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Abstract. LetMn(E) denote the set of vectors of the first n moments of probability measures

on E ⊂ R with existing moments. The investigation of such moment spaces in high dimension

has found considerable interest in the recent literature. For instance, it has been shown that

a uniformly distributed moment sequence in Mn([0, 1]) converges in the large n limit to the

moment sequence of the arcsine distribution. In this article we provide a unifying viewpoint

by identifying classes of more general distributions on Mn(E) for E = [a, b], E = R+ and

E = R, respectively, and discuss universality problems within these classes. In particular, we

demonstrate that the moment sequence of the arcsine distribution is not universal for E being a

compact interval. On the other hand, on the moment spacesMn(R+) andMn(R) the random

moment sequences governed by our distributions exhibit for n → ∞ a universal behaviour:

The first k moments of such a random vector converge almost surely to the first k moments of

the Marchenko-Pastur distribution (half line) and Wigner’s semi-circle distribution (real line).

Moreover, the fluctuations around the limit sequences are Gaussian. We also obtain moderate

and large deviations principles and discuss relations of our findings with free probability.

1. Introduction

Let P(E) denote the set of probability measures on an (possibly infinite) interval E ⊂ R with

finite moments of all orders. For a measure µ ∈ P(E) denote by mj(µ) =
∫
E x

jdµ(j) its j-th

moment and define

Mn(E) :=
{

(m1(µ), . . . ,mn(µ)) : µ ∈ P(E)
}

as the set of moment sequences up to order n, generated by P(E). The setMn(E) is convex and

has been the subject of many studies beginning with Karlin and Shapeley (1953), Karlin and

Studden (1966) and Krein and Nudelman (1977). In these classical works, geometric aspects

of moment spaces were studied. While the even more classical moment problems deal with

all possible moment sequences, a probabilistic investigation rather asks how a typical moment

sequence looks like. This was initiated in Chang et al. (1993), where a uniform distribution

on Mn([0, 1]) was considered. There it was shown that the first k moments of such a random

vector (m
(n)
1 , . . . ,m

(n)
n ) inMn([0, 1]) obey a law of large numbers, when n tends to infinity (but

k is fixed), that is

(m
(n)
1 , . . . ,m

(n)
k )

d−→ (m∗1, . . . ,m
∗
k), n→∞, (1.1)

d−→ denoting convergence in distribution. Here m
(n)
j is the j-th component of the random moment

vector (m
(n)
1 , . . . ,m

(n)
n ) and m∗j is the j-th moment of the arcsine distribution (on the interval

[0, 1]). They also derived the central limit theorem

√
n
(
(m

(n)
1 , . . . ,m

(n)
k )− (m∗1, . . . ,m

∗
k)
) d−→ N (0,Σk), n→∞ (1.2)
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with the covariance matrix Σk = (m∗i+j −m∗im∗j )ki,j=1. Gamboa and Lozada-Chang (2004) in-

vestigated corresponding large deviations principles, while Lozada-Chang (2005) studied similar

problems for moment spaces corresponding to more general functions defined on a bounded set.

More recently, Dette and Nagel (2012) defined special probability distributions on the non-

compact moment spacesMn([0,∞)) andM2n−1(R). They could establish results analogous to

(1.2) with the moments of the arcsine distribution replaced by those of the Marchenko-Pastur

distribution (on [0,∞)) and of the semicircle distribution (on R), respectively.

In this article, we are going to investigate this surprising occurrence of the three distributions

arcsine, Marchenko-Pastur and semicircle distribution in more detail. We are particularly in-

terested in a possible universality of these distributions, as in random matrix theory the latter

two appear naturally for large classes of random matrices with independent entries (see e.g. Bai

and Silverstein (2010) and references therein). The arcsine measure also appears as a universal

distribution of zeros of orthogonal polynomials with respect to weight functions on compact

intervals (see Stahl and Totik (1992)). Especially for unbounded moment spaces a clarification

of universality seems desirable, as there is no uniform measure and thus the consideration of a

particular probability measure needs justification. In other words, we are asking for how typical

the moment sequences of arcsine, semicircle and Marchenko-Pastur distribution are.

The paper will be organized as follows. In Section 2 we review some basic facts about

moment spaces and introduce general classes of distributions on the moment spaces under

consideration. They keep two key features of the uniform distribution on Mn([a, b]) and can

be used to interpolate between distributions on compact and non-compact moment spaces. For

these distributions we derive laws of large numbers of the type (1.1). In particular, we show

that for moment spacesMn([a, b]) corresponding to compact intervals there is no universality of

the arcsine distribution. Instead, the arising measures are known as free binomial distributions,

i.e. the analogues of the binomial distribution in free probability theory. On the other hand,

for the moment spaces Mn([0,∞)) and Mn(R) the first k moments of a random vector always

converge to the first k moments of Marchenko-Pastur and semicircle distributions, respectively.

The occurrence of both distributions will be explained in terms of free Poissonian and free

central limit theorems for the free binomial distribution. In Section 3 we consider central limit

theorems of the form (1.2) and investigate moderate and large deviations principles for random

moment sequences. All proofs are postponed to Section 4. Our results provide an extensive

description of the distributional properties of random moment sequences and a unifying view

on several findings in the recent literature.

2. Laws of Large Numbers

To motivate the class of distributions considered in this paper, we remark first that a real

valued sequence (mi)i∈N0 is a sequence of moments corresponding to a Borel measure on the

real line if and only if all Hankel matrices (mi+j)
n
i,j=0 are positive semi-definite (see Hamburger

(1920)). Similar characterizations exist for measures supported on the half line [0,∞) and

compact intervals, and the corresponding sequences are called Stieltjes and Hausdorff moment

sequences (see Dette and Studden (1997)). Due to restrictions and relations of this type, the

components of a random moment vector inMn(E) are generically not independent coordinates.

Moreover, for a compact interval E the moment spaceMn(E) is a rather small set. For instance,

it is known that the volume ofMn([0, 1]) is of order O(2−n
2
) (see Karlin and Shapeley (1953)),

as for a given moment sequence (m1, . . . ,mn−1) ∈ Mn−1([0, 1]), the possible range of the n-th

moment mn is very small.
2



For these reasons, we will consider different sets of coordinates that scale with the possible

range of values. Although there are infinitely many choices of such coordinates, some are

particularly natural and have found considerable attention in the literature. To be precise,

assume that (m1, . . . ,mj−1) ∈Mj−1([a, b]) is a given vector of moments up to the order j − 1.

Then, because of convexity of Mj([a, b]), the set of possible values mj{
mj(µ)

∣∣ µ ∈ P([a, b]); mi(µ) = mi for all i = 1, . . . , j − 1
}

is a compact interval, say [m−j ,m
+
j ]. Following Dette and Studden (1997), we define for m+

j 6=
m−j and a given j-th moment mj the j-th canonical moment pj via

pj :=
mj −m−j
m+
j −m

−
j

.

The canonical moments are left undefined if m−j = m+
j (in this case the vector (m1, . . . ,mj−1) is

a boundary point of the set Mj−1([a, b]) - see Karlin and Studden (1966)). Clearly, pj ∈ [0, 1],

and pj gives the relative position of mj in the available section of the set Mj([a, b]). It is also

worthwhile to mention that canonical moments are invariant under linear transformations of

the measure (see Dette and Studden (1997), p. 13). The correspondence map

ϕ[a,b]
n : ~pn = (p1, . . . , pn) 7→ ~mn = (m1, . . . ,mn) (2.1)

between the canonical and ordinary moments is one-to-one from (0, 1)n onto Int(Mn([a, b]))

(Int denoting the interior) and many classical quantities of the measure, especially of its asso-

ciated orthogonal polynomials and the continued fraction expansion of its Stieltjes transform,

have expressions in terms of the canonical moments (see Dette and Studden (1997) for more de-

tails). Canonical moments were introduced in a series of papers by Skibinsky (1967, 1968, 1969)

and are closely related to the Verblunsky coefficients, which were investigated much earlier by

Verblunsky (1935, 1936) for measures on the unit circle.

In case of the uniform distribution onMn([0, 1]), as studied in Chang et al. (1993), the canon-

ical moments have two important properties. After a change of variables by (2.1), the uniform

distribution on Mn([0, 1]) has a density w.r.t. the Lebesgue measure on (0, 1)n proportional to

n∏
j=1

(pj(1− pj))n−j = exp
[ n∑
j=1

(n− j) log(pj(1− pj))
]
. (2.2)

Thus, the canonical moments are independent and for n � j nearly identically distributed.

