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Abstract

This paper considers the problem of estimating a change point in the covariance

matrix in a sequence of high-dimensional vectors, where the dimension is substantially

larger than the sample size.

A two-stage approach is proposed to efficiently estimate the location of the change

point. The first step consists of a reduction of the dimension to identify elements

of the covariance matrices corresponding to significant changes. In a second step we

use the components after dimension reduction to determine the position of the change

point. Theoretical properties are developed for both steps and numerical studies are

conducted to support the new methodology.

Keywords: High-dimensional covariance matrices; change point analysis; dimension

reduction.

1 Introduction

Change point detection has a long history having it origins in quality control [see Wald (1945)

or Page (1954, 1955) for early references] and it has been an active field of research until

today since the phenomena of sudden changes arise in various areas, such as financial data

(house market, stock), signal processing, genetic engineering, seismology, machine learning.

In the last decades numerous authors have worked on this problem from several perspectives

including the construction of tests for the hypotheses of the existence of change points and

the estimation of their locations. We refer to Aue and Horváth (2013) and Jandhyala et al.

(2013) for some recent reviews on this subject.

An important problem in the detection of structural breaks in multivariate data is the

detection of changes in a sequence of means. Chu et al. (1996), Horváth et al. (1999),
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Horváth and Hus̆ková (2012) and Kirch et al. (2015) investigated this problem using different

variants of CUSUM statistics. More recently, the high-dimensional case (dimension larger

than the sample size) has been discussed by several authors as well. Jirak (2015) considered

a maximum of statistics across panels coordinate-wise to test the hypothesis of at least one

change point in a sequence of high dimensional mean vectors [see also Dette and Gösmann

(2017) who studied relevant changes in this context]. Cho and Fryzlewicz (2015) suggested

sparsified binary segmentation for this problem, while Cho (2016) investigated a double

CUSUM approach transferring - roughly speaking - the high-dimensional data to a univariate

CUSUM statistic. We also mention the work of Enikeeva and Harchaoui (2014), who looked

at the problem under sparse alternatives and Wang and Samworth (2018), who considered

the situation, where at certain time points, the mean structure changes in a sparse subset

of the coordinates.

While substantial effort has been spent on change point analysis for the multivariate

mean, the problem of detecting structural breaks in the covariance matrix has not been

studied so intensively in the literature. For a fixed dimension, say p, Aue and Horváth

(2013) developed nonparametric change point analysis based on the well known CUSUM

approach. Dette and Wied (2016) proposed a general approach to detect relevant change

points in a parameter of a time series. In an online supplement to this paper a test for

a relevant change in the covariance matrix is proposed, where the dimension is also fixed.

Recently, Kao et al. (2018) considered the case where the dimension is increasing with the

sample size and demonstrated by means of a simulation study that tests of stability of the

whole covariance matrix have severe size distortions. As an alternative they proposed and

investigated change point analysis based on PCA. In an unpublished preprint Avanesov

and Buzun (2016) also looked at the high-dimensional setting and suggested a multiscale

approach under sparsity assumptions, while Wang et al. (2017) considered the problem of

detecting multiple change points in the situation p = O(n/ log n) (here n is the sample size)

and investigated optimality properties of the binary segmentation [see Vostrikova (1981)]

and the wild binary segmentation algorithm [see Fryzlewicz (2014)] for localising multiple

changes points in a sequence of high dimensional covariance matrices.

The purpose of the present paper is to propose an alternative estimator of the change

point in a sequence of very high dimensional covariance matrices and to investigate its the-

oretical and empirical properties, where we do not impose any sparsity assumptions on the

matrices. To be precise, suppose that x1, · · · ,xk0 ,xk0+1, · · · ,xn are p-dimensional obser-

vations with common mean vector µ and existing covariance matrices. The parameter k0

defines the true change point in the structure of the covariance matrices. That is, the first
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k0 observations have covariance matrix Σ1 = (σ1(a, b))a,b=1,...,p ∈ Rp×p, while the last n− k0
observations have covariance matrices Σ2 = (σ2(a, b))a,b=1,...,p ∈ Rp×p and Σ1 6= Σ2. We are

interested in estimating the point k0. One difficulty in dealing with changes in the covariance

matrix is the dimensionality since there are p(p+1)/2 positions needed to be compared. This

brings in much noisy information when there are many equal components in the matrices Σ1

and Σ2, leading to a loss of accuracy in detection of the change point. Taking this consider-

ation into account, we propose to proceed in two steps to identify the change point. First,

we apply a dimension reduction technique reducing the dimension from p(p + 1)/2 in the

original problem to a substantially smaller value, say m. Roughly speaking, we only keep

the components in the analysis for which a weighted mean of the squared differences of the

covariance estimators from the samples x1, · · · ,xk and xk+1, · · · ,xn exceeds a given thresh-

old (the mean is calculated summing with respect to the different values of the potential

change points of k). Therefore our approach is vaguely related to the estimation of sparse

covariance matrices, which has found considerable attention in the literature [see Bickel and

Levina (2008), Lam and Fan (2009) or Fan et al. (2016) among many others]. However, in

contrast to this work, we do not assume a sparse structure of the covariance matrix, but

identify important components by thresholding a weighted sum of the (squared) differences

corresponding to all potential samples before and after a postulated change point. In a

second step after dimension reduction, we use a CUSUM type statistic based on the reduced

components to locate the change point.

An outline of the paper is given as follows. In Section 2, we introduce our main method-

ology – both the dimension reduction step and the detection step. In particular, a bootstrap

method is suggested to select the threshold used for the dimension reduction (see the dis-

cussion in Section 2.3). Theoretical results are developed in Section 3, where we prove that

(asymptotically) we identify all relevant components correctly and that we estimate the lo-

cation of the change k0 consistently. In Section 4 we investigate the finite sample properties

of the new method and demonstrate that it yields precise estimates of the change point in

situations, where the dimension is substantially larger than the sample size. We also provide

a comparison with two alternative methods which are most similar in spirit to our approach

and have recently been proposed in the literature. Finally, all proofs and technical details

are deferred to an appendix in Section 5.
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2 Methodology

Let x1, · · · ,xk0 ,xk0+1, · · · ,xn denote a sample of independent p-dimensional random vectors

with common mean µ and existing covariance matrices. The position k0 is the “true” change

point of the covariance matrices, i.e. the first k0 random variables x1, · · · ,xk0 have covariance

matrix Σ1 = (σ1(a, b))a,b=1,...,p ∈ Rp×p, while the last (n−k0) random variables xk0+1, · · · ,xn
have covariance matrices Σ2 = (σ2(a, b))a,b=1,...,p ∈ Rp×p and Σ1 6= Σ2. Our aim is to estimate

the location k0 of the change. For this purpose we proceed in two steps.

• Step 1 consists of a dimension reduction. If

Σ̂k
1 = (σ̂k1(a, b))pa,b=1

and Σ̂n
k+1 = (σ̂nk+1(a, b))

p
a,b=1 denote the respective estimators of the covariance ma-

trices from the data x1, . . . ,xk and xk+1, . . . ,xn, we - roughly speaking - only keep

components in the change point analysis for which the quantity

n−2∑
k=2

k(n− k)
(
σ̂k1(a, b)− σ̂nk+1(a, b)

)2
is sufficiently large.

• Step 2 consists of the detection of a change point in the data obtained after dimension

reduction. For this purpose let σ̃k1 and σ̃nk+1 denote the vectors containing all elements

of the matrices Σ̂k
1 and Σ̂n

k+1 corresponding to components which have been identified

in the first step of the procedure. Then - roughly speaking - we propose to estimate

the change point by maximizing the statistic

Ũn(k) =
∥∥(n− k)k(σ̃k1 − σ̃nk+1)

∥∥2
2

where ‖ · ‖2 denotes the Euclidean norm.

We will give a detailed explanation of these two steps in the following subsections, where the

statistics under consideration will be slightly modified. The proposed methodology depends

on a regularisation parameter, say τ , determining the amount of dimension reduction for

Step 1, and in Section 2.3 we introduce a data-driven method for choosing this threshold.

2.1 Dimension reduction

For i = 1, . . . , n denote by xi = (Xi1, · · · , Xip)
T the ith observation, let x̄ = 1

n

n∑
i=1

xi =

(X̄1, · · · , X̄p) be the sample mean and define

ẋi = xi − x̄ =
(
Ẋi1, . . . , Ẋip

)T
=
(
Xi1 − X̄1, . . . , Xip − X̄p

)T
(2.1)
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as the vector of centered observations. We introduce the following statistic

Vk =
(
Vk(a, b)

)
1≤a≤b≤p =

1

k(k − 1)

∑∑
i 6=j≤k

vech(ẋiẋ
T
i ) ◦ vech(ẋjẋ

T
j ) (2.2)

+
1

(n− k)(n− k − 1)

∑∑
i 6=j>k

vech(ẋiẋ
T
i ) ◦ vech(ẋjẋ

T
j )

− 2

k(n− k)

∑
i≤k

∑
j>k

vech(ẋiẋ
T
i ) ◦ vech(ẋjẋ

T
j ),

where “vech(H)” indicates the half-vectorization p(p + 1)/2 vector by vectorizing only the

lower triangular part of the symmetric matrixH = (H(a, b))pa,b=1 and “x◦y” is the Hadamard

product (or entrywise product) of the vectors x and y. Obviously, Vk is a p(p + 1)/2-

dimensional vector.

We first give an intuitive illustration of the motivation behind the construction of the

statistic Vk defined in (2.2), which is in fact motivated by being an approximation of the

statistic

Ṽk =
1

k2

k∑
i,j=1

vech(ẋiẋ
T
i ) ◦ vech(ẋjẋ

T
j ) +

1

(n− k)2

n∑
i,j=k+1

vech(ẋiẋ
T
i ) ◦ vech(ẋjẋ

T
j )

− 2

k(n− k)

k∑
i=1

n∑
j=k+1

vech(ẋiẋ
T
i ) ◦ vech(ẋjẋ

T
j )

=
(1

k

k∑
i=1

vech(ẋiẋ
T
i )− 1

n− k

n∑
i=k+1

vech(ẋiẋ
T
i )
)
◦
(1

k

k∑
i=1

vech(ẋiẋ
T
i )− 1

n− k

n∑
i=k+1

vech(ẋiẋ
T
i )
)
.

Note that the vector Ṽk coincides with the vector((
σ̂k1(a, b)− σ̂nk+1(a, b)

)2)
1≤a≤b≤p

of the squared (componentwise) differences of the elements of the covariance estimators

Σ̂k
1 = 1

k

∑k
i=1 ẋiẋ

T
i and Σ̂n

k+1 = 1
n−k

∑n
i=k+1 ẋiẋ

T
i . Consequently, at the “true” change point

k = k0, one can verify that Ṽk0 is an estimator of vech(Σ1−Σ2)
2, which will be used to measure

the difference between the two population covariance matrices. The difference between Ṽk

and Vk consists in the fact that in the statistic Vk we omit the terms corresponding to i = j

to eliminate the influence of the covariances of the random variables vech(ẋiẋ
T
i ).

However, in the change point problem we actually do not know the location of k0, and

we have to consider all the positions k as long as the statistic is well defined. In particular,

we obtain for the expectation of the component Vk(a, b) of the vector Vk corresponding to
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the position (a, b) in the matrices Σ1 and Σ2

EVk(a, b) =


(1− 2

n
)2(σ1(a, b)− σ2(a, b))2 if k = k0,

k0(k0−1)
k(k−1) (1− 2

n
)2(σ1(a, b)− σ2(a, b))2 if k > k0,

(n−k0)(n−k0−1)
(n−k)(n−k−1) (1− 2

n
)2(σ1(a, b)− σ2(a, b))2 if k < k0.

