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Abstract

The main issue in the analysis of computer experiments is an uncertainty
of prediction and related inferences. To address the uncertainty analysis, the
Bayesian analysis of deterministic computer models has been actively devel-
oped in the last decade. In the Bayesian approach, the uncertainty is expressed
through a Gaussian process model. As a consequence, the resulting analysis
is rather sensitive with respect to these prior assumptions. Moreover, for high
dimensional data this approach leads to time consuming computations.

In the present paper we introduce a new approach for deriving the uncertainty
in the analysis of computer experiments, where the distribution of uncertainty
is obtained in a general nonparametric form. The proposed approach is called
N(on) P(arametric) U(ncertainty) A(nalysis) and is based on a combination of
sampling and regression techniques. In particular, it is computationally very
simple. We compare NPUA with the Bayesian and Kriging method and inves-
tigate its performance for finding points for the next runs by re-analyzing the
ASET model.

Keywords and Phrases: Computer experiment, uncertainty analysis, important sam-

pling, regression, Jack-knife, sequential designs.

1 Introduction

In modern scientific studies, complex processes are described by mathematical com-

puter models. These models serve as a replacement for natural (physical, chemical,
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biological) experiments which are too time consuming or too costly. Computer models

are used for modelling processes in engineering, fluid dynamics and thermodynamics,

epidemiology, health and environmental sciences. In particular, mathematical models

may describe phenomena which cannot be reproduced, for example, weather modelling

and climate change.

A computer experiment consists of several runs of a computer program under dif-

ferent input conditions. Each run of the model is typically time consuming, since the

computer program is based on a solution of a large system of sophisticated mathemat-

ical equations. As a result, the number of runs which are available for the analysis of

the model is limited. One of the aims of the analysis is to construct a meta-model for

predicting the output of the model at untried inputs. However, such a prediction is

uncertain, and it is important to quantify this uncertainty. In the Bayesian approach

(O’Hagan et al., 1999) the conception of a so-called emulator is introduced to describe

the uncertainty. The emulator is a stochastic process that represents the unknown out-

put of the computer model. The meta-model is defined by the mean of the emulator

and the uncertainty is characterized by the variance of the emulator. The validity of

the emulator is determined through diagnostics (Bastos and O’Hagan, 2009).

In general, the analysis of deterministic computer experiments is versatile. In addi-

tion to three basic objectives (prediction, uncertainty and diagnostics), there are more

specific objectives such as calibration, data assimilation and sensitivity analysis (see

Sacks et al., 1989, Kennedy and O’Hagan, 2001, Politis and Robertson, 2004, Oakley

and O’Hagan, 2004) among many others). For the purpose of prediction, there are

several techniques including adaptive spline interpolation (Friedman, 1991), Kriging

(Cressie, 1993), Bayes linear approach (Goldstein and Wooff, 1995), Bayesian analysis

(Kennedy and O’Hagan, 2001), neural networks (Smith, 1993), radial basis function

approximation (Powell, 1987), and wavelet modeling (Mallet, 1998).

On the other hand – to the knowledge of the authors – the uncertainty analysis has

been developed only in the Bayesian framework by employing stochastic processes of a

premeditated class. The key feature of this approach is the handling of the dependence

between outputs for different inputs as the correlation dependence. As a result, the

meta-model does not provide easily accessible information on the shape of the model

output since the meta-model is a posterior Gaussian process. Moreover, the computa-

tional complexity of the Bayesian approach is substantial for high dimensional data.

The complexity is smaller for the Bayes linear approach (Goldstein and Wooff, 1995)

which is less popular than the Bayesian approach. In addition, the diagnostics of the

meta-model (see Bastos and O’Hagan, 2009) is based on fine rules as the verification

of the normality of correlated differences between the outputs of the meta-model and

the computer model at several points.