To investigate a possible universality of the arcsine distribution, we will now define a class

of distributions respecting these two properties. However, we will generalize the situation by

allowing for different distributions of even and odd canonical moments. This takes into account

the different roles that even and odd moments play. While even moments are always positive

and give some rough information about the size of the support of the measure, odd moments

give information about location of the support and the symmetry of the measure. In canonical

moments, symmetry around the center of [a, b] can be characterized easily as the property that

all odd canonical moments are 1/2 (see Skibinsky (1969)).

Let V1, V2 : [0, 1]→ R be continuous functions. Define the probability measure Pn,[a,b],V1,2 on

Mn([a, b]) by Pn,[a,b],V1,2 (∂Mn([a, b])) = 0 and on Int(Mn([a, b])) via the density

Pn,[a,b],V1,2(m1, . . . ,mn) :=
1

Zn,[a,b],V1,2
exp

[
− n

bn+1
2
c∑

j=1

V1(p2j−1)− n
bn
2
c∑

j=1

V2(p2j)
]

(2.3)
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w.r.t. the n-dimensional Lebesgue measure, where pj = pj(m1, . . . ,mj) is the j-th canonical

moment of the sequence (m1, . . . ,mn) ∈ Int(Mn([a, b])) defined by (2.1) (j = 1, . . . , n) and

Zn,[a,b],V1,2 is the normalization constant. By bxc we denote the largest natural number smaller

or equal to x. Note that the case V1(x) = V2(x) ≡ 0 and [a, b] = [0, 1] has been considered in

Chang et al. (1993). The factors n in the exponent in (2.3) are asymptotically equivalent to

the factor n− j in (2.2). It follows from (2.2) that under Pn,[a,b],V1,2 the odd, respectively even,

canonical moments are nearly i.i.d..

Let us now formulate our first result for random moment sequences on measures supported

on the interval [a, b]. Here and later on, we will tacitly assume that the random variables

(m
(n)
j )j,n≥1 are defined on the same probability space.

Theorem 2.1.

(1) Let a < b and V1, V2 ∈ C2((0, 1)) be continuous at 0 and 1. Assume that the functions

W1(p) := V1(p)− log(p(1− p)) and W2(p) := V2(p)− log(p(1− p))

each have a unique minimizer p∗1 ∈ (0, 1) and p∗2 ∈ (0, 1), respectively. Let m(n) =

(m
(n)
1 , . . . ,m

(n)
n ) be drawn from Pn,[a,b],V1,2 and abbreviate q∗i := 1−p∗i , i = 1, 2. Then we

have for each k ≥ 1 as n→∞

(m
(n)
1 , . . . ,m

(n)
k )→ (m∗1, . . . ,m

∗
k)

almost surely and in L1, where m∗1, . . . ,m
∗
k are the first k moments of a probability

measure µp∗1,p∗2 = µacp∗1,p∗2
+ µdp∗1,p∗2

. Setting

l± := a+ (b− a)
(√

p∗1q
∗
2 ±

√
p∗2q
∗
1

)2
,

the measures µacp∗1,p∗2
and µdp∗1,p∗2

are given by

µacp∗1,p∗2(dx) =

√
(x− l−)(l+ − x)

2πp∗2(x− a)(b− x)
1[l−,l+](x)dx,

µdp∗1,p∗2 =

(
1− p∗1

p∗2

)
+

δa +

(
p∗1 + p∗2 − 1

p∗2

)
+

δb.

Here (y)+ denotes the positive part of y ∈ R and δy is the Dirac measure at the point y.

(2) If p∗1, p
∗
2 are such that µp∗1,p∗2 does not have atoms, then µp∗1,p∗2 is the equilibrium measure

on the interval [a, b] to the external field

Q(t) := −
(
p∗1
p∗2
− 1

)
log(t− a)−

(
1− p∗1 − p∗2

p∗2

)
log(b− t),

i.e. µp∗1,p∗2 is the unique Borel probability measure on the interval [a, b] minimizing the

functional

µ 7→
∫ b

a
Q(t)dµ(t)−

∫ b

a

∫ b

a
log|t− s|dµ(t)dµ(s). (2.4)

Remark 2.2.
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(1) If p∗1 = p∗2 = 1/2, the measure µp∗1,p∗2 in Theorem 2.1 is the arcsine distribution on the

interval [a, b]. Note that this does not imply V1 = V2 ≡ 0. However, we see that for

p∗1 6= 1/2 or p∗2 6= 1/2, the limiting measure (the measure having the limiting moments)

is not the arcsine measure or an affine rescaling of it. We conclude that the moments of

the arcsine measure are not universal within the class of random moment sequences in

Mn([a, b]) with nearly i.i.d. canonical moments. On the other hand, there is still some

universality as the limiting measure only depends on V1, V2 via the parameters p∗1 and

p∗2.

(2) Since for probability measures supported on a fixed compact set convergence of moments

is equivalent to convergence in distribution, the convergence result of Theorem 2.1 can

be restated as follows: Let µn ∈ P([a, b]) be a random probability measure with first n

moments (m
(n)
1 , . . . ,m

(n)
n ) which are Pn,[a,b],V1,2-distributed. Then µn converges a.s. (and

in expectation) weakly to µp∗1,p∗2 as n→∞.

The measure µp∗1,p∗2 is known in the literature under (at least) two different names. In the

context of probability theory on graphs, it is called Kesten-McKay measure (see Kesten (1959);

McKay (1981)). It has also been studied in the context of orthogonal polynomials (see Cohen

and Trenholme (1984); Saitoh and Yoshida (2001); Castro and Grünbaum (2013)). In free

probability, it is called free binomial distribution (see Nica and Speicher (2006)). It will turn

out useful to explain this naming in more detail.

Free probability is a variant of non-commutative probability theory initiated by Voiculescu

(see Nica and Speicher (2006) or Chapter 22 by Speicher in Akemann et al. (2011) for an

introduction and references) that has found its applications in particular in random matrix

theory. For our purposes it suffices to know that free probability theory uses a different notion

of independence, called freeness, that manifests itself in a different convolution of probability

measures. A constructive approach to this convolution uses random matrices: Let H1,n, H2,n be

deterministic diagonal n × n matrices with diagonal entries h1,n(ii) and h2,n(ii), respectively.

Assume that the empirical measures of the diagonal entries, i.e. the eigenvalues, converge for

n→∞ weakly to probability measures of bounded support µ1 and µ2, respectively, that is

lim
n→∞

1

n

n∑
i=1

δhj,n(ii) = µj , j = 1, 2, weakly.

Now let for each n a Haar distributed random unitary n × n matrix Un be given on a com-

mon probability space. The Haar probability measure on the unitary group Un is the unique

Borel probability measure that is invariant under left (and right) multiplication with any group

element. Letting x1, . . . , xn denote the n real random eigenvalues of the Hermitian random

matrix H1,n + UnH2,nU
∗
n, the empirical measure of the xi’s converges for n→∞ almost surely

in distribution to a non-random limit. This limit is called the free (additive) convolution of

µ1 � µ2, in symbols

µ1 � µ2 := lim
n→∞

1

n

n∑
i=1

δxi a.s. weakly.

In analogy to classical probability, the free binomial distribution with parameters n ∈ N and

p ∈ [0, 1] is then the n-fold free convolution of the Bernoulli distribution µ = (1−p)δ0+pδ1 with

itself. It seems convenient to extend the name to convolutions of measures µ = (1− p)δc + pδd
with itself, c, d ∈ R. Moreover, even fractional convolution numbers are possible using an

analytic approach to the free convolution via the so-called R-transform (see (Akemann et al.,
5



2011, Chapter 22)). It seems difficult to give a direct interpretation of the occurence of the

free binomial distribution in the context of random moments. For instance it is not hard to

verify that for µ = 1
2δc + 1

2δd the free convolution µ � µ is the arcsine measure with support

[c + d −
√
c2 + d2, c + d +

√
c2 + d2], but in general the measure µp∗1,p∗2 is not just a two-fold

convolution of a Bernoulli measure with itself.

However, free probability indicates that universal limiting measures may be expected if ran-

dom moment problems are considered for the moment spaces Mn(R+) with R+ := [0,∞) and

Mn(R). Indeed, analogous to classical probability, there are free analogs of Poisson limit theo-

rem and central limit theorem for the free binomial distribution (Akemann et al., 2011, Chapter

22). Typically, they are considered for µ = (1 − pm)δ0 + pmδ1 and show weak convergence of

the rescaled n-th convolution power µ�m to the free Poisson (Marchenko-Pastur distribution)

or the free Gaussian law (semicircle distribution), as m → ∞ and pm converges to a zero or

non-zero number, respectively.

