α, b|w) denote the conditional α-quantile of Y (b) given P = p,X = x,Q = q, ∇p the

gradient with respect to p and ∂x the partial derivative with respect to x. Then we establish

that

S(p, x, u) nsd =⇒ ∇pk(α, b|w)′b+ ∂xk(α, b|w)k(α, b|w) ≤ 0 (1.1)

for all (α, b) ∈ (0, 1)× SL−1,

and almost everywhere (w, u). The right hand side of this implication depends entirely on

observable quantities. Consequently, we can test a null hypothesis in the underlying (unobserv-

able) heterogeneous population model by considering testable implications on observable quan-

tities. These implications take the form of projections, and crucially depend on the employed

independence assumption. Observe that the original hypothesis and the testable counterpart

are very different objects. In particular, the underlying structural model is characterized by a

vector valued functional ψ - which in general will not be a quantile unless U is a scalar, and ψ

is strictly monotonic - while the observed model is an univariate quantile, for every b.

The only material assumption that we require to relate the observable object and the underlying

heterogeneous population is the conditional independence assumption U ⊥ (P,X) |Q
We would like to emphasize at this point that no other material assumption on the function

ψ or the distribution of the data has entered the model. In particular, we have not assumed

any monotonicity or triangularity assumption; there can be infinitely many unobservables, and

they can enter in arbitrarily complicated form. Thus, another way to view this paper is as a

clarification about what is the most we can learn from data about an economic hypothesis in a

heterogeneous population under economically well specified independence assumptions alone.

In this setup characterized by excess heterogeneity, at best averages over the heterogeneous

population are identified.

Our second main contribution is proposing a quantile regression based nonparametric test

statistic. Specifically, we suggest and analyze the sample counterpart to the right hand side of

(1.1), i.e., we consider the test statistic

sup
α,b
∇̂pk(α, b|w)′b+ ∂̂xk(α, b|w)k̂(α, b|w),

where the hats denote appropriate nonparametric estimators. Our main contribution in this

part of the paper is the derivation of the large sample properties. We show weak convergence of
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a corresponding standardized stochastic process to a Gaussian process and obtain an asymptot-

ically valid hypothesis test. Moreover, we also propose a bootstrap version of our test statistic

which is based on a centered version of the stochastic process to avoid the generation of boot-

strap observations under the null. We adapt the well known idea of residual bootstrap for our

specific model and provide arguments for the validity of the bootstrap. Nonparametric tests

involving quantiles are surprisingly scant, and we list the closest references in the following

paragraph. Specifically, in a system of equations setup we are the first to propose a quantile

based test of an economic hypothesis, and to implement such a test using real world data.

Literature Testing the key integrability constraints that arise out of utility maximization

dates back at least to the early work of Stone (1954), and has spurned the extensive research

on (parametric) flexible functional form demand systems (e.g., the Translog, cf. Jorgenson, Lau

and Stoker (1982), and the Almost Ideal, cf. Deaton and Muellbauer (1980)). Nonparametric

analysis of some derivative constraints was performed by Stoker (1989) and Härdle, Hildenbrand

and Jerison (1991), but none of these has its focus on modelling unobserved heterogeneity.

More closely related to our approach is Lewbel (2001) who analyzes integrability constraints

in a purely exogenous setting, but does not use distributional information nor suggests or

implements an actual test. An alternative method for checking some integrability constraints

is revealed preference analysis, see Blundell, Browning and Crawford (2003), and references

therein.

While our approach extends earlier work on demand systems, it is very much a blueprint for

testing all kinds of economic hypothesis in systems of equations. Due to the nonseparable frame-

work we employ, our approach extends the recent work on nonseparable models - in particular

Hoderlein (2010), Hoderlein and Mammen (2007), Imbens and Newey (2009), Matzkin (2003).

When it comes to dealing with unobserved heterogeneity, there are two strands in this litera-

ture: The first assumes triangularity and monotonicity in the unobservables (Chesher (2003),

Imbens and Newey (2009), Matzkin (2003)). The triangularity and monotonicity assumptions

are, however, rather implausible for consumer demand, because in general the multivariate

demand function is a nonmonotonic function of an infinite dimensional unobservable - the

individuals’ preference ordering - and all equations depend on this object.

Hence we follow the second route. Extending earlier work in Hoderlein (2010), Hoderlein and

Mammen (2007) establish interpretation of the derivative of the conditional quantile (a scalar

valued function!) if there is more than one unobservable2. The upshot of this work is that in a

2Specifically, assume that Y = φ(X,A) is the structural model and that kY |Xα (x) denotes the conditional α-

quantile of Y given X. The main result of Hoderlein and Mammen (2007) is that ∂xk
Y |X
α (x) = E[∂xφ(X,A)|X =
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world of excess heterogeneity, at best conditional average effects are identified, see also Altonji

and Matzkin (2005) and Imbens and Newey (2009). We use a similar notion on this paper, but

apply it to systems of equations in which we analyze economic questions. To the best of our

knowledge we are the first to analyze major economic restrictions using quantiles, as well as

provide guidance in nonseparable system of equations without triangularity and monotonicity.

Other than the novelty in the identification framework, we would also like to emphasize that the

test statistic is in itself a contribution which generalizes beyond the specific economic question at

hands. Specifically, our test pioneers nonparametric hypothesis tests for economic hypothesis

using quantiles in cross section setups. In the statistics literature, the closest work we are

aware of includes the testing procedures proposed by Zheng (1998), Sun (2006), Escanciano

and Velasco (2010), and Dette, Volgushev and Wagener (2011).

Structure of the Paper: The exposition of this paper is as follows. In the next section, we

introduce our model formally, state some assumptions, derive the main identification result

(1.1) in a rigorous fashion, and discuss it. In the third section, we propose a nonparametric

test for the economic hypothesis of Slutsky nsd, analyze its large sample behavior and propose

a bootstrap procedure to derive the critical values. We investigate the performance of the

bootstrap procedure for moderate sample sizes in a simulation study in section 4. In the fifth

section, we apply these concepts to Canadian expenditure data. The results are affirmative as

far as the validity of the integrability conditions are concerned and demonstrate the advantages

of our framework. A summary and an outlook conclude this paper, while the appendix contains

regularity assumptions, proofs, graphs and summary statistics.

2 Deriving Quantile Restrictions of Economic Behavior

in a Heterogeneous Population

2.1 Building Blocks of the Model and Assumptions

Our model of consumer demand in a heterogeneous population consists of several building

blocks. As is common in consumer demand, we assume that - for a fixed preference ordering

- there is a causal relationship between quantities, a real valued random L-vector denoted by

Y , and regressors of economic importance, namely prices P and total expenditure X, real

valued random vectors of length L and 1, respectively. As already mentioned, we assume a

linear budget constraint as well as nonsatiation of preferences, which implies the adding up

x, Y = k
Y |X
α (x)].
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constraint. To avoid the singularity associated with this constraint, we impose it from the

outset, so that we obtain an L− 1 vector of dependent variables. We also assume homogeneity

of degree zero, so that we can omit the L-th price (that of the residual category), all prices are

relative to the residual price, and total expenditure is normalized to be real total expenditure.

To capture the notion that preferences vary across the population, we assume that there is

a random variable U ∈ U , where U is a Borel space3, which denotes preferences (or more

generally, decision rules). We assume that heterogeneity in preferences is partially explained by

observable differences in individuals’ attributes (e.g., age), which we denote by the real valued

random K-vector Q. Hence, we let U = ϑ(Q,A), where ϑ is a fixed U -valued map defined on

the sets Q×A of possible values of (Q,A), and where the random variable A (taking again

values in a Borel space A) covers residual unobserved heterogeneity in a general fashion. To

fix ideas, think of A as the genom of an individual.