In the present paper, we propose a new approach for these three basic parts of the
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analysis of computer experiments. Some intermediate steps of the suggested method

are well-known standard statistical tools, but, to the best of our knowledge, have not

been utilized in the proposed way for analyzing computer experiments. The idea of

the approach is motivated by the important sampling method, the theory of regression

experiments and cross-validation. The meta-model is defined as the sum of a mean

term and a residual term. We treat the mean term as a major part of the model output

similarly to the selection of an essential part in the important sampling method (Ripley,

1987). The regression theory is utilized to construct the mean term using the known

basis functions with unknown parameters. We propose to construct the residual term,

the unexplained behaviour in the model output, by exploiting a simple interpolation

technique. The uncertainty is quantified using the Jack-knife principle. As a result,

the distribution of uncertainty is defined through an empirical distribution. Finally, we

propose to perform the diagnostics on the basis of the set of deleted residuals. Such a

diagnostics is harmonized with the uncertainty analysis and purely based on the data

used for the construction of the meta-model. Throughout this paper the proposed

approach is called N(on) P(arametric) U(ncertainty) A(nalysis). Note that NPUA is

rather simple, uses standard statistical tools from various statistical fields, and can

easily be implemented.

The remaining part of the paper is organized as follows. In Section 2, NPUA is

outlined and the basic algorithms of the Bayesian and Kriging method are reviewed

for the sake of a clear comparison. In Section 3, the difference between the three

methods are explained by an illustrative example. In Section 4, the performance of

new methodology is demonstrated re-analyzing the ASET model developed by Cooper

and Stroup (1985).

2 Outline of three approaches

Let yi denote the output of a computer program for an input xi, that is yi = η(xi),

i = 1, . . . , n, where η(x) is the computer model, which is called a simulator in the

Bayesian approach. We assume that the model has a scalar output and d-dimensional

inputs. In the following subsections, we describe three different ways of analyzing

computer experiments of this type. In Section 2.1, a new method, NPUA, for the

analysis of computer experiments is introduced. In Sections 2.2 and 2.3, we briefly

describe the Bayesian and Kriging approaches which have been widely used in the

literature (see Santner et al., 2003, Fang et al., 2006, O’Hagan and West, 2010).
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2.1 The principle of NPUA

For the analysis of experiments of a deterministic computer model, we propose to build

the meta-model in the form

η̂(x) = β̂T f(x) + Z(x), (1)

where the mean term βT f(x) is constructed by a stepwise regression technique, β̂ de-

notes an appropriate estimate and the residual term Z(x) is defined by an interpolation

method on the basis of the residuals zi = yi − β̂T f(xi), i = 1, . . . , n. We impose that

the mean term βT f(x) has to reflect a major behaviour of the model η(x) and, hence,

the term Z(x) remains to describe a residual behaviour. Although the term βT f(x) is

called a mean term, indeed, this term is not the mean of some random variable, since

there is no randomness in the proposed procedure.

The specific form of the meta-model (1) can be justified by the following arguments.

From a practical point of view, the model η(x) is unknown but it belongs to a given class

of functions F ; η ∈ F . Consequently, we can choose some basis functions V1,V2, . . . ,Vq

such that the value

min
β

dist
(
η,

q∑
i=1

βiVi

)

is rather small for some q ∈ N, where dist(·, ·) is an appropriate distance measure

between the elements of the class F . This concept is similar to a principle of the

important sampling method, where a reduction of the variance is achieved by extracting

a simple and essential part (Ripley, 1987). In our context, a linear combination of the

basis functions represents a major behaviour of the model. Therefore, the uncertainty

is smaller if the basis functions are more appropriate. This rule is a key tool for the

qualitative reduction of the uncertainty.

To fix ideas, we propose to build the vector f(x) in the model (1) using the stepwise

regression procedure. Alternatively, any other more sophisticated method, like LASSO,

could be used as well, see Hastie et al., (2009). The (forward) stepwise procedure

means to include the new term Vr(x), that maximizes a coefficient of determination

R2 or minimizes some discrepancy measure, for example, the sum of squared residuals.

The procedure is stopped at step q∗ when, for example, the coefficient of determination

R2 is greater than 0.95. Note that q∗ is usually small if the set of basis functions is

appropriate. By our experience, we can say that usually q∗ < 15. At the end of the

stepwise procedure, we define

f(x) = (V1(x), . . . ,Vq∗(x))T ,

and estimate β ∈ Rq∗ in the model (1) by ordinary least squares , that is

β̂ = (F T F )−1F T Y
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where Y = (y1, . . . , yn)T denotes the vector of outputs at input conditions x1, . . . , xn

and F = (f(x1), . . . , f(xn))T is the design matrix in the constructed linear regression

model. To finalize the determination of the meta-model, we construct the residual term