The following corollary can be seen as a variant of these limit theorems. The proof is straight-

forward and will be omitted.

Corollary 2.3. Let for each m ∈ N am < bm and p∗1,m, p
∗
2,m ∈ (0, 1) be given.

(1) Assume that, as m→∞,

am → 0, bm →∞, p∗1,m, p
∗
2,m → 0 such that

p∗i,mbm → z∗i , i = 1, 2,

for some constants z∗1 , z
∗
2 > 0. Then the measure µp∗1,m,p∗2,m defined in Theorem 2.1 on

the interval [am, bm] converges in the large m limit weakly to the measure µMP,z∗1 ,z
∗
2
,

where with l± := (
√
z∗1 ±

√
z∗2)2

µMP,z∗1 ,z
∗
2
(dx) =

(
1− z∗1

z∗2

)
+

δ0 +
1

2πz∗2

√
(x− l−)(l+ − x)

x
1[l−,l+](x)dx. (2.5)

The density of the absolutely continuous part of µp∗1,m,p∗2,m(x) converges pointwise to

the density of the absolutely continuous part of µMP,z∗1 ,z
∗
2

and uniformly within compact

subsets of (l−, l+). Moreover, the moments of µp∗1,m,p∗2,m converge to the moments of

µMP,z∗1 ,z
∗
2
.

(2) Assume that, as m→∞,

am → −∞, bm →∞,
p∗2,m|am|bm → β∗, am + (bm − am)p∗1,m → α∗

for constants α∗ ∈ R, β∗ > 0. Then the measure µp∗1,m,p∗2,m defined in Theorem 2.1 on the

interval [am, bm] converges weakly in the large m limit to the measure µSC,α∗,β∗, where

with l± := α∗ ± 2
√
β∗

µSC,α∗,β∗(dx) =
1

2πβ∗

√
(x− l−)(l+ − x)1[l−,l+](x)dx. (2.6)

The density of the absolutely continuous part of µp∗1,m,p∗2,m(x) converges pointwise to the

density of µSC,α∗,β∗ and uniformly within compact subsets of (l−, l+). Moreover, the

moments of µp∗1,m,p∗2,m converge to the moments of µSC,α∗,β∗.
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Remark 2.4.

(1) The measure µMP,z∗1 ,z
∗
2

is called Marchenko-Pastur distribution (see Hiai and Petz (2000)

or Nica and Speicher (2006)). For z∗1 ≥ z∗2 (absolutely continuous case) it is the equilib-

rium measure on R+ (in the sense of (2.4)) to the field

Q(t) =
t

z∗2
− z∗1 − z∗2

z∗2
log t.

Besides its role in free probability theory as the free analog of the Poisson distribution it

is particularly well-known for its universality in random matrix theory. More precisely,

let X denote an m×n random matrix with real i.i.d. entries having mean 0 and variance

σ2 > 0. Assume that as m,n→∞ we have m/n→ λ ∈ (0,∞). Then the empirical dis-

tribution of the eigenvalues of the sample covariance matrix XXT /n converges a.s. and

in expectation weakly to µMP,z1,z2 , where z1 := σ2(1 +
√
λ)/(1 +

√
λ)2 and z2 := λz1.

For this result and generalizations we refer to Bai and Silverstein (2010) and references

therein.

(2) The measure µSC,α∗,β∗ is called semicircle distribution. It is the equilibrium measure to

the field

Q(t) =
t2

2β∗
− α∗t

β∗
.

In free probability, it plays the role of the Gaussian distribution. In random matrix

theory it is the universal limit of so-called Wigner matrices: Let X be an n×n random

matrix with real i.i.d. mean 0 and variance σ2 > 0 entries on and above the diagonal and

the entries below the diagonal are chosen such that X is symmetric. Then the empirical

distribution of the eigenvalues of X/
√
n converges a.s. and in expectation weakly to

µSC,α,β as n→∞, where α = 0 and β = σ2, see e.g. Bai and Silverstein (2010).

The universality in these random matrix statements lies in the fact that the limiting

distribution is always the same regardless of the distribution of the matrix entries.

(3) The measures µp∗1,p∗2 , µMP,z∗1 ,z
∗
2

and µSC,α∗,β∗ all belong to the so-called free Meixner

class. It consists of the free analogues of the six classical Meixner class distributions

which are Gaussian, Poisson, gamma, binomial, negative binomial and hyperbolic secant

distribution. The distributions of the free Meixner class enjoy some interesting charac-

terizing properties, for instance having a generating function of resolvent type for the

corresponding orthogonal polynomials (see Anshelevich (2007) for details) in analogy

to the generating functions of the classical Meixner class being of exponential type (see

Meixner (1934)).

Let us now turn to infinite moment spaces, starting with Mn(R+) (recall R+ = [0,∞)).

Following Dette and Nagel (2012), we may define the canonical moments z1, . . . , zn of a moment

sequence m1, . . . ,mn in the interior of Mn(R+) as

zk :=
mk −m−k

mk−1 −m−k−1
, k = 1, . . . , n,

m−0 = 0,m0 = 1. Here one uses that given m1, . . . ,mk−1, the section of possible values of mk

for given moments (m1, . . . ,mk−1) ∈ Int(Mk−1(R+)) is an interval of the form [m−k ,∞) (see

Karlin and Studden (1966), Chapter V). Clearly, zk ∈ R+. The correspondence

ϕR+
n : ~zn = (z1, . . . , zn) 7→ ~mn = (m1, . . . ,mn) (2.7)
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between canonical and ordinary moments is one-to-one from (0,∞)n onto Int(Mn(R+)) (for all

n ∈ N). The Jacobian of this transformation is readily computed as∣∣∣∣∣
n∏
k=1

∂mk

∂zk

∣∣∣∣∣ =
n∏
k=1

(mk−1 −m−k−1) =
n∏
k=2

z1z2 . . . zk−1 =
n∏
k=1

zn−kk . (2.8)

To define a probability measure on Int(Mn(R+)), consider continuous functions V1, V2 : R+ →
R, such that for some ε > 0 and all z large enough the inequality

Vi(z)

log z
≥ 2 + ε, i = 1, 2 (2.9)

holds. Then define a probability measure Pn,R+,V1,2 on Mn(R+) by Pn,R+,V1,2 (∂Mn(R+)) = 0

and on Int(Mn(R+)) via the density

Pn,R+,V1,2(m1, . . . ,mn) :=
1

Zn,R+,V1,2

exp
[
− n

bn+1
2
c∑

j=1

V1(zj)− n
bn
2
c∑

j=1

V2(zj)
]
, (2.10)

where Zn,R+,V1,2 is the normalizing constant such that Pn,R+,V1,2 is a probability density with

respect to the Lebesgue measure on Int(Mn(R+)). This is possible due to (2.8) and (2.9).

Because of (2.8), the canonical moments z1, z2, . . . , zk are independent under Pn,R+,V1,2 and for

large n and fixed k nearly identically distributed.

Note that Dette and Nagel (2012) considered the special case of (2.10) with V1(t) = V2(t) =

t− c
n log t and showed that under this measure the (ordinary) moments converge to those of the

Marchenko-Pastur distribution. Here we will show that the moments of the Marchenko-Pastur

distribution are in fact universal for all generic functions V1, V2.

Theorem 2.5. Let V1, V2 ∈ C2((0,∞)) be continuous at 0, satisfy (2.9) and assume that

W1(z) := V1(z)− log z and W2(z) := V2(z)− log z

each have a unique minimizer z∗1 ∈ (0,∞) and z∗2 ∈ (0,∞), respectively. Let the vector m(n) =

(m
(n)
1 , . . . ,m

(n)
n ) be drawn from Pn,R+,V1,2. Then we have for any k ≥ 1 as n→∞

(m
(n)
1 , . . . ,m

(n)
k )→ (m∗1, . . . ,m

∗
k)

almost surely and in L1, where m∗1, . . . ,m
∗
k are the first k moments of the Marchenko-Pastur

distribution µMP,z∗1 ,z
∗
2

defined in (2.5), that is

m∗j =

b j−1
2
c∑

i=0

(
j − 1

i

)
(z∗1)i+1(z∗2)i(z∗1 + z∗2)j−1−i

1

i+ 1

(
2i

i

)
.

Next, we consider the moment space corresponding to measures supported on R. We will use

the recurrence coefficients of the corresponding orthogonal polynomials as a coordinate system.