As already mentioned, we want to allow for infinitely many individual preference orderings each

of which may be characterized by an infinite dimensional parameter. Therefore we formalize

the heterogeneous population as Y = ψ(P,X,U) = φ(P,X,Q,A), for a general map φ and an

infinite dimensional vector A. Obviously, neither φ nor the distribution of A are nonparamet-

ricaly identified. Still, for any fixed value of A, say a0, we obtain a demand function having

standard properties. Moreover, to show that our approach can handle endogeneity which arises

because economic decisions are related, we treat the more general case and introduce additional

instruments, denoted S. To keep the exposition simple, we focus on the scalar case, i.e. we

assume that it is only X that is endogenous, and that there is exactly one additional instrument

S. This is in line with the demand literature, see Lewbel (1999), but may be easily adapted to

cover endogeneity in prices. Note, however, that in our application endogeneity does not play

a major role, and this is done solely for expositional purposes.

The first assumption collects all definitions and specifies the DGP formally:

Assumption 1. Let (Ω,F , P ) be a complete probability space on which are defined the random

vectors A : Ω → A, A ⊆ R∞, and (Y, P,X,Q, S, V ) : Ω → Y ×P × X ×Q× S × V , Y ⊆
RL−1,P ⊆ RL−1,X ⊆ R,Q ⊆ RK ,S ⊆ R, V ⊆ R, with L and K finite integers, such that

Y = φ(P,X,Q,A),

X = µ(P,Q, S, V )

3Technically: U is a set that is homeomorphic to the Borel subset of the unit interval endowed with the Borel

σ-algebra. This includes the case when U is an element of a polish space, e.g., the space of random piecewise

continuous utility functions.
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where φ : P × X ×Q×A → Y and µ : P ×Q× S × V → X are Borel functions, and

realizations of (Y, P,X,Q, S) are observable, whereas those of (A, V ) are not. Moreover, µ is

invertible in its last argument, for every (p, q, s).

Assumption A1 defines the nonparametric demand system with (potentially) endogenous re-

gressors as a system of nonseparable equations. These models are called nonseparable, because

they do not impose an additive specification for the unobservable random terms (in our case

A ). They have been subject of much interest in the recent econometrics literature (Chesher

(2003), Matzkin (2003), Altonji and Matzkin (2005), Imbens and Newey (2009), Hoderlein

(2010), Hoderlein and Mammen (2007), to mention just a few). Since we do not assume mono-

tonicity in unobservables, our approach is more closely related to the latter five approaches.

As is demonstrated there, in the absence of strict monotonicity of φ in A, the function φ is not

identified, however, local average structural derivatives are. Although it will be demonstrated

that identification may proceed on this level of abstraction, in the case of endogeneity of X

this requires, however, that V be solved for because these residuals have to be employed in a

control function fashion. In the application, we specify µ to be the conditional mean function,

and consequently V to be the additive mean regression residuals, but this is only one out of

several possibilities.

Given that we have all major elements of our model defined and in place, we specify the

independence conditions required for identification. We introduce the notation Z = (Q′, V )′,

and Z = Q× V .

Assumption 2. The random vectors A and (P,X) are independent conditional on Z.

Assumption A2 is the only material assumption that we require in order to identify the marginal

effect of interest, and thus being able to test the economic restriction of interest, in our case

Slutsky negative semidefiniteness. Therefore it merits a thorough discussion: Assume for a

moment all regressors were exogenous, i.e. S ≡ X, Z ≡ Q and V ≡ 0. Then this assumption

states that wealth and prices be independently distributed of unobserved heterogeneity A,

conditional on individual attributes.

To give an example: Suppose that in order to determine the effect of wealth on consumption,

we are given data on the demand of individuals, their wealth and the following attributes:

“education in years” and “gender”. Take now a typical subgroup of the population, e.g.,

females having received 12 years of education. Assume that there be two wealth classes for this

subgroup, rich and poor, and two types of preferences, type 1 and 2. Then, for both rich and

poor women in this subgroup, the proportion of type 1 and 2 preferences has to be identical for

all levels of wealth. This assumption is of course restrictive. Note, however, that preferences
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and economically interesting regressors may still be correlated across the population. Moreover,

any of the Z may be correlated with preferences. Finally, if it is suspected that regressors and

unobservables are not independent, we may still introduce instruments in a control function

fashion.

In the following, we make use of the notation W = (P ′, X,Q′, V ′)′. Moreover, for a given vector

b we introduce the conditional quantile k(α, b|w) of the distribution of Y (b) = b′Y given W = w,

i.e. for 0 < α < 1 the quantity k(α, b|w) is defined by P(Y (b) ≤ k(α, b|w) | W = w) = α, or,

upon substitution,

P(b′φ(p, x, q, A) ≤ k(α, b|w) | W = w) = α,

where w = (p′, x, q′, v′). We will also require a set of regularity assumptions, largely differ-

entiability and boundedness conditions, which can be found in the appendix (see assumption

A3). Given these assumptions and notations, we concentrate first on the relation of theoretical

quantities and identified (and hence estimable) objects. Specifically, we are concerned with the

question of how quantiles allow inference on key elements of economic theory. In particular, we

want to learn about negative semidefiniteness of the Slutsky matrix. In the standard consumer

demand setup we consider, the Slutsky matrix in the underlying heterogeneous population

(defined by φ, x and v), takes the form

S(p, x, u) = Dpψ(p, x, u) + ∂xψ(p, x, u)ψ(p, x, u)′ for all (p, x, u) ∈ P × X × U .

The following theorem provides an answer about what we can learn from regression quantiles.

Theorem 1. Let assumptions A1–A3 hold. Then

S(p, x, u) nsd ⇒ ∇pk(α, b|w)′b+ ∂xk(α, b|w)k(α, b|w) ≤ 0

for all (α, b) ∈ (0, 1)× SL−1, and all (p, x, u, z) ∈ P × X × U × Z. Moreover,

∇pk(α, b|w)′b + ∂xk(α, b|w)k(α, b|w) = E [S | P = p,X = x, Z = z, Y (b) = k(α, b|w)] .

Discussion of Theorem 1: This result establishes the link between negative semidefiniteness

in a heterogeneous population characterized by excess heterogeneity, and the joint distribution

of the data as characterized by the various regression quantiles of Y (b) for all b ∈ SL−1.

As already discussed above, it characterizes all we can learn from data about the economic

hypothesis of interest, and also characterizes the object by which we can, i.e., g(α; b, p, x, z) =

∇pk(α, b|p, x, z)′b+ ∂xk(α, b|p, x, z)k(α, b|p, x, z). To see the economic content of g(α; p, x, z),

note that the second part of the theorem establishes that this quantity is related to the LASD
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of Hoderlein (2010), and Hoderlein and Mammen (2007). To continue with our economic

example, suppose again we were given data on consumption, wealth, “education in years” and

“gender” as above. Then by considering g(α; b, p, x, z), we may identify, for fixed b, the average

over the Slutsky matrix of a subpopulation characterized by a certain level of prices, wealth

and covariates, e.g., all female high school graduates earning 50K, whose value of a weighted

average of their demands has a certain value. However, due to the excess heterogeneity we

are not able to identify the Slutsky matrix of every single individual. Thus, since we consider

b′Y , our averages use more information than simply the one embedded in the regressors; by

variation of b we consider these averages across the entire distribution of the data and hence

use all information available.

There are limitations to this approach that employs minimal assumptions and these limitations

suggest interesting directions for future research. One particular issue is the following: The

equation (1.1) provides testable implications for each fixed value (p, x, z), and all quantiles. In

this setup, even the entire information contained in the joint distribution of observables does

not suffice to trace out the distribution of unobservables - there is excess heterogeneity. We

would like to emphasize that absent additional functional form or homogeneity assumptions,

this is the most we can learn from the data.