Z(x) by a generalized inverse distance weighted interpolation of residuals between the

output values and the estimated mean term at the corresponding input values

zi = yi − β̂T f(xi),

i = 1, . . . , n. Any other interpolation method could be used alternatively, see Cressie

(1993, Sect. 5.9), Fang et al., (2006, Ch. 5), Lu and Wong (2008). To be precise,

define

Z(x) =

n∑
i=1

zi
κ(x− xi)

||x− xi||p2
n∑

i=1

κ(x− xi)

||x− xi||p2

, (2)

where ||x||2 =
( ∑d

s=1 x2
s

)1/2
, κ(·) is a positive symmetric unimodal function with κ(0) =

1 and p is a positive number. The parameter p and the function κ(·) can be varied and

correspond to different forms of interpolation of the residuals z1, . . . , zn. In geostatistics,

the case p = 2 and κ(·) ≡ 1 is known as the ordinary inverse distance weighted

interpolation (Cressie, 1993, Sect. 5.9.2). Finally, the meta-model η̂(x) for the data

set (xi, yi)
n
i=1 is a sum of β̂T f(x) and Z(x), which interpolates the values of the given

dataset, that is η̂(xi) = yi, i = 1, . . . , n. Note that similar procedures for constructing

the mean term have been used in Friedman and Stuetzle (1981), Koehler and Owen

(1996), Fang and Lin (2003, p. 157).

To derive a distribution of uncertainty, we propose to use the Jack-knife technique

(Efron and Tibshirani, 1993). To be precise, we construct meta-models η̂1(x), . . . , η̂n(x),

where the meta-model η̂j(x) based on the data excluding the jth point and the same

vector f(x), function κ(·) and parameter p. Then, the sample (η̂1(x), . . . , η̂n(x)) yields

an empirical distribution of uncertainty of the model output η(x) for any x. This em-

pirical distribution can be used for making probabilistic judgments for the output of

the model η(x), provided that the sample size n is sufficiently large. In general, one

may derive a continuous distribution from the empirical distribution, however, this is

not necessary. We believe that the consideration of the empirical distribution itself is

enough for the analysis of the uncertainty. We note that the empirical distribution is

not symmetric and the values maxi η̂i(x)− η̂(x) and mini η̂i(x)− η̂(x) characterize the

tails of the uncertainty distribution for any given x.

For the diagnostics of the constructed meta-model, we propose to compute the set

S = {η̂(x1)− η̂1(x1), . . . , η̂(xn)− η̂n(xn)} (3)
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which can be interpreted as the set of deleted residuals (Efron and Tibshirani, 1993).

If the set S has an outlier or contains values which are larger than a given threshold,

then the meta-model has to be considered as not accurate enough and additional runs

of the model have to be performed. Note that, in contrast to Bastos and O’Hagan

(2009), this diagnostics does not require additional runs of the computer model.

In the following paragraphs we present several details of the proposed approach.

2.1.1 Choice of the basis functions

The problem of choosing appropriate basis functions for the space F is of particular

importance and can be solved in the following ways. One way is the identification of a

set of candidate functions from the space F on the basis of scientific background and

experts’ knowledge. Another way is to draw scatterplots of the output versus each

input. From these figures, one may guess reasonable functions describing the relation

between the output and the input. The basis functions for high dimensional input can

be constructed in the following manner.

Let {gi(t)}i be a set of scalar functions of scalar variable t. Functions gi(t) may be

monomials, exponentials, rational, trigonometric or wavelet-type functions, for exam-

ple,

1, t, t2, t3, e−t, te−5t, t2e−5t, t/(0.05 + t2), t2/(0.05 + t2), cos(πt), cos(2πt).

Similarly to An and Owen (2001), define the terms Vr(x) as products of the form

Vr(x) =
d∏

s=1

gjr,s(xs)

for some jr,1, . . . , jr,d, x = (x1, . . . , xd) ∈ Rd. In general, the basis functions may be

discontinuous in order to analyze a computer model with discontinuities in the output.

One may also employ nonlinear regression models, but a higher complexity of parameter

estimation should be taken into account in this case.