Note also, that the mean of Vk(a, b) always achieves the largest value

(1− 2

n
)2(σ1(a, b)− σ2(a, b))2

at the true change point position k0 because the coefficients k0(k0−1)
k(k−1) and (n−k0)(n−k0−1)

(n−k)(n−k−1) before

(1 − 2
n
)2(σ1(a, b) − σ2(a, b))2 are smaller than 1 when k 6= k0. Moreover, these coefficients

are only related to k and are not influenced by the position (a, b). Consequently, for any

fixed k, larger values of Vk(a, b) indicate a larger difference between σ1(a, b) and σ2(a, b),

thus implying a significant component. Additionally, instead of investigating each value of

k separately, we suggest a weighted sum

D =
1

n− 3

n−2∑
k=2

k(n− k)

n
Vk, (2.3)

to identify the largest components among the p(p + 1)/2 entries. The weights k(n−k)
n

are

introduced to address the different sizes of the variance of Vk for different values of k. By

selecting the largest entries in the vector D, we are able to identify the components with the

largest changes.

In view of this discussion, we conduct the dimension reduction as follows. Let D(a, b)

denote the elements of the vector D corresponding to the position (a, b) in the matrices Σ1

and Σ2. We determine all components which are larger than a critical value τ , which will be

specified in Section 2.3, define

Dτ = {(a, b) : D(a, b) > τ, 1 ≤ a ≤ b ≤ p} (2.4)

as the set of all corresponding components and denote by m = #Dτ its cardinality. In this

way, we reduce the p(p + 1)/2-dimensional vector to a vector of dimension m. In the next

step we will simply work with the m-dimensional vectors corresponding to the components

identified by the set Dτ . In Theorems 3.1 and 3.2, it will be shown that after dimension

reduction with an appropriate threshold all entries with no difference are discarded, while

all the entries with a sufficiently large difference are kept.
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2.2 Change point detection after dimension reduction

For the estimation of the change point we propose the test statistic

Un(k) =
1

n4

k∑ k∑
(i 6=t)=1

n∑ n∑
(j 6=l)=k+1

( ˙̃xi − ˙̃xj)
T ( ˙̃xt − ˙̃xl), (2.5)

where ˙̃xi is an m-dimensional subvector of vech(ẋiẋ
T
i ), only keeping the m components of

the index set Dτ defined in (2.4). Then the estimator of the change point k0 is defined by

k̂ = arg max
1≤k≤n

Un(k). (2.6)

The motivation behind the construction of Un(k) stems from the fact the statistic Un(k) is

related to a CUSUM type statistic which is frequently used in change point analysis. To be

precise, consider the CUSUM statistic

Ũn(k) =
1

n4

k∑
i,t=1

n∑
j,l=k+1

( ˙̃xi − ˙̃xj)
T ( ˙̃xt − ˙̃xl)

=
1

n4

{
(n− k)2

( k∑
i=1

˙̃xi

)T( k∑
j=1

˙̃xj

)
− 2k(n− k)

( k∑
i=1

˙̃xi

)T( n∑
j=k+1

˙̃xj

)
+k2

( n∑
i=k+1

˙̃xi

)T( n∑
j=k+1

˙̃xj

)}

=
1

n4

∥∥∥(n− k)
k∑
i=1

˙̃xi − k
n∑

j=k+1

˙̃xj

∥∥∥2
2

=
1

n4

∥∥(n− k)k(σ̃k1 − σ̃nk+1)
∥∥2
2

where ‖·‖2 denotes the usual Euclidean norm and σ̃k1 and σ̃nk+1 respectively denote the vectors

containing the elements of the covariance estimators Σ̂k
1 and Σ̂n

k+1 corresponding to positions

identified in the first step. Observing the definition of ˙̃xi and noting that the difference

Ũn(k)− Un(k) =
1

n4

k∑
i=1

n∑
j=k+1

‖ ˙̃xi − ˙̃xj‖22 +
1

n4

k∑
i=1

n∑
(j 6=l)=k+1

( ˙̃xi − ˙̃xj)
T ( ˙̃xi − ˙̃xl)

+
1

n4

k∑
(i 6=t)=1

n∑
j=k+1

( ˙̃xi − ˙̃xj)
T ( ˙̃xt − ˙̃xj)

is of smaller order than Un(k) when k is far from 1 and n, we see that the statistic Un(k)

is a CUSUM type statistic obtained from the components identified in the first step. It

is therefore related to the statistic in equation (2.12) in Aue et al. (2009), who proposed

an estimator of the change point based on a quadratic form using ALL elements of the
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difference Σ̂k
1 − Σ̂n

k+1. Note that in the definition of Un we eliminate the influence of the

covariances cov( ˙̃x
T

i
˙̃xi) by omitting terms corresponding to i = t and j = l in Ũn(k). As a

consequence, we avoid the estimation of such higher order moments.

We will show in Theorem 3.3 that - under appropriate regularity conditions - the statistic

k̂ in (2.6) is in fact a consistent estimator of the change point if the dimension and sample

size converge to infinity and the threshold is chosen appropriately. More precisely, we can

choose τ = C ·max(log p, log n) with a sufficiently large constant C and the dimension p can

be of polynomial order of the sample size n.

2.3 Selecting the threshold τ via resampling

For a data driven choice of the threshold τ we propose a bootstrap approach, which mimics

the distributional properties in the case of no change point. To be precise define

T =
(
T1, · · · ,Tn

)
=
(
vech(ẋ1ẋ

T
1 ), vech(ẋ2ẋ

T
2 ), · · · , vech(ẋnẋ

T
n )
)
∈ R

p(p+1)
2
×n,

Z =
1√
2

(
T2 −T1,T4 −T3, . . . ,T2bn

2
c −T2bn

2
c−1
)
∈ R

p(p+1)
2
×bn

2
c, (2.7)

and denote by ZT(i) the i-th row of the matrix Z, i.e.

Z =
(
Z(1), · · · ,Z(p(p+1)/2)

)T
.

For each ` = 1, · · · , p(p + 1)/2, the bn
2
c-dimensional vector Z(`) can be considered as a

combination of bn
2
c observations and we denote the empirical standard deviation of these

bn
2
c observations by o``. The construction of the matrix Z ensures that the means of its

columns are zero except for at most one position (note that the means of the columns of

T have one change point at k0), which does not have a substantial effect on the standard

deviation provided that the sample size is not too small. If the variance of the random

variables in the `th row of the matrix T is constant, it is easy to see that o2`` estimates

this variance. If this assumption is not satisfied, generally speaking, o2`` always estimates

n×Var(T̄(l)), where T̄(l) is the average of the random variables in the `th row of the matrix T.

Note that the factor 1√
2

in (2.7) reflects the fact that the matrix Z is formed from differences

of two consecutive columns of the matrix T.

In order to estimate the threshold τ let Υ denote the p(p+1)
2
× p(p+1)

2
diagonal matrix, with

entries o11, . . . , op(p+1)/2,p(p+1)/2. We generate a new data matrix Y = (yij) ∈ Rp(p+1)/2×n with

independent standard normal distributed entries and define

X∗ = ΥY.
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In other words, in the bootstrap we replace the quantities vech(ẋ1ẋ
T
1 ), . . . , vech(ẋnẋ

T
n ) by

the n columns of X∗. As a consequence the terms Ẋ1aẊ1b, . . . , ẊnaẊnb are replaced by

o``y`1, . . . , o``y`n where the random variables y`1, . . . , y`n are independent standard normal

distributed and the index ` corresponds to the position (a, b).

Next we calculate for the matrix X∗ the quantities V ∗k and D∗ defined in (2.2) and (2.3)

respectively, and obtain the vector

D∗ = (D∗(a, b) : 1 ≤ a ≤ b ≤ p).

The threshold τ is finally defined as the largest entry of D∗, i.e.

τ = max
1≤a≤b≤p

D∗(a, b).

3 Asymptotic properties

In this section we discuss the theoretical properties of our approach. For this purpose we need

several assumptions, which will be stated first, beginning with conditions on the distribution

of the random vectors xi.

Assumption 3.1. Denote xi = (Xi1, · · · , Xip), i = 1, · · · , n. For any 1 ≤ a ≤ p, Xia is a

sub-Gaussian random variable, i.e. there are positive constants C1, C2 (independent of the

indices i and a) such that for every t > 0,

P (|Xia| > t) ≤ C1e
−C2t2 .

Moreover, the covariance matrices before and after the change point satisfy ‖Σν‖op ≤ M

(ν = 1, 2) for some positive constant M , where ‖ · ‖op denotes the spectral norm.

Our next assumption specifies the size of the change, which can be detected using the

threshold τ . Note that the dimension p is increasing with the sample size and a difference

between the matrices Σ1 and Σ2 might vanish asymptotically if p, n → ∞ although it is

visible for any fixed p (for example if Σ1 − Σ2 = epe
T
p /p where eTp = (0, . . . , 0, 1)).

Assumption 3.2. The smallest nonzero entry of the matrix Σ1 − Σ2 satisfies

|σ1(a, b)− σ2(a, b)| > λ ≥ C

√
τ

n
max

{ n2

(n− k0)2
,
n2

k20

}
. (3.1)

Note that condition (3.1) implies that

λ ≥ C

√
τ

n
max

{ n

n− k0
,
n

k0
,

√
n

k0
,

√
n

n− k0
,
n

k0

√
n− k0
k0

,
n

n− k0

√
k0

n− k0

}
. (3.2)
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Assumption 3.3. For some small positive constant c we have

p2n = o(ecτ ) (3.3)

p2n = o(ecn
1
4
√
τ ) (3.4)

p2n2 = o(ec
√
τ ). (3.5)

Theorem 3.1. Recall the definition of the set Dτ in (2.4) and define

N = {(a, b) : 1 ≤ a ≤ b ≤ p; σ1(a, b) = σ2(a, b)}

as the set of indices corresponding to equal elements in the matrices Σ1 and Σ2. Then under

Assumption 3.1

P
{ ⋃

(a,b)∈N

{D(a, b) > τ}
}

= P
(
N ∩Dτ 6= ∅

)
≤ c1p

2n
[
e−c2τ + e−c2n

1/4√τ + ne−c2
√
τ
]
, (3.6)

where c1 and c2 are some constants. In particular, if Assumption 3.3 is also satsified

P
{ ⋃

(a,b)∈N

{D(a, b) > τ}
}
→ 0, (3.7)

i.e, after dimension reduction, all the entries with no difference are discarded.

Theorem 3.2. Recall the definition of the set Dτ in (2.4) and define

P = {(a, b) : 1 ≤ a ≤ b ≤ p; | σ1(a, b)− σ2(a, b) |> λ}

as the set of components which differ by more than λ. Then under Assumption 3.1 and 3.2

we have

P
{ ⋂

(a,b)∈P

{D(a, b) > τ}
}

= P(P ⊂ Dτ ) ≥ 1− c3p2n
[
e−c4τ + e−c4n

1/4√τ + ne−c4
√
τ
]
, (3.8)

where c3 and c4 are constants. In particular, if Assumption 3.3 is also satisfied

P
{ ⋂

(a,b)∈P

{D(a, b) > τ}
}
→ 1, (3.9)

i.e, after dimension reduction, all components corresponding to a difference larger than λ

are kept.

In our next result we establish the asymptotic consistency of the estimator k̂. Here and

throughout this paper the symbol
i.p.−→ denotes convergence in probability.
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Theorem 3.3. If Assumptions 3.1 and 3.2 are satisfied, we have

P
{∣∣∣ k̂k0 − 1

∣∣∣ ≥ ε
}
≤ c5p

2n
[
e−c6τ + ne−c6

√
τ
]
,

where c5 and c6 are constants. In particular, if Assumption 3.3 is also satisfied it follows

k̂

k0

i.p.−→ 1.

Corollary 3.1. Theorem 3.1, Theorem 3.2 and Theorem 3.3 are still true if Assumption 3.3

is replaced by the following Assumption 3.4.

Assumption 3.4. Assume that k0 > nε for some 0 < ε < 1 and that there exists a positive

constant M < ∞ such that pn−M → 0 and pne−cτ → 0 for some sufficiently small positive

constant c. Note that M could be any large positive constant.

Remark 3.1. Note that we can choose τ = C ·max(log p, log n) in Assumption 3.4, where

C is a sufficiently large constant. Then the only requirements are k0 > nε for the location

of the change and that the dimension p cannot exceed a polynomial order of the sample

size n (but the degree of the polynomial can be arbitrary). Moreover, the inequality (3.1)

also qualitatively describes a relation between the location of the change and the size of the

differences between the elements of the covariance matrices before and after the change. For

example, if p > n, we have τ = C ·max(log p, log n) = C · log p and, if k0 is proportional to

n, this means that the smallest non zero element of the matrix Σ1 − Σ2 should satisfy

| σ1(a, b)− σ2(a, b) | > C

√
log p

n
.