To be precise, note that for any measure µ ∈ P(R) there is a sequence of monic polynomials

P0(x), P1(x), . . . with degPj = j that is orthogonal in L2(µ). If µ is supported on finitely many

points, the sequence is finite. In any case, Pj(x) depends on the measure µ via its moment

sequence (m1, . . . ,m2j−1) only. The orthogonal polynomials satisfy a three-term recurrence

relation of the form

Pj+1(x) = (x− αj+1)Pj(x)− βjPj−1(x), j = 1, . . . (2.11)

P0(x) = 1, P1(x) = x− α1

8



with recurrence coefficients α1, α2, · · · ∈ R and β1, β2, · · · > 0. For more details regarding

orthogonal polynomials we refer to Chihara (1978). The mapping

ϕR
2n−1 : (α1, β1, α2, . . . , βn−1, αn) 7→ ~m2n−1 = (m1, . . . ,m2n−1) (2.12)

is one-to-one from (R × (0,∞))n−1 × R onto Int(M2n−1(R)) (for all n ∈ N). Moreover, as ob-

served by Dette and Nagel (2012), (α1, β1, α2, . . . , βn−1, αn) constitutes a system of independent

coordinates on the moment space M2n−1(R). The corresponding Jacobian is given by

detDϕR
2n−1 =

n−1∏
j=1

β2n−2j−1j .

Similarly, we may define a map for moment spaces of even order.

Lemma 2.6. There is a bijection

ϕR
2n : (R× (0,∞))n → Int(M2n(R)),

(α1, β1, α2, . . . , αn, βn) 7→ (m1, . . . ,m2n) (2.13)

between the recursion coefficients of the orthogonal polynomials and the corresponding moments.

The Jacobian of ϕR
2n is

detDϕR
2n =

n−1∏
j=1

β2n−2jj .

The values βj have a simple interpretation in terms of moments, as

βj =
m2j −m−2j

m2j−2 −m−2j−2
, j = 1, . . . , n,

is the ratio of two consecutive even moments. The coefficients αj give information about sym-

metry of the measure, e.g. for µ symmetric around 0, one has αj = 0 for all j. Taking into

account these two different roles, we will again consider two continuous functions V1 : R → R
and V2 : R+ → R such that for some ε > 0 and |α|, β large enough

V1(α)

log|α|
≥ 1 + ε,

V2(β)

log β
≥ 3 + ε. (2.14)

With these notations we define the probability measure Pn,R,V1,2 on Mn(R) by

Pn,R,V1,2 (∂Mn(R)) = 0 and on Int(Mn(R)) via the density

Pn,R,V1,2(m1, . . . ,mn) :=
1

Zn,R,V1,2
exp

[
− n

bn+1
2
c∑

j=1

V1(αj)− n
bn
2
c∑

j=1

V2(βj)
]
,

and obtain the following universal law of large numbers.

Theorem 2.7. Let V1 ∈ C2(R), V2 ∈ C2((0,∞)) be continuous at 0 and satisfy (2.14). Fur-

thermore, assume that

W1(α) := V1(α) and W2(β) := V2(β)− 2 log β

each have unique minimizers α∗ ∈ R and β∗ ∈ (0,∞), respectively. Let m(n) = (m
(n)
1 , . . . ,m

(n)
n )

be drawn from Pn,R,V1,2. Then for any k ≥ 1 as n→∞

(m
(n)
1 , . . . ,m

(n)
k )→ (m∗1, . . . ,m

∗
k)

9



almost surely and in L1, where m∗1, . . . ,m
∗
k are the first k moments of the semicircle distribution

µSC,α∗,β∗ defined in (2.6), that is

m∗j =

bj/2c∑
i=0

(
j

2i

)
(β∗)i(α∗)j−2i

1

i+ 1

(
2i

i

)
. (2.15)

We finish this section with some concluding remarks concerning the class of models we con-

sider. We study random moment sequences with independent and nearly identically distributed

canonical moments or recurrence coefficients, respectively. Dropping either of the two properties

will in general result in non-universal limiting sequences even on unbounded intervals, if there

is any limit at all. Nevertheless, other related models have been used for successful studies of

random matrix models. More precisely, so-called Gaussian beta ensembles admit tridiagonal

matrix models, see Dumitriu and Edelman (2002). More recently, Krishnapur et al. (2016)

have used tridiagonal matrix models for studying non-Gaussian beta ensembles. They consider

exp(−nTrQ(T )) det(DϕR
n) as density on the space of recursion coefficients, where T is the sym-

metric tridiagonal matrix (truncated Jacobi operator) with the αj ’s on the main diagonal and

βj ’s on the neighboring diagonals, Q is a strictly convex polynomial and Tr denotes the trace.

It is not hard to see from the results in Krishnapur et al. (2016) that the limiting moments

corresponding to this model are those of the equilibrium measure to Q (see (2.4)), only for Q

quadratic (this case is the one studied in Dumitriu and Edelman (2002)) the moments of the

semicircle appear.

The connection between certain random matrix ensembles and canonical moments/recursion

coefficients has also been used in Gamboa et al. (2016) and Gamboa et al. (2017) for deriving

so-called sum rules for free binomial, semicircle and Marchenko-Pastur distribution.

3. Asymptotic Normality, Moderate and Large Deviations

In this section, we examine the fluctuations of the random moment sequences around their

non-random limits. We state the central limit theorem and moderate and large deviations

results. For the uniform distribution on the moment space Mn([0, 1]), results of this type were

obtained by Chang et al. (1993) and Gamboa and Lozada-Chang (2004), respectively. The

following theorem shows that the fluctuations of random moment vectors around their limits

are Gaussian. We will adopt a short notation that allows us to state the three cases E = [a, b],

E = R+, E = R simultaneously. Note that the functions W1,W2 as well as the limiting moments

m∗j differ, depending on E.

Theorem 3.1. In the situation of Theorem 2.1, Theorem 2.5 or Theorem 2.7, assume that

W ′′i (y∗i ) 6= 0 for i = 1, 2, where

y∗i :=


p∗i , if E = [a, b],

z∗i , if E = R+,

α∗ , if E = R, i = 1,

β∗ , if E = R, i = 2.

Then in any of the three cases E = [a, b], E = R+, E = R, for any k ≥ 1 as n→∞
√
n
(
(m

(n)
1 , . . . ,m

(n)
k )− (m∗1, . . . ,m

∗
k)
) d−→ N (0,Σk),

where the matrix Σk is given by

Σk = (DϕEk (~y∗))t diag(W ′′1 (y∗1),W ′′2 (y∗2),W ′′1 (y∗1), . . .)−1(DϕEk (~y∗)).

10



Here, the maps ϕEk have been defined in (2.1), (2.7) and (2.12), (2.13), the diagonal matrix is

of size k × k and ~y∗ = (y∗1, y
∗
2, y
∗
1, . . .) ∈ Rk.

In the case E = R+ and z∗1 = z∗2, we have

(Dϕ
R+

k (~y∗))i,j = (z∗1)i−1
((

2i

i− j

)
−
(

2i

i− j − 1

))
.

Theorem 3.1 shows that in all considered cases the 1/
√
n-fluctuations ofm

(n)
1 , . . . ,m

(n)
k around

m∗1, . . . ,m
∗
k are Gaussian. We will now study larger fluctuations. The appropriate tool for

describing the exponentially small probabilities associated to these fluctuations is the large

deviations principle. Recall that a sequence of random vectors (Xn)n with values in a Pol-

ish space X is said to satisfy a large deviations principle with speed (bn)n, limn→∞ bn = ∞,

and good rate function I, if I : X → [0,∞] is lower semi-continuous, has compact level sets

{x ∈ X : I(x) ≤ K},K ≥ 0 and for any open set O ⊂ X and closed set U ⊂ X

lim inf
n→∞

1

bn
logP (Xn ∈ O) ≥ − inf

x∈O
I(x), (3.1)

lim sup
n→∞

1

bn
logP (Xn ∈ U) ≤ − inf

x∈U
I(x), (3.2)

cf. (Dembo and Zeitouni, 2010, p. 6). The next theorem is a result on moderate deviations. It

shows that on scales up to o(1) the exponential leading order asymptotics are still given by the

Gaussian distributions from Theorem 3.1, in particular they are universal.

Theorem 3.2. Let the conditions of Theorem 3.1 be satisfied. Then for any of the three cases

E = [a, b], E = R+, E = R, for any real-valued sequence (an)n with limn→∞ an = ∞ and

an = o(
√
n), the sequence of random variables

an
(
(m

(n)
1 , . . . ,m

(n)
k )− (m∗1, . . . ,m

∗
k)
)

satisfies a large deviations principle on Rk with speed bn = n
a2n

and good rate function

I(x) :=
1

2
‖diag(W ′′1 (y∗1),W ′′2 (y∗2),W ′′1 (y∗1), . . .)1/2DϕEk (~y∗)−1x‖22.