2.1.2 Choice of the meta-model via diagnostics

On the basis of the set S defined in (3), we introduce two measures of goodness-of-fit,

that is

D2 =

(
1

n

n∑
i=1

(
η̂(xi)− η̂i(xi)

)2

)1/2

,

D∞ = max
i=1,...,n

∣∣η̂(xi)− η̂i(xi)
∣∣.
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Similarly to Stone (1974), we can use these values for the choice of the vector f(x)

among several variants in the following manner. We consider a meta-model as more

appropriate if the coefficient of determination R2 is large and the value of the quantity

αD2 + (1− α)D∞

is small, where α is a pre-specified constant. Consequently, we have the following

procedure. We build several meta-models using different sets of basis functions and we

choose a meta-model for which the value αD2 + (1 − α)D∞ is minimal provided that

R2 > 0.95. In the same manner, we can choose the parameter p and κ(·) and in the

interpolation method for the construction of the residual process Z(x).

2.1.3 Analysis of stochastic models

The proposed approach admits a generalization for the analysis of stochastic models

(Kleijnen, 2005). Assume that the output of the model is disturbed by a random

variable, that is

yi = η(xi) + εi.

A typical example of a “random” output occurs in the case where the mathematical

model contains a stochastic differential equation, or the model is a simulation model.

Assume that the disturbances εi are independent identically distributed random

values with zero mean and finite variance. Then the meta-model can be taken in the

form (1) with

Z(x) =

n∑
i=1

s(zi, τ)κ(x− xi)||x− xi||−p
2

n∑
i=1

κ(x− xi)||x− xi||−p
2

,

where s(z, τ) is given by

s(t, τ) =





t + τ t < −τ,

0 |t|≤ τ,

t− τ t > τ.

The value of the shrinkage parameter τ is determined from experts’ knowledge. In gen-

eral, the estimation of τ from the data is a hard problem, which requires observations

at several points closely located to each other. Note that the threshold for R2 in the

stepwise procedure should be reduced as the variance of disturbances εi increases. For

the case of heteroscedastic models, we should use Z(x) with s(zi, τ(xi)), where τ(x) is

a value of the shrinkage parameter at the point x.
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2.1.4 Sequential experiments

The amount of information extracted from the limited number of runs of the model

increases by applying the sequential methodology, see e.g. (Santner et al. 2000, 2003,

Sect. 6.3). It is clear that since each run of the program is time consuming, there

is enough time for computing a ’good’ point for the next run of the computer model,

rather than to use an n-point Latin hypercube design, where n is the total number of

runs.

We propose to start the investigation of the model with k runs according to a k-

point space-filling design, where n/3 ≤ k ≤ n/2, and to compute the remaining design

points sequentially. It is natural that a new point for the next run of the model should

be a point at which the uncertainty of the meta-model output is maximal. Assume that

the model output is obtained at the input conditions x1, . . . , xm. Then we determine

the point for the next run by

x∗ = argmax
{

max
j=1,...,m

ψ(x)
∣∣η̂(x)− η̂j(x)

∣∣
∣∣∣ x 6∈

m⋃
i=1

Si

}
, (4)

where

Si =

{
x : ||x− xi||2 <

1

2
min
j 6=i

||xj − xi||2
}

denotes a neighbourhood of the point xi and ψ(x) is a prior preference function such

that 0 ≤ ψ(x) ≤ 1. The maximization over the set
⋃m

i=1 Si guarantees that the new

point x∗ is not close to the inputs x1, . . . , xm. The function ψ is a weight function,

reflecting the interest at different regions in the design space. If a specific subdomain

Ω of the design space is of particular importance, one can put a larger weight at points

of Ω. If only points in Ω are of equally interest, one can define ψ(x) = 1Ω(x).

The performance of the proposed sequential design methodology will be demon-

strated in Section 4.

2.2 Bayesian approach

In this subsection, we briefly describe the basic algorithm of the Bayesian approach for

the analysis of computer experiments (Kennedy and O’Hagan, 2001). This approach

is focusing on the Bayesian analysis of the emulator, which is a Gaussian process with

mean me(x) = βT h(x) and covariance function Ve(x, x̃) = σ2r(x, x̃|ψ), where x ∈ Rd is

the d-dimensional input of the model, h(x) is the vector of known functions, β ∈ Rq is

the vector of unknown parameters, the output is one-dimensional, r(x, x̃) = r(x, x̃|ψ)

is the known correlation function and σ and ψ are unknown parameters. It is often

assumed that h(x) and r(x, x̃) are of the form h(x) = (1, xT )T and

r(x, x̃|ψ) = exp
(
−

∑d

s=1
(xs − x̃s)

δ
/
ψs

)
(5)
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with δ = 2. The meta-model is the mean of the posterior emulator which is the condi-

tional (on data) Gaussian process with mean mp(x) and covariance function Vp(x, x̃).

