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Abstract We discuss optimal design problems for a popular method of series estimation in regression
problems. Commonly used design criteria are based on the generalized variance of the estimates of
the coefficients in a truncated series expansion and do not take possible bias into account. We present
a general perspective of constructing robust and efficient designs for series estimators which is based
on the integrated mean squared error criterion. A minimax approach is used to derive designs which
are robust with respect to deviations caused by the bias and the possibility of heteroscedasticity. A
special case results from the imposition of an unbiasedness constraint; the resulting “unbiased designs”
are particularly simple, and easily implemented. Our results are illustrated by constructing robust
designs for series estimation with spherical harmonic descriptors, Zernike polynomials and Chebyshev
polynomials.
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1. Introduction

Series estimators represent a popular technique for estimating the conditional mean E [Y |x] in regression
problems [see e.g. Efromovich (1999)]. They apply to such well-known regression functions as polyno-
mial and trigonometric series, wavelets, spherical harmonic descriptors and Zernike polynomials [see e.g.
Härdle, Kerkyacharian, Picard and Tsybakov (1998), Brechbühler, Gerig and Kübler (1995) or Pawlak
and Liao (2002) among others]. In these models it is typically assumed that E [Y |x] is given by a function
ψ(x), defined on a bounded set S ⊂ Rq and satisfying ψ ∈ L2

µ(S), where µ denotes a density on the set
S and L2

µ(S) the corresponding space of square integrable, real-valued functions. If z1, z2, . . . defines a
complete orthonormal system on S with respect to the measure µ, then the function ψ admits a series
expansion of the form

ψ (x) =
∞∑

j=1

cjzj (x) ,

where the functions zj (x) are orthonormal with respect to the weighting function µ, i.e.
∫

S
zj (x) zk (x)µ (x) dx =

{
1, j = k,
0, j 6= k.

(1.1)
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Suppose that data Y1, . . . , Yn are observed, with conditional means E[Yi|xi] and with additive error,
at ‘locations’ {xi}n

i=1 ⊂ S . If the experimenter is confident that E[Yi|xi] = ψ (xi) then he approximates
the function ψ (x) by a suitable truncation of the series, say

∑p
j=1 cjzj (x). He then fits a linear regression

model with p regressors {zj (x)}p
j=1, estimates the regression coefficients θ = (θ1, · · ·, θp)

T (which can
be assumed to agree with the cj if indeed E[Y |x] = ψ (x)) and predicts a response Y at an arbitrary
location x ∈ S by

Ŷ (x) = zT (x) θ̂. (1.2)

Here z (x) = (z1 (x) , ..., zp (x))T denotes the vector of regression functions.
A commonly used method of estimation stems from the fact that the Fourier coefficients are given by

cj =
∫

S
ψ (x) zj (x) µ (x) dx, j = 1, 2, . . . .

Estimates may then be computed by discretizing these integrals, and replacing ψ (x) by (weighted means
of) the observations. This method is often preferred to least squares estimation because it does not involve
the inversion of a possibly very high dimensional matrix “XT X”, which in the intended applications can
be numerically unstable. The corresponding estimates will be described in the following section and
will be called “direct estimates” throughout this paper. These methods are often employed in shape
and image analysis instead of least squares techniques - see, e.g. Brechbühler, Gerig and Kübler (1995),
Pawlak and Liao (2002).

Most of the literature on optimal designs in this context concentrates on optimality criteria minimizing
the generalized variance of the least squares estimator in the regression model ψ (x) = E[Y |x] = zT (x)θ
[see e.g. Lau and Studden (1985), Herzberg and Traves (1994) and Dette, Melas and Pepelyshev (2005)
among others]. Recently, Dette, Melas and Pepelyshev (2007) investigated optimal designs minimizing
the generalized variance of the least squares and direct estimates of the parameters in truncated Fourier
expansions resulting from the system of Zernike polynomials. On the other hand – to the knowledge
of the authors – no results on optimal designs are available which address the problem of possible bias
obtained by model misspecification, for example by the truncation of the series.

The present paper is devoted to problems of constructing robust and efficient designs for series esti-
mation, which take a variety of possible model specification errors into account. These errors are caused
on the one hand by misspecification of the regression function - either because E[Y |x] can be only ap-
proximated by ψ (x), or through the truncation of the series expansion of ψ (x) - and on the other hand
by a misspecification of the stochastic error structure.

In Section 2 we review some results on the method of direct estimation, and present two motivating
examples which arise from applications in shape and image analysis. A representation of the asymptotic
integrated mean squared error is derived, and a minimax criterion is proposed for the determination of
optimal designs which are robust with respect to the model assumptions, in particular with respect to
the bias obtained from possible misspecification of the regression response, and heteroscedasticity in the
data. Section 3 and 4 consider the problem of determining optimal designs with respect to the new
minimax criterion for the general series estimator. In Section 5 we discuss the problem of constructing
robust designs explicitly, if a series estimate with Zernike polynomials as basis functions is used to recover
a function on a circular domain [see Pawlak and Liao (2002)]. This exploits some of the special structure
of Zernike polynomials, and so in Section 6 we discuss the treatment of general series models lacking the
structure of these models for shape and image analysis. This treatment is implemented in the context
of function approximation with Chebyshev polynomials. Finally, some technical details are given in the
Appendix.

2. Direct estimation and robust designs

In this section we formulate an optimal design problem for direct estimation. Let ‖ · ‖ denote the
Euclidean norm. We introduce a density k (x) on S and generate a partition of S into n disjoint sets Si
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such that, as n →∞,

max
1≤i≤n

∣∣∣∣
∫

Si

k (x) dx− 1
n

∣∣∣∣ = o
(
n−1

)
, (2.1a)

max
1≤i≤n

sup
x,y∈Si

‖x− y‖ = o (1) . (2.1b)

For example, if S = [a, b] is an interval and k a positive continuous density on [a, b] satisfying

1
n

=
∫ qi:n

qi−1:n

k(x)dx + o(n−1),

where a = q0:n < q1:n < · · · < qn:n = b [see Sacks and Ylvisaker (1970)], then (2.1a) is obviously satisfied
with Si = (qi−1:n, qi:n] (i = 1, . . . , n). Moreover, (2.1b) holds as long as k is strictly positive on its
support.