This is a well-known order to distinguish signal from noise in covariance matrix estimation,

see for example Bickel and Levina (2008), who considered covariance estimators based on

thresholding.

On the other hand, the choice τ = C · max(log p, log n) is not possible in Assumption 3.3.

However, if we choose τ = C · max((log p)2, (log n)2) with a sufficiently large constant C,

there is no restriction on the dimension p and n. Now, if k0 is proportional to n, this means

that the smallest non zero element of the matrix Σ1 − Σ2 has to satisfy

| σ1(a, b)− σ2(a, b) | > C
max(log p, log n)√

n

for some constant C. This means that the procedure estimates k0 consistently even if the

differences between the elements of the two matrices are very small.

11



4 Finite sample properties

In this section we investigate the finite sample properties of the new change point estimator

by means of a simulation study and compare our approach with two alternative methods

proposed by Aue et al. (2009) and Avanesov and Buzun (2016), which are most similar in

spirit as the procedure proposed in the present paper.

To be precise let r0 = k0/n be the “true” change point fraction and let r̂ = k̂/n, where

k̂ is the new change point estimator defined in (2.6). All the numerical results below are

calculated from 200 replications and we obtain the simulated estimates r̂1, . . . , r̂K of r0. In

the following discussion we present the mean

r̄ =
1

K

K∑
i=1

r̂i ,

the standard deviation

std(r̂) =

√√√√ 1

K − 1

K∑
i=1

(r̂i − r̄)2

and the corresponding mean squared error

MSE =
1

K

K∑
i=1

(r̂i − r0)2 =
K − 1

K
· std2(r̂) + (r̄ − r0)2.

Throughout this section we denote by blk(A,B) a block-diagonal matrix composed by ma-

trices A and B of appropriate dimension. Σ1 = Ip is always the identity matrix and we

consider four different choices for the matrix Σ2 to investigate the performance of the new

estimator under the following alternatives

• case 1: Σ2 = 1.5 ∗ Ip; case 2: Σ2 = 2 ∗ Ip;

• case 3: Σ2 = blk(4, Ip−1); case 4: Σ2 = blk(8, Ip−1).

Cases 1 and 2 indicate that there are many (p positions) small disturbances between Σ1 and

Σ2, with a magnitude increasing from 0.5 to 1. On the other hand there is only one distur-

bance between the two population covariance matrices in cases 3 and 4, but the magnitude

is more significant (3 and 7 respectively).

The true change point fraction is chosen as r0 = k0/n = 0.5 and the first k0 and the

last (n− k0) samples are generated from a multivariate normal distribution Np(0,Σ1) and a

Np(0,Σ2) distribution, respectively.

12



4.1 Performance of the new estimator

In order to investigate the finite sample properties of the new estimator we choose two

sample sizes n = 100 and n = 200 and consider different dimensions p ranging from 5 to

500. For each pair (n, p), the mean change point fraction, standard deviation (std) and mean

squared error (MSE) are recorded for all four cases under consideration, and the results are

summarized in Table 1 (n = 100) and Table 2 (n = 200). The numerical results from the

two tables can be summarized as follows:

(1) When the sample size n increases, the performance of the estimator is better.

(2) The dimension p of the data does not have a significant influence on the performance of

the estimators. In particular the mean squared error is remarkably stable with respect

to the dimension in all four cases under consideration.

(3) When the magnitude of the disturbance between Σ1 and Σ2 increases, the estimator

performs better (compare the results from case 1 with case 2 or from case 3 with case

4).

Next we investigate the influence of the dimension reduction step on performance of the

estimator. To this end, we consider case 1 and case 3 with sample sizes n = 200 and present

in Table 3 the corresponding results without dimension reduction. In other words we apply

the estimator (2.6) based on all components. We note that the computation time without

dimension reduction is substantially larger because we work with p(p + 1)/2-dimensional

vectors.

Comparing Table 3 with the corresponding results in Table 2, we observe the following.

(1) In case 1, the differences in the bias of r̂ are negligible (in both cases the mean is very

close to 0.5). On the other hand the standard deviations and as consequence the MSE

in Table 3 are smaller, which means that the estimator without dimension reduction

is more stable. Note that there are many small disturbances between two population

matrices and thus keeping all positions promotes a safer estimation. On the other hand

the MSE results in Table 2 from the estimator using dimension reduction are already

satisfactory.

(2) In case 3 when there is only one significant disturbance the situation is different.

Although the bias of r̂ in Table 3 is smaller, its standard deviation and MSE increase

very fast to an unacceptable level with increasing dimension. This means that the

estimator without dimension reduction is not reliable if the dimension is large.

13



Table 1: Mean, standard deviation (std) and mean squared error (MSE) of the estimator r̂ = k̂/n

defined in (2.6). The sample size is n = 100, the change point is k0 = 50, Σ1 = Ip and results of

four different choices for Σ2 are presented.

case 1 case 2

p 5 20 60 200 300 500 5 20 60 200 300 500

mean 0.4985 0.5081 0.5101 0.5213 0.5183 0.4830 0.5186 0.5169 0.5059 0.5017 0.5080 0.5099

std 0.1669 0.1475 0.1274 0.1267 0.1246 0.1766 0.1032 0.0673 0.0780 0.0913 0.0667 0.0797

MSE 0.0277 0.0217 0.0162 0.0164 0.0158 0.0313 0.0109 0.0048 0.0061 0.0083 0.0045 0.0064

case 3 case 4

p 5 20 60 200 300 500 5 20 60 200 300 500

mean 0.5423 0.5416 0.5393 0.5275 0.5378 0.5410 0.5345 0.5288 0.5271 0.5325 0.5317 0.5312

std 0.0570 0.0654 0.0649 0.0491 0.0569 0.0580 0.0471 0.0364 0.0527 0.0389 0.0416 0.0457

MSE 0.0050 0.0060 0.0057 0.0031 0.0046 0.0050 0.0034 0.0022 0.0035 0.0026 0.0027 0.0030

Table 2: Mean, standard deviation (std) and mean squared error (MSE) of the estimator r̂ = k̂/n

defined in (2.6). The sample size is n = 200, the change point is k0 = 100, Σ1 = Ip and results of

four different choices for Σ2 are presented.

case 1 case 2

p 5 20 60 200 300 500 5 20 60 200 300 500

mean 0.5108 0.5064 0.5071 0.5058 0.5067 0.5042 0.5105 0.5052 0.5029 0.5010 0.5019 0.5010

std 0.1096 0.0625 0.0437 0.0575 0.0457 0.0529 0.0249 0.0128 0.0120 0.0032 0.0103 0.0043

MSE 0.0121 0.0039 0.0020 0.0033 0.0021 0.0028 0.0007 0.0002 0.0002 0.0000 0.0001 0.0000

case 3 case 4

p 5 20 60 200 300 500 5 20 60 200 300 500

mean 0.5227 0.5234 0.5253 0.5238 0.5211 0.5227 0.5192 0.5175 0.5156 0.5203 0.5212 0.5180

std 0.0320 0.0381 0.0418 0.0350 0.0378 0.0364 0.0307 0.0242 0.0235 0.0255 0.0288 0.0262

MSE 0.0015 0.0020 0.0024 0.0018 0.0019 0.0018 0.0013 0.0009 0.0008 0.0011 0.0013 0.0010

(3) As an interesting phenomenon we note that in contrast to Table 2 the standard de-

viation and mean squared error in Table 3 show a downward trend in case 1 but an

upward tendency in case 3. This observation can be explained by the fact that without

dimension reduction the gap between Σ1 and Σ2 increases with the dimension p in case

1 but decreases in case 3.

4.2 Comparison with an estimator based on a quadratic form

We first compare the new method with the estimator (2.12) suggested in Aue et al. (2009).

Note that this statistic involves an inverse matrix Σ̂−1n , where Σ̂n is an estimator of the long-

14



Table 3: Mean, standard deviation (std) and mean squared error (MSE) of the estimator r̂ = k̂/n

without dimension reduction (i.e. k̂ is defined in (2.6) with Dτ = {(a, b) : 1 ≤ a ≤ b ≤ p}). The

sample size is n = 200, Σ1 = Ip and results for two different choices for Σ2 are presented (case 1

and case 3) .

case 1 case 3

p 5 20 60 200 300 500 5 20 60 200 300 500

mean 0.5226 0.5068 0.5028 0.5037 0.5052 0.5014 0.5265 0.5234 0.5211 0.5097 0.5098 0.5024

std 0.0758 0.0262 0.0193 0.0139 0.0162 0.0101 0.0420 0.0361 0.0429 0.1114 0.1243 0.1614

MSE 0.0062 0.0007 0.0004 0.0002 0.0003 0.0001 0.0025 0.0018 0.0023 0.0125 0.0155 0.0259

run covariance satisfying their condition (2.6). Under our setting, this long-run covariance

reduces to the population covariance matrix of a p(p + 1)/2-dimensional random vector.

As consequence the dimension p has to be substantially smaller than the sample size n to

estimate the inverse of the covariance matrix precisely. In order to get a larger range for the

dimension p, we use the sample size n = 400 in this subsection and let the dimension p vary

from 5 to 50 (for larger values of p the method of Aue et al. (2009) shows some instabilties).

The location of the change point is assumed to be k0 = 200. In Table 4 we display the

results of the estimator in Aue et al. (2009) and the estimator (2.6) proposed in this paper,

where we restrict to the case 2 and case 3 for the sake of brevity (the cases 1 and 4 show a

very similar picture). We observe that the new estimator always performs better. While this

superiority is only minor for small dimension, it becomes substantial for p = 40, 50, in this

case the mean squared error of the estimator in (2.12) suggested by Aue et al. (2009) is very

large (compared to the cases p ≤ 20), while the new estimate shows a remarkable stability

with respect to different dimensions. The differences are also visualized in Figure 1 for the

cases 2 and 3, respectively, where we show the histograms of both estimates obtained from

the different simulation runs. The sample size is n = 400, the dimension is p = 25 and the

change point is located at k0 = 200 (red line).

4.3 Comparison with a multiscale estimator

We conclude this section with a brief comparison with the procedure in Avanesov and Buzun

(2016) who proposed a multiscale approach for the localization of the change point. For the

sake of comparison we use the same design as in Section 5.1 of this paper. We also performed

a comparison under scenarios considered in Section 4.2. Here the method proposed by these

authors does not yield reliable estimates of the change point and the results are not displayed
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Table 4: Mean, standard deviation (std) and mean squared error (MSE) of the estimator (for

the relative location k0/n of the change point) proposed in Aue et al. (2009) (left part) and the

estimator k̂/n suggested in this paper (right part). The sample size is n = 400, Σ1 = Ip and results

for two different choices of the matrix Σ2 are displayed.

case 2 Aue et al. (2009) estimate (2.6)

p 5 10 20 40 50 5 10 20 40 50

mean 0.5099 0.5043 0.5078 0.5800 0.6092 0.5048 0.5022 0.5012 0.5005 0.5003

std 0.0164 0.0103 0.0132 0.1092 0.1184 0.0116 0.0060 0.0037 0.0015 0.0013

MSE 0.0004 0.0001 0.0002 0.0183 0.0259 0.0002 0.0000 0.0000 0.0000 0.0000

case 3 Aue et al. (2009) estimate (2.6)

p 5 10 20 40 50 5 10 20 40 50

mean 0.5167 0.5148 0.5067 0.4988 0.4909 0.5145 0.5112 0.5128 0.5135 0.5125

std 0.0236 0.0351 0.0387 0.1386 0.1432 0.0270 0.0173 0.0200 0.0197 0.0209

MSE 0.0008 0.0014 0.0015 0.0191 0.0205 0.0009 0.0004 0.0006 0.0006 0.0006

160 170 180 190 200 210 220 230 240 250 260

Estimated change point position

0

50

100

150

160 170 180 190 200 210 220 230 240 250 260

Estimated change point position

0

50

100

150

160 170 180 190 200 210 220 230 240 250 260

Estimated change point position

0

50

100

150

160 170 180 190 200 210 220 230 240 250 260

Estimated change point position

0

50

100

150

Figure 1: Histograms of estimated change point positions for the estimator of Aue et al. (2009)

(left panels) and the new estimator (2.6). Upper row: case 2, lower row: case 3. The sample size

is n = 400, the dimension is p = 25 and the change point is located at k0 = 200 (red line).
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for the sake of brevity.