For the computation of the posterior emulator according to the Bayesian analysis,

one has to specify a prior distribution for the parameters β, σ2, ψ and integrate out to

obtain the estimates. It is often assumed that the prior densities for the parameters

are given by non-informative priors, for example, pa(β, σ2) ∝ σ−2, pa(ψ) ∝ 1. Note

that these priors considerably simplify the calculations in the Bayesian approach.

The basic algorithm for computing Gaussian posterior emulator is described in the

following paragraph. For details and modifications of this algorithm, we refer to the

work of Kennedy and O’Hagan (2001), Bayarri et al. (2007), Rougier (2008), Bastos

and O’Hagan (2009) and Liu and West (2009) among others.

Firstly, we define the posterior density for the correlation length parameters ψ

pp(ψ|y) ∝ |R|−1/2|HT R−1H|−1/2
(
σ̂2

)−(n−q)/2
, (6)

where

σ̂2 =
1

n− q − 2
yT

(
R−1 −R−1H(HT R−1H)−1HT R−1

)
y, (7)

H = (h(x1), . . . , h(xn))T ∈ Rn×q is the design matrix and R = (R(xi, xj|ψ))n
i,j=1 is the

covariance matrix. Next, according to the plug-in method (Kennedy and O’Hagan,

2001), calculate the estimate ψ̂ of the correlation parameter by maximizing the poste-

rior density defined in (6) and compute the matrix R̂ = (R(xi, xj|ψ̂))n
i,j=1. After that,

calculate the Bayesian estimate of β by

β̂ = (HT R̂−1H)−1HT R̂−1y. (8)

Next, we compute the Bayesian estimate of σ2 by (7) with the replacement R by R̂.

Finally, we define the mean of the posterior emulator by

mp(x) = β̂T h(x) + tT (x)R̂−1(y −Hβ̂), (9)

and the covariance function of the posterior emulator by

V̂p(x, x̃) = σ̂2
(
r(x, x̃|ψ̂)− tT (x)R̂−1t(x̃) + sT (x)(HT R̂−1H)−1s(x̃)

)
, (10)

where t(x) = (r(x, x1|ψ̂), . . . , r(x, xn|ψ̂))T and s(x) = h(x)−HT R̂−1t(x).

For a graphical representation of the posterior emulator, the mean and the 95%-

confidence interval

(mp(x)− γ

√
V̂p(x, x),mp(x) + γ

√
V̂p(x, x)) (11)

are drawn, where γ is a 0.975-quantile of the Student distribution with (n− q) degrees

of freedom.
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The diagnostics of the Gaussian process emulators has recently been developed by

Bastos and O’Hagan (2009). New runs of the model at points of a validation set are

required for this method, which is based on the verification of the normality of the

residuals between the output of the meta-model at the points of the validation set and

the true output of the model.

2.3 Kriging approach

In this subsection, we outline the approach based on the Kriging technique, which

has found considerable attention in the field of spatial statistics (Cressie, 1993). This

method is based on the model η(x) = m(x) + Z(x), where Z(x) is a stationary process

with zero mean and known covariance function. Let the mean m(x) = βT f(x) be con-

structed by the stepwise regression technique (in geostatistics, the mean term m(x) is

constant) and Z(x) is an isotropic Gaussian process with Gaussian covariance function

V (x, x̃|ψ0) = σ2 exp
(
−

∑d

s=1
(xs − x̃s)

2
/

ψ0

)

and unknown parameter ψ0 > 0. Let the parameter β be estimated by the ordinary

least squares, β̂ = (F T F )−1F T Y, where Y = (y1, . . . , yn)T and F = (f(x1), . . . , f(xn))T ,

and the correlation parameter ψ0 is estimated by the variogram method for the residuals

Zi = yi − β̂T f(xi) [see formula (2.4.12) and (2.6.12) in Cressie (1993)].1 Finally, the

mean of the posterior emulator is given by

mp(x) = β̂T f(x) + tT (x)V̂ −1(y − Fβ̂)

where V̂ = (V (xi, xj|ψ̂))n
i,j=1 is the covariance matrix and

t(x) = (V (x, x1|ψ̂0), . . . , V (x, xn|ψ̂0))
T .