The next result shows that for fluctuations of order 1 a new, non-universal rate function

arises.

Theorem 3.3. Let the conditions of Theorem 2.1, Theorem 2.5 or Theorem 2.7 be satisfied.

Then in each of the three cases, the sequence (m
(n)
1 , . . . ,m

(n)
k )n satisfies a large deviations prin-

ciple on Mk(E) with speed n and good rate function I(m) := ∞ for m ∈ ∂Mk(E) and for

m ∈ Int (Mk(E))

I(m) :=

b k+1
2
c∑

j=1

{
W1(y2j−1)−W1(y

∗
1)
}

+

b k
2
c∑

j=1

{
W2(y2j)−W2(y

∗
2)
}
.

Here y∗i , i = 1, 2 are as in Theorem 3.1 and yj , j = 1, . . . , k are defined similarly as pj (E =

[a, b]), zj (E = R+) or for E = R as α j+1
2

(j odd) and βj/2 (j even).

We remark in passing that the case E = [0, 1], V1 = V2 ≡ 0 is Theorem 2.6 in Gamboa and

Lozada-Chang (2004).
11



4. Proofs

Proof of Lemma 2.6. For each vector of moments (m1, . . . ,m2n) in the interior of the moment

space M2n(R), we can find a probability measure µ with infinite support and the first 2n

moments given by m1, . . . ,m2n. It is easy to see that the following relationship holds between

the monic orthogonal polynomials Pk corresponding to µ and their recursion coefficients αi, βi,∫
xkPk(x) dµ(x) = β1 · · ·βk (4.1)∫

xk+1Pk(x) dµ(x) = β1 · · ·βk(α1 + · · ·+ αk+1). (4.2)

From this we can immediately see that β1, . . . , βk only depend on the moments m1, . . . ,m2k,

while α1, . . . , αk only depend on the moments m1, . . . ,m2k−1. On the other hand, we may

determine each moment m2k from β1, . . . , βk, α1, . . . , αk and each moment m2k−1 from

β1, . . . , βk−1, α1, . . . , αk. Therefore the mapping ϕR
2n in (2.12) is a well-defined bijection between

(α1, β1, . . . , αn, βn) and (m1, . . . ,m2n). The corresponding Jacobian matrix DϕR
2n is a lower

triagonal matrix with determinant given by

detDϕR
2n =

n∏
k=1

(
∂m2k−1
αk

· ∂m2k

βk

)
.

In order to calculate these derivatives, note that since the Pk are monic orthogonal polynomials

we have ∫
xkPk−1(x) dµ(x) = m2k−1 +

2k−2∑
i=0

λimi

for some real numbers λi (that may depend on k). Since m1, . . . ,m2k−2 only depend on

β1, . . . , βk−1, α1, . . . , αk−1, we get with (4.2)

∂m2k−1
∂αk

=
∂
∫
xkPk−1(x) dµ(x)

∂αk
= β1 · · ·βk−1.

A similar argument using (4.1) shows

∂m2k

∂βk
= β1 · · ·βk−1,

which leads to

detDϕR
2n =

n∏
k=1

k−1∏
j=1

β2j =
n−1∏
j=1

n∏
k=j+1

β2j =
n−1∏
j=1

β2n−2jj .

�

We will now prove the large deviations principles, as they play an important role in the proofs

of Theorems 2.1, 2.5 and 2.7.

Proof of Theorem 3.3. For the sake of brevity we restrict ourselves to the case E = [a, b], the

remaining cases can be proved analogously. To this extent, we will show that each p
(n)
2i−1 satisfies

a large deviations principle on [0, 1] with good rate function

I1(p) := W1(p)−W1(p
∗
1), p ∈ (0, 1), I1(p) :=∞, p ∈ {0, 1}, (4.3)

where W1(p) = V1(p)− log(p(1− p)). Analogously, the p
(n)
2i satisfy a large deviations principle

on [0, 1] with good rate function I2(p) := W2(p)−W2(p
∗
2) on the interval (0, 1) and∞ elsewhere.

The assertion then follows from the independence of the pi’s and the contraction principle. Note
12



that ϕ
[a,b]
k is bijective and thus the rate function does not change when passing from canonical

to ordinary moments.

For the upper bound (3.2), let U ⊂ [0, 1] be a closed set. If U ⊂ {0, 1}, (3.2) is trivially true by

definition of Pn,[a,b],V1,2 and thus we may assume U∩(0, 1) 6= ∅. Then, setting WU := inf
x∈U

W1(x),

lim sup
n→∞

1

n
log

∫
U
e−nV1(x)+(n−i) log(x(1−x)) dx ≤ lim sup

n→∞

1

n
log

∫ 1

0
e−iV1(x)−(n−i)W

U
dx = −WU .

For the lower bound (3.1), let O ⊂ [0, 1] be an open set and define WO := inf
x∈O

W1(x). Let

ε > 0 be arbitrary. By continuity of W on the interval (0, 1) and openness of O we know that

O ∩ {W1 < WO + ε} is a nonempty open set. This yields

lim inf
n→∞

1

n
log

∫
O
e−nV1(x)+(n−i) log(x(1−x)) dx

≥ lim inf
n→∞

1

n
log

∫
O∩{W1<WO+ε}

e−nV1(x)+(n−i) log(x(1−x)) dx

≥ lim inf
n→∞

1

n
log

∫
O∩{W1<WO+ε}

e−iV1(x)−(n−i)(W
O+ε) dx = −WO − ε.

Now let ε → 0, then the assertion finally follows from the choice U = O = [0, 1] which shows

that the normalization constant of the density satisfies

lim
n→∞

1

n
log

∫ 1

0
e−nV1(x)+(n−i) log(x(1−x)) dx = − inf

y∈(0,1)
W1(y).

�

Next, we will prove the results on laws of large numbers in Section 2. It follows from Theorem

3.3 and the Borel-Cantelli lemma that in all three cases (m
(n)
1 , . . . ,m

(n)
k )→ (m∗1, . . . ,m

∗
k) almost

surely as n → ∞, where m∗j are determined by p∗i , z
∗
i , i = 1, 2 or α∗, β∗, respectively. The

convergence in L1 follows for E = [a, b] immediately by the boundedness of the moments. For

unbounded E, it suffices to see that the m
(n)
j ’s are uniformly integrable thanks to the exponential

decay from the large deviations principle. It remains to identify the corresponding measures to

the moment sequences (m∗1,m
∗
2, . . . ). The general technique to do this is to consider the Jacobi

operator associated to the recurrence coefficients of the orthogonal polynomials and derive an

equation for the Stieltjes transform of the desired measure via a continued fraction expansion.

We start with the simplest case of Theorem 2.7, where we explain the strategy in detail.

We will make use of the following lemma.

Lemma 4.1. Let µ be a Borel probability measure on R that is determined by its moments

(i.e. the Hamburger moment problem to the moments of µ is determinate). Let α1, β1, α2, β2 . . .

denote the recurrence coefficients of the monic orthogonal polynomials to the measure µ (see

(2.11)). If µ is supported on N points, we set βj := 0 for j ≥ N . Then the Stieltjes transform

of µ,

Φ(z) :=

∫
dµ(x)

z − x
,

defined for z ∈ C+ := {z ∈ C : =z > 0}, has the continued fraction expansion

Φ(z) =
1

z − α1
− β1

z − α2
− β2

z − α3
− . . . .

13



Here the convergents

1

z − α1
− β1

z − α2
− · · · − βl

z − αl+1

converge locally uniformly in C+ as l→∞.

Although the connection between continued fractions, Stieltjes transforms and orthogonal

polynomials is classical and this result should be well-known, we did not manage to find this

lemma in the literature. For measures with compact support, it is called Markov’s theorem.

We will give an elementary derivation.

Proof of Lemma 4.1. Let µ be a measure whose support consists of precisely N distinct points.

Then the monic orthogonal polynomials P1, . . . , PN up to order N with respect to µ and the

corresponding recursion coefficients α1, β1, α2, β2, . . . , βN−1, αN are well-defined. Moreover, if µ

has masses ω1, . . . , ωN at the points t1, . . . , tN and mj denotes the j-th moment of µ, the monic

orthogonal polynomial PN is proportional to the polynomial

P̃N (t) = det


1 m1 . . . mN−1 1

m1 m2 . . . mN t
...

...
. . .

...
...

mN mN+1 . . . m2N−1 tN



=

N∑
i0=1

. . .