Table 5: Comparison of the estimate (2.6) with the change point estimate proposed by Avanesov

and Buzun (2016). Both estimates are normalized, that is r̂ = τ̂ /n, where τ̂ is one of the two

estimates. The sample size is n = 1000, the dimension is p = 50 and the “true” change point is

located at k0/n = 500/1000 = 0.5.

Avanesov and Buzun (2016) estimate (2.6)

mean std MSE mean std MSE

0.4878 0.0948 0.0091 0.5006 0.0087 0.0001

To be precise we summarize the setting in Avanesov and Buzun (2016) here briefly. The

covariance matrix before the change point is Σ1 = Ip and the matrix Σ2 after the change

point is generated as follows. First a Poisson distributed random variable K ∼ Poiss(3) is

generated. Then the matrix Σ2 is composed as a block-diagonal matrix of K (symmetric)

matrices of size 2 × 2 with ones on their diagonals and their off-diagonal element drawn

uniformly from the set [−0.6;−0.3] ∪ [0.3; 0.6]. The remaining (p− 2k)× (p− 2k) diagonal

block of the matrix Σ2 is the identity matrix and all other elements of Σ2 are 0. We consider

a sample of n = 1000 observations with dimension p = 50, where the “true” change point

is given by k0 = n/2 = 500. The procedure of Avanesov and Buzun (2016) also requires

the specification of a set Is corresponding to observations without change points and we

use Is = [1, 2, · · · , 100] (as suggested in their paper) in our simulation. Note also that

according to (2.5) in Section 2.3 of Avanesov and Buzun (2016) a change point estimator is

only defined if there exists a narrowest window detecting a change-point. This was in 199 of

the 200 replications the case.

In Table 5 we show the simulated mean, standard deviation and mean squared error of

both estimates for 200 simulation runs. We observe that the estimator proposed in this

paper shows a substantially better performance than the multiscale estimator introduced by

Avanesov and Buzun (2016). Histograms of the simulated change point positions for both

methods in Figure 2 point to the same conclusion.
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Figure 2: Histograms of the change point estimates proposed by Avanesov and Buzun (2016)

(left panel) and the new estimate (2.6) proposed in this paper. The sample size is n = 1000, the

dimension is p = 50 and the “true” change point is located at k0 = 500 (red line).
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5 Proof of main results

We first introduce some auxiliary results that are frequently used in the proofs. Lemma 5.1

is a direct conclusion of Lemma 2.7.7 in Vershynin (2017).

Lemma 5.1. For any 1 ≤ a, b ≤ p, XiaXib is a sub-exponential random variable, i.e. there

exist positive constants C1, C2 > 0 (which do not depend on the indices i and a) such that

for every t > 0,

P (|XiaXib| > t) ≤ C1e
−C2t.

Lemma 5.2 (Corollary 2.8.3 in Vershynin (2017)). Let W1, · · · ,WN be independent, mean

zero, sub-exponential random variables. Then, there exist positive constants C1, C2 > 0 such

that for every t > 0,

P
{∣∣∣ 1

N

N∑
i=1

Wi

∣∣∣ > t
}
≤ C1e

−C2N ·min(t2,t).

Lemma 5.3 (Theorem 2.6.3 in Vershynin (2017)). Let W1, · · · ,WN be independent, mean

zero, sub-gaussian random variables. Then, there exist positive constants C1, C2 such that

for every t > 0,

P
{∣∣∣ 1

N

N∑
i=1

Wi

∣∣∣ > t
}
≤ C1e

−C2Nt2 .

5.1 Proof of Theorem 3.1

Observing the construction of the statistic Vk in (2.1) and (2.2), we may assume without

loss of generality that µ = 0. The components of the vector Vk and D corresponding to the

entry in the position (a, b) of the matrices Σ1,Σ2, 1 ≤ a, b ≤ p are given by

Vk(a, b) =
1

k(k − 1)

∑∑
i 6=j≤k

(ẊiaẊib)(ẊjaẊjb) +
1

(n− k)(n− k − 1)

∑∑
i 6=j>k

(ẊiaẊib)(ẊjaẊjb)

− 2

k(n− k)

∑
i≤k

∑
j>k

(ẊiaẊib)(ẊjaẊjb),

D(a, b) =
1

n− 3

n−2∑
k=2

k(n− k)

n
Vk(a, b) = D(1)(a, b) +D(2)(a, b) +D(3)(a, b), (5.1)
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where Ẋia = Xia − X̄a = Xia − 1
n

n∑
j=1

Xja by (2.1) and the terms D(`)(a, b) are defined by

D(1)(a, b) =
1

n− 3

b
√
nc∑

k=2

k(n− k)

n
Vk(a, b),

D(2)(a, b) =
1

n− 3

n−b
√
nc−1∑

k=b
√
nc+1

k(n− k)

n
Vk(a, b),

D(3)(a, b) =
1

n− 3

n−2∑
k=n−b

√
nc

k(n− k)

n
Vk(a, b).

The reason for this decomposition of D(a, b) is that all the k’s or (n− k)’s in D(2)(a, b) are

sufficiently large, while both D(1)(a, b) and D(3)(a, b) only involve (b
√
nc−1) terms and thus

the coefficient 1
n−3 = b

√
nc−1
n−3 ·

1
b
√
nc−1 gives us an extra factor of order 1√

n
in the calculations.

To be precise, let

X̄k(a,b) =
1

k

k∑
i=1

XiaXib, Ȳk(a,b) =
1

n− k

n∑
i=k+1

XiaXib,

X̄ka =
1

k

k∑
i=1

Xia, Ȳka =
1

n− k

n∑
i=k+1

Xia,

˙̄Xk(a,b) =
1

k

k∑
i=1

ẊiaẊib,
˙̄Yk(a,b) =

1

n− k

n∑
i=k+1

ẊiaẊib

and

Vk1 = k(n−k)
n

[
˙̄Xk(a,b) − ˙̄Yk(a,b)

]2
, Vk2 = k(n−k)

n

[
1

k−1
˙̄X2
k(a,b) + 1

n−k−1
˙̄Y 2
k(a,b)

]
,

Vk3 = k(n−k)
n

[
1

k(k−1)

k∑
i=1

(ẊiaẊib)
2 + 1

(n−k)(n−k−1)

n∑
i=k+1

(ẊiaẊib)
2
]
,

(5.2)

then a straightforward but tedious calculation yields

˙̄Xk(a,b) = X̄k(a,b) − X̄kaX̄b − X̄kbX̄a + X̄aX̄b,

˙̄Yk(a,b) = Ȳk(a,b) − ȲkaX̄b − ȲkbX̄a + X̄aX̄b

(5.3)

and
k(n− k)

n
Vk(a, b) = Vk1 + Vk2 − Vk3.

With these notations we decompose the quantities D(i)(a, b) as follows:

D(i)(a, b) , A(i) +B(i) − C(i), (5.4)
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where

A(1) =
1

n− 3

b
√
nc∑

k=2

Vk1, B(1) =
1

n− 3

b
√
nc∑

k=2

Vk2, C(1) =
1

n− 3

b
√
nc∑

k=2

Vk3,

A(2) =
1

n− 3

n−b
√
nc−1∑

k=b
√
nc+1

Vk1, B(2) =
1

n− 3

n−b
√
nc−1∑

k=b
√
nc+1

Vk2, C(2) =
1

n− 3

n−b
√
nc−1∑

k=b
√
nc+1

Vk3,

A(3) =
1

n− 3

n−2∑
k=n−b

√
nc

Vk1, B(3) =
1

n− 3

n−2∑
k=n−b

√
nc

Vk2, C(3) =
1

n− 3

n−2∑
k=n−b

√
nc

Vk3.

(5.5)

Without loss of generality, we can assume that σ1(a, b) = σ2(a, b) = 0. Observing the

decomposition (5.1) the assertion (3.7) follows from

P
{ ⋃

(a,b)∈N

{D(i)(a, b) > cτ}
}
→ 0, i = 1, 2, 3. (5.6)

When we prove these results we derive exponential inequalities for all three probabilities,

which directly yield the estimate in (3.6).

In (5.6) and hereafter in the proof, c and ci (i = 1, 2, · · · ) indicate some positive constants

that may change from line to line. According to the decomposition (5.4), it is sufficient to

derive exponential inequalities, which will be used to verify the following results:

p2 · P{A(i) > cτ} → 0, p2 · P{B(i) > cτ} → 0, p2 · P{C(i) > cτ} → 0, i = 1, 2, 3. (5.7)

The case i = 1, 3. For the index i = 1 and i = 3 the arguments are very similar and for the

sake of brevity we only consider the case i = 1 in (5.7). For the statistic A(1) we find that

P{A(1) > cτ} = P
{

1√
n−1

b
√
nc∑

k=2

√
n−1
n−3

k(n−k)
n

[
˙̄Xk(a,b) − ˙̄Yk(a,b)

]2
> cτ

}

≤
b
√
nc∑

k=2

P
{√

n−1
n−3

k(n−k)
n

[
˙̄Xk(a,b) − ˙̄Yk(a,b)

]2
> cτ

}

≤
b
√
nc∑

k=2

P
{∣∣∣ ˙̄Xk(a,b) − ˙̄Yk(a,b)

∣∣∣ >√cτMn,k,α

}
, (5.8)

where we use the notation Mn,k,α =
√
n·n

k(n−k) for the sake of a transparent notation. Considering

the components that constitute ˙̄Xk(a,b) and ˙̄Yk(a,b) in (5.3), we use Lemma 5.1 and 5.2 to
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calculate the following probabilities to get an upper bound of (5.8)

P
{∣∣X̄k(a,b)

∣∣ >√cτMn,k,α

}
≤ c1e

−c2kmin(τMn,k,α,
√
τMn,k,α)

≤ c1e
−c2 min(τ

√
n,
√
τ
√
n),

P
{∣∣Ȳk(a,b)∣∣ >√cτMn,k,α

}
≤ c1e

−c2(n−k)min(τMn,k,α,
√
τMn,k,α)

≤ c1e
−c2 min(τn,

√
τn(n−

√
n)) (5.9)

(k = 2, . . . , b
√
nc). Similarly, it follows from Lemma 5.3

P
{∣∣X̄kaX̄b

∣∣ >√cτMn,k,α

}
(5.10)

≤ P
{
|X̄ka| > c1 (τMn,k,α)1/4

}
+ P

{
|X̄b| > c2 (τMn,k,α)1/4

}
≤ c3

[
e−c4k

√
τMn,k,α + e−c5n

√
τMn,k,α

]
≤ c3[e

−c4
√
τ
√
n + e−c5

√
τn],

for k = 2, . . . , b
√
nc, and using similar arguments we obtain for

P
{∣∣ȲkaX̄b

∣∣ >√cτMn,k,α

}
≤ c3

[
e−c4
√
τn(n−

√
n) + e−c5

√
τn
]
, (5.11)

P
{∣∣X̄aX̄b

∣∣ >√cτMn,k,α

}
≤ c3e

−c4n
√
τMn,k,α ≤ c3e

−c4
√
τn, (5.12)

k = 2, . . . b
√
nc. The same estimates (with different constants c, c1, c2, . . .) can be derived for

the remaining terms involving X̄kbX̄a and ȲkbX̄a. Combining (5.3), (5.8)-(5.12) we obtain

the upper bound

P{A(1) > cτ} ≤ c1
√
n
(
e−c2 min(τ

√
n,
√
τ
√
n) + e−c2 min(τn,

√
τn(n−

√
n))

+e−c2
√
τ
√
n + e−c2

√
τn(n−

√
n) + e−c2

√
τn
)
. (5.13)

Since the smallest absolute value among the exponents in (5.13) is
√
τ
√
n we have

P{A(1) > cτ} ≤ c3 ·
√
ne−c

√
τn1/4

for some small positive constant c. Consequently, using the assumption (3.4) it follows that

p2 · P{A(1) > cτ} → 0.