This has the following implication for the economic hypothesis at hand: Suppose that we found

the property not rejected for a certain subpopulation. There may still be a part of the subpop-

ulation that does not behave rationally, but the violations are overcompensated by the part of

the subpopulation that behaves rationally. As such, we may suffer from low power. While this

is true for every subpopulation, to assess whether rationality holds across the entire popula-

tion, we will evaluate the hypothesis at a set of representative positions (i.e., subpopulations,

actually random draws from the sample). As a characterization of our empirical results, we

will also give the percentage of positions at which we reject the null. Since we are evaluating

the population at a large number of local averages over relatively small neighborhoods, we may

expect low power at any given position to nevertheless result in occasional rejections. In the

spirit of our approach, we could argue that the percentage of rejections obtained using the

best approximations given the data is itself a best approximation to the underlying fraction of

irrational individuals, given all the information to our disposal. We conclude this cautionary

discussion by emphasizing that this is not a defect of our specific approach: In the absence of

additional information - either through assumptions or additional data - this is simply the limit

of what we can learn about an economic property in a heterogeneous population.
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3 From Hypothesis to Test Statistic

In this section we assume we have observed independent data (Yi, Pi, Xi), i = 1, . . . , n, with the

same distribution as (Y, P,X) ∈ RL−1 × RL−1 × R. We do not treat the additional condition-

ing on Zi as standard nonparametric results extend straightforwardly to this setup by simply

adapting the rates appropriately and - in the case of V - having generated regressors, whose

estimation does not affect first order asymptotics if we are willing to assume enough smoothness

in the regression of endogenous regressors on instruments, see Sperlich (2009). Since including

Z only makes the notation more cumbersome, all results extend in a straightforward fashion,

and we consider a homogeneous subpopulation in our application, we omit it from now on.

For each fixed w = (p, x) ∈ RL−1 ×R we want to test negative semi-definiteness of the Slutsky

matrix. To this end we use the notations

kp`(α, b | w) = ∂p`k(α, b | w)

kx(α, b | w) = ∂xk(α, b | w),

where k(α, b | w) denotes again the α-quantile of the conditional distribution of Y (b) = b′Y ,

given W = (P,X) = w. As we have seen from the previous subsection, the null hypothesis of

rationality transforms to

H0 :
L−1∑
`=1

b`kp`(α, b | w) + kx(α, b | w)k(α, b | w) ≤ 0 (3.1)

∀α ∈ (0, 1), b = (b1, . . . , bL−1)
′ ∈ SL−1.

Now let A be a closed subset of (0, 1). We define the test statistic by

Tn =
√
nhL+2 sup

α∈A,b∈SL−1

Rn(α, b | w), (3.2)

where

Rn(α, b | w) =
L−1∑
`=1

b`k̂p`(α, b | w) + k̂x(α, b | w)k̂(α, b | w). (3.3)

Here, with notations Wi = (P ′i , Xi)
′ and τα(u) = u(α− I{u < 0}), the estimators are obtained

from the kernel quantile estimation approach

(µ̂0, µ̂1, µ̂2)

= arg min
(µ0,µ1,µ2)∈

R×RL×RL×L

n∑
i=1

τα

(
Y ′i b− µ0 − µ′1(Wi − w)− (Wi − w)′µ2(Wi − w)

)
K
(Wi − w

h

)
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as k̂(α, b | w) = µ̂0, k̂p`(α, b | w) = µ̂1,`, ` = 1, . . . , L − 1, and k̂x(α, b | w) = µ̂1,L, see Yu and

Jones (1998), Koenker (2005) or Hoderlein and Mammen (2009) among others.

Under the conditions stated in assumption A4 in the appendix, Rn(α, b | w) consistently

estimates

R(α, b | w) =
L−1∑
`=1

b`kp`(α, b | w) + kx(α, b | w)k(α, b | w)

and we have the following weak convergence result.

Theorem 2. The process

√
nhL+2

(
Rn(α, b | w)−R(α, b | w)

)
α∈A,b∈SL−1

converges (for w fixed) weakly in `∞(A×SL−1) to a Gaussian process G(α, b | w)α∈A,b∈SL−1
with

covariance

Cov
(
G(α, b | w), G(α̃, b̃ | w)

)
=

[
P
(
Y (b) ≤ k(α, b | w), Y (b̃) ≤ k(α̃, b̃ | w)

∣∣∣ (P,X) = w
)

− FY (b)|P,X

(
k(α, b | w)

∣∣∣ w)FY (b̃)|P,X

(
k(α̃, b̃ | w)

∣∣∣ w)]
×

∫
K2(p, x)(b′p+ k(α, b | w)x)(b̃′p+ k(α̃, b̃ | w)x) d(p, x)

fY (b)|P,X(k(α, b | w) | w)fY (b̃)|P,X(k(α̃, b̃ | w) | w)fP,X(w)(
∫
u2κ(u) du)2

,

where fP,X denotes the density of (P,X) and fY (b)|P,X(· | w), FY (b)|P,X(· | w) denote the condi-

tional density and distribution function of Y (b), given (P,X) = w, respectively.

From the theorem we cannot obtain the asymptotic distribution of the test statistic Tn under

H0 to approximate critical values for the test, but we obtain the asymptotic distribution of a

“centered” version, i. e.

T̃n =
√
nhL+2 sup

α∈A,b∈SL−1

(Rn(α, b | w)−R(α, b | w)) (3.4)

both under the null hypothesis and under fixed alternatives. As corollary from Theorem 2 it

follows that, for each c ∈ R,

P(T̃n > c)
n→∞−→ P(sup

α,b
G(α, b) > c). (3.5)

Because of the specific structure of the null hypothesis, H0 : R(·, · | w) ≤ 0, it follows that

P(Tn > c) ≤ P(T̃n > c) under H0 and, hence, we obtain an asymptotically level γ test by
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rejecting H0 whenever Tn > cγ, where P(supα,bG(α, b) > cγ) = γ. Note that this construction

may lead to conservative testing procedures.

Because of the complicated covariance structure in Theorem 2, in applications we suggest to

approximate the asymptotic quantile cγ by the following bootstrap procedure.

The idea of any bootstrap procedure for testing hypotheses for independent samples is to gen-

erate new data (Y ∗k , P
∗
k , X

∗
k), k = 1, . . . , n, (independent, given the original sample (Yi, Pi, Xi),

i = 1, . . . , n) which follow a model as similar as possible to the original data model under the

null hypothesis. However, given the specific structure of the null hypothesis it is not clear how to

generate data that fulfill H0. Instead we use bootstrap versions of the “centered” test statistic

T̃n as follows. As is common in regression models, to generate new data we keep the covariates

and define (P ∗k , X
∗
k) = (Pk, Xk). For each fixed covariate (Pk, Xk) we then generate Y ∗k from

a distribution which approximates the conditional distribution of Y , given (P,X) = (Pk, Xk),

i. e. FY |P,X(· | Pk, Xk). Note that for one-dimensional observations Y this method coincides

with the bootstrap procedure suggested in Hoderlein and Mammen (2009). To estimate the

conditional distribution FY |P,X(· | Pk, Xk) we apply the usual kernel approach and define

F̂Y |P,X(y | Pk, Xk) =
n∑
i=1

I{Yi,1 ≤ y1, . . . , Yi,L−1 ≤ yL−1}
k
(
Wi−Wk

g

)
∑n

j=1 k
(
Wj−Wk

g

)
for y = (y1, . . . , yL−1), Yi = (Yi,1, . . . , Yi,L−1), i = 1, . . . , n, with kernel function k and bandwidth

g. The bootstrap version of the test statistic Tn defined in (3.2) is

T ∗n =
√
nhL+2 sup

α∈A,b∈SL−1

(
R∗n(α, b | w)−Rn(α, b | w)

)
, (3.6)

where Rn is defined in (3.3) and R∗n is defined analogously, but based on the bootstrap sample

(Y ∗k , P
∗
k , X

∗
k), k = 1, . . . , n. Both under the null hypothesis and under alternatives, the condi-

tional distribution of T ∗n , given the original sample, approximates the distribution of T̃n defined

in (3.4) and (3.5). We approximate the asymptotic quantile cγ by c∗n,γ, where

P
(
T ∗n > c∗n,γ

∣∣∣ (Yi, Pi, Xi), i = 1, . . . , n
)

= γ.