Similarly if S = {x ∈ R2 | ‖x‖ ≤ 1} is the unit disc, n = n1n2 is such that min{n1, n2} → ∞ and
k1, k2 denote positive continuous densities on [0, 1] and [0, 2π], respectively, such that

1
n1

=
∫ ρi

ρi−1

ki(ρ)dρ + o(n−1
1 ),

1
n2

=
∫ φj

φj−1

k2(φ)dφ + o(n−1
2 ),

(where 0 = ρ0 < ρ1 < · · · < ρn1 = 1, 0 = φ0 < φ1 < · · · < φn2 = 2π), then the density k(ρ, φ) satisfies
(2.1a) and (2.1b) with

Si,j = {(ρ cosφ, ρ sin φ) | ρi−1 ≤ ρ ≤ ρi, φj−1 ≤ φ ≤ φj}

(i = 1, . . . , n1, j = 1, . . . , n2).
It follows that if the function α (x) is uniformly continuous on S, and the points xi are arbitrarily

chosen representative elements of Si, then
∫

S
α (x) k (x) dx =

1
n

n∑

i=1

α (xi) + o (1) . (2.2)

This discretization of the integral will be used frequently in the following discussion. Throughout this
paper we assume that n independent observations from the model

Yi = Y (xi) = E[Y |xi] + ε(xi) i = 1, . . . , n (2.3)

are available, where the errors ε(x1), . . . , ε(xn) are centred random variables with third absolute moments.
For non-negative weights {w (xi)} we propose the direct estimate

θ̂ =
1
n

n∑

i=1

z (xi)
Y (xi)w (xi)µ (xi)

k (xi)
. (2.4)

This is motivated by the fact that for constant weights w(xi) ≡ 1, if E[Y |x] = ψ (x) then the estimate is
asymptotically unbiased for c = (c1, ..., cp)

T :

E[θ̂] =
1
n

n∑

i=1

z(xi)E[Y |xi]
µ(xi)
k(xi)

=
∫

S
z(x)ψ (x)µ(x)dx + o(1) = c + o(1);

we have used (2.2) and (1.1) to establish the last two equalities. We allow for non-constant weights in
anticipation of possible heteroscedasticity, and also for a more precise tuning of the estimate. We will
norm the weights to have a unit average, viz.

∫

S
w (x)µ (x) dx = 1,
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which implies that the function
m (x)

def
= w (x) µ (x) (2.5)

is a probability density on S. It will prove convenient to optimize over m (·) rather than over w (·).
In the following discussion we shall frequently use the identity

∫

S
z (x) zT (x)µ (x) dx = Ip, (2.6)

which follows directly from (1.1).
A practitioner will generally readily acknowledge that the truncated regression model may be only

approximately correct. For instance, perhaps because only finitely many of the zj (x) are being fitted,
or because of more general unease about the adequacy of the fitted model, the experimenter may feel
that ψ(x) is only an approximation to E [Y |x], which is in turn only approximately given by a linear
combination of z1 (x) , · · ·, zp (x). If so, measures are needed which are robust against the ensuing
prediction bias. As well, the meaning of the parameter θ becomes unclear in this context. We shall
thus define

θ = arg min
t

∫

S

(
E [Y |x]− zT (x) t

)2
µ (x) dx (2.7)

as the parameter corresponding to the best L2
µ-approximation of the regression function by elements of

the space spanned by the functions z1, . . . , zp, and define

f (x) = E [Y |x]− zT (x)θ (2.8)

as the deviation of this approximation from the true mean response. Furthermore, assumptions made by
the experimenter concerning the homoscedasticity of the measurement errors (or a particular, assumed
heteroscedasticity structure) may also be in doubt. An alternative description of the model (2.3) is then
given by

Y (xi) = zT (xi) θ + f (x) + ε (xi) , i = 1, . . . , n (2.9)

where:

1. The function f (x) accounts for inadequacies in the approximation E [Y |x] ≈ zT (x)θ obtained from
model misspecification.

2. The random variables ε (x) are additive measurement errors, pairwise independent, and with pos-
sibly heterogeneous variances σ2

εg (x).

We impose bounds on the magnitudes of the approximation error f , and of the variance function g centred
at the experimenter’s best guess g0, that is

∫

S
f2 (x)µ (x) dx ≤ η2

f . (2.10)

sup
x∈S

|g (x)− g0 (x)| ≤ η2
g , (2.11)

where η2
f and η2

g are given non-negative constants. Note that equations (2.7) and (2.8) give
∫

S
z (x) f (x) µ (x) dx = 0. (2.12)

¿¿From (2.9) we see that if the specification E [Y |x] = ψ(x) is correct then θ = c and f (x) =∑∞
j=p+1 cjzj (x).
Let F and G be, respectively, the class of functions f constrained by (2.12) and (2.10), and the class

of positive functions g constrained by (2.11). We assume throughout this paper that f, g,m, (m/k) and
z1, . . . , zp are uniformly continuous, which will allow us to apply the approximation (2.2) whenever it is
necessary.
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The fitted model assumes f ≡ 0; if the experimenter believes that the error variances are homogeneous
then he will as well take g0 ≡ 1. Violations of these specifications will however increase the mean squared
error of the predictions, and in the following discussion we will determine designs which are robust with
respect to such misspecifications of the model. The design and estimation problem is to choose a density
k (·) and weights w (·) = m (·) /µ (·) in order to minimize the asymptotic integrated mean squared error of
the predictions. Before we derive an explicit expression for this mean squared error we shall illustrate the
methodology of series estimation in two examples, which have found considerable interest in applications.

Example 2.1. For describing three-dimensional shapes a common model employs spherical harmonic
descriptors [see for example Brechbühler, Gerig and Kübler(1995) for some general discussion and Ding,
Nesumi, Takano and Ukai (2000), who analyze the shapes of Citrus species via spherical harmonics]. In
this model the distance Y from the origin to the boundary of the shape is described in terms of two
angles θ ∈ [0, π], φ ∈ (−π, π] and, with x = (θ, φ) and p = (d + 1)2 the regression functions are arranged
as

z (x) =
(
zT
0 (x) , zT

1 (x) , · · ·, zT
d (x)

)T
, where

zT
k (x) =

(
Z−k

k (x) , Z−k+1
k (x) , · · ·, Zk−1

k (x) , Zk
k (x)

)
.

Here

Zm
k (x) =





√
2k + 1P 0

k (cos θ) , m = 0, k ≥ 0,√
2 (2k + 1) (k−m)!

(k+m)!P
m
k (cos θ) cos (mφ) , m = 0, ..., k, k > 0,√

2 (2k + 1) (k+m)!
(k−m)!P

−m
k (cos θ) sin (mφ) , m = −k, ...,−1, k > 0,

and Pm
k is the mth associated Legendre function of degree k. The functions Zm

k are orthonormal over the
design space S = {θ ∈ [0, π], φ ∈ (−π, π]} with respect to the density function µ (x) = sin θ/4π, where
x = (θ, φ). We note for future reference that it is shown in Dette, Melas, and Pepelyshev (2005) that

‖z (x)‖ = d + 1. (2.13)

Example 2.2. Let S be the unit disc centred at the origin, and suppose we make noisy observations of
a function in L2(S) = {f : S → R | ∫S f2(x)dx < ∞}. As pointed out by Pawlak and Liao (2002) such
a function admits an expansion in terms of Zernike polynomials, and a truncated series with coefficients
estimated from the data is used to reconstruct the function f . To be precise, we consider a radius
ρ ∈ [0, 1], an angle φ ∈ (0, 2π] and a predictor x = (ρ, φ). The regression model has p = (d + 1) (d + 2) /2
regression functions defined by

z (x) =
(
zT
0 (x) , zT

1 (x) , · · ·, zT
d (x)

)T
, where

zT
k (x) =

(
Z−k

k (x) , Z−k+2
k (x) , · · ·, Zk−2

k (x) , Zk
k (x)

)
.