N∑
iN−1=1

ωi0 . . . ωiN−1t
1
i1t

2
i2 . . . t

N−1
iN−1

det


1 1 . . . 1 1

ti0 ti1 . . . tiN−1 t
...

...
. . .

...
...

tNi0 tNi1 . . . tNiN−1
tN

 .

Now the determinant in the last line vanishes whenever two indices ij and ik coincide. If all

indices are different, the determinant is equal (up to a sign) to the polynomial `(t) =
∏N
i=1(t−ti).

Consequently, the polynomials P̃N and PN are also proportional to `(t) and therefore vanish

precisely at the the support points t1, . . . tN of the measure µ.

We now define for z ∈ C+ the continued fraction

fj(z) :=
1

z − α1
− β1

z − α2
− β2

z − α3
− · · · − βj−1

z − αj
, j = 1, . . . , N.

Writing fj(z) as a single fraction
Aj(z)
Bj(z)

, we see that Aj(z) and Bj(z), j = 1, . . . ,m satisfy the

recursions A0(z) := 0, B0(z) := 1, A1(z) := 1, B1(z) := z − α1 and

Aj(z) = (z − αj)Aj−1(z)− βj−1Aj−2(z),
Bj(z) = (z − αj)Bj−1(z)− βj−1Bj−2(z)

for 2 ≤ j ≤ N . Clearly, Bj is a polynomial in z of degree j with leading coefficient 1 and

as it satisfies the same recursion as the orthogonal polynomials Pj , we conclude Bj = Pj for

0 ≤ j ≤ N . Furthermore, note that the sequence of functions

Qj(z) :=

∫
Pj(z)− Pj(t)

z − t
dµ(t)

satisfies the same recursion as Aj , from which we can conclude Qj = Aj for 0 ≤ j ≤ N . As the

roots of PN are precisely the support points of the measure µ we obtain

fN (z) =
AN (z)

BN (z)
=

1

PN (z)

∫
PN (z)

z − t
dµ(t) =

∫
1

z − t
dµ(t),

14



which concludes the proof for a measure µ with finite support.

If µ has infinite support, all recursion coefficients βj are strictly positive. Let N be an arbi-

trary natural number. There is a unique measure µN supported on N points such that the cor-

responding monic orthogonal polynomials have the recursion coefficients α1, β1, . . . , βN−1, αN .

By the arguments above, the Stieltjes transform of µN has the form

fN (z) =
1

z − α1
− β1

z − α2
− β2

z − α3
− · · · − βN−1

z − αN
.

Since the recursion coefficients up to order N determine the moments of µN up to order

2N − 1, we know that mj(µN ) = mj(µ) for 1 ≤ j ≤ 2N − 1. Letting N → ∞ thus shows

limN→∞mj(µN ) = mj(µ) for all j. Since the measure µ is uniquely determined by its mo-

ments, this implies the weak convergence µN
w−→ µ. For any fixed z ∈ C+, the function t 7→ 1

z−t
is a bounded continuous function. Therefore the Stieltjes transform of µN converges to the

Stieltjes transform of µ, i.e.∫
1

z − t
dµ(t) = lim

N→∞

∫
1

z − t
dµN (t) =

1

z − α1
− β1

z − α2
− β2

z − α3
− . . . .

As z 7→ 1
z−t is analytic in C+ and uniformly bounded away from the real line, fN is analytic in

C+ and for any compact K ⊂ C+ we have supN,z∈K |fN (z)| ≤ M for some M > 0. It follows

by Montel’s theorem that the convergence is uniform on K.

�

Proof of Theorem 2.7. Let µSC,α∗,β∗ be the measure for which the recurrence coefficients of the

associated monic orthogonal polynomials are αj = α∗ and βj = β∗ for all j. From (2.12)

we know that µSC,α∗,β∗ has finite moments. By Carleman’s criterion (in terms of recurrence

coefficients, see (Shohat and Tamarkin, 1943, p. 59), the Hamburger moment problem for the

moments of µSC,α∗,β∗ is determinate, if

∞∑
j=1

1√
βj

=∞, (4.4)

which is clearly the case here. Thus by Lemma 4.1 the Stieltjes transform

ΦSC,α∗,β∗(z) :=

∫
dµSC,α∗,β∗(x)

z − x
,

has the continued fraction expansion

ΦSC,α∗,β∗(z) =
1

z − α∗
− β∗

z − α∗
− · · · = 1

z − α∗ − β∗ΦSC,α∗,β∗(z)
, (4.5)

where the dots . . . in (4.5) mean a continued repetition of the last fraction before the dots.

Solving algebraically for ΦSC,α∗,β∗(z) yields the two solutions

z − α∗ ∓
√

(z − α∗)2 − 4β∗

2β∗
.

Since any Stieltjes transform maps the upper half plane to the lower half plane, we get

ΦSC,α∗,β∗(z) =
z − α∗ −

√
(z − α∗)2 − 4β∗

2β∗
, (4.6)
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where we define
√

(z − α∗)2 − 4β∗ for z ∈ C+ as the branch with positive imaginary part. Note

that
√

(z − α)2 − 4β admits a continuous extension from C+ to R via

lim
y→0+

√
(x+ iy − α)2 − 4β =


−
√

(x− α)2 − 4β , x < α− 2
√
β

i
√

4β − (x− α)2 , x ∈ [α− 2
√
β, α+ 2

√
β]√

(x− α)2 − 4β , x > α+ 2
√
β

.

Thus ΦSC,α∗,β∗ has a continuous extension from the upper half plane to the real line and µα∗,β∗

has a density on R which is given by the Stieltjes inversion formula (see e.g. (Nica and Speicher,

2006, Remark 2.20))

µα∗,β∗(dx)

dx
= − 1

π
lim
y→0+

=ΦSC,α∗,β∗(x+ iy) (4.7)

=
1

2πβ∗

√
4β∗ − (x− α∗)21[α∗−2√β∗,α∗+2

√
β∗](x).

It is well-known that (see (Nica and Speicher, 2006, Corollary 2.14)) the j-th moment of the

semicircle distribution µSC,0,1 is 1
j+1

(
2j
j

)
, (2.15) follows by a simple computation. �

Proof of Theorem 2.1. Let µp∗1,p∗2 be the probability measure determined by having canonical

odd moments p∗1 and canonical even moments p∗2. For a probability measure on [a, b] with

canonical moments p1, p2, p3, . . . the recurrence coefficients of its monic orthogonal polynomials

are given by (cf. (Dette and Studden, 1997, Corollary 2.3.4, eq. (1.4.6)))

αj = a+ (b− a)(q2j−3p2j−2 + q2j−2p2j−1),

βj = (b− a)2q2j−2p2j−1q2j−1p2j , j = 1, . . . .

Here we set p−1 = p0 = 0 and as usual qj := 1 − pj . In our case α1 = a + (b − a)p∗1,

β1 = (b− a)2p∗1q
∗
1p
∗
2, and for j ≥ 2 we have αj = a+ (b− a)(p∗1q

∗
2 + p∗2q

∗
1), βj = (b− a)2p∗1q

∗
1p
∗
2q
∗
2.

Since [a, b] is compact, the moment problem is determinate and hence Lemma 4.1 yields that

the Stieltjes transform

Φp∗1,p
∗
2
(z) :=

∫
dµp∗1,p∗2(x)

z − x

has the continued fraction expansion

Φp∗1,p
∗
2
(z) =

1

z − a− (b− a)p∗1
− (b− a)2p∗1q

∗
1p
∗
2

z − a− (b− a)(p∗1q
∗
2 + p∗2q

∗
1)

− (b− a)2p∗1q
∗
1p
∗
2q
∗
2

z − a− (b− a)(p∗1q
∗
2 + p∗2q

∗
1)
− . . . ,

=
1

z − a− (b− a)p∗1
− (b− a)2p∗1q

∗
1p
∗
2ΦSC,α,β(z),

where ΦSC,α,β is from (4.5) with α := a+ (b− a)(p∗1q
∗
2 + p∗2q

∗
1), β := (b− a)2p∗1q

∗
1p
∗
2q
∗
2. Thus by

(4.6)

Φp∗1,p
∗
2
(z) =

2q∗2
2q∗2(z − a− (b− a)p∗1)− (z − α−

√
(z − α)2 − 4β)

=
(1− 2p∗2)z + α− 2q∗2(a+ (b− a)p∗1)−

√
(z − α)2 − 4β

2p∗2(z − a)(b− z)
.
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As atoms of µp∗1,p∗2 are simple poles of the Stieltjes transform, atoms can only be at a or b. They

can be identified using the formula

µp∗1,p∗2({x}) = − lim
y→0+

y=Φp∗1,p
∗
2
(x+ iy). (4.8)

Using this, we get after some algebra for x = a

µp∗1,p∗2({a}) =
p∗2 − p∗1 + |p∗2 − p∗1|

2p∗2
=

0, if p∗1 ≥ p∗2
1− p∗1

p∗2
, if p∗1 < p∗2

.