The covariance function of the posterior emulator is given by

V̂p(x, x̃) = V (x, x̃|ψ̂0)− tT (x)V̂ −1t(x̃).

Finally, the uncertainty is defined in the same way as in Section 2.2.

1To be precise, the estimate of the variogram is given by

2γ̂(h) =

(
1

|N(h)|
∑

(i,j)∈N(h) |Zi − Zj |1/2
)4

0.457 + 0.494/|N(h)|
where |N(h)| means the number of elements in the set N(h) = {(i, j) : ||xi−xj || = h, i, j = 1, . . . , n},
and the parameter ψ0 is estimated by minimizing the sum

K∑

j=1

|N(hj)|
(

γ̂(hj)
γ(hj , ψ0)

− 1
)2

,

where h1, . . . , hK are the distinct elements of the set {||xi−xj ||}i,j and γ(h, ψ0) = σ2(1−exp(−h2/ψ0)).
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3 Comparison of three approaches

In this section we present the conceptual differences and perform a numerical compar-

ison of the three approaches.

3.1 Some general remarks

In NPUA there is no randomness and no correlation in the structure of the meta-model.

In contrast, in the Bayesian and Kriging method, the dependence between outputs for

different inputs is modeled by a stationary Gaussian process (specifying its correlation

structure) and the meta-model is assumed to be the mean of a stochastic process. As

a result, the structure of uncertainty is the consequence of these specific assumptions.

In the Bayesian and Kriging approaches, the uncertainty for any input has a Student

distribution and is as a consequence symmetric (Bastos and O’Hagan, 2009). In NPUA

there is no specific form of the distribution for the uncertainty, because – similar to

the bootstrap method – the distribution of the uncertainty is produced from the data.

Note that in the proposed and Kriging approaches, the mean term is a nonlinear

function constructed in the same manner, but the the residual term Z(x) is determined

in different ways. On the other hand, in the Bayesian approach, the mean term of

the Gaussian process is typically constant or a linear function (Bastos and O’Hagan,

2009). In the Kriging approach, the covariance function is isotropic. In particular, the

relation between the correlation parameters in the Bayesian and Kriging approaches is

ψ = (ψ0, . . . , ψ0).

Finally, we discuss the computational complexity of the three methods. The pro-

posed and Kriging approaches have a similar complexity. They consist of k inversions

of matrices of sizes from 1 to q∗ where q∗ ≈ 15 and k depends on the number of basis

functions. After that, in the proposed approach, n inversions of matrices of size q∗

are performed to compute the distribution of uncertainty. In the Kriging approach,

the empirical variogram is calculated and the variogram estimate of ψ0 is computed

through the minimization of a functional of one variable, and - in the final step - the

inversion of the correlation matrix of size n is performed. In the Bayesian approach,

the maximum likelihood estimate of the parameter ψ is computed through the max-

imization of a functional of d + 1 variables. The finding of the maximum requires

numerous (about 100(d+1)) inversions of the correlation matrices of size n. Moreover,

the correlation matrices of size n may be ill-conditioned (see Neal, 1997).

3.2 Two illustrative examples

For clarity, we investigate two examples in the one-dimensional case, where it is easy

to visualize the meta-model and the corresponding uncertainty (other examples are
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available from the authors).

Let us consider the first dataset

xi 0 0.25 0.5 0.75 1

yi 0.28 0.37 0.5 0.19 0.07
(12)

and the second dataset

xi 0 0.25 0.5 0.75 1

yi 0 0.03 0.30 0.50 0.59
. (13)

Define h(x) = (1, x)T in the Bayesian approach and f(x) = (1, x, x2)T in the Kriging

method and the method proposed in this paper. Taking p = 2 and κ(·) ≡ 1 in (2) in

the proposed approach, we obtain that R2 = 0.9, D∞ = 0.27, D2 = 0.16 for the dataset

(12) and R2 = 0.976, D∞ = 0.34, D2 = 0.20 for the dataset (13).