Here Zm
k (x) is a Zernike polynomial (Zernike 1934) defined by:

Zm
k (x) =

√
k + 1R

|m|
k (ρ) · am

k (φ) ,

am
k (φ) =

√
2

1 + I (m = 0)
·
{

sin (mφ) , m < 0,
cos (mφ) , m ≥ 0,

Rm
k (ρ) =

{ ∑ k−m
2

l=0
(−1)l(k−l)!

l!( k+m
2 −l)!( k−m

2 −l)!ρ
k−2l, k −m even,

0, k −m odd.

The Zernike polynomials are orthonormal on the set S = {(ρ, φ)|ρ ∈ [0, 1] , φ ∈ (0, 2π]} with respect to
the density function

µ (x) = µ(1) (ρ)µ(2) (φ) ,
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where µ(2) (φ) = (2π)−1 is the uniform density on the interval (0, 2π] and µ(1) (ρ) = 2ρ is a density on
the interval [0, 1]. It will prove helpful to represent the vector of regression functions z (x) as

z (x) = R (ρ)a (φ) ,

where R (ρ) is the p × p diagonal matrix containing the terms
√

k + 1R
|m|
k (ρ) on its diagonal and a (φ)

is the p-dimensional vector containing the terms am
k (φ), all ordered as they appear in the vector z (x).

Then ∫ 2π

0

a (φ)aT (φ)µ(2) (φ) dφ = Ip =
∫ 1

0

R2 (ρ)µ(1) (ρ) dρ (2.14)

[see Szëgo (1975)] and the orthogonality relations in (2.6) follow from Fubini’s theorem. Another useful
result is that the function

‖z (x)‖2 = trR2 (ρ)
def
= Θd (ρ) , (2.15)

depends only on the parameter ρ alone, as shown in Dette, Melas, and Pepelyshev (2007, Theorem 4.1).
Some applications and further details can be found in Pawlak and Liao (2002). Common applications of
this model are in optics (Wyant and Creath 1993) and image analysis (Liao and Pawlak 1996; Kim and
Kim 1999).

As specific examples we consider the cases d ≤ 4, for which the Zernike polynomials are the elements
of the vectors zk (x) (k = 0, ..., d) with

zT
0 (x) = 1; zT

1 (x) =
(√

2ρ sin φ,
√

2ρ cosφ
)

; zT
2 (x) =

(√
3ρ2 sin(2φ),

√
3

(
2ρ2 − 1

)
,
√

3ρ2 cos(2φ)
)

;

zT
3 (x) =

(√
4ρ3 sin(3φ),

√
4

(
3ρ3 − 2ρ

)
sin φ,

√
4

(
3ρ3 − 2ρ

)
cosφ,

√
4ρ3 cos(3φ)

)
;

zT
4 (x) =

(√
5ρ4 sin(4φ),

√
5

(
4ρ4 − 3ρ2

)
sin(2φ),

√
5

(
6ρ4 − 6ρ2 + 1

)
,
√

5
(
4ρ4 − 3ρ2

)
cos(2φ),

√
5ρ4 cos(4φ)

)
.

In order to present an asymptotic representation of the integrated mean squared error we recall the
notation (2.5), and define

bn =
1
n

n∑

i=1

z (xi) f (xi)
m (xi)
k (xi)

,

Bn =
1
n

n∑

i=1

z (xi)
m (xi)
k (xi)

zT (xi) ,

Cn =
1
n

n∑

i=1

z (xi)
m2 (xi) g (xi)

k2 (xi)
zT (xi) .

Theorem 1 Define, for x ∈ S, τ3 (x) = E

[∣∣∣ε (x) /
(
σε

√
g (x)

)∣∣∣
3
]
. Assume that

(i) τ3 (x) is bounded on S, and that

(ii) Cn is positive definite, and its minimum eigenvalue is bounded away from 0, for sufficiently large n.

Then the direct estimate (2.4) is asymptotically normally distributed:

θ̂ ∼ AN

(
Bnθ + bn,

σ2
ε

n
Cn

)
. (2.16)

Remark 1 Assumption (i) of Theorem 1 is very mild; it is satisfied, for instance, if the errors are Gaussian
since then τ3 (x) is constant. Assumption (ii) is of course standard.
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Now define

bf,m =
∫

S
z (x) f (x)m (x) dx, (2.17a)

Bm =
∫

S
z (x) zT (x)m (x) dx, (2.17b)

Cg,k,m =
∫

S
z (x)

m2 (x) g (x)
k (x)

zT (x) dx. (2.17c)

Under the conditions leading to (2.2), these are the limits of bn, Bn and Cn respectively.
The loss function for the problem is taken to be the asymptotic integrated mean squared error of the

predictions, defined as

IMSE (k,m; f, g) =
∫

S
E

[{
Ŷ (x)− E [Y (x)]

}2
]

µ (x) dx =
∫

S

{
var

[
Ŷ (x)

]
+ bias2

[
Ŷ (x)

]}
µ (x) dx,

where
bias

[
Ŷ (x)

]
= E

[
Ŷ (x)

]
− [

zT (x)θ + f (x)
]
,

Ŷ (x) is defined by (1.2), and the variance and bias are given their asymptotic values derived from (2.16)
and (2.17). Straightforward calculations, utilizing (2.6) and (2.12), yield

IMSE (k,m; f, g) = tr

[
σ2

ε

n
Cg,k,m

]
+ ‖(Bm − Ip)θ + bf,m‖2 +

∫

S
f2 (x)µ (x) dx.

Since IMSE depends on f and g we aim to solve the following minimax problem:

min
k,m

max
f∈F ,g∈G

IMSE (k, m; f, g) .

The minimizing density is called a minimax design. In some cases Bm 6= Ip and then IMSE also depends
on θ; in such cases we shall endow θ with a prior distribution π (θ) satisfying

Eπ [θ] = 0, Eπ

[
θθT

]
= Σ ≤ η2

θIp, (2.18)

(the last inequality refers to the Loewner ordering) and consider instead

min
k,m

max
f∈F ,g∈G

max
Σ

Eπ [IMSE (k, m; f, g)] . (2.19)

3. Unbiased direct estimators

If constant weights w(xi) = 1 (i = 1, . . . , n) are used in the direct estimate, it follows from Theorem
1 and the orthonormality conditions (1.1) that this estimate is asymptotically unbiased. Note that in
the presence of (2.12), the condition bf,m = 0 is satisfied. On the other hand, if unbiasedness of Ŷ (x)
for E [Y |x] is imposed, so that the condition bf,m = 0 must hold for all f simultaneously with (2.12),
then necessarily m (·) = µ (·); hence the weights must satisfy w (x) ≡ 1. In such cases we have from the
orthonormality relations (2.6) that Bm = Ip. Consequently, we obtain

max
f,g

IMSE (k, µ; f, g) = max
g

tr

[
σ2

ε

n
Cg,k,µ

]
+ max

f

∫

S
f2 (x)µ (x) dx

=
σ2

ε

n

∫

S
‖z (x)‖2 µ2 (x)

[
g0 (x) + η2

g

]

k (x)
dx + η2

f .