With the same argument as before (under regularity conditions given in appendix II in A4

and some assumptions on the kernel k and bandwidth g) we obtain an asymptotically level γ

test by rejecting H0 whenever Tn > c∗n,γ. Moreover, the test is consistent (against alternatives

representing the negation of H0), because under a fixed alternative supb,αRn(b, α | w) converges

to supb,αR(b, α | w) > 0 in probability, such that Tn converges to infinity. On the other hand,

c∗n,γ approximates the (1 − γ)-quantile of T̃n which converges to cγ ∈ R by (3.5). Hence, the

probability of rejection converges to one.
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4 Monte Carlo Experiments

To analyze the finite sample performance of our test statistic and to get a feeling for the

behavior of the test in our application, we simulate data from a joint distribution that has

similar features at least in terms of observables. We specify the DGP to be a linear random

coefficients specification, which is arguably the most straightforward model of a heterogeneous

population, and choose the distributions of coefficients such that under the null the entire

population is rational, while under the alternative there is a fraction that does not have a

negative semidefinite Slutsky matrix. We apply the test developed above to answer the question

whether there is a significant fraction that does not behave rationally.

More specifically, to test whether H0 in (3.1) is valid, we first estimate Tn as described in

equation (3.2) and the following passage. In particular, in (3.3) we use a local quadratic esti-

mator with a product kernel where the individual kernels are standard univariate Epanechnikov

kernels. The bandwidth is selected by using a slightly larger bandwidth than the bandwidth

that is selected by cross validation of the corresponding nonparametric median regression, to

account for the fact that we largely use derivatives. Since our simulation setup is calibrated to

the application, we use somewhat differing variances for the respective regressors, see below.

To account for this when choosing the bandwidth, we scale the individual bandwidths for every

dimension by dividing through the standard deviation σWj
of the respective regressor Wj, i.e.,

the bandwidth for dimension j is of the form hj = hσWj
, and h is selected by cross validation

to be approximately 0.25.

To obtain the distribution of T ∗n from (3.6) we apply the same estimators, but now use 100

bootstrap samples generated as described in section 3. The bandwidth we use is slightly smaller

than the one used in estimation (by a factor of 0.8). Since b is supposed to have unit length,

the grid of bs is chosen such that b21 + b22 + b23 = 1, and b2j ∈ {0, 0.1, ...., 0.9, 1} , for all j. We have

evaluated all quantile regressions at a set of 15 equally spaced positions, i.e., A = {0.05, ...., 0.95}
of α-quantiles of Y (b), for every b. We design the test to have nominal level of 0.05, as mentioned

above we will have a slight size distortion by construction. This completes the description of

the econometric tools we apply, and we now turn to the details of the data generating process:

To keep the results simple and transparent, we assume that the data generating process contains

no income effect, and only prices P = (P1, P2, P3, P4)
′, P ∼ N (µP ,ΣP ), where µP = (1, 1, 1, 1)′

and ΣP = diag(1.6, 1.1, 1.1, 1.6). This is justified as the income effects turn out to be rather

minor in our application, because the individual categories account for moderate sections of

total expenditures only, and the income elasticities are not very large, see the next section.

In addition to the stochastic regressors, the DGP contains random heterogeneity parameters
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A = (A0, A1, A2, A3, A4)
′, independent of P, for which we specify that A ∼ N (µA,ΣA) . We

choose µA = (20, 20, 20, 30, 10)′; the second to fourth reproduce the average absolute values

of the own price effects of prices 1-3 in our application, and ΣA = diag(5, 5, 5, 5, 2) in the low

variance setup, and ΣA = diag(5, 10, 5, 5, 2). Those values are chosen, together with the random

coefficients A0 and A4, to roughly reproduce the R2 in the respective regressions. Moreover, we

assume that there is a fixed parameter λ ∈ R+ which we introduce to model deviations from

the null of rationality (negative semidefinitness).

The quantities Y = (Y1, Y2, Y3)
′ are then generated as

Y1

Y2

Y3

 =


1.5(A0 − 20) + 20

A0

0.8A0

+


−A1 + λ 0.4A2 0

0.2A1 −A2 0

0 0 −A3


︸ ︷︷ ︸

Slutsky


P1

P2

P3

+


A4

A4

A4

P4,

Observe that in this model the Slutsky matrix is given by:

S(A) =


−A1 + λ 0.4A2 0

0.2A1 −A2 0

0 0 −A3

 ,
For λ = 0, the entire population is rational, i.e., its Slutsky matrix is negative semidefinite.

However, as λ increases, parts of the population become indefinite, which in the language of this

paper means that they cease to be rational. The following table illustrates how the proportion

of the population which is not rational increases, as illustrated by the largest (nonnegative)

eigenvalue of the symmetrized version of the Slutsky matrix:

λ 0 10 15 17.5 20 22.5 25 30

% Population not Rational 0.0001 0.041 0.250 0.443 0.647 0.822 0.928 0.996

This exercise corresponds to a mean shift in the distribution of the first random coefficient. Al-

ternatively, more nonrational types may also be generated by increasing the variance, however,

for the above reason (proximity to our application), we focus on this specification. From this

model, we draw an iid sample of n = 3000 observations.

The following table shows the result of our procedure as described in the previous paragraphs,

with n = 3000 observations, a bandwidth of 0.25, and at mean values of the regressors, µ =

(1, 1, 1, 1). The size of the test is 0.03, and the power is displayed at the following alternatives:

λ 10 15 17.5 20 22.5 25 30

% Population not Rational 0.041 0.250 0.443 0.647 0.822 0.928 0.996

Power 0.120 0.280 0.410 0.590 0.770 0.900 0.970
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Figure 1 in the appendix gives a graphical representation of these results, as function of λ,

while fig.2 displays the power as a function of the proportion of the population that violates

rationality. If we increase the bandwidth somewhat, the results do not change significantly,

however, eventually the power decreases. In contrast, the results are sensitive to the choice of

bandwidth in the sense that we get size distortions if we choose too small a bandwidth, more

precisely, the size becomes 0.110. The following table shows the result of decreasing h from

0.25 to 0.2.

λ 10 15 17.5 20 22.5 25 30

% Population not Rational 0.041 0.250 0.443 0.647 0.822 0.928 0.996

Power 0.190 0.310 0.390 0.580 0.770 0.880 0.940

The results are graphically compared in fig. 3 in the appendix. Finally, to show the consistency

of the test, we display the result with n = 6000. At the now somewhat smaller bandwidth of

h = 0.2, we obtain a size of 0.04 and the following results on power:

λ 10 15 17.5 20 22.5 25 30

% Population not Rational 0.041 0.250 0.443 0.647 0.822 0.928 0.996

Power 0.240 0.380 0.530 0.640 0.800 0.910 0.980

A graph showing again the increase in power is displayed in fig. 4 in the appendix. Obviously

the test exhibits power and is consistent. Moreover, the power should also be seen in the

context that the true model is a linear random coefficient model. It is well known from the

nonseparable models literature that there is a tight connection between quantiles and nonlinear

models with one monotonic heterogeneity factor, a class of models that is very different from

our DGP. Finally, note, that these deviations from rationality are rather mild; even amongst

the non rational people most of the individuals exhibit small positive values of the Slutsky

matrix. It is easy to design Monte Carlo experiments in which a larger positive eigenvalue of

a small fraction of the population would generate even more power for our test, however, we

do not believe that this represents a feature of our application, and hence desist from doing so

here. In summary, we would also not expect that our test exhibits too much power against this

specification, and the results appear reasonable.

However, this specification of the DGP allows easier comparison with standard practise, without

which our results are hard to interpret. Since, to the best of our knowledge, there is no work

which even mildly resembles what we propose, we compare our approach with a stylized version

of standard parametric methods in this setup. Specifically, we run a parametric regression using

a FGLS approach. Given our setup, the FGLS estimator incorporates the entire information
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about the model, as it is the ML estimator4. We then compute the largest eigenvalue of the

Slutsky matrix, say, χ̂. Finally, we implement a bootstrap procedure to obtain standard errors,

which is appropriate if there is no multiplicity of eigenvalues. The point estimate of the largest

eigenvalue for λ = 17.5 is −0.871, with 95% confidence interval [−1.189;−0.549]. For λ = 22.5,

the point estimate is 3.809, with 95% confidence interval [3.480; 4.129]. To perform a one

sides test, we moreover construct critical values CV = 2χ̂−Q(.95, Fχ̂∗−χ̂), where Q(.95, Fχ̂∗−χ̂)

denotes the 95% quantile of Fχ̂∗−χ̂. For λ = 17.5, we obtain an average CV = −1.193, and zero

rejections, whereas for λ = 22.5, we obtain an average CV = 3.488 with universal rejections.