Using similar arguments, we can investigate the other terms. To be precise consider the

statistic B(1), for which we obtain the estimate

P{B(1) > cτ} = P
{

1
n−3

b
√
nc∑

k=2

k(n−k)
n

[
1

k−1
˙̄X2
k(a,b) + 1

n−k−1
˙̄Y 2
k(a,b)

]
> cτ

}
(5.14)

≤
b
√
nc∑

k=2

P
{√

n−1
n−3

k(n−k)
n

[
1

k−1
˙̄X2
k(a,b) + 1

n−k−1
˙̄Y 2
k(a,b)

]
> cτ

}

≤
b
√
nc∑

k=2

[
P
{∣∣ ˙̄Xk(a,b)

∣∣ >√cτM
(1)
n,k,α

}
+ P

{∣∣ ˙̄Yk(a,b)
∣∣ >√cτM

(2)
n,k,α

}]
,
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where the quantities M
(1)
n,k,α and M

(2)
n,k,α are defined by

M
(1)
n,k,α =

√
n · n

(n− k)
and M

(2)
n,k,α =

√
n · n
k

,

respectively. Again we consider the components that constitute ˙̄Xk(a,b) and ˙̄Yk(a,b) in (5.3)

separately and obtain by an application of Lemma 5.1 and 5.2 the following estimates (for

k = 2, . . . , b
√
nc)

P
{ ∣∣X̄k(a,b)

∣∣ >√cτM
(1)
n,k,α

}
≤ c1e

−c2kmin(τM
(1)
n,k,α,

√
τM

(1)
n,k,α) ≤ c1e

−c2 min(τ
√
n,
√
τ
√
n),

P
{ ∣∣Ȳk(a,b)∣∣ >√cτM

(2)
n,k,α

}
≤ c1e

−c2(n−k)min(τM
(2)
n,k,α,

√
τM

(2)
n,k,α)

≤ c1e
−c2 min(τn(n−

√
n),
√
τn(n−

√
n)2).

Similarly, Lemma 5.3 gives for k = 2, . . . , b
√
nc

P
{ ∣∣X̄kaX̄b

∣∣ >√cτM
(1)
n,k,α

}
≤ c3

[
e−c4k

√
τM

(1)
n,k,α + e−c5n

√
τM

(1)
n,k,α

]
≤ c3

[
e−c4
√
τ
√
n + e−c5n

√
τ
√
n
]
,

P
{ ∣∣ȲkaX̄b

∣∣ >√cτM
(2)
n,k,α

}
≤ c3

[
e−c4(n−k)

√
τM

(2)
n,k,α + e−c5n

√
τM

(2)
n,k,α

]
≤ c3

[
e−c4(n−

√
n)
√
τn + e−c5n

√
τn
]
,

P
{ ∣∣X̄aX̄b

∣∣ >√cτM
(1)
n,k,α

}
≤ c3e

−c4n
√
τM

(1)
n,k,α ≤ c3e

−c4n
√
τ
√
n,

P
{ ∣∣X̄aX̄b

∣∣ >√cτM
(2)
n,k,α

}
≤ c3e

−c4n
√
τM

(2)
n,k,α ≤ c3e

−c4n
√
τn.

Thus, observing that the smallest absolute value among the exponents in these estimates is

given by
√
τ
√
n, an upper bound for the probability in (5.14) is obtained as

P{B(1) > cτ} ≤ c1
√
ne−c

√
τn1/4

for some small positive constant c. Consequently, observing Assumption 3.3 we have p2P{B(1) >

cτ} → 0 as n, p→∞.

Finally the term C(1) is estimated as follows

P{C(1) > cτ} ≤
b
√
nc∑

k=2

P
{√

n−1
n−3

k(n−k)
n

[
1

k(k−1)

k∑
i=1

(ẊiaẊib)
2 + 1

(n−k)(n−k−1)

n∑
i=k+1

(ẊiaẊib)
2
]
> cτ

}

≤
b
√
nc∑

k=2

[
P
{

1
k

k∑
i=1

(ẊiaẊib)
2 > c1τ

n
√
n

n−k

}
+ P

{
1

n−k

n∑
i=k+1

(ẊiaẊib)
2 > c2τ

n
√
n

k

}]

≤
b
√
nc∑

k=2

[
kP
{
|ẊiaẊib| >

√
c1τ
√
n
}

+ (n− k)P
{
|ẊiaẊib| >

√
c2τn

}]
.
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Observing that ẊiaẊib = XiaXib −XiaX̄b −XibX̄a + X̄aX̄b, we obtain from Lemma 5.1 and

5.3 the estimates

kP
{
|XiaXib| >

√
c1τ
√
n
}
≤ c

√
ne−c4

√
τ
√
n,

(n− k)P
{
|XiaXib| >

√
c2τn

}
≤ cne−c6

√
τn,

kP
{
|XiaX̄b| >

√
c1τ
√
n
}
≤ c

√
n
[
e−c7
√
τ
√
n + e−c8n

√
τ
√
n
]
,

(n− k)P
{
|XiaX̄b| >

√
c2τn

}
≤ cn

[
e−c7

√
τn + e−c8n

√
τn
]
,

kP
{
|X̄aX̄b| >

√
c1τ
√
n
}
≤ c

√
ne−c7n

√
τ
√
n,

(n− k)P
{
|X̄aX̄b| >

√
c2τn

}
≤ cne−c7n

√
τn,

whenever k = 2, . . . , b
√
nc. Summarizing we have

P{C(1) > cτ} ≤ c1

[
n(e−c2

√
τ
√
n + e−c2n

√
τ
√
n) + n

√
n(e−c2

√
τn + e−c2n

√
τn)
]

≤ c3ne
−c
√
τ
√
n

for some small positive constant c. Now assumption (3.4) implies p2P{C(1) > cτ} → 0, if

p2ne−c
√
τn1/4 → 0, (5.15)

and therefore the proof of (5.7) in the case i = 1 is completed (the case i = 3 follows by

exactly the same arguments).

The case i = 2. For the term A(2), we get that

P{A(2) > cτ} ≤
n−b
√
nc−1∑

k=b
√
nc+1

[
P
{∣∣ ˙̄Xk(a,b)

∣∣ >√c1τMn,k

}
+ P

{∣∣ ˙̄Yk(a,b)
∣∣ >√c2τMn,k

}]
,

where we use the notation Mn,k = n
k(n−k) . Similar calculations as given for the term A(1)

give for the summands in the representation (5.3) of ˙̄Xk(a,b) and ˙̄Yk(a,b) the estimates (here

we use the fact that for i = 2 we have k = b
√
nc+ 1, . . . , n− b

√
nc − 1)

P
{∣∣X̄k(a,b)

∣∣ >√cτMn,k

}
≤ c1e

−c2kmin(τMn,k,
√
τMn,k) ≤ c1e

−c2 min(τ,
√
τ
√
n),

P
{∣∣Ȳk(a,b)∣∣ >√cτMn,k

}
≤ c1e

−c2(n−k)min(τMn,k,
√
τMn,k) ≤ c1e

−c2 min(τ,
√
τ
√
n),

P
{∣∣X̄kaX̄b

∣∣ >√cτMn,k

}
≤ c3

[
e−c4k

√
τMn,k + e−c5n

√
τMn,k

]
≤ c3

[
e−c4
√
τ
√
n + e−c5

√
τn
]
,

P
{∣∣ȲkaX̄b

∣∣ >√cτMn,k

}
≤ c3

[
e−c4(n−k)

√
τMn,k + e−c5n

√
τMn,k

]
≤ c3

[
e−c4
√
τ
√
n + e−c5

√
τn
]
,

P
{∣∣X̄aX̄b

∣∣ >√cτMn,k

}
≤ c3e

−c4n
√
τMn,k ≤ c3e

−c4
√
τn,
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and consequently we obtain

p2 · P{A(2) > cτ} ≤ c1np
2 max

{
e−cτ , e−c

√
τ
√
n
}
,

for some small positive constant c, which converges to 0 under the stated assumptions (3.3)

and (3.4).

For the term B(2) we have

P{B(2) > cτ} ≤
n−b
√
nc−1∑

k=b
√
nc+1

[
P
{∣∣ ˙̄Xk(a,b)

∣∣ >√c1τ
n

n−k

}
+ P

{∣∣ ˙̄Yk(a,b)
∣∣ >√c2τ

n
k

}]
, (5.16)

where the two probabilities can be bounded taking into account the representation (5.3) and

the estimates

P
{∣∣X̄k(a,b)

∣∣ >√ c1τn
n−k

}
≤ c1e

−c2kmin( τn
n−k ,
√

τn
n−k ) ≤ c1e

−c2 min(τ
√
n,
√
τn),

P
{∣∣Ȳk(a,b)∣∣ >√ cτn

k

}
≤ c1e

−c2(n−k)min( τn
k
,
√

τn
k
) ≤ c1e

−c2 min(τ
√
n,
√
τn),

P
{∣∣X̄kaX̄b

∣∣ >√ cτn
n−k

}
≤ c3

[
e−c4k

√
τn
n−k + e−c5n

√
τn
n−k

]
≤ c3[e

−c4
√
τn + e−c5n

√
τ ],

P
{∣∣ȲkaX̄b

∣∣ >√ cτn
k

}
≤ c3

[
e−c4(n−k)

√
τn
k + e−c5n

√
τn
k

]
≤ c3[e

−c4
√
τn + e−c5n

√
τ ],

P
{∣∣X̄aX̄b

∣∣ >√ cτn
n−k

}
≤ c3e

−c4n
√

τn
n−k ≤ c3e

−c4n
√
τ ,

P
{∣∣X̄aX̄b

∣∣ >√ cτn
k

}
≤ c3e

−c4n
√
τ

for k = b
√
nc+ 1, b

√
nc+ 2, . . . , n− b

√
nc − 1. Therefore, we obtain as an upper bound for

the probability in (5.16)

p2 · P{B(2) > cτ} ≤ c1p
2n
(
e−c2 min(τ

√
n,
√
τn) + e−c2

√
τn + e−c2n

√
τ
)

= c1p
2n
(
e−c2

√
n
√
τ + e−c2

√
τn + e−c2n

√
τ
)

= o(1),

by assumption (3.4).

For the term C(2), we observe (note that n/(n− k) > 1 and n/k > 1)

P{C(2) > cτ} ≤
n−b
√
nc−1∑

k=b
√
nc+1

[
P
{

1
k

k∑
i=1

(ẊiaẊib)
2 > c1τ

n
n−k

}
+ P

{
1

n−k

n∑
i=k+1

(ẊiaẊib)
2 > c2τ

n
k

}]

≤
n−b
√
nc−1∑

k=b
√
nc+1

kP
{
|ẊiaẊib| >

√
c1τ
}

+

n−b
√
nc−1∑

k=b
√
nc+1

(n− k)P
{
|ẊiaẊib| >

√
c2τ
}
, (5.17)
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where the two probabilities can be bounded using the representation ẊiaẊib = XiaXib −
XiaX̄b −XibX̄a + X̄aX̄b. This gives for k = b

√
nc+ 1, . . . , n− b

√
nc − 1 the estimates

P
{
|XiaXib| > c

√
τ
}
≤ c1e

−c2
√
τ ,

P
{
|XiaX̄b| > c

√
τ
}
≤

[
P
{
|Xia| > c1τ

1/4
}

+ P
{
|X̄b| > c2τ

1/4
}]
≤ c3

[
e−c4

√
τ + e−c5n

√
τ
]
,

P
{
|X̄aX̄b| > c

√
τ
}
≤

[
P
{
|X̄a| > c1τ

1/4
}

+ P
{
|X̄b| > c2τ

1/4
}]
≤ c3e

−c4n
√
τ .

Observing that
∑n−b

√
nc−1

k=b
√
nc+1

k ≤ n2,
∑n−b

√
nc−1

k=b
√
nc+1

(n− k) ≤ n2 we can bound the probability on

the left hand side of (5.16) by

P{C(2) > cτ} ≤ c1n
2
(
e−c2

√
τ + e−c3n

√
τ
)
,

which vanishes asymptotically by assumption (3.5).