With the notation
g∗ (x)

def
= g0 (x) + η2

g , (3.1)
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an optimal design density k∗ (x) will thus minimize
∫

S
‖z (x)‖2 µ2 (x) g∗ (x)

k (x)
dx,

subject to the normalizing condition
∫
S k (x) dx = 1. The solution to this problem is presented in the

following Proposition. In order that we may refer to it again later, we state it for general weights.

Proposition 1 The density k (·) minimizing the functional

Ψ1 (k;m)
def
=

∫

S
‖z (x)‖2 m2 (x) g∗ (x)

k (x)
dx

for fixed m (·) is given by

k∗ (x;m) =
‖z (x)‖m (x)

√
g∗ (x)∫

S ‖z (x)‖m (x)
√

g∗ (x)dx
, (3.2)

with minimal value

Ψ1 (k∗; m) =
[∫

S
‖z (x)‖m (x)

√
g∗ (x)dx

]2

.

With w (x) ≡ 1 we have m = µ in Proposition 1 and we obtain that the minimax design for the direct
estimate, under the requirement of unbiasedness, is given by

k∗ (x; µ) =
‖z (x)‖µ (x)

√
g∗ (x)∫

S ‖z (x)‖µ (x)
√

g∗ (x)dx
, (3.3)

and

min
k

max
f,g

IMSE (k, µ; f, g) =
σ2

ε

n

[∫

S
‖z (x)‖µ (x)

√
g∗ (x)dx

]2

+ η2
f .

We illustrate these results in the two examples considered before.

Example 3.1 (Example 2.1 continued). By virtue of (2.13), the minimax unbiased design for series es-
timation with direct estimates and spherical harmonic regressors is obtained from (2.1a) with density
k (θ, φ) ∝ sin θ

√
g∗ (θ, φ). If a homoscedastic model is fitted, so that g∗ is constant, then the optimal

density satisfies k (θ, φ) ∝ sin θ and k (·, ·) generates a product design. One factor has density (sin θ) /2
on the interval [0, π] and the other is a uniform distribution on the interval [−π, π]. The design can be
easily implemented by taking observations at

(θi, φj) =
(

arccos
(

1− 2 (i− 1)
n1 − 1

)
,−π +

2j

n2

)

for i = 1, ..., n1 and j = 1, ..., n2 with n = n1n2. This design was also found to possess further favourable
robustness properties when used with the least squares estimator in this model - see Dette and Wiens
(2007).

Example 3.2 (Example 2.2 continued). Consider the problem of series estimation with Zernike polynomials
using direct estimates with equal weights. By virtue of (2.15), the minimax unbiased design for observa-
tions on the unit disc is obtained from (2.1a) with k (ρ, φ) ∝ ρ

√
Θd (ρ) g∗ (ρ, φ). A natural assumption

here is that the error variances depend on the regressors only through the distance ρ from the origin, so
that g∗ (ρ, φ) = g∗ (ρ). In this case the minimax design is again a product design, with one factor having
density ρ

√
Θd (ρ) g∗ (ρ)

/∫ 1

0
ρ
√

Θd (ρ) g∗ (ρ)dρ for ρ ∈ [0, 1] and the other being a uniform distribution
on the interval (0, 2π]. For a constant function g∗ (ρ) this design was also shown to be A-optimal by
Dette, Melas, and Pepelyshev (2007). See Figures 1 - 3 for some comparative examples.
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4. Minimax designs and weights - general theory

For general weights, the IMSE of the direct estimate (2.4) also depends on the parameter θ, and we
invoke the prior distribution defined in (2.18). In this case we have

Eπ

[
‖( Bm − Ip) θ + bf,m‖2

]
= tr

[
( Bm − Ip)Σ ( Bm − Ip)

T
]

+ ‖ bf,m‖2 ,

which yields

max
Σ

Eπ [IMSE (k, m; f, g)] = tr

[
σ2

ε

n
Cg,k,m

]
+ η2

θtr
[
( Bm − Ip)

2
]

+ ‖ bf,m‖2 +
∫

S
f2 (x) µ (x) dx.

For the determination of the optimal value in (2.19) we first maximize with respect to f ∈ F , then
with respect to g ∈ G. Note that only two terms in the above expression depend on the function f .
Consequently, the maximum over f is given in the following result. The proof is very similar to that of
Theorem 1 in Wiens (1992) and is therefore omitted.

Proposition 2 For fixed m the maximum of the function

Ψ2 (f ;m)
def
= ‖ bf,m‖2 +

∫

S
f2 (x) µ (x) dx

over the class of functions f satisfying (2.12) and (2.10) is given by

η2
f ·

(
chmax

[
Km −B2

m

]
+ 1

)
,

where chmax [A] denotes the maximum eigenvalue of the matrix A and the matrix Km is given by

Km
def
=

∫

S
z (x) zT (x)

m2 (x)
µ (x)

dx.

Moreover, the matrix Km −B2
m is non-negative definite; in particular, we have for any vector α ∈ Rp

αT
(
Km −B2

m

)
α =

∫

S

{
αT

[
m (x)
µ (x)

Ip −Bm

]
z (x)

}2

µ (x) dx ≥ 0. (4.1)

The maximum value is attained by any function f∗ of the form

f∗ (x) = ηfαT
m

[
m (x)
µ (x)

Ip −Bm

]
z (x) ,

where αm is any solution to the equation
(
Km −B2

m

)1/2
αm = βm and βm is any eigenvector of the

matrix Km −B2
m, corresponding to the maximum eigenvalue, normalized such that ‖βm‖ = 1.

The maximization with respect to the function g ∈ G, and the minimization with respect to the
density k, are straightforward. Recalling the definition of g∗ (·) in (3.1) we have, using Proposition 1,

max
g

trCg,k,m =
∫

S
‖z (x)‖2 m2 (x)

k (x)
g∗ (x) dx,

min
k

max
g

trCg,k,m = max
g

trCg,k∗,m =
[∫

S
‖z (x)‖m (x)

√
g∗ (x)dx

]2

,

where the minimum is attained for the density k∗ (x;m) given by (3.2). Combining these observations,
we obtain

Φ (m)
def
= min

k
max

f∈F ,g∈G
max
Σ

Eπ [IMSE (k, m; f, g)]

= η2
f ·

(
chmax

[
Km −B2

m

]
+ 1

)
+

σ2
ε

n

[∫

S
‖z (x)‖m (x)

√
g∗ (x)dx

]2

+ η2
θtr

[
(Bm − Ip)

2
]
,
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and for the solution of the optimization problem (2.19) it remains to determine the optimal weights
w∗ (·) = m∗ (·) /µ (·) with

m∗ = arg min
m

Φ (m) .

Suppose now that the experimenter anticipates homoscedasticity, but seeks protection against viola-
tions of these assumptions. In this case we set g0 (·) ≡ 1 and obtain

Φ (m) = η2
f ·

(
chmax

[
Km −B2

m

]
+ 1

)
+

σ2
ε

n

(
1 + η2

g

) [∫

S
‖z (x)‖m (x) dx

]2

+ η2
θtr

[
(Bm − Ip)

2
]
.