Standard practise would hence not reject, if 45% of the population is not rational and always

reject with 80% nonrational individuals.

An interesting conclusion out of this comparison is that standard practise in parametric models

picks up deviations from rationality only if it has finally an impact on the mean. In contrast, our

test exhibits power already if the fraction of the population being not rational is rather small

(e.g., with 4% non rational individuals and n = 6000, a typical size in a cross section application,

we reject one quarter of times). Rather than significant parts of the population being wildly

non rational, we believe that at best parts of the population deviate from rationality in a rather

mild fashion, and given the simulation results we feel comfortable that our test will be able to

detect these deviations in an application, at least if we perform it at a large set of independent

positions. Let us therefore now turn to such an application.

5 Empirical Implementation

In this section we discuss all matters pertaining to the empirical implementation: We give a brief

sketch of the econometrics methods, an overview of the data, mention some issues regarding

the econometric methods, and present the results.

5.1 Econometric Specifications and Methods

5.2 Data

The data used in this paper come from the following public use sources: (1) the Canadian

Family Expenditure Surveys 1969, 1974, 1978, 1982, 1984, 1986, 1990, 1992 and 1996; (2) the

Surveys of Household Spending 1997, 1998 and 1999; and (3) Pendakur (1999). Price and

expenditure data are available for 12 years in 5 regions (Atlantic, Quebec, Ontario, Prairies

4We are indebted to Dennis Kristensen for this suggestion
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and British Columbia) yielding 60 distinct price vectors. Prices are normalized so that the

price vector facing residents of Ontario in 1986 is (1, ..., 1). The data is hence a repeated cross

section; every individual is only sampled once.

Table 4 gives (unweighted) summary statistics for 6952 observations of rental-tenure unattached

individuals aged 25-64 with no dependents. Estimated nonparametric densities (not reported,

but available from the authors) for log-prices and log-expenditures are approximately normal,

as is typically found in the demand literature. Analysis is restricted to these households to mini-

mize demographic variation in preferences. Demographic variation could be added to the model

by conditioning all levels, log-price derivatives and log-expenditure derivatives on demographic

covariates. Rather than pursue this strategy, we use a sample with very limited demographic

variation. Haag, Hoderlein and Pendakur (2009) do not find evidence of endogeneity in this

data set; we hence do not pursue any control function strategy in this paper (even though it

would be straightforward given the theoretical results).

The empirical analysis uses annual expenditure in four expenditure categories: Food at home,

Food Out, Rent and Clothing. This yields three independent expenditure share equations which

depend on 4 prices and expenditure. These four expenditure categories account for about half

the current consumption of the households in the sample in total, and are henceforth called

“Total Expenditure”. Estimation of this sub-demand system is only valid under the assumption

of weak separability of the included four goods from all the excluded goods. As is common

in the estimation of consumer demand, we invoke weak separability for the estimation that

follows, but do not test it.

Table 1: The Data Min Max Mean Std Dev

Expenditure Shares Food at Home 0.02 0.84 0.23 0.11

Food Out 0.00 0.75 0.11 0.10

Rent 0.01 0.97 0.54 0.14

Clothing 0.00 0.61 0.12 0.09

Total Expenditure 640 40270 8596 4427

Prices Food at Home 0.2436 1.4000 1.0095 0.315

Food Out 0.2328 1.7050 1.1260 0.412

Rent 0.2682 1.4423 0.9312 0.321

TotExp in 10K$ 0.0640 4.0270 0.8600 0.428
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As another descriptive means to characterize the data, we report the results of three log-log

mean regressions. In our framework, the coefficients do at best reflect some averages of effects

(in the case of endogeneity, not even this is warranted), and are only meant to be informative,

as well as provide consistency checks for the data.

Table A.1 reports the result of the regression of log food in on the four log prices and log total

expenditure. The own price elasticity is around -1, which is in line with reported results for

other good (e.g., gasoline, see Hausman and Newey (1995)). Food in and food out are strong

substitutes, as is to be expected, while the substitution patterns with the other goods are much

less pronounced. In fact, if anything, rent and food in seem to be complements; a fact that

may be related to a common lifestyle. Finally, the rather low total expenditure elasticity is

also well documented in other studies, see Lewbel (1999) for an overview. It is shared by other

necessities, e.g., gasoline (Hausman and Newey (1995)). Given the large number of observations,

the estimates are fairly precise.

The other two regressions mirror these findings. Food out is less of a necessity than food in,

consequently, its own price elasticity is larger in absolute values, see table A.2. Moreover,

there is only a very weak relationship between food out and rent, which is confirmed by both

regressions in tables A.2 and A.3. In both instances, the total expenditure elasticities are larger

in absolute value, which is not surprising given that satiation is less of an issue with food out

and rent, which consequently have more of a luxury character. The own price elasticities are

both solidly negative and dominate in absolute value.

Linear quantile regressions essentially reproduce these results. As an example, we have included

the median regression of food out on the same variable in table A.4. Obviously, the results

are very comparable. The variations across quantiles are also surprisingly low. In particular,

the dominant negative diagonal in the Slutsky matrix is well preserved throughout the range

of quantiles. Though our analysis is nonparametric, uses levels as opposed to logarithms, and

considers the compensated as opposed to the uncompensated price effect matrix, the descriptive

results foreshadow our main finding: the data are largely consistent with the Slutsky matrix

being negative semidefinite across the population.

5.3 Methodology and Results

As discussed in previous sections, we consider the statistic Rn defined in (3.3), where for the

kernel quantile estimator we use a product of standard Epanechnikov kernels. The bandwidth

is selected by using a slightly larger bandwidth than the bandwidth that was selected by cross

validation of the corresponding nonparametric median regression, to account for the fact that
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we largely use derivatives. More specifically, we scaled the individual bandwidths for every

dimension by dividing through the standard deviation of the respective regressor, i.e., the

bandwidth for dimension j is of the form hj = hσWj
, and h was selected by cross validation

to be 0.85. Given that features of the simulation were chosen to coincide with the data, this

suggests that the model deviates significantly from the random coefficient model with normally

distributed coefficients; if we force the bandwidth to be closer to zero we obtain very unstable

behavior.

Standard errors were obtained via the bootstrap, as described in section 3, the bandwidth we

used was slightly smaller than the one used in estimation (by a factor of 0.8). We have used

100 bootstrap replications, the grid of bs was selected as in section 4, and we have evaluated

all quantile regressions at the same equally spaced grid of 15 support points, i.e., the set A =

{0.05, ...., 0.95} of quantiles of Y (b), for every b satisfying the above normalization condition.

Moreover, we impose homogeneity of degree zero, which means that we work with three relative

prices (relative to clothing), and with normalized total expenditure.

When we apply this machinery to the data, we obtain the following results: On a grid of 64

values of w whose outer limits contain roughly 95% of the population in terms of W , the point

estimates for Tn(α, b | w) are largely negative, with only three insignificant exceptions. The

point estimates range from −5.166 to 2.874, with a mean of −1.472 and a median of −1.638.

Most of the values are clustered around −1.5. Table 2 provides results at selected values of W .