For x = b, we get similarly

µp∗1,p∗2({b}) =
p∗1 + p∗2 − 1 + |1− p∗1 − p∗2|

2p∗2
=

0, if p∗1 + p∗2 ≤ 1,
p∗1+p

∗
2−1

p∗2
, if p∗1 + p∗2 > 1.

Φp∗1,p
∗
2
(z) has a continuous extension to R \ {a, b}. Thus the measure is absolutely continuous

on R \ {a, b} and the density of the absolutely continuous part µacp∗1,p∗2
can be computed using

(4.7) as

µacp∗1,p∗2
(dx)

dx
=

√
4β − (α− x)2

2πp∗2(x− a)(b− x)

for x ∈ [α− 2
√
β, α+ 2

√
β], and 0 elsewhere. This proves (1), since l± = α± 2

√
β.

For (2) we use the well-known fact from potential theory (cf. e.g. (Saff and Totik, 1997,

Theorem I.3.3)) that µ is the minimizing measure of (2.4) if and only if it satisfies the Euler-

Lagrange equations

Q(t)− 2

∫
log|t− s|dµ(s)

{
= l , if t ∈ supp(µ),

≥ l , if t /∈ supp(µ),
(4.9)

where l is a real constant. Differentiating, we get for t ∈ supp(µ)

Q′(t) = 2Hµ(t), (4.10)

where

Hµ(t) :=

∫
dµ(s)

t− s
is the Hilbert transform of µ. Note that the integral is understood as a principal value integral.

The Hilbert transform of an absolutely continuous measure can be obtained from its Stieltjes

transform Φµ via (see e.g. (Hiai and Petz, 2000, p. 94))

Hµ(t) = lim
y→0+

<Φµ(t+ iy).

In our case this gives together with (4.10)

Q′(t) =
(1− 2p∗2)t+ α− 2q∗2(a+ (b− a)p∗1)

p∗2(t− a)(b− t)
= − p∗1 − p∗2

p∗2(t− a)
+

1− p∗1 − p∗2
p∗2(b− t)

.

Integration yields

Q(t) = −
(
p∗1
p∗2
− 1

)
log(t− a)−

(
1− p∗1 − p∗2

p∗2

)
log(b− t) (4.11)

on the support. The integration constant does not matter here and thus is set to 0 for simplicity.

We will consider Q defined by (4.11) as function Q : [a, b] → R ∪ {+∞}. By construction, Q
17



satisfies the equation of (4.9) on the support of µp∗1,p∗2 . For the inequality in (4.9), we compute

the Hilbert transform Hµp∗1,p
∗
2

outside of the support of µp∗1,p∗2 as

Hµp∗1,p
∗
2
(t) =


Q′(t)
2 +

√
(t−α)2−4β

2p∗2(t−a)(b−t)
≥ Q′(t)

2 , t ≤ α− 2
√
β,

Q′(t)
2 −

√
(t−α)2−4β

2p∗2(t−a)(b−t)
≤ Q′(t)

2 , t ≥ α+ 2
√
β.

Consequently, Q(t)− 2
∫

log |t− s| dµp∗1,p∗2(s) is nonincreasing on [a, l−), constant on [l−, l+] and

nondecreasing on (l+, b]. This implies the inequality in (4.9) and thus proves (2). �

Proof of Theorem 2.5. It is not difficult to see that the recurrence coefficients for the orthogonal

polynomials to a probability measure µ on R+ with canonical moments z1, z2, . . . are given by

αj = z2j−2 + z2j−1,

βj = z2j−1z2j , j ≥ 1

with the convention z0 := 0.

Let µMP,z∗1 ,z
∗
2

be the probability measure on R+ with canonical moments z2j−1 = z∗1 and

z2j = z∗2 , j = 1, . . . . Then the recursion coefficients of the corresponding orthogonal polynomials

are α1 = z∗1 , αj = z∗1 + z∗2 , j ≥ 2 and βj = z∗1z
∗
2 , j ≥ 1. The Stieltjes transform of µMP,z∗1 ,z

∗
2

will be denoted by ΦMP,z∗1 ,z
∗
2
. By (4.4), the moment problem is determinate and thus ΦMP,z∗1 ,z

∗
2

admits the continued fraction expansion

ΦMP,z∗1 ,z
∗
2
(z) =

1

z − z∗1
− z∗1z

∗
2

z − (z∗1 + z∗2)
− . . . =

1

z − z∗1 − z∗1z∗2ΦSC,α,β(z)
,

where ΦSC,α,β(z) is from (4.5) with α := (z∗1 + z∗2) and β = z∗1z
∗
2 . Using (4.6), this gives

ΦMP,z∗1 ,z
∗
2
(z) =

2β

2β(z − z∗1)− z∗1z∗2(z − α−
√

(z − α)2 − 4β)

=
z − z∗1 + z∗2 −

√
(z − α)2 − 4β

2z∗2z
.

Clearly, µMP,z∗1 ,z
∗
2

can have an atom only at 0. A computation using (4.8) gives

µMP,z∗1 ,z
∗
2
({0}) =

z∗2 − z∗1 − |z∗1 − z∗2 |
2z∗2

=

0, if z∗2 ≥ z∗1 ,
1− z∗1

z∗2
, if z∗2 < z∗1 .

The density of the absolutely continuous part can again be determined using (4.7) as

µMP,z∗1 ,z
∗
2
(dx)

dx
=

√
4β − (α− x)2

2πz∗2x

for x ∈ [α− 2
√
β, α+ 2

√
β], x 6= 0, and 0 elsewhere. Now the statement of the theorem follows

noting l± = α± 2
√
β. �

Proof of Theorem 3.1. We will only prove the case E = R+, as the remaining parts are shown

by similar arguments. Consider a moment vector under the distribution Pn,R+,V1,2 defined by

the density (2.10). We will show that the canonical moments satisfy

√
n(z

(n)
2i−1 − z

∗
1)

d−→ N (0,W ′′1 (z∗1)−1)

√
n(z

(n)
2i − z

∗
2)

d−→ N (0,W ′′2 (z∗2)−1)

as n→∞. The assertion of the theorem then follows from the independence of the z
(n)
i and an

application of the delta-method.
18



By Scheffé’s Lemma, weak convergence of a sequence of measures can be proved by showing

pointwise convergence of the corresponding densities. The density of
√
n(z

(n)
2i−1− z∗1) is given by

fn(x) :=
gn(x)

cn
,

where

gn(x) := exp
{
−n(W1(z

∗
1 + x√

n
)−W1(z

∗
1))
}

(z∗1 + x√
n

)−(2i−1)1{
z∗1+

x√
n
>0

}
and cn is an appropriate normalization constant. By Taylor’s theorem we obtain that

W1(z
∗
1 + x/

√
n) = W1(z

∗
1) +

x2

2n
W ′′1 (z∗1 + λx/

√
n)

holds for some λ ∈ [0, 1]. From this we can easily conclude

gn(x)
n→∞−−−→ exp(−W ′′1 (z∗1)x2/2)(z∗1)−(2i−1),

and it remains to prove the convergence of the normalization constant. By assumption

W ′′1 (z∗1) 6= 0 and since z∗1 is a minimizer of W1, we have W ′′1 (z∗1) > 0. Hence we may choose

0 < ε < z∗1 so small that the inequality W ′′1 (x) > W ′′1 (z∗1)/2 is satisfied for all x with |x−z∗1 | < ε.

This yields

cn =

∞∫
−z∗1
√
n

exp
{
−n(W1(z

∗
1 + x/

√
n)−W1(z

∗
1))
}

(z∗1 + x/
√
n)−(2i−1) dx

=

ε
√
n∫

−ε
√
n

exp
{
−n(W1(z

∗
1 + x/

√
n)−W1(z

∗
1))
}

(z∗1 + x/
√
n)−(2i−1) dx+ o(1)

n→∞−−−→
∫

exp
{
−W ′′1 (z∗1)x2/2

}
(z∗1)−(2i−1) dx =

√
2π

W ′′1 (z∗1)
(z∗1)−(2i−1).

Here we have used the dominated convergence theorem with dominating function

g(x) := exp
{
−W ′′1 (z∗1)x2/4

}
(z∗1 − ε)−(2i−1).