The meta-models and their corresponding uncertainty are depicted in Figure 1.

Note that in the Bayesian and Kriging approaches the uncertainty is specified by 95%

confidence intervals, which results in two dashed lines on the top and the middle panel

of Figure 1, respectively. On the other hand, the uncertainty in the proposed approach

is specified by n curves η̂1(x), . . . , η̂n(x) obtained by the Jack-knife technique. The true

model is not given in order to stress the uncertainty of the prediction problem.

The conceptual differences of the three approaches can be observed in Figure 1. In

the Bayesian approach, the uncertainty of the meta-model for the first dataset grows

as a point goes outside of the interval [0, 1]. In the Kriging approach, the uncertainty

of the meta-model is proportional to the variance σ̂ for points which lie outside the

neighborhood of the training data. In the Bayesian and Kriging approaches, the un-

certainty has a symmetric quasi-periodic shape. In contrast, in NPUA, the uncertainty

at some point strongly depends on the joint placement of the neighbourhood training

points.
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Figure 1: Meta-models (solid lines) and their uncertainty (dashed lines) for the dataset

(12) (left column) and dataset (13) (right column) for the Bayesian approach (upper

panel), the Kriging approach (middle panel) and the proposed approach (bottom

panel).
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4 Evolution of fires in enclosed areas

In this section we use NPUA for the analysis of the ASET model developed by Cooper

and Stroup (1985). In our study, we used the ASET-B program implemented in BASIC

by Walton (1985). In particular, this model has also been studied in Santner et al.

(2003). This program describes the fire environment in a single room with closed

windows and doors with a small leak at floor level. This leak prevents the pressure

from increasing in the room. A fire starts at some point below the ceiling and releases

energy and products of combustion. The hot products of combustion form a plume

which rises towards the ceiling. When the plume reaches the ceiling it spreads out

and forms a hot gas layer. There is a relatively sharp interface between the hot upper

layer and the air in the lower part of a room. The program predicts the thickness and

the temperature of the hot smoke layer as a function of time by solving a system of

differential equations. The program has four inputs: the heat loss fraction for the room

(L ∈ [0.7, 0.9]) the height of the fire source above the floor (F ∈ [0.1, 4]), the room

height (H ∈ [6, 12]), the room floor area (A ∈ [100, 250]). The model output is the

time it takes for the low bound of the hot smoke layer to reach five feet above the floor.

Figure 2: The room with the fire source. The thickness of the hot smoke layer increases

from zero to the room height.

After re-parameterization, we consider the model in the following form

η(x) = ASET
(
L = 0.7 + 0.2x1, F = 0.1 + 3.9x2, H = 6 + 6x3, A = 100 + 150x4

)

defined on the cube [0, 1]4. We run the model on the basis of a 30-point maximin Latin

hypercube design (see e.g. Santner et al. 2003). Following Subsection 2.1.1, we define

the set of scalar functions in the form {1, t, t2/3, t3/2}. Applying the stepwise regression
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technique, we obtain the mean term of the meta-model in the form

m(x) = 18.7 + 42.1x
2/3
2 x

3/2
3 x

3/2
4 + 15.8x

3/2
1 x

2/3
2 + 38.6x

3/2
3 x

3/2
4 + 25.5x

2/3
2

with the coefficient of determination R2 = 0.989. Performing the diagnostics, we

calculate D∞ = 8.21 and D2 = 3.58.

Let us pretend that the meta-model fails the diagnostics. Consequently, we would

perform several new runs of the computer model and rebuild the meta-model. Accord-

ing to the 20 iterations of the algorithm proposed in Subsection 2.1.4, we obtain 20

new input conditions for which the computer model is evaluated. The total 50-point

design is depicted in Figure 3. We observe that the additional design points are mostly

located near the boundary of the design space.

Using 50 runs of the model, we obtain the mean term of the meta-model in the

form

m(x) = 20.5 + 44.0x
2/3
2 x

3/2
3 x

3/2
4 + 15.3x

3/2
1 x

2/3
2 + 35.7x

3/2
3 x

3/2
4 + 23.8x

2/3
2 .

The diagnostics of the meta-model yields D∞ = 4.81 and D2 = 2.49.