Table 2: Results Values of W Tn Tn − cγ
(1.1, 1.1, 1.1, 1.0) −0.979 −5.602

(0.7, 1.1, 1.1, 1.0) −3.766 −13.753

(1.3, 1.1, 1.1, 1.0) −1.653 −8.029

(1.1, 0.7, 1.1, 1.0) −0.403 −5.112

(1.1, 1.3, 1.1, 1.0) −1.64 −8.294

(1.1, 1.1, 0.7, 1.0) +2.224 −3.467

(1.1, 1.1, 1.3, 1.0) −1.672 −8.559

(0.9, 0.9, 0.9, 1.0) −1.828 −8.199

(1.3, 0.7, 0.7, 1.0) +2.874 −3.105

(0.7, 0.7, 0.7, 1.0) −0.924 −13.074

These affirmative results are then corroborated if we employ our formal analysis, as outlined

and analyzed above and in the finite sample exercise. In particular, neither of the three positive
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values is significantly positive, the difference Tn − cγ is always below −2.8. Given the results

we can of course not reject rationality at any of the subpopulations (i.e., values of independent

variables) considered. Since we can think of these positions as being asymptotically indepen-

dent, even with rather small fraction of the population we would expect occassional violations

of rationality. The fact that these almost never occur allows us to reach the conclusion that

rationality is widely accepted in this data set.

6 Summary and Outlook

Rationality of economic agents is the central paradigm of economics. Yet, within this paradigm

individuals can vary widely in their actual behavior; only the qualitative properties of individual

behavior are constrained, but not the heterogeneity across individuals. Indeed, in many data

sets there are large differences in observed consumer choices even for individuals which are

equal in terms of their observed household covariates, like age, gender, educational background

etc.

One of the core qualitative restrictions of Economics is the negative semidefiniteness of the

Slutsky matrix. It is the core restriction arising out of (static) utility maximization subject

to a linear budget constraint. This paper discusses how to test this property using the entire

conditional distribution of the data when individuals are assumed to be rational, but other-

wise are allowed to be completely different from each other. The key insight is that quantile

regressions based on linear combinations of the original dependent variables may be used to

test the property of interest. While some of the insights of this paper may be generalized to

related questions like omission of variables in system of equations (e.g., supply and demand

systems), our focus in this paper remains on negative semidefiniteness. We derive the large

sample behavior of the specific test statistic we consider, and analyze its small sample behavior

in a simulation study.

Our empirical findings emphasize the affirmative tendency in the studies of rationality in Blun-

dell, Pashardes and Weber (1993), Hoderlein (2010), and Haag, Hoderlein and Pendakur (2009).

Using Canadian data, we find negative semidefiniteness to be widely accepted. As a caveat,

we have seen from the simulation study that the test may not detect very small fractions of

irrational individuals in the population. While this may be a minor issue given the large set

of independent conditions we are considering, it should nevertheless be seen as encouragement

to perform a similar analysis with other data sets. Also, it may be interesting to search for

semiparametric structures, e.g., random coefficient models that allow to test negative semidef-

initeness in a heterogeneous population with tests of higher power. Similarly, the structure of
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panel data may be exploited with new models that are either more efficient due to a repeated

observations structure, or less prone to model misspecification as they allow for correlated time

invariant factors. We hope that this research will encourage future work in this direction.
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Appendix

Appendix I - Log-Log Regressions

Table A.1: Standard log-log Regression, Dependent Variable Food in, OLS estimates

Coefficient Standard Error t-Value p-Value

intercept 2.77650 0.01299 213.733 < 0.000001

log price food in −1.06962 0.09856 −10.852 < 0.000001

log price food out 1.02478 0.12840 7.981 < 0.000001

log price rent −0.38870 0.04568 −8.509 < 0.000001

log price clothing −0.57160 0.13624 −4.195 < 0.000001

log total expenditure 0.53954 0.01653 32.635 < 0.000001

R2 0.195

adjusted R2 0.194

d.o.f. 5793
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Table A.2: Standard log-log Regression, Dependent Variable Food Out, OLS estimates

Coefficient Standard Error t-Value p-Value

intercept 2.49445 0.02295 108.673 < 0.000001

log price food in 1.01379 0.17415 5.821 < 0.000001

log price food out −1.64400 1− 0.22688 −7.246 < 0.000001

log price rent −0.05472 0.0807 −0.678 0.4980145

log price clothing −1.37527 0.24074 −5.713 < 0.000001

log total expenditure 1.73781 0.02921 59.490 < 0.000001

R2 0.4176

adjusted R2 0.4171

d.o.f. 5793
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Table A.3: Standard log-log Regression, Dependent Variable Rent, OLS estimates

Coefficient Standard Error t-Value p-Value

intercept 3.913712 0.008012 488.461 < 0.000001

log price food in −0.229934 0.060790 −3.782 0.000157

log price food out −0.009231 0.079195 −0.117 0.907214

log price rent −0.737412 0.028174 −26.173 < 0.000001

log price clothing 0.326560 0.084032 3.886 0.000103

log total expenditure 0.927734 0.010197 90.982 < 0.000001

R2 0.604

adjusted R2 0.603

d.o.f. 5793
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Table A.4: Linear Quantile log-log Regression, Dependent Variable Food Out, Median

Coefficient Standard Error t-Value p-Value

intercept 2.61447 0.02739 95.46997 < 0.000001

log price food in 1.03697 0.21259 4.87776 < 0.000001

log price food out −1.65577 0.28291 −5.85254 < 0.000001

log price rent −0.04897 0.09972 −0.49107 0.62340

log price clothing −1.48867 0.29715 −5.00975 < 0.000001

log total expenditure 1.84493 0.03762 49.03717 < 0.000001
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Appendix II - Assumptions

Regularity Conditions for Theorem 1

Assumption 3. For fixed values (p∗, x∗, z∗) ∈ P × X × Z and 0 < α < 1 we will make use of

the following assumptions:

(i) The conditional distribution of Y (b) given (P,X,Z) is absolutely continuous w.r.t. the

Lebesgue measure for (p, x) in a neighborhood of (p∗, x∗) and for z = z∗.

(ii) The conditional density fY (b)|PXZ(y|p, x, z∗) of Y (b) given (P,X,Z) is continuous in (y, p, x)

at the point (kα(w∗; b), w∗).

(iii) The conditional density fY (b)|PXZ(y|w∗, z∗) of Y (b) given W = w∗ is bounded in y ∈ R.

(iv) Let w1 = (p′, x)′. kα(w1, z; b) is partially differentiable with respect to any component of

w1 at (w1, z) = (w∗1, z
∗). Moreover, there exist measurable functions ∆k, k = 1, .., L, satisfying

P[|φ(w∗1k + δ, w∗−1k, z
∗, A)− φ(w∗1, z

∗, A)− δ∆k(A)| ≥ εδk | X = x∗] = o(δk)

for δk → 0 and fixed ε > 0. We write ∂w1k
φ(w∗1, z

∗, a) for ∆k(a) and ∂wkφ for ∆k(A), for all

k = 1, .., L.

(v) The conditional distribution of (Y (b), ∂w1k
φ), given (P,X,Z), is absolutely continuous w.r.t.

the Lebesgue measure for (p, x, z) = (p∗, x∗, z∗) and all (b, k). For the conditional density

fY (b),∂w1k
φ|PXZ of (Y (b), ∂w1k

φ) given (P,X,Z), we require that fY (b),∂w1k
φ|PXZ(y, y′|p∗, x∗, z∗) ≤

Cg(y′), where C is a constant and g a positive density on R with finite mean (i.e.
∫
|y′|g(y′) dy′ <

∞).

Assumptions for Theorem 2

Assumption 4. In the following let A denote a closed subset of (0, 1) and SL−1 = {b ∈ RL−1 |
||b|| = 1}. Let W ⊂ RL denote the support of W = (P,X) and let w ∈ W be fixed. Let

FY (b)|W (· | w̃) and fY (b)|W (· | w̃) denote the conditional distribution and density functions of

Y (b) = b′Y , given W = w̃, respectively. For δ > 0, M > 0, let Cδ
M(W) denote the class of

smooth functions with partial derivatives up to order δ (the greatest integer smaller than δ)

uniformly bounded by M , whose highest partial derivatives are Lipschitz continuous of order

δ − δ [see van der Vaart and Wellner (1996), p. 154/155]. We will make use of the following

assumptions:

(i) Let K be an L-variate product kernel of the univariate bounded symmetric density κ with

bounded support such that
∫

R κ(u)u2 du <∞.