With the notation η2
T

def
= η2

f + σ2
ε

n

(
1 + η2

g

)
+ η2

θ and

s =
η2

f

η2
T

, t =
σ2

ε

n

(
1 + η2

g

)

η2
T

,

we have that Φ (m) is proportional (up to the constant η2
T ) to the function

Φ0 (m; s, t)
def
= s·(chmax

[
Km −B2

m

]
+ 1

)
+t·

[∫

S
‖z (x)‖m (x) dx

]2

+(1− s− t)·tr
[
(Bm − Ip)

2
]
. (4.2)

The parameters s, t ∈ [0, 1] (with s+t ≤ 1) may be chosen by the experimenter according to his assessment
of the relative importance of the various sources of IMSE from which he seeks protection.

Example 4.1 (Example 2.1 continued). For spherical harmonic regression, note from (2.13) that ‖z (x)‖
is constant. Consequently the density m (x) = µ (x) is minimax optimal. This follows from the fact
that this choice yields Km = Bm = Ip, so that the first and third term on the right side of (4.2) are
simultaneously minimized, while the second is independent of m (·). The corresponding minimax design
for spherical harmonic regression is as described in Example 3.1.

It is worthwhile to mention that this conclusion is always possible, provided that ‖z (x)‖ is constant.
Popular examples satisfying this property are the Haar wavelet model [see Herzberg and Traves (1994)
and Oyet and Wiens (2000)] and the trigonometric regression model [see Karlin and Studden (1966)].

If ‖z (x)‖ is not constant, then the problem of determining the minimum of the function (4.2) for
arbitrary s, t ∈ [0, 1] is more complicated and will be investigated in the remaining part of this section.
We begin with the discussion of several limiting values of the parameters s, t, for which the solution of
the optimization problem

m∗ = arg min
m

Φ0 (m; s, t)

is easy to obtain. For this purpose we will distinguish three cases.

Case 1: s = 1. In this case we have η2
f = η2

T and all loss is due to f . Here the function

Φ0 (m; 1, 0) = chmax

[
Km −B2

m

]
+ 1

is minimized by m1,0 (·) = µ (·), hence the constant weights w (x) ≡ 1 are optimal, while the minimax
optimal design density is given by k(x) = µ(x). The minimum value is Φ0 (µ; 1, 0) = 1.

Case 2: t = 1. In this case we have η2
f = η2

θ = 0 and all loss is due to possible heteroscedasticity . Here

Φ0 (m; 0, 1) =
[∫

S
‖z (x)‖m (x) dx

]2

is minimized in a limiting sense by the Dirac function m0,1 (·) = δxmin , placing all mass at those points
xmin at which ‖z (x)‖ is minimized.
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Case 3: 1 − s − t = 1. In this case all loss is due to misspecification of the parameter θ, more precisely
to the matrix Σπ. Here

Φ0 (m; 0, 0) = tr
[
(Bm − Ip)

2
]

is again minimized, with minimum value 0, by m0,0 (·) = µ (·).

For general s, t ∈ [0, 1] we propose to minimize the function Φ0 (m; s, t) by representing the minimizer
- whose existence can be established using the methods of Theorem 2 of Heo, Schmuland and Wiens
(2001) - as the solution to an auxiliary minimax problem. For vectors α ∈ Rp of unit norm, and fixed s
and t, define the function

L (m;α) = s · (αT
[
Km −B2

m

]
α + 1

)
+ t ·

[∫

S
‖z (x)‖m (x) dx

]2

+ (1− s− t) · tr
[
(Bm − Ip)

2
]
.

Then Φ0 (m; s, t) = max‖α‖=1 L (m; α) and the design problem is equivalent to the minimax problem

min
m

max
‖α‖=1

L (m;α) . (4.3)

Theorem 2 If s > 0 then the density m∗ which solves problem (4.3) is of the form

m∗ (x) =

{
λ + zT (x)Γz (x)− β ‖z (x)‖}+

(αT∗ z (x))2
µ (x) , (4.4)

(here q+ denotes the positive part of a function q) for a symmetric matrix Γ, scalars β and λ and a vector
α∗ of unit norm. These parameters are determined by

Γ =
1
2

(
Bm∗α∗αT

∗ + α∗αT
∗Bm∗

)− 1− s− t

s
(Bm∗ − Ip) , (4.5a)

β =
t

s

∫

S
‖z (x)‖m∗ (x) dx, (4.5b)

1 =
∫

S
m∗(x)dx, (4.5c)

αT
∗

[
Km∗ −B2

m∗

]
α∗ = chmax

[
Km∗ −B2

m∗

]
. (4.5d)

If s = 0 the solution is somewhat different, since in the absence of any bias the minimax design need
no longer be absolutely continuous. This case is however of little interest from a robustness point of
view.

Remark 2 See (4.4). In some models there may be points x at which αT
∗ z (x) = 0. It is evident from

the proof of Theorem 2 that at such points it is required either that the numerator of m∗ (x) vanish, in
which case we set m∗ (x) = 0, or that the numerator be positive and m∗ (x) = ∞. The latter eventuality
does not occur in any of the examples at which we have looked.

Remark 3 We shall discuss two possibilities for implementing Theorem 2. The first, implemented in
Section 5 below, is to obtain m∗ (x) from Theorem 2 by solving equations (4.5). The second, deferred
to Section 6, is to substitute (4.4) into Φ0 (m; s, t) at (4.2), and minimize the resulting expression over
the parameters, subject to the constraints (4.5c) and ‖α‖ = 1.

In the next section we continue with Example 2.2, and utilize the special structure of Zernike poly-
nomials to simplify the requirements of Theorem 2.
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5. Minimax designs and weights - Zernike polynomials

In this section we obtain minimax designs and weights for Zernike polynomial regression. First we write
the bivariate density m (x) in the form m (x) = m(1) (ρ) m(2) (φ|ρ). We will show, in Theorem 3, that
under condition (5.11) given there (and in (ii) of Lemma 1) we may restrict attention to the case in which
the conditional density of φ, given ρ, is of the form

m(2) (φ|ρ) = µ(2) (φ) = (2π)−1
. (5.1)

When (5.1) holds, only the univariate density m
(1)
∗ (ρ) need be determined numerically.