Let us now compare the characteristics of the meta-model obtained by this se-

quential strategy with the characteristics of meta-models obtained by three alternative

50-point designs. In particular we consider a design ξu, where we add 20 uniformly

chosen random points to the 30-point maximin LHD, and a 50-point maximin LHD.

A further candidate for the comparison is the design ξd, where we add 20 additional

points maximizing the minimal distance to the points of the 30-point LHD and between

each other. The results of the comparison are summarized in Table 1.

Table 1: The diagnostic of the meta-models for different designs.

type of design D∞ D2

ξs 30-point maximin LHD and 20 seq. optimal points 4.8 2.5

ξu 30-point maximin LHD and 20 uniform random points 7.8 2.9

ξm 50-point maximin LHD 9.1 3.5

ξd 30-point maximin LHD and 20 maximin distance points 9.7 3.7

We observe that the 20 points, which are constructed by the sequential algorithm

proposed in Subsection 2.1.4, significantly improve the goodness-of-fit of the meta-

model in comparison with the other strategies. Note that a design ξd, in which 20

points are chosen to maximize the minimal distance to the previous points, yields a

meta-model with slightly larger values for the D2- and D∞-criteria than the meta-model

obtained for the 50-point maximin LHD ξm. This observation can be explained by a
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Figure 3: The projections of the 50-point design obtained as the union of a 30-point

maximin Latin hypercube design with 20 sequentially chosen points. The points of

30-point design are numbered 1-30 and are marked by a diamond. The 20 points are

numbered 31-50 and are marked by a ball. The upper part is the projection of design

points onto the 1st and 3rd coordinates. The right part is the projection of the design

points onto the 2nd and 4th coordinates.
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less structured location of points. On the other hand, the meta-model for the design ξu

is better than the meta-model for the design ξd since some points of the design ξu are

close to each other [this artificially decreases the values of the criteria]. Summarizing

these observations, we conclude that the proposed sequential design is the best among

the designs considered in the study.

Sensitivity analysis can be performed by studying the expression of the mean term.

This expression indicates the presence of interactions between the different input vari-

ables. Also, we see that the loss heat fraction L has the smallest effect on the output.

The height F of the fire source above the floor and the room height H have a medium

effect. The room floor area A has the largest effect on the output. These observations

are consistent with results obtained in Santner et al. (2003, Section 7.1).

Finally, we perform the brute-force validation of the meta-model (corresponding

to the sequential 50-point design) by running the model for 300 uniformly distributed

random points. The errors of prediction are displayed in Figure 4 with respect to the

distance of the points to the boundary of the design space [0, 1]4. We observe that

the absolute values of the errors are mostly smaller than D2. It is remarkable that

the errors are larger for the points located near the boundary of design space. This

observation explains why the algorithm proposed in Subsection 2.4.1 yields mostly runs

of the computer experiment in a neighbourhood of the boundary.
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Figure 4: Errors of prediction with respect to the distance of a point to the boundary

of design space for 300 uniform random points.

5 Conclusion

In the present paper, we have proposed a nonparametric approach for deriving the

uncertainty in the analysis of computer experiments (NPUA), which is based on the
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combination of several powerful statistical techniques. For this reason, we believe

that it is of particular interest for practitioners. The conceptual idea of the proposed

approach is that the structure of the mean term plays a primary role in the meta-

model. This structure should be guessed as the extraction of an essential part in the

important sampling method. The parameters of the mean term are determined by the

stepwise regression technique, but other methods for variable selection could be used as

well. The distribution of uncertainty is derived by employing the Jack-knife technique.

As a result, we obtain a “nonparametric” uncertainty analysis. We recommend to run

the computer experiment with a part of possible runs and then define the remaining

inputs sequentially, such that the uncertainty is large and such that the new inputs

are not too close to the points, which have already been used in the experiment. The

differences between NPUA and the Bayesian and the Kriging approach are discussed

in Section 3, where we demonstrate that NPUA yields an uncertainty which depends

on the joint placement of the neighbourhood points.

The performance of NPUA is also illustrated by the re-analysis of the ASET model.

In particular we have demonstrated that the rule for finding the points for the next

runs of the computer model is efficient. Also, we have shown that the diagnostics of

the meta-model provides reliable information about the accuracy of the meta-model.

Moreover, the NPUA is not computationally demanding and is particularly suitable

for large data sets, while the Bayesian and Kriging approaches may be infeasible in

such cases.
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