(ii) Let h = hn denote a sequence of positive bandwidths such that nhL(1+ 1
L+5

) −→ ∞,

nhL+6 −→ 0 for n→∞.
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(iii) Let W be compact and convex and let the density fW of W be bounded away from zero

in a neighborhood N of w and be bounded and continuous. Let the second moments of W exist.

(iv) Assume that the function A× SL−1 → R, (α, b) 7→ k(α, b | w) is bounded by a constant C

and uniformly continuous.

(v) For each fixed w̃ ∈ W let the function A × SL−1 → R, (α, b) 7→ FY (b)|W (k(α, b | w) | w̃) be

continuous. Assume that there exist M > 0 and δ > L
2

such that for all c ∈ R, |c| ≤ C the

function W → R, w̃ 7→ FY (b)|W (c | w̃) belongs to Cδ
M(W). Let the function (y, w̃) 7→ fY (b)|W (y |

w̃) be uniformly continuous in y and w̃ and be bounded and bounded away from zero. Further

assume that inf(α,b,w̃)∈A×SL−1×N fY (b)|W (k(α, b | w̃) | w̃) > 0 .

Appendix III - Proof of Theorem 1

Let A(ω), ω ∈ Ω, denote any random matrix. If b′A(ω)b ≤ 0 for all ω ∈ Ω and all b ∈ RL, then,

upon taking expectations w.r.t. an arbitrary probability measure F, it follows that∫
b′A(ω)bF (dω) ≤ 0⇔ b′

∫
A(ω)F (dω)b ≤ 0, for all b ∈ SL−1.

From this, S(p, x, u) nsd ⇒ E [S|P = p,X = x, Z = z, Y (b) = k(α, b|w)] nsd for all (p, x; z) ∈
P × X × Z is immediate. Let E [S|P,X,Z, Y (b)] = B, and note that since the definition of

negative semidefiniteness of a square matrix B of dimension L− 1 involves the quadratic form,

b′Bb ≤ 0. Next, observe that

B = E [S|P = p,X = x, Z = z, Y (b) = k(α, b|w)]

= E [Dpφ|P = p,X = x, Z = z, Y (b) = k(α, b|w)]

+E [∂xφφ
′|P = p,X = x, Z = z, Y (b) = k(α, b|w)]

= B1 +B2,

as well as

b′B1b = b′E [Dpφ|P = p,X = x, Z = z, Y (b) = k(α, b|w)] b

= E [∇pη|P = p,X = x, Z = z, Y (b) = k(α, b|w)] b

= ∇pk(α, b|w)′b,
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where η = φ′b and the last equality follows from the theorem in Hoderlein and Mammen (2007).

Moreover, by arguments as above

b′B2b = E [b′∂xφφ
′b|P = p,X = x, Z = z, Y (b) = k(α, b|w)]

= E [∂xηη|P = p,X = x, Z = z, Y (b) = k(α, b|w)]

= E [∂xη|P = p,X = x, Z = z, Y (b) = k(α, b|w)] k(α, b|w)

= ∂xk(α, b|w)k(α, b|w),

where the second to last equality follows from Y (b) = η and the last equality again from

Hoderlein and Mammen (2007). Using the definition of negative semidefiniteness,

b′ (B1 +B2) b ≤ 0,

we obtain,

∇pk(α, b|w)′b+ ∂xk(α, b|w)k(α, b|w) ≤ 0

and the result follows. �

Appendix IV - Proof of Theorem 2

Auxiliary results

Lemma 6.1. Uniformly with respect to α ∈ A, b ∈ SL−1 we have
√
nhL+2

(
Rn(·, · | w)−R(·, · | w)

)
= R̃n + op(1),

where

R̃n(α, b) =
√
nhL+2

( L−1∑
`=1

b`(k̂p`(α, b | w)−kp`(α, b | w))+(k̂x(α, b | w)−kx(α, b | w))k(α, b | w)
)
.

Proof of Lemma 6.1. The assertion follows from uniform consistency of the estimator k̂x(α, b |
w) and

sup
α,b
|k̂(α, b | w)− k(α, b | w)| = op(

1√
nhL+2

).

�

Lemma 6.2. (Bahadur expansion) Uniformly with respect to α ∈ A, b ∈ SL−1 we have

R̃n(α, b) = − 1√
nhL+2

1

fY (b)|P,X(k(α, b | w) | w)fW (w)
∫
u2κ(u) du

n∑
i=1

K
(Wi − w

h

)(
I{Yi(b) ≤ k(α, b | w)} − FY (b)|W (k(α, b | w) | Wi)

)
×
[
b′(Pi − p) + k(α, b | w)(Xi − x)

]
+ op(1).
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Proof of Lemma 6.2. Obviously it is sufficient to prove the representation for k̂p`(α, b | w)−
kp`(α, b | w), ` = 1, . . . , L− 1, and k̂x(α, b | w)− kx(α, b | w))k(α, b | w) in the representation of

R̃n(α, b) in Lemma 6.1, and the assertion of the Lemma follows by building linear combinations.

For the sake of brevity, we restrict ourselves to the first component of the vector P ; all other

cases are treated in the same way.

Using similar arguments as in the proof of Theorem A.1 by Hoderlein and Mammen (2009) we

obtain the expansion

R(1)
n (α, b) =

√
nhL+2(k̂p1(α, b | w)− kp1(α, b | w)

= − 1√
nhL+2

1

fY (b)|P,X(k(α, b|w)|w) fW (w)
∫
u2κ(u)du

×
n∑
i=1

K(
Wi − w

n
) {I{Y ∗i (b) < 0} − α} (P1i − p1) + op(1)

uniformly with respect to α ∈ A, b ∈ SL−1, where P1i denotes the first component of the vector

Pi (i = 1, . . . , n) and the random variables Y ∗i (b) are defined by Y ∗i (b) = Yi(b)− ki(α, b|w) with

ki(α, b, w) = k(α, b|w)−∇w k(α, b|w)(Wi − w)− 1

2
(Wi − w)T∇ww k(α, b|w)(Wi − w) .

This yields the decomposition

R(1)
n (α, b) = − S1,n(α, b) + S2,n(α, b) + S3,n(α, b)

fY (b)|P,X(k(α, b|w)|w)fW (w)
∫
u2κ(u)du

, (6.1)

where

S1,n(α, b) =
1√
nhL+2

n∑
i=1

K(
Wi − w

h
)(P1i − p1)

{
I{Yi(b) < k(α, b|w)} − P(Yi(b) < k(α, b|w)|Wi)

}
S2,n(α, b) =

1√
nhL+2

n∑
i=1

K(
Wi − w

h
)(P1i − p1)

{
[ I{Y ∗i (b) < 0} − I{Yi(b) < k(α, b|w)}]

−[P(Y ∗i (b) < 0|Wi)− P(Yi(b) < k(α, b|w)|Wi)]
}

S3,n(α, b) =
1√
nhL+2

n∑
i=1

K(
Wi − w

h
)(P1i − p1){P(Y ∗i (b) < 0|Wi)− α} .

Obviously we have E[S2,n(α, b)] = 0 and for the variance of this random variable we obtain by

a straightforward but tedious calculation

V ar(S2,n(α, b)) ≤ 1

hL+2
E
[
K2(

Wi − w
h

)(P1i − p1)
2E[(I{Y ∗i (b) < 0} − I{Yi(b) < k(α, b|w)})2|Wi]

]
≤ 1

hL+2
E
[
K2(

Wi − w
h

)(P1i − p1)
2
∣∣∣FY (b)|W (k(α, b|w)|Wi)− FY (b)|W (ki(α, b|w)|Wi)

∣∣∣]
= O(h3),
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which shows that S2,n(α, b) = op(1) for all (α, b). Moreover, the centered process S2,n can be

represented as

S2,n(α, b) =
1√
n

n∑
i=1

ϕn,α,b(Wi, Yi),

where with the same methods as in the proof of Theorem 2 below the class of functions Fn =

{ϕn,α,b | (α, b) ∈ A×SL−1} can be embedded into a class F̃n = {ϕ̃n,c | c ∈ C} which is Donsker

in the sense that the process

Sn(c) =
1√
n

n∑
i=1

ϕ̃n,c(Wi, Yi), c ∈ C,

weakly converges to a Gaussian process S(c), c ∈ C. Hence, weak convergence also follows for

the restricted function class, i. e. for S2,n(α, b), (α, b) ∈ A× SL−1. However, as we have shown

that S2,n(α, b) = op(1) for all (α, b) ∈ A×SL−1, the limit is degenerate and uniform convergence

follows, i. e.

sup
(α,b)∈A×SL−1

|S2,n(α, b)| = op(1).