The o(1) term stems from the fact that outside of (−ε
√
n, ε
√
n) the function W1(z

∗
1 + x/

√
n)−

W (z∗1) is bounded from below by some positive constant K > 0. The remaining integral can

then be bounded by

√
n exp(−(n− (2i− 1))K)

∫ ∞
0

exp
{
− (2i− 1)(V1(x)− V1(z∗1) + log(z∗1(1− z∗1)))

}
dx = o(1).

Hence the density fn converges pointwise to a centered normal distribution with variance

1/W ′′1 (z∗1), which completes the proof of the first part of the theorem.

It remains to determine the entries of Dϕ
R+

k in the case z∗1 = z∗2 . In order to do this, we will

follow the arguments in Dette and Nagel (2012). Therein, a double sequence gi,j is defined by

gi,j :=


1 , if i = 0,

0 , if i 6= 0, i > j,

gi,j−1 + zj−i+1gi−1,j , if i 6= 0, i ≤ j.
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An induction argument over the sum i+j shows that gi,j is a homogeneous polynomial of degree

i in z1, z2, . . .. Consequently, the partial derivative
dgi,j
dzk

is a homogeneous polynomial of degree

i− 1. Following the arguments of Dette and Nagel (2012) we have gk,k = mk with

dmi

dzr
(1, 1, . . .) =

(
2i

i− r

)
−
(

2i

i− r − 1

)
and thus

dmi

dzr
(z∗1 , z

∗
1 , . . .) = (z∗1)i−1

dmi

dzr
(1, 1, . . .) = (z∗1)i−1

((
2i

i− r

)
−
(

2i

i− r − 1

))
.

�

Proof of Theorem 3.2. We will only prove the case E = [a, b], the remaining cases are treated

similarly. We will first show that each an(p
(n)
2j−1 − p∗1) satisfies a large deviations principle with

good rate function J(x) := W ′′1 (p∗1)x
2/2 and speed bn, where (an)n and (bn)n are chosen as in

Theorem 3.2. In order to see this, let U ⊂ R be an arbitrary closed set and 0 < ε < 1 sufficiently

small so that W ′′1 (y) ≥ M > 0 holds for all y ∈ (p∗ − ε, p∗ + ε) and some constant M > 0. Set

γ := inf
x∈U
|x|, R(p) := (p(1 − p))−(2i−1) and let I1 be the function (4.3). Note that I1 ≥ 0 with

unique zero p∗1 and I ′′1 = W ′′1 . For (3.2) we show first

lim sup
n→∞

1

bn
log

∫
U
e−nI1(x/an+p

∗
1)R(x/an + p∗1) dx ≤ −W ′′1 (p∗)

γ2

2
.

The case γ = ∞ is trivial, since then U = ∅, so we may assume γ < ∞. We will first consider

U ∩ {|x| ≥ εan}. We get

lim sup
n→∞

1

bn
log

∫
U

1{|x|≥εan}e
−nI1(x/an+p∗1)R(x/an + p∗1) dx

≤ lim sup
n→∞

1

bn
log

∫
R

1{|x|≥εan}e
−(2i−1)V1(x/an+p∗1) exp

(
−(n− (2i− 1)) inf

|y−p∗1|≥ε
I1(y)

)
dx

≤ lim sup
n→∞

1

bn
log

∫
R
ane
−(2i−1)V1(t) exp

(
−(n− (2i− 1)) inf

|y−p∗1|≥ε
I1(y)

)
dt

≤ lim sup
n→∞

a2n

(
log an − (n− (2i− 1)) inf

|y−p∗1|≥ε
I1(y)

)
/n = −∞.

For the set U ∩ {|x| < εan}, note that by Taylor’s theorem∫
U

1{|x|<εan}e
−nI1(x/an+p∗1)R(x/an + p∗1) dx

≤ sup
|y−p∗1|<ε

R(y)

∫
U

1{|x|<εan} exp
(
−nx2/(2a2n) inf

|z−p∗1|<ε
W ′′1 (z)

)
dx

≤ sup
|y−p∗1|<ε

R(y)

∫
R

exp
(
−
(
(1− ε)nγ2/(2a2n) + εnx2/(2an)

)
inf

|z−p∗1|<ε
W ′′1 (z)

)
dx

≤ sup
|y−p∗1|<ε

R(y) exp
(
−(1− ε)bnγ2/2 inf

|z−p∗1|<ε
W ′′1 (z)

)√
2π
/(

εbn inf
|z−p∗1|<ε

W ′′1 (z)
)
.

Consequently,

lim sup
n→∞

1

bn
log

∫
U

1{|x|<εan}e
−nI1(x/an+p∗1)R(x/an + p∗1) dx ≤ −(1− ε) inf

|z−p∗1|<ε
W ′′1 (z)

γ2

2
.
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Using log(a+ b) ≤ log 2 + max{log a, log b}, a, b ≥ 0, we conclude

lim sup
n→∞

1

bn
log

∫
U
e−nI1(x/an+p

∗
1)R(x/an + p∗1) dx

≤ max

{
lim sup
n→∞

1

bn
log

∫
U

1{|x|<εan}e
−nI1(x/an+p∗1)R(x/an + p∗1) dx,

lim sup
n→∞

1

bn
log

∫
U

1{|x|≥εan}e
−nI1(x/an+p∗1)R(x/an + p∗1) dx

}
+

log 2

bn

≤ − (1− ε) inf
|z−p∗1|<ε

W ′′1 (z)
γ2

2
.

Letting ε→ 0 now yields

lim sup
n→∞

1

bn
log

∫
U
e−nI1(x/an+p

∗
1)R(x/an + p∗1) dx ≤ −W ′′1 (p∗1)

γ2

2
. (4.12)

For the lower bound (3.1), let O ⊂ R be an arbitrary nonempty open set. Set again γ :=

inf
x∈O
|x| <∞. By the definition of γ the set O∩{|x| < γ+ ε} is a nonempty open set. Therefore

by Taylor’s theorem∫
O
e−nI1(x/an+p

∗
1)R(x/an + p∗1) dx

≥
∫
O

1{|x|<γ+ε}e
−nI1(x/an+p∗1)R(x/an + p∗1) dx

≥ inf
|y−p∗|<(γ+ε)/an

R(y)λ(O ∩ {|x| < γ + ε}) exp
(
−n(γ + ε)2/(2an) sup

|y−p∗1|<(γ+ε)/an

W ′′1 (y)
)
,

where λ is the Lebesgue measure. This yields

lim inf
n→∞

1

bn
log

∫
O
e−nI1(x/an+p

∗
1)R(x/an + p∗1) dx ≥ −W ′′1 (p∗1)

(γ + ε)2

2
.

Letting ε→ 0 we therefore get

lim inf
n→∞

1

bn
log

∫
O
e−nI1(x/an+p

∗
1)R(x/an + p∗1) dx ≥ −W ′′1 (p∗1)

γ2

2
. (4.13)

Note that the density of an(p
(n)
2i−1 − p∗1) is

1

cn
e−nI1(x/an+p

∗
1)R(x/an + p∗1) dx,

where cn is the normalization constant. Plugging U = O = R into (4.12) and (4.13) shows

lim
n→∞

1
bn

log cn = 0. This proves the large deviations principle for an(p
(n)
2i−1 − p∗1).

Analogously, an(p2i − p∗2) satisfies a large deviation principle with speed bn and good rate

function W ′′2 (p∗2)x
2/2. Since the canonical moments are independent, we can conclude that the

vector

an
(
(p

(n)
1 , . . . , p

(n)
k )− ~y∗

)
satisfies a large deviations principle with speed bn and good rate function ‖Hx‖22/2, where

the matrix H is given by H = diag(W ′′1 (p∗1),W
′′
2 (p∗2),W

′′
1 (p∗1), . . .)

1/2 ∈ Rk×k. Recall that

~y∗ = (p∗1, p
∗
2, p
∗
1, . . . ) ∈ (0, 1)k.

In order to transfer this large deviations principle to the sequence of ordinary moments, we

need to apply the delta-method for large deviations. As Theorem 3.1 in Gao and Zhao (2011)
21



states, the sequence

an
(
(m

(n)
1 , . . . ,m

(n)
k )− (m∗1, . . . ,m

∗
k)
)

= an
(
ϕ
[a,b]
k (p

(n)
1 , . . . , p

(n)
k )− ϕ[a,b]

k (~y∗)
)

satisfies a large deviations principle with good rate function

I(x) := inf{‖Hy‖22/2 | (Dϕ
[a,b]
k (~y∗))y = x} = ‖HDϕ[a,b]

k (~y∗)−1x‖22/2.

�
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