Therefore, we have established (5.7) for all indices i = 1, 2, 3 which implies (5.6), and the

assertion of Theorem 3.1 follows. A careful inspection of our arguments shows that we have

also established the estimate (3.6) in Theorem 3.1.

5.2 Proof of Theorem 3.2

Recall that the set P is the set of indices corresponding to elements with |σ1(a, b)−σ2(a, b)| >
λ, where λ satisfies (3.2), and note that the assertion (3.9) is equivalent to

P
{ ⋃

(a,b)∈P

{D(a, b) ≤ τ}
}
→ 0.

For a proof of this statement we derive several exponential inequalities which directly yield

the estimate in (3.8). For this purpose we introduce the decomposition

D(a, b) =
1

n− 3

n−2∑
k=2

[Vk1 + Vk2 − Vk3] = A+B − C,

where the quantities A, B and C are given by

A =
1

n− 3

n−2∑
k=2

Vk1, B =
1

n− 3

n−2∑
k=2

Vk2, C =
1

n− 3

n−2∑
k=2

Vk3,

respectively, and the statistics Vk1, Vk2 and Vk3 have been defined in (5.2). Observing the

inclusion

{D(a, b) ≤ τ} ⊂ {A ≤ 3τ} ∪ {|B − C| ≥ 2τ} ⊂ {A ≤ 3τ} ∪ {B ≥ τ} ∪ {C ≥ τ}
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the assertion of Theorem 3.2 follows by deriving exponential inequalities for the probabilities

for these three events, which are used to prove

p2 · P{A ≤ 3τ} → 0, p2 · P{B ≥ τ} → 0, p2 · P{C ≥ τ} → 0. (5.18)

We now investigate the three probabilities in (5.18) separately. First, for the last two terms B

and C, from (5.5), it is easy to see that B = B(1)+B(2)+B(3) and C = C(1)+C(2)+C(3), where

- as in the proof of Theorem 3.1 - the indices (1), (2) and (3) correspond to the summation

with respect to the sets {2, . . . , b
√
nc}, {b

√
nc+1, . . . , n−b

√
nc−1} and {n−b

√
nc, . . . , n−2},

respectively. Moreover, using similar arguments as given in the proof of Theorem 3.1, the

following results can be established.

p2 · P{B(i) > cτ} ≤ c1p
2
√
ne−c

√
τn1/4

, i = 1, 3, p2 · P{B(2) > cτ} ≤ c1p
2ne−c2

√
τn,

p2 · P{C(i) > cτ} ≤ c3p
2ne−c

√
τn1/4

, i = 1, 3, p2 · P{C(2) > cτ} ≤ c1p
2n2e−c2

√
τ . (5.19)

The only difference when analyzing the above probabilities lies in the expectation of XiaXib,

E(XiaXib), which is not necessarily zero now. But this does not affect the proof of (5.19)

since E(XiaXib) is always bounded by Assumption 3.1. Hence

p2 · P{B ≥ τ} → 0, p2 · P{C ≥ τ} → 0.

In order to show the remaining exponential equation and prove the assertion p2 · P{A ≤
3τ} → 0, we note that σ1(a, b) 6= σ2(a, b), and a straightforward calculation gives

E(X̄k(a,b) − Ȳk(a,b)) =

 n−k0
n−k (σ1(a, b)− σ2(a, b)) : k ≤ k0,

k0
k

(σ1(a, b)− σ2(a, b)) : k > k0.

Let

Ak = ˙̄Xk(a,b) − ˙̄Yk(a,b) − E(X̄k(a,b) − Ȳk(a,b)), Bk = E(X̄k(a,b) − Ȳk(a,b)),

and define bn,k ,
k(n−k)

n
. Then one can observe that

|Bk| ≥ min
{
n−k0
n
, k0
n

}
· |σ1(a, b)− σ2(a, b)| (5.20)

and

1
n−3

n−2∑
k=2

bn,kB
2
k ≥ min

{
(n−k0)2
n2 ,

k20
n2

}
· n(σ1(a, b)− σ2(a, b))2 · 1

n−3

n−2∑
k=2

k(n−k)
n2

≥ min
{

(n−k0)2
n2 ,

k20
n2

}
· n(σ1(a,b)−σ2(a,b))

2

6
≥ min

{
(n−k0)2
n2 ,

k20
n2

}
· nλ2

6
.
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Consequently, by assumption (3.2) (with a sufficiently large constant C) we obtain the

estimate

3τ ≤ 1

2(n− 3)

n−2∑
k=2

bn,kB
2
k.

On the other hand, we have by the definition of A, Ak and Bk

P{A ≤ 3τ} = P
{

1
n−3

n−2∑
k=2

bn,k [Ak +Bk]
2 ≤ 3τ

}
≤ P

{
2

n−3

n−2∑
k=2

bn,kAkBk ≤ 3τ − 1
n−3

n−2∑
k=2

bn,kB
2
k

}
≤ P

{
2

n−3

n−2∑
k=2

bn,kAkBk ≤ − 1
2(n−3)

n−2∑
k=2

bn,kB
2
k

}
≤ P

{
2

n−3

∣∣∣ n−2∑
k=2

bn,kAkBk

∣∣∣ ≥ 1
2(n−3)

∣∣∣ n−2∑
k=2

bn,kB
2
k

∣∣∣}
≤ n · P

{
|bn,kAk| ≥ c

|Bk|
min

{
(n−k0)2
n2 ,

k20
n2

}
· n(σ1(a, b)− σ2(a, b))2

}
= n · P {|Ak| ≥ cφ} , (5.21)

where φ = 1
|Bk|

1
bn,k

min
{

(n−k0)2
n2 ,

k20
n2

}
· n(σ1(a, b) − σ2(a, b))

2. In order to investigate the

probability P {|Ak| ≥ cφ} in (5.21) note that 1
|Bk|
≥ 1
|σ1(a,b)−σ2(a,b)| by (5.20). If

|σ1(a, b)− σ2(a, b)| ≥ λ ≥ C
√

τ
n

max
{

n2

(n−k0)2 ,
n2

k20

}
,

it is therefore easy to see that

φ ≥ n
k(n−k) min

{
(n−k0)2
n2 ,

k20
n2

}
· n|σ1(a, b)− σ2(a, b)| ≥ C n

k(n−k)
√
nτ.

Observing the decomposition (5.3), the term Ak can be written as

Ak = [X̄k(a,b) − Ȳk(a,b) − E(X̄k(a,b) − Ȳk(a,b))]− X̄kaX̄b − X̄kbX̄a + ȲkaX̄b + ȲkbX̄a,

and by Lemma 5.2 and Lemma 5.3 we obtain

P {|Ak| ≥ cφ}

≤ P
{∣∣X̄k(a,b) − EX̄k(a,b)

∣∣ ≥ c1φ
}

+ P
{∣∣Ȳk(a,b) − EȲk(a,b)

∣∣ ≥ c2φ
}

+2P
{∣∣X̄ka

∣∣ ≥ c3
√
φ
}

+ 2P
{∣∣X̄b

∣∣ ≥ c4
√
φ
}

+ 2P
{∣∣Ȳka∣∣ ≥ c3

√
φ
}

+ 2P
{∣∣X̄b

∣∣ ≥ c4
√
φ
}

≤ c5

[
e−c6kmin{φ2,φ} + e−c6(n−k)min{φ2,φ} + e−c6kφ + e−c6(n−k)φ + e−c6nφ

]
≤ c5

[
e−c6 min{τ,

√
nτ} + e−c6 min{τ,

√
nτ} + e−c6

√
nτ + e−c6

√
nτ + e−c6

√
nτ
]

= o(1), (5.22)

where the last estimate follows from (3.3) and (3.5). Combining (5.21) with (5.22), it follows

that p2 · P{A ≤ 3τ} → 0, which completes the proof of Theorem 3.2.
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5.3 Proof of Theorem 3.3

Recall the definition of the statistic Un(k) in (2.5) and the definition of the change point es-

timator k̂ in (2.6). Let x̃i indicate the m-dimensional subvector of vech(xix
T
i ) corresponding

to the components in the set Dτ in (2.4). Obviously,

P
{∣∣∣ k̂k0 − 1

∣∣∣ ≥ ε
}
≤ P

{
k̂ ≥ (1 + ε)k0

}
+ P

{
k̂ ≤ (1− ε)k0

}
, (5.23)

and we will derive exponential bounds for the two terms on the right-hand side to prove that

the probability vanishes asymptotically. We only consider the first term because the second

term can be handled similarly. It is sufficient to show that

P
{ ⋃
k≥(1+ε)k0

(Un(k) ≥ Un(k0))
}
≤

n∑
k≥(1+ε)k0

P{Un(k) ≥ Un(k0)} ≤ c1p
2n
[
e−c2τ + ne−c2

√
τ
]
,

which follows if the estimate

P{Un(k) ≥ Un(k0)} ≤ c1p
2[e−c2τ + ne−c2

√
τ ] (5.24)

holds. By Assumption 3.3 this term is of order o
(
1
n

)
uniformly with respect to (1 + ε)k0 ≤

k ≤ n. For a proof of this statement define the vectors wi = (Wi1, · · · ,Wim) by

˙̃xi = wi + Ex̃i,

and denote by µ1 and µ2 the m-dimensional vectors containing the elements of the matrices

Σ1 and Σ2, respectively, which correspond to positions (a, b) ∈ Dτ identified in Step 1 of the

procedure. We will make use of the decomposition

Un(k) =
1

n4

k∑ k∑
(i 6=t)=1

n∑ n∑
(j 6=l)=k+1

[(wi −wj) + (Ex̃i − Ex̃j)]T [(wt −wl) + (Ex̃t − Ex̃l)]

= A(k) +B(k) + C(k) + E(k),

where

A(k) =
1

n4

k∑ k∑
(i 6=t)=1

n∑ n∑
(j 6=l)=k+1

(wi −wj)
T (wt −wl),

B(k) =
1

n4

k∑ k∑
(i 6=t)=1

n∑ n∑
(j 6=l)=k+1

(Ex̃t − Ex̃l)T (wi −wj),

C(k) =
1

n4

k∑ k∑
(i 6=t)=1

n∑ n∑
(j 6=l)=k+1

(Ex̃i − Ex̃j)T (wt −wl),

E(k) =
1

n4

k∑ k∑
(i 6=t)=1

n∑ n∑
(j 6=l)=k+1

(Ex̃i − Ex̃j)T (Ex̃t − Ex̃l),
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and begin investigating the constant terms E(k) and E(k0). For this purpose we make use

of the notation

an,k = (n− k)(n− k − 1)

and obtain by a direct calculation

E = E(k0)− E(k) =
1

n4

[
k0(k0 − 1)an,k0 − k0(k0 − 1)an,k

]
‖µ1 − µ2‖2

=
1

n4
k0(k0 − 1)

[
(n− k)(k − k0) + (n− k − 1)(k − k0) + (k − k0)2

]
‖µ1 − µ2‖2. (5.25)

Observing the inclusion

{Un(k) ≥ Un(k0)} ⊂ {A(k) +B(k) + C(k)− (A(k0) +B(k0) + C(k0)) ≥ E} (5.26)

we now investigate the other terms A(k) − A(k0), B(k) − B(k0), C(k) − C(k0). A straight-

forward but tedious calculation yields the decomposition

B(k)−B(k0) = −B1 +B2 +B3,

where

B1 =
1

n4
(k0 − 1)[an,k0 − an,k](µ1 − µ2)

T

k0∑
i=1

wi,

B2 =
1

n4
k0(k0 − 1)(k − k0)(µ1 − µ2)

T

n∑
j=k0+1

wj,

B3 =
1

n4
k0(k0 − 1)(n− k − 1)(µ1 − µ2)

T

k∑
j=k0+1

wj.