Similarly, it follows for the term S3,n(α, b) (note that P(Yi(b) < k(α, b|Wi)|Wi) = α)

E[S3,n(α, b)] = O(
√
nhL+6) = o(1) ; V ar(S3,n(α, b)) = O(h6) = o(1)

which shows that S3,n(α, b) = op(1) for all (α, b). Uniform convergence, i. e. sup(α,b)∈A×SL−1

|S2,n(α, b)| = op(1), can be shown with the same arguments as before.

Therefore we obtain from (6.1) that

R(1)
n (α, b) = −

∑n
i=1K(Wi−w

h
)(P1i − p1){I{Yi(b) < k(α, b|w)} − FY (b)|W (k(α, b|w)|Wi)}√
nhL+2fY (b)|P,X(k(α, b|w)|w)fW (w)

∫
u2κ(u)du

+ op(1) ,

uniformly with respect to (α, b), and a similar argument for the remaining terms in R̃n(α, b)

yields the assertion of Lemma 6.2. �

Proof of Theorem 2 Consider for fixed w the process

R̄n(α, b) =
1√
n

n∑
i=1

ϕn,α,b(Wi, Yi)

where

ϕn,α,b(W,Y ) =
1

h(L+2)/2
K
(W − w

h

)(
I{b′Y ≤ k(α, b | w)} − FY (b)|W (k(α, b | w) | W )

)
×
[
b′(P − p) + k(α, b | w)(X − x)

]
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such that

R̃n(α, b) = − 1

fY (b)|P,X(k(α, b | w) | w)fP,X(w)
∫
u2κ(u) du

R̄n(α, b) + op(1)

Consider the function class

Fn = {ϕn,α,b | α ∈ A, b ∈ SL−1}.

Under our assumptions, k(α, b | w) is bounded. Hence, Fn is a subclass of Gn −Hn defined as

follows,

Gn =
{

(W,Y ) 7→ 1

h(L+2)/2
K
(W − w

h

)
I{Y ∈ H}c′(W − w)

∣∣∣ H halfspace in RL−1, c ∈ RL,

||c|| ≤ C
}

Hn =
{

(W,Y ) 7→ 1

h(L+2)/2
K
(W − w

h

)
ϕ(W )c′(W − w)

∣∣∣ ϕ ∈ Cδ
M(W), c ∈ RL, ||c|| ≤ C

}
for some suitable C > 0. Let s denote a constant such that ||W − w|| ≤ s with probability 1

(under our assumptions the support of the covariates W is bounded).

The classes G1 = {Y 7→ I{Y ∈ H} | H halfspace in RL−1} and G2 = {W 7→ c′(W − w) |
c ∈ RL, ||c|| ≤ C} are VC-classes with (under our assumptions) constant envelopes G1 ≡ 1,

G2 ≡ Cs and VC-dimension L+1 and L+2, respectively, see van der Vaart and Wellner (1996),

Problem 14, p. 152, and Lemma 2.6.15, p. 146. Hence, from Theorem 2.6.7, van der Vaart and

Wellner (1996), p. 141, we obtain the following result for covering numbers,

sup
Q
N(ε,G1, L2(Q)) ≤ d1ε

−2L, sup
Q
N(εCs,G2, L2(Q)) ≤ d2ε

−2(L+1)

for constants d1, d2 not depending on the arbitrary distribution Q of (W,Y ) (such that second

moments exist), nor on ε.

From Kosorok (2008), proof of Theorem 9.15, p. 158, it follows for the covering number of the

product class G1G2 with envelope Cs that

sup
Q
N(εCs,G1G2, L2(Q)) ≤ sup

Q
N
( ε

2
,G1, L2(Q)

)
sup
Q
N
( ε

2
Cs,G2, L2(Q)

)
≤ d1d2(

ε

2
)−2(2L+1).

Now, for

gn(Y,W ) =
1

h(L+2)/2
K
(W − w

h

)
we have Gn = gnG1G2 with envelope Gn = gnCs and again from Kosorok (2008), proof of

Theorem 9.15., it follows that

sup
Q
N(ε||gn||Q,2Cs,Gn, L2(Q)) ≤ sup

Q
N(εCs,G1G2, L2(Q)) ≤ d1d2(

ε

2
)−2(2L+1).
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Hence, it follows that∫ δn

0

sup
Q

√
logN(ε||Gn||Q,2,Gn, L2(Q)) dε −→ 0 for δn → 0, n→∞.

Similarly, the same can be shown for the class Hn where we use the same argumentation as

before with gn and G2 as before, but G1 = Cδ
M(W) with constant envelope M , such that the

covering number fulfills

sup
Q

logN(ε,G1, L2(Q)) ≤ d
(1

ε

)L/δ
,

see van der Vaart and Wellner (1996), Theorem 2.7.1, p. 155.

Altogether, we obtain∫ δn

0

sup
Q

√
logN(ε||Fn||Q,2,Fn, L2(Q)) dε −→ 0 for δn → 0, n→∞.

for the function class Fn, which is a subclass of Gn −Hn, see Lemma 9.14 Kosorok (2008) and

Lemma 16 by Nolan and Pollard (1987), where the envelope is defined as

Fn(W,Y ) =
2C

hL/2
K
(W − w

h

) ||W − w||
h

.

Let P denote the distribution of (W,Y ) under the assumptions listed in A4. Then,

PF 2
n = E[Fn(W,Y )2] =

2C

hL

∫
RL
K2
(t− w

h

)∣∣∣∣∣∣t− w
h

∣∣∣∣∣∣2fW (t) dt

= 2C

∫
RL
K2(u)||u||2fW (w + hu) du = O(1).

Similarly, one has PF 2
nI{Fn ≥ η

√
n} → 0 for every η > 0 applying nhL →∞.

It remains to show that

sup
||b−b̃||≤δn
|α−α̃|≤δn

P(ϕn,α,b − ϕn,α̃,b̃)
2 −→ 0 for every δn → 0, n→∞.

A straightforward estimation yields for ||b− b̃|| ≤ δn, |α− α̃| ≤ δn, δn → 0,

P(ϕn,α,b − ϕn,α̃,b̃)
2

≤ 2E
[ 1

hL+2
K2
(W − w

h

)(
(b− b̃′(P − p) + (k(α, b | w)− k(α̃, b̃ | w))(X − x)

)2]
+ E

[ 1

hL+2
K2
(W − w

h

)(
I{Y (b) ≤ k(α, b | w)} − I{Y (b̃) ≤ k(α̃, b̃ | w)}

− FY (b)|W (k(α, b | w) | W ) + FY (b̃)|W (k(α̃, b̃ | w) | W )
)2

C2||W − w||2
]

≤ 4
(
δ2
n + sup

||b−b̃||≤δn
|α−α̃|≤δn

(k(α, b | w)− k(α̃, b̃ | w))2
)
E
[ 1

hL
K2
(W − w

h

) ||W − w||2
h2

]
+ 4E

[ 1

hL
K2
(W − w

h

)C2||W − w||2

h2

∣∣∣FY (b)|W (k(α, b | w) | W )− FY (b̃)|W (k(α̃, b̃ | w) | W )
∣∣∣]

= o(1).
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Then weak convergence of the (centered) process R̄n to a Gaussian process follows from Theorem

2.11.22 in van der Vaart and Wellner (1996), p. 220.

The calculation of the covariance structure is straightforward and therefore omitted. �
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Figure 3
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