Note that, by virtue of (2.15), the objective function to be minimized is

Φ0 (m; s, t) = s · (chmax

[
Km −B2

m

]
+ 1

)
+ t ·

[∫ 1

0

√
Θd (ρ)m(1) (ρ) dρ

]2

+ (1− s− t) · tr
[
(Bm − Ip)

2
]
,

in which only the first and third terms depend on m(2) (φ|ρ). We are not yet asserting that (5.1) holds,
but when it does we will write

m0 (x) = m(1) (ρ) m
(2)
0 (φ|ρ) = m(1) (ρ)µ(2) (φ) (5.2)

as a product measure and obtain (upon applying Fubini’s Theorem)

Bm0 =
∫

S
z (x) zT (x)m(1) (ρ) m(2) (φ|ρ) dx =

∫ 1

0

R2 (ρ)m(1) (ρ) dρ
def
= H; (5.3)

here we have used the first identity in (2.14). Note that the matrix H is diagonal, with diagonal elements

hi =
∫ 1

0

R2
ii (ρ)m(1) (ρ) dρ =

∫ 1

0

w (ρ)R2
ii (ρ)µ(1) (ρ) dρ. (5.4)

It will prove useful to interpret these diagonal elements as the expectations of the weights w (ρ) =
m(1) (ρ) /µ(1) (ρ) when ρ has the density R2

ii (ρ)µ(1) (ρ) [note that
∫ 1

0
R2

ii (ρ)µ(1) (ρ) dρ = 1 by (2.14)].
Calculations very similar to those leading to (2.15) give the useful identity

zT (x)Hz (x) = trR (ρ)HR (ρ) . (5.5)

As well, the matrix Km0 −B2
m0

in the representation (4.1) becomes

Km0 −B2
m0

=
∫

S

[
m(1) (ρ)
µ(1) (ρ)

Ip −H
]
z (x) zT (x)

[
m(1) (ρ)
µ(1) (ρ)

Ip −H
]

µ(1) (ρ) µ(2) (φ) dφdρ

=
∫ 1

0

[w (ρ) Ip −H]R2 (ρ) [w (ρ) Ip −H]µ(1) (ρ) dρ

def
= D,

which is a diagonal matrix with diagonal elements

di =
∫ 1

0

(w (ρ)− hi)
2
R2

ii (ρ)µ(1) (ρ) dρ. (5.6)

As at (5.4), di can be interpreted as the variance of the weights w (ρ) when ρ has the density R2
ii (ρ)µ(1) (ρ).

The minimax solution for Zernike polynomial regression is motivated by the following result.

Lemma 1 For the Zernike polynomial regression model, let m(1) (ρ) be a fixed but arbitrary marginal
density of ρ. Then:

(i) The quantity tr
[
(Bm − Ip)

2
]

is minimized by m(2) (φ|ρ) = µ(2) (φ).

(ii) Define I∗ = {1, 5, 13, ...} to be the set of indices, in the ordering of the elements of z (x), corresponding
to terms Rm

k with m = 0 and hence a (φ) ≡ 1. If m(1) (ρ) is such that the maximum diagonal element
di∗ of the matrix D satisfies i∗ ∈ I∗, then chmax

[
Km −B2

m

]
is also minimized by m(2) (φ|ρ) = µ(2) (φ).
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Let h = H1 be the p-vector with elements hi given by (5.4) and define

r (ρ) = R2 (ρ)1 =
(
R2

11 (ρ) , ..., R2
pp (ρ)

)T
,

so that h =
∫ 1

0
r (ρ)m(1) (ρ) dρ. By virtue of Lemma 1, if m0 (x) defined by (5.2) is such that the

associated weights w (ρ) minimize

Φ0 (m0; s, t) = s ·
(
max

i
di + 1

)
+ t ·

[∫ 1

0

√
Θd (ρ)m(1) (ρ) dρ

]2

+ (1− s− t) · ‖h− 1‖2 , (5.7)

with maxi di = di∗ for some i∗ ∈ I∗, then to prove that m0 (x) is the desired minimax density one
need only check that it is of the form specified by Theorem 2. In some cases this procedure can be
accomplished by minimizing

s · (di∗ + 1) + t ·
[∫ 1

0

√
Θd (ρ)m(1) (ρ) dρ

]2

+ (1− s− t) · ‖h− 1‖2 (5.8)

for a particular i∗ ∈ I∗. The next result gives the details.

Theorem 3 For s > 0 and for each i∗ ∈ I∗, define a weight function wi∗ (ρ), and densities m
(1)
i∗ (ρ) and

mi∗ (x), by

wi∗ (ρ) =

{
ri∗ (ρ) + λi∗ +

[
ei∗ri∗ (ρ)− 1−s−t

s r (ρ)
]T (

h(i∗) − 1
)− βi∗

√
Θd (ρ)

}+

ri∗ (ρ)
, (5.9a)

m
(1)
i∗ (ρ) = wi∗ (ρ)µ(1) (ρ) , (5.9b)

mi∗ (x) = m
(1)
i∗ (ρ)µ(2) (φ) . (5.9c)

Here ei∗ is the unit vector in Rp with a 1 in position i∗ and zeros elsewhere and the p-dimensional vector
h(i∗) and scalars βi∗ and λi∗ are to be determined from

h(i∗) =
∫ 1

0

r (ρ)m
(1)
i∗ (ρ) dρ, (5.10a)

βi∗ =
t

s

∫ 1

0

√
Θd (ρ)m(1)

i∗ (ρ) dρ, (5.10b)

1 =
∫ 1

0

m
(1)
i∗ (ρ) dρ. (5.10c)

If

i∗ = arg max
1≤i≤p

∫ 1

0

(
wi∗ (ρ)− h

(i∗)
i∗

)2

R2
ii (ρ)µ(1) (ρ) dρ, (5.11)

then the solution to the minimax problem (4.3) is given by (m,α) = (m∗, ei∗). The minimax design
density is then given by Proposition 1, i.e.

k∗ (ρ, φ) = k
(1)
∗ (ρ)µ(2) (φ) ,

where

k
(1)
∗ (ρ) =

t
√

Θd (ρ)wi∗ (ρ)µ(1) (ρ)
sβi∗

,

and the design points may be obtained from
∫ ρi

0

k
(1)
∗ (ρ) dρ =

i

n1
, φj =

2πj

n2
,

for i = 1, ..., n1 and j = 1, ..., n2, with n = n1n2.
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Figure 1: (a) marginal design density k
(1)
∗ (ρ) and (b) weights w∗ (ρ) for d = 1, s = .7, t = .05; I∗ = {1}.

Plot (c) is the marginal of the unbiased design density (3.3).

0 0.5 1
0

0.5

1

1.5

2

2.5

3

(a)

k1
(ρ)

Marginal design density

0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

w(
ρ)

Regression weights

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

(c)

k.
un

bi
as

ed
(ρ)

Marginal, unbiased design density

Figure 2: (a) marginal design density k
(1)
∗ (ρ) and (b) weights w∗ (ρ) for d = 2, s = .1, t = .4; i∗ = 1.

Plot (c) is the marginal of the unbiased design density (3.3).

Example 5.1 (Example 2.2 continued). We present the results of applying Theorem 3 in three cases. The
constants are determined by using the Matlab function fsolve to simultaneously solve equations (5.10).
All integrals are evaluated by Simpson’s Rule, over a grid of 101 equally spaced points in the interval
[0, 1]. Our method is to compute wi∗ (·), for each i∗ ∈ I∗. We then check that one such function satisfies
(5.11); if so then it is the desired minimax weighting function w∗ (·). For the values d = 1 (hence i∗ = 1),
s = .7, t = .05 we obtain output as illustrated in Figure 1, with β = .12, λ = .19. In this and the other
two cases we also plot the marginal, unbiased design density (3.3).