Using (5.25) the term B1 can be handled as follows

P{|B1| ≥ cE} = P
{∣∣∣(µ1 − µ2)

T

k0∑
i=1

wi

∣∣∣ ≥ ck0‖µ1 − µ2‖2
}

≤ P
{∥∥ k0∑

i=1

wi

∥∥2 ≥ (ck0‖µ1 − µ2‖)2
}

≤
m∑
j=1

P
{∣∣∣ k0∑

i=1

Wij

∣∣∣ ≥ ck0‖µ1−µ2‖√
m

}
=

m∑
j=1

P
{∣∣∣ 1k0 k0∑

i=1

Wij

∣∣∣ ≥ c‖µ1−µ2‖√
m

}
. (5.27)

Note that for each j = 1, · · · ,m, there exists a position (a, b) such that Wij can be written

as

Wij = ẊiaẊib − E(XiaXib) = XiaXib − E(XiaXib)−XiaX̄b −XibX̄a + X̄aX̄b, (5.28)
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and thus we obtain

1

k0

k0∑
i=1

Wij =
1

k0

k0∑
i=1

[
XiaXib − E(XiaXib)

]
− X̄k0aX̄b − X̄k0bX̄a + X̄aX̄b.

With these notations the probability in (5.27) can be further bounded using Lemmas 5.2

and 5.3, that is

P{|B1| ≥ cE} ≤ m
[
P
{∣∣ 1

k0

k0∑
i=1

[XiaXib − E(XiaXib)]
∣∣ ≥ c1

‖µ1−µ2‖√
m

}
+ 2P

{∣∣X̄k0a

∣∣ ≥ c2

√
‖µ1−µ2‖√

m

}
+3P

{∣∣X̄b

∣∣ ≥ c3

√
‖µ1−µ2‖√

m

}
+ P

{∣∣X̄a

∣∣ ≥ c4

√
‖µ1−µ2‖√

m

}]
≤ c6m

[
e
−c7 min{k0 ‖µ1−µ2‖

2

m
,k0
‖µ1−µ2‖√

m
}

+ e
−c7k0 ‖µ1−µ2‖√

m + e
−c7n ‖µ1−µ2‖√

m

]
≤ c6p

2
[
e−c7 min{τ,

√
nτ} + e−c7

√
nτ + e−c7

√
nτ
]
≤ c8p

2e−c7 min{τ,
√
nτ}, (5.29)

where the last inequality follows from the fact that k0
‖µ1−µ2‖2

m
≥ Cτ and k0

‖µ1−µ2‖√
m
≥ C
√
nτ

if the smallest nonzero entry of (Σ1 − Σ2) satisfies |σ1(a, b)− σ2(a, b)| ≥ λ ≥ C
√

τ
n
n
k0

. Note

that Assumption 3.3 gives p2n = o(ecτ ), p2n = o(ec
√
nτ ), and therefore it follows that

P{|B1| ≥ cE} = o

(
1

n

)
. (5.30)

Similarly, each component of the vector B2 can be represented as

1

n− k0

n∑
i=k0+1

Wij =
1

n− k0

n∑
i=k0+1

[
XiaXib − E(XiaXib)

]
− Ȳk0aX̄b − Ȳk0bX̄a + X̄aX̄b

for some (a, b) ∈ P . We can find that

P{|B2| ≥ cE} = P
{∣∣∣(µ1 − µ2)

T

n∑
i=k0+1

wi

∣∣∣ ≥ c(n− k0 + n− k − 1)‖µ1 − µ2‖2
}

≤ P
{∥∥µ1 − µ2

∥∥∥∥ n∑
i=k0+1

wi

∥∥ ≥ c(n− k0 + n− k − 1)‖µ1 − µ2‖2
}

≤ m · P
{∣∣∣ n∑

i=k0+1

Wij

∣∣∣ ≥ c(n−k0+n−k−1)‖µ1−µ2‖√
m

}
≤ m · P

{∣∣∣ 1

n− k0

n∑
i=k0+1

Wij

∣∣∣ ≥ c‖µ1−µ2‖√
m

}
≤ c1m

[
e
−c2 min{(n−k0) ‖µ1−µ2‖

2

m
,(n−k0) ‖µ1−µ2‖√

m
}

+ e
−c2(n−k0) ‖µ1−µ2‖√

m + e
−c2n ‖µ1−µ2‖√

m

]
≤ c1p

2
[
e−c3 min{τ,

√
nτ} + e−c3

√
nτ + e−c3

√
nτ
]
≤ c4p

2e−c3 min{τ,
√
nτ},
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where the last inequality follows from the fact that |σ1(a, b) − σ2(a, b)| ≥ C
√

τ
n

n
n−k0 for all

(a, b) ∈ P , which implies (n− k0)‖µ1−µ2‖2
m

≥ Cτ and (n− k0)‖µ1−µ2‖√
m
≥ C
√
nτ . So we get

P{|B2| ≥ cE} = o

(
1

n

)
.

In order to get a similar result for the term B3 we note that

P{|B3| ≥ cE} ≤ P
{
‖µ1 − µ2‖2

m∑
j=1

(
k∑

i=k0+1

Wij)
2 ≥ c

[
2(k − k0) +

(k − k0)2

n− k − 1

]2
‖µ1 − µ2‖4

}
≤ mP

{∣∣∣ k∑
i=k0+1

Wij

∣∣∣ ≥ c
[
2(k − k0) + (k−k0)2

n−k−1

]
‖µ1 − µ2‖/

√
m
}

≤ m · P
{∣∣∣ 1

k−k0

k∑
i=k0+1

Wij

∣∣∣ ≥ 2c‖µ1−µ2‖√
m

}
≤ c1m

[
e
−c2 min{(k−k0) ‖µ1−µ2‖

2

m
,(k−k0) ‖µ1−µ2‖√

m
}

+ e
−c2(k−k0) ‖µ1−µ2‖√

m + e
−c2n ‖µ1−µ2‖√

m

]
≤ c1m

[
e
−c2εmin{k0 ‖µ1−µ2‖

2

m
,k0
‖µ1−µ2‖√

m
}

+ e
−c2εk0 ‖µ1−µ2‖√

m + e
−c2n ‖µ1−µ2‖√

m

]
≤ c3p

2e−c4 min{τ,
√
nτ}.

By condition (3.1) in Assumption 3.2 and Assumption 3.3, we get

P{|B3| ≥ cE} = o

(
1

n

)
. (5.31)

Combining (5.30) and (5.31), we can conclude that

P{|B(k)−B(k0)| ≥ cE} ≤ c1p
2e−c2 min{τ,

√
nτ} = o

(
1

n

)
(5.32)

uniformly with respect to k ≥ k0(1 + ε). Similarly, one can see that the estimate

P{|C(k)− C(k0)| ≥ cE} ≤ c1p
2e−c2 min{τ,

√
nτ} = o

(
1

n

)
. (5.33)

Finally, we investigate the terms A(k) and A(k0) introducing the decomposition

A(k) = A1(k)− 2A2(k) + A3(k),

where

A1(k) =
1

n4
(n− k)(n− k − 1)

k∑ k∑
(i 6=t)=1

wT
i wt, A3(k) =

1

n4
k(k − 1)

n∑ n∑
(j 6=l)=k+1

wT
j wl,

A2(k) =
1

n4
(k − 1)(n− k − 1)

k∑
i=1

n∑
l=k+1

wT
i wl.

34



Then

A(k)− A(k0) =
[
A1(k)− A1(k0)

]
− 2
[
A2(k)− A2(k0)

]
+
[
A3(k)− A3(k0)

]
.

In order to get that P{|A(k)−A(k0)| ≥ cE} = o
(
1
n

)
, it is sufficient to show that P{|Ai(k)−

Ai(k0)| ≥ cE} = o
(
1
n

)
, i = 1, 2, 3. In the following we only show that

P{|A1(k)− A1(k0)| ≥ cE} ≤ c1p
2[e−c2τ + ne−c2

√
τ ] = o

(
1

n

)
uniformly with respect to k ≥ (1 + ε)k0. The other two terms can be treated similarly.

Define

H1 =
an,k0 − an,k

n4

k0∑ k0∑
i 6=t

wT
i wt, H2 =

an,k
n4

k∑ k∑
i 6=t=(k0+1)

wT
i wt, H3 =

an,k
n4

k0∑
i=1

k∑
t=k0+1

wT
i wt,

and note that

A1(k)− A1(k0) = −H1 +H2 + 2H3.

First, we obtain for the term H1 using (3.1)

P{|H1| ≥ cE} = P
{∣∣∣ k0∑ k0∑

i 6=t

wT
i wt

∣∣∣ ≥ ck0(k0 − 1)‖µ1 − µ2‖2
}

= P
{∣∣∣ m∑

j=1

k0∑ k0∑
i 6=t

WijWtj

∣∣∣ ≥ ck0(k0 − 1)‖µ1 − µ2‖2
}

≤ m · P
{∣∣∣ k0∑ k0∑

i 6=t

WijWtj

∣∣∣ ≥ ck0(k0 − 1)‖µ1−µ2‖2
m

}

≤ m · P
{∣∣∣ 1k0 k0∑

i=1

Wij

∣∣∣ ≥ c1
‖µ1−µ2‖√

m

}
+m · P

{∣∣∣ 1k0 k0∑
i=1

W 2
ij

∣∣∣ ≥ c(k0 − 1)‖µ1−µ2‖2
m

}
≤ c2p

2e−c3 min{τ,
√
nτ} + p2P

{∣∣∣ 1k0 k0∑
i=1

W 2
ij

∣∣∣ ≥ c(k0 − 1)‖µ1−µ2‖2
m

}
, (5.34)

where the last inequality follows by similar arguments as used in the derivation of (5.27) and

(5.29). For the second term, we use the decomposition (5.28)

p2P
{∣∣∣ 1k0 k0∑

i=1

W 2
ij

∣∣∣ ≥ c
2
(k0 − 1)‖µ1−µ2‖2

m

}
≤ p2k0 · P

{∣∣Wij

∣∣ ≥√ c
2
(k0 − 1)‖µ1−µ2‖√

m

}
≤ p2k0 · P

{
|XiaXib − E(XiaXib)| ≥ c4

√
k0
‖µ1−µ2‖√

m

}
+2p2k0 · P

{
|XiaX̄b| ≥ c4

√
k0
‖µ1−µ2‖√

m

}
+ p2k0 · P

{
|X̄aX̄b| ≥ c4

√
k0
‖µ1−µ2‖√

m

}
≤ c5p

2k0e
−c6
√
k0
‖µ1−µ2‖√

m ≤ c5p
2ne−c7

√
τ = o

(
1
n

)
,
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where the last line uses Lemma 5.1 for the sub-exponential random variable XiaXib and

the probability of this sub-exponential term is also the leading one among the remaining

three terms. Moreover, because |σ1(a, b) − σ2(a, b)| ≥ C
√

τ
n

√
n
k0

for all (a, b) ∈ P we

have
√
k0
‖µ1−µ2‖√

m
≥ C
√
τ . Then the order o

(
1
n

)
comes from the assumptions (3.3) - (3.5).

Combining this estimate with (5.34) gives

P(|H1| ≥ cE) ≤ c2p
2e−c3 min{τ,

√
nτ} + c5p

2ne−c7
√
τ = o(

1

n
).

Next for the term H2, similarly we can calculate

P{|H2| ≥ cE}

= P
{∣∣∣ k∑ k∑

i 6=t=(k0+1)

wT
i wt

∣∣∣ ≥ ck0(k0−1)
n−k

[
n−k
n−k−1(k − k0) + (k − k0) + (k−k0)2

n−k−1

]
‖µ1 − µ2‖2

}

≤ m · P
{∣∣∣ k∑ k∑

i 6=t=(k0+1)

WijWtj

∣∣∣ ≥ ck0(k0−1)
n−k

[
2(k − k0) + (k−k0)2

n−k−1

]
‖µ1−µ2‖2

m

}

≤ m · P
{∣∣∣ 1

k − k0

k∑
i=k0+1

Wij

∣∣∣ ≥√ c
2
k0(k0−1)
(n−k)

[
2

(k−k0) + 1
n−k−1

]
‖µ1−µ2‖√

m

}
+m · P

{∣∣∣ 1
k−k0

k∑
i=k0+1

W 2
ij

∣∣∣ ≥ c
2
k0(k0−1)
n−k

[
2 + (k−k0)

n−k−1

]
‖µ1−µ2‖2

m

}
. (5.35)

Using similar arguments as in the discussion of the term (5.34), the above probability can

be further bounded by

P{|H2| ≥ cE}

≤ c1me
−c2(k−k0)min{ k20

(n−k0)(k−k0)
‖µ1−µ2‖

2

m
,

√
k20

(n−k0)(k−k0)
‖µ1−µ2‖√

m
}

+ c2mne
−c3

√
k20

n−k0
‖µ1−µ2‖√

m

≤ c1p
2e−c4 min{τ,

√
nτ} + c2p

2ne−c5
√
τ = o

(
1

n

)
,

where the last line is due to the observation that if the smallest nonzero entry of (Σ1 − Σ2)

satisfies |σ1(a, b)− σ2(a, b)| ≥ C
√

τ
n
n
k0

√
n−k0
k0

for some large C in (3.1), then

k20
(n− k0)

‖µ1 − µ2‖2

m
≥ Cτ and

√
k20(k − k0)
n− k0

‖µ1 − µ2‖√
m

≥ C
√
nτ.

So together with p2n = o(ecτ ), p2n = o(ec
√
nτ ) and p2n2 = o(ec

√
τ ) in Assumption 3.3, we can

find the probability to be of order o
(
1
n

)
. For the term H3, according to (3.1) in Assumption
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3.2, we have

P{|H3| ≥ cE} ≤ m · P
{∣∣∣ k0∑

i=1

k∑
t=k0+1

WijWtj

∣∣∣ ≥ ck0(k0−1)
n−k

[
2(k − k0)

]
‖µ1−µ2‖2

m

}
≤ m · P

{∣∣∣∑k0
i=1Wij

k0

∣∣∣ ≥√ (k0−1)
n−k0

‖µ1−µ2‖√
m

}
+m · P

{∣∣∣∑k
t=k0+1Wtj

k−k0

∣∣∣ ≥ 2c
√

(k0−1)
n−k0

‖µ1−µ2‖√
m

}
≤ c1m[e

−c2k0 min{ k0
n−k0

‖µ1−µ2‖
2

m
,
√

k0
n−k0

‖µ1−µ2‖√
m

}
+ e

−c3(k−k0)min{ k0
n−k0

‖µ1−µ2‖
2

m
,
√

k0
n−k0

‖µ1−µ2‖√
m

}
]

≤ c1me
−c4 min{τ,

√
nτ} = o

(
1

n

)
when the smallest nonzero entry of (Σ1 − Σ2) satisfies |σ1(a, b)− σ2(a, b)| ≥ C

√
τ
n
n
k0

√
n−k0
k0

for some large C and p2n = o(ecτ ), p2n = o(ec
√
nτ ). Combining these arguments gives

P(|A`(k)− A`(k0)| ≥ cE) ≤ c1p
2[e−c2τ + ne−c2

√
τ ] = o

( 1

n

)
, ` = 1, 2, 3,

where we note once again that the cases ` = 2, 3 follow by similar arguments as given for

` = 1. From (5.26), (5.32), (5.33) we therefore obtain (5.24), which proves

P{k̂ ≥ (1 + ε)k0} ≤ c5p
2n
[
e−c6τ + ne−c6

√
τ
]
→ 0.

By the discussion at the beginning of the proof and (5.23) the assertion of Theorem 3.3

follows.

5.4 Proof of Corollary 3.1

The difference in proving Theorem 3.1, 3.2 and 3.3 under Assumption 3.3 and Assumption

3.4 consists only in a different treatment of the terms C(2) in (5.17), H1 in (5.34) (and H2

in (5.35)), for which we need to make use of the following Proposition 5.1. The proof of this

result is postponed to Section 5.5.

Proposition 5.1. Suppose y1, · · · , yk (k ≥ nε for some 0 < ε < 1) are independent sub-

exponential random variables. Let ∆ > max
i

E[y2i ]. Then for any positive constants c > 0,

M > 0 there exists a constant n0 = n0(c,M) ∈ N, such that for all n ≥ n0.

P
{1

k

k∑
i=1

y2i > ∆
}
< cn−M .

First, we discuss the differences in the proof of Theorem 3.1 and look at the term C(2) in

(5.17) recalling the representation ẊiaẊib = XiaXib −XiaX̄b −XibX̄a + X̄aX̄b. Proposition

5.1 gives for the sum corresponding to the first term

P
{1

k

k∑
i=1

(XiaXib)
2 > cτ

}
≤ c · n−M , ∀M > 0.
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Moreover, for k = bn1/2c+ 1, . . . , n− bn1/2c − 1 we have

P
{

1
k

k∑
i=1

(XiaX̄b)
2 > cτ

}
≤ kP

{
|XiaX̄b| > c

√
τ
}

≤ n
[
P
{
|XiaX̄b| > c

√
τ , |X̄b| > 1

}
+ P

{
|XiaX̄b| > c

√
τ , |X̄b| ≤ 1

}]
≤ n

[
P
{
|X̄b| > 1

}
+ P

{
|Xia| > c

√
τ
}]
≤ c1n

[
e−c2n + e−c3τ

]
,

P
{

1
k

k∑
i=1

(X̄aX̄b)
2 > cτ

}
≤ kP

{
|X̄aX̄b| > c

√
τ
}

≤ n
[
P
{
|X̄a| > c1τ

1/4
}

+ P
{
|X̄b| > c2τ

1/4
}]
≤ c3p

2n2e−c4n
√
τ ,

and the probability in (5.17) can be bounded by

P{C(2) > cτ} ≤ c1

[
n−M + n2e−c2n + n2e−c3τ + n2e−c4n

√
τ
]
.

Consequently, if

pn−M → 0, p2n2e−cn → 0, p2n2e−cτ → 0

for some small positive constant c, it follows that p2 · P{C(2) > cτ} → 0. Here M > 0 could

be any large positive constant. These estimates show that (5.7) holds for the case i = 2 as

long as

pn−M → 0, p2n2e−cn → 0, p2n2e−cτ → 0, p2ne−cn
1
4
√
τ → 0.

for some small positive constant c. Note that these conditions contain (5.15) and that

pn−M → 0 implies p2n2e−cn → 0 and p2ne−cn
1
4
√
τ → 0. Consequently, (3.7) holds if

pn−M → 0, p2n2e−cτ → 0,

where c is some small positive constant and M > 0 could be any large constant.

Next, we discuss the differences in the proof of Theorem 3.2 and look exemplarily at the

term H1. For the second term in (5.34), recall that

Wij = XiaXib − E(XiaXib)−XiaX̄b −XibX̄a + X̄aX̄b

in equation (5.28). Proposition 5.1 gives

P
{∣∣∣ 1k0 k0∑

i=1

(XiaXib − E(XiaXib))
2
∣∣∣ ≥ c

2
(k0 − 1)‖µ1−µ2‖2

m

}
≤ cn−M .

In addition,

P
{∣∣∣ 1k0 k0∑

i=1

(XiaX̄b)
2
∣∣∣ ≥ c

2
(k0 − 1)‖µ1−µ2‖2

m

}
≤ k0 · P

{
|XiaX̄b| ≥ c4

√
k0
‖µ1−µ2‖√

m

}
≤ n

[
P
{
|XiaX̄b| > c4

√
k0
‖µ1−µ2‖√

m
, |X̄b| > 1

}
+ P

{
|XiaX̄b| > c4

√
k0
‖µ1−µ2‖√

m
, |X̄b| ≤ 1

}]
≤ n

[
P
{
|X̄b| > 1

}
+ P

{
|Xia| > c4

√
k0
‖µ1−µ2‖√

m

}]
≤ c1n

[
e−c2n + e−c3k0

‖µ1−µ2‖
2

m

]
,
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and

P
{∣∣∣ 1k0 k0∑

i=1

(X̄aX̄b)
2
∣∣∣ ≥ c

2
(k0 − 1)‖µ1−µ2‖2

m

}
≤ p2k0 · P

{
|X̄aX̄b| ≥ c4

√
k0
‖µ1−µ2‖√

m

}
≤ c1p

2ne
−c2n

√
k0
‖µ1−µ2‖√

m .

So, when the smallest nonzero entry of (Σ1 − Σ2) satisfies |σ1(a, b) − σ2(a, b)| ≥ C
√

τ
n

√
n
k0

for some large C,
√
k0
‖µ1−µ2‖√

m
≥ C
√
τ , the second term can be bounded by

P
{∣∣∣ 1k0 k0∑

i=1

W 2
ij

∣∣∣ ≥ c(k0−1)
2

‖µ1−µ2‖2
m

}
≤ c[n−M + ne−cn + ne−ck0

‖µ1−µ2‖
2

m + ne
−cn
√
k0
‖µ1−µ2‖√

m ]

≤ c[n−M + ne−cn + ne−cτ + ne−cn
√
τ ],

and we obtain

P{|H1| ≥ cE} ≤ c[p2e−cmin{τ,
√
nτ} + p2n−M + p2ne−cn + p2ne−cτ + p2ne−cn

√
τ ] = o

(
1

n

)
,

where the last estimate follows from pn−M → 0 and pne−cτ → 0 in Assumption 3.4.

Finally, the term H2 in (5.35) can be treated using the same derivation as in (5.36) and

we obtain

P{|H2| ≥ cE} ≤ c1p
2e−c4 min{τ,

√
nτ} + c2p

2[n−M + ne−cn + ne−cτ + ne−cn
√
τ ] = o

(
1

n

)
,

where we use the fact that
k20

(n− k0)
‖µ1 − µ2‖2

m
≥ Cτ

if the smallest nonzero entry of (Σ1 − Σ2) satisfies |σ1(a, b) − σ2(a, b)| ≥ C
√

τ
n
n
k0

√
n−k0
k0

for some large C in (3.1). Together with the conditions pn−M → 0 and pne−cτ → 0 from

Assumption 3.4 it follows that the probability is of order o
(
1
n

)
.

Adjusting the above three terms in the proof of Theorem 3.1, Theorem 3.2 and Theorem

3.3, we complete the proof of Corollary 3.1.

5.5 Proof of Proposition 5.1

Denote C , ∆− 1
k

k∑
i=1

Ey2i , C > 0. By Theorem 4.1 in Johnson et al. (1985) and the following

remark, we have for any h > 2

P
{

1
k

k∑
i=1

y2i > ∆
}

= P
{

1
k

k∑
i=1

(y2i − Ey2i ) > C
}
≤ 1

Chkh
E
[ k∑
i=1

(y2i − Ey2i )
]h

(5.36)

≤ Ch1
Chkh

(
h

log h

)h
·max

{[
E
∣∣∣ k∑
i=1

(y2i − Ey2i )
∣∣∣2]h2 , k∑

i=1

E|y2i − Ey2i |h
}
,
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where C1 is an absolute constant. We calculate the upper bounds for the two terms using

the fact that the random variables yi are sub-exponential. For i = 1, . . . , k we have

E|y2i − Ey2i |h ≤ 2h+1Ey2hi = 2h+1[Ey2hi I{|yi| ≤ h(log h)2}+ Ey2hi I{|yi| > h(log h)2}]

≤ 2h+1[h2h(log h)4h + c1] ≤ c2 · 2hh2h(log h)4h,

and thus for any positive integer M > 0, we can find h > 2 such that

Ch
1

Chkh

( h

log h

)h
·

k∑
i=1

E|y2i − Ey2i |h ≤ ch3k ·
[(h log h)3

k

]h
≤ cn−M , (5.37)

where the last inequality is due to the fact that k > nε. Moreover, since the random variables

yi are independent, we obtain

[
E|

k∑
i=1

(y2i − Ey2i )|2
]h

2
=
[ k∑
i=1

E(y2i − Ey2i )2
]h

2 ≤ ch4k
h
2 .

Therefore, for any positive integer M > 0, there exists a constant h, such that

Ch
1

Chkh

( h

log h

)h
·
[
E|

k∑
i=1

(y2i − Ey2i )|2
]h

2 ≤ ch5

( h√
k log h

)h
≤ cn−M , (5.38)

where the last inequality is also based on the fact that k > nε. Combining (5.36), (5.37) and

(5.38) the assertion of Proposition 5.1 follows.
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