For d = 2, s = .1, t = .4 this procedure gives the design and weights displayed in Figure 2, with i∗ = 1,
β = 8.40, λ = 13.22. For d = 4, s = .2, t = .8 the results are shown in Figure 3 (β = 11.40, λ = 35.35,
i∗ = 5). In this case the design is only supported in the interval [0, .6], approximately; recall Remark 2
and note that r5 (ρ) = 0 only for ρ = 1/

√
2 > .6. For some other values of d, s and t condition (5.11)

is not satisfied; when this is the case the more involved minimization of (5.7) - with the maximization
being over i ∈ I∗ - rather than the simpler (5.8), appears necessary.
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Figure 3: (a) marginal design density k
(1)
∗ (ρ) and (b) weights w∗ (ρ) for d = 4, s = .2, t = .8; i∗ = 5.

Plot (c) is the marginal of the unbiased design density (3.3).

6. Minimax designs and weights - general models

In this section we illustrate the second method of applying Theorem 2, as discussed in Remark 3. The
method applies in general regression models, and is implemented here in the context of function approx-
imation via orthogonal polynomials.

Consider approximating a function on S = [−1, 1] using Chebyshev polynomials. To satisfy (2.6) we
take

µ (x) =
1

π
√

1− x2
, and

z (x) =
(
T0(x),

√
2T1(x),

√
2T2(x), ...,

√
2Td(x)

)T

,

where Tj(x) is the jth Chebyshev polynomial of the first kind, given by Tj(x) = cos (j arccosx). Some
particular values are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.

The optimization described in Remark 3 is carried out using Matlab’s fminimax routine. First define
γ = vecs (Γ) to be the vector, of dimension p (p + 1) /2, formed from the lower triangle of the matrix Γ.
The problem is then

min
v

max
[F1,...,Fp]

{Fi (v)}

where v =
(
αT , β, γT , λ

)T and

Fi (v) = s · (ch(i)

[
Km −B2

m

]
+ 1

)
+ t ·

[∫ 1

−1

‖z (x)‖m (x) dx

]2

+ (1− s− t) · tr
[
(Bm − Ip)

2
]

with

m (x) =

{
λ + zT (x)Γz (x)− β ‖z (x)‖}+

(αT z (x))2
µ (x) .

This is solved subject to the constraints
(∫ 1

−1

m (x) dx− 1, ‖α‖ − 1
)

= 0T .

Some representative designs and weighting functions are given in Figure 4 (d = 3, s = t = .3) and
Figure 5 (d = 5, s = .2, t = .4).
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Figure 4: (a) design density, (b) weights and (c) unbiased design density for Chebyshev polynomial
approximation; d = 3, s = t = .3.
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Figure 5: (a) design density, (b) weights and (c) unbiased design density for Chebyshev polynomial
approximation; d = 5, s = .2, t = .4.

7. Summary

We have exhibited robust designs and weighting functions, appropriate for the “direct” series estimation
technique often favoured by practitioners. These are solutions to two minimax problems, one of which is
constrained by a requirement that the estimates be unbiased throughout a neighbourhood of contaminated
response functions. In this case the results are particularly appealing - the optimal weights are constant,
and the minimax optimal design density (3.3) is proportional to ‖z (x)‖µ (x) under the assumption of
homoscedasticity, where z(x) denotes the vector of functions used in the series expansion. Given the
numerical complexity of the minimax designs without this requirement of unbiasedness, and recognizing
the dominant contribution, asymptotically, of bias over variance to mean squared error, it is our opinion
that designs for unbiased estimation are to be preferred.
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Appendix: Derivations

Proof of Theorem 1: From (2.4) and (2.9) we obtain

√
n

(
θ̂ − {Bnθ + bn}

)
=
√

nM,

where

M =
1
n

n∑

i=1

z (xi)
m (xi)
k (xi)

ε (xi) .

We must show that
√

nM2 is AN
(
0, σ2

εCn

)
. For this we invoke the Cramér-Wold device (Serfling 1982,

p. 18) and define, for an arbitrary vector t,

Xi = tT z (xi)
m (xi)
k (xi)

ε (xi) ,

with mean 0, variance

σ2
i = σ2

ε

(
tT z (xi)

)2
(

m (xi)
k (xi)

)2

g (xi)

and (with τ3
i = τ3 (xi)) third absolute moment

E
[∣∣X3

i

∣∣] = σ3
ετ3

i

∣∣tT z (xi)
∣∣3

(
m (xi)
k (xi)

)3

g3/2 (xi) .

By Liapounov’s Central Limit Theorem (Serfling 1982, p. 30), as long as

√
n

∑n
i=1 E

[∣∣X3
i

∣∣]

(
∑n

i=1 σ2
i )3/2

=
1
n

∑n
i=1 τ3

i

∣∣tT z (xi)
∣∣3

(
m(xi)
k(xi)

)3

g3/2 (xi)
(

1
n

∑n
i=1 (tT z (xi))

2
(

m(xi)
k(xi)

)2

g (xi)
)3/2

= o(
√

n) (A.1)

we have that
1
n

n∑

i=1

Xi ∼ AN

(
0,

1
n2

n∑

i=1

σ2
i

)
.

Equivalently,
tT M2√
tT Cn

n t

d→ N (0, 1) ,

as required. To assess (A.1), we apply elementary upper and lower bounds on the numerator and
denominator, yielding

sup
‖t‖=1

1
n

∑n
i=1 τ3

i

∣∣tT z (xi)
∣∣3

(
m(xi)
k(xi)

)3

g3/2 (xi)
(

1
n

∑n
i=1 (tT z (xi))

2
(

m(xi)
k(xi)

)2

g (xi)
)3/2

≤
1
n

∑n
i=1 τ3

i ‖z (xi)‖3
(

m(xi)
k(xi)

)3

g3/2 (xi)

(chminCn)3/2
< ∞

by assumptions (i), (ii) and our previous assumptions that z, g and m/k be uniformly continuous, hence
bounded on the bounded set S; (A.1) follows. ¤

Proof of Proposition 1: For densities k0 (x) and k1 (x) and t ∈ [0, 1] define the convex combination
kt (x) = (1− t) k0 (x) + tk1 (x). In order that k0 (·) minimize the function Ψ1 (k; m) subject to the
constraint that it integrate to 1 it is sufficient that the function

φ (t;λ) = Ψ1 (kt;m) + λ2

∫

S
kt (x) dx
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be minimal at the point t = 0 for any k1 (·), and that the density k0 (·) satisfy the constraint. For this,
since φ (t; λ) is a convex function of t, the first order condition is necessary and sufficient, which means
that the inequality

φ′ (0; λ) =
∫

S
[k1 (x)− k0 (x)]

[
λ2 − ‖z (x)‖2 m2 (x)

k2
0 (x)

g∗ (x)
]

dx ≥ 0

holds for all k1 (·) . This condition is satisfied if

k0 (x) =
‖z (x)‖m (x)

√
g∗ (x)

λ
,

and it remains only to determine λ to satisfy the constraint. ¤

Proof of Theorem 2: We will show that the pair (α∗,m∗) in the statement of the theorem furnishes
a saddlepoint solution to (4.3); viz. its members satisfy

max
‖α‖=1

L (m∗;α) = L (m∗;α∗) = min
m
L (m; α∗) . (A.2)

Note that the first equality in (A.2) is equivalent to (4.5d). To handle the second equality we introduce
the convex combination

mt = (1− t)m∗ + tm1

of the minimizing m∗ and an arbitrary competing density m1. We are to determine a non-negative
function m∗ (·) for which the normalizing condition

∫
S m∗ (x) dx = 1 is satisfied and such that L (mt; α∗)

is minimized at t = 0 for all m1. It follows from (4.1) and Lemma 4.4 of Huber (1981) that the objective
function is a convex function of the parameter t. Thus, with

Ψ (t)
def
= L (mt; α∗)− 2λ

∫

S
mt (x) dx,

the first order condition “Ψ′ (0) ≥ 0 for all densities m1” is necessary and sufficient for the density m∗ to
be the optimum. A straightforward calculation shows that

Ψ′ (0) = 2
∫

S
(m1 −m∗) (x) · {p (x)m∗ (x)− q (x)} dx,

where the functions p and q are defined by

p (x) =
s
(
αT
∗ z (x)

)2

µ (x)
≥ 0,

q (x) = λ + zT (x)
[
sBm∗α∗α

T
∗ − (1− s− t) (Bm∗ − Ip)

]
z (x)− t ‖z (x)‖

∫

S
‖z (y)‖m∗ (y) dy.

In other words: the condition Ψ′ (0) ≥ 0 is satisfied for all m1 if and only if

m∗ (x) =
q (x)+

p (x)
=

{
λ + zT (x)Γz (x)− β ‖z (x)‖}+

(αT∗ z (x))2
µ (x) ,

where the parameters Γ, β and λ are determined by (4.5a)-(4.5c). ¤

Proof of Lemma 1: Define mt (x) = (1− t)m0 (x)+ tm1 (x), where m0 (x) is as at (5.2) and m1 (x) =
m(1) (ρ)m

(2)
1 (φ|ρ), for an arbitrary conditional density m

(2)
1 (φ|ρ).

To establish (i), we show that β (t) = tr
[
(Bmt − Ip)

2
]

is minimized at t = 0, for any m
(2)
1 (φ|ρ).

Since β (t) is convex, a necessary and sufficient condition for this is “β′ (0) ≥ 0 for all m1 (·)”. We will
show that, in fact, β′ (0) ≡ 0. For this we calculate, using (5.3), that

β′ (0) = 2tr [(H− Ip) (Bm1 −H)] .
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Using (5.5) and (2.15), we obtain

tr ((H− Ip)Bm1) =
∫

S
zT (x) (H− Ip) z (x) m1 (x) dx

=
∫

S
tr [R (ρ) (H− Ip)R (ρ)] m1 (x) dx

= tr

[
(H− Ip)

∫

S
R2 (ρ) m(1) (ρ) dρ

]

= tr [(H− Ip)H] ,

so that β′ (0) = 0, as required.
To establish (ii) it is sufficient to show that, for any m1 (x) as above, if i∗ ∈ I∗ then

chmax

[
Km1 −B2

m1

] ≥ (
Km1 −B2

m1

)
i∗i∗ ≥ di∗ = chmax

[
Km0 −B2

m0

]
. (A.3)

Only the second inequality in (A.3) requires a proof - the first is true universally, and the equality is the
definition of i∗.

A direct calculation, using (4.1), gives

(
Km1 −B2

m1

)
i∗i∗ =

∫ 1

0

[∫ 2π

0

l2m1
(φ; ρ) µ(2) (φ) dφ

]
R2

i∗i∗ (ρ) µ(1) (ρ) dρ,

where

lm1 (φ; ρ) =
m(1) (ρ) m

(2)
1 (φ|ρ)

µ(1) (ρ)µ(2) (φ)
ai∗ (φ)− bT

m1,i∗R (ρ)a (φ)
Ri∗i∗ (ρ)

and bT
m1,i∗ =

∫
S zi∗ (x) zT (x) m1 (x) dx is the ith row of the matrix Bm1 . Note that

lm0 (φ; ρ) = ai∗ (φ)
(

m(1) (ρ)
µ(1) (ρ)

− hi∗i∗

)
, (A.4)

and define

γ (t) =
∫ 1

0

[∫ 2π

0

l2mt
(φ; ρ)µ(2) (φ) dφ

]
R2

i∗i∗ (ρ)µ(1) (ρ) dρ,

with mt as above. Using (A.4) and then (5.6) to evaluate γ (0), we see that the required inequality in
(A.3) is expressible as “γ (1) ≥ γ (0)”. By convexity (the integrand in γ (t) is the square of a linear
function of t) the condition “γ′ (0) ≥ 0 for every m

(2)
1 (φ|ρ)” is again necessary and sufficient for this.

Since

γ′ (0) = 2
∫ 1

0

[∫ 2π

0

lm0 (φ; ρ) (lm1 (φ; ρ)− lm0 (φ; ρ)) µ(2) (φ) dφ

]
R2

i∗i∗ (ρ) µ(1) (ρ) dρ,

we are equivalently to show that

Li∗ (m1)
def
=

∫ 1

0

[∫ 2π

0

lm0 (φ; ρ) lm1 (φ; ρ)µ(2) (φ) dφ

]
R2

i∗i∗ (ρ)µ(1) (ρ) dρ (A.5)

does not exceed Li∗ (m0) = di∗ . We will in fact show that Li∗ (m1) is constant, if i∗ ∈ I∗.
In terms of

Ai (ρ; m) =
∫ 2π

0

a2
i (φ)m(2) (φ|ρ) dφ

we calculate that (A.5) is

Li∗ (m1) = cov

[
m(1) (ρ)
µ(1) (ρ)

,
m(1) (ρ)
µ(1) (ρ)

Ai∗ (ρ; m1)
]

,



20 Holger Dette, Douglas P. Wiens

where the covariance is calculated with respect to the density R2
i∗i∗ (ρ) µ(1) (ρ).

To now we have not used the assumption that i∗ ∈ I∗. Under this condition a2
i∗ (φ) ≡ 1 and so

Ai∗ (ρ; m1) = 1 for all m1; thus Li∗ (m1) does not depend upon m1 and is constantly equal to var
[
m(1) (ρ) /µ(1) (ρ)

]
=

di∗ = Li∗ (m0). ¤

Proof of Theorem 3: Substituting (5.9b), (5.9c) and α = ei∗ into the expressions of Theorem 2, and
using (A.5), gives

wi∗ (ρ) =

{
λ + zT (x)Γz (x)− β ‖z (x)‖}+

(αT∗ z (x))2
=

{
λi∗ + zT (x)Γz (x)− βi∗

√
Θd (ρ)

}+

ri∗ (ρ)
. (A.6)

Equations (4.5b) and (4.5c) of Theorem 2 become (5.10b) and (5.10c) respectively, and (4.5a) yields

zT (x)Γz (x) = ri∗ (ρ) +
[
ei∗ri∗ (ρ)− 1− s− t

s
r (ρ)

]T (
h(i∗) − 1

)

with h(i∗) given by (5.10a). Substituting this last identity into (A.6) yields (5.9a). Thus mi∗ (x) satisfies
the conditions of Theorem 2 and so is the desired minimax density. ¤
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