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Abstract

Classical spectral analysis is based on the discrete Fourier transform of the auto-covariances.

In this paper we investigate the asymptotic properties of new frequency domain meth-

ods where the auto-covariances in the spectral density are replaced by alternative depen-

dence measures which can be estimated by U-statistics. An interesting example is given by

Kendall’s τ , for which the limiting variance exhibits a surprising behavior.
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1 Introduction

Over the years spectral analysis has developed into a fundamental important tool kit in the analysis

of data from a stationary time series {Xt}t∈Z. The spectral density, defined as the discrete Fourier
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transform of the auto-covariances, provides a convenient way to characterize the second order

properties of a stationary sequence. Estimation of the spectral density is usually performed by

smoothing the periodogram, that is the discrete Fourier transform of empirical auto-covariances

[see for example Chapters 4 and 10 of Brockwell and Davis (1987)].

It is well known that this approach is not able to capture non-linear features of time series dynamics

such as changes in skewness, kurtosis or dependence in the extremes. This motivated numerous

authors to describe serial dependence by considering spectral densities corresponding to a family

of transformations of the original time series [see Hong (1999, 2000), Li (2008, 2012), Hagemann

(2013), Dette et al. (2015), Birr et al. (2014), Davis et al. (2013), Kley et al. (2016)]. Roughly

speaking, these authors suggest to define a family of spectral densities, say {f(λ, x, y) | x, y},
where the auto-covariances (at lag k) are replaced by functionals of the lag k-distributions P(Xt ≤
x,Xt+k ≤ y). This approach is attractive as it allows a more complete description of the serial

dependence. The price for this flexibility is the calculation of a family of spectral densities, in

contrast to the classical approach, which uses only one spectral density calculated as the discrete

Fourier transform of the auto-covariances.

In the present paper we investigate a class of alternative spectral densities, which keeps the

simplicity of the classical spectral theory but eliminates some drawbacks arising from the use of

auto-covariances in its definition. More precisely, we consider general spectral densities of the

form

fξ(ω) =
1

2π

∑
k∈Z

ξke
−ikω (ω ∈ R),(1.1)

where for each k ∈ Z the quantity ξk denotes a dependence measure between the random variables

Xt and Xt+k (in the classical case ξk = rk =Cov(Xt, Xt+k)) and we implicitly assumed that∑
k∈Z |ξk| < ∞. Spectral densities of the form (1.1) have been considered by Ahdesmäki et al.

(2005), Zhou (2012) and Carcea and Serfling (2015), who replaced the lag k auto-covariance

by other measures of dependence such as Kendall’s τ , distance correlation, or L-moments. A

thorough theoretical analysis of this idea for dependence measures that can be represented as

linear functionals of the empirical copula at lag k was conducted in Kley et al. (2016). Their

analysis includes dependence measures such as Spearman’s rank autocorrelation [see Wald and

Wolfowitz (1943)], Blomqvist’s beta [see Blomqvist (1950)] and Gini’s rank association coefficient

[see Schechtman and Yitzhaki (1987)]. However, the theory depends crucially on the linearity

of the corresponding functional and cannot be generalized to other dependence measures. A

particularly interesting dependence measure that is not covered by the analysis of Kley et al.
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(2016) is Kendall’s tau which can be represented as by

τk = 4

∫
Ck(u)dCk(u)− 1(1.2)

where Ck denotes the copula corresponding to lag k. Note that Kendall’s tau is a non-linear

functional of the lag k copula. A classical approach to the estimation of Kendall’s tau is based on

the representation

τk = 2P[X1 < X2, Y1 < Y2] + 2P[X2 < X1, Y2 < Y1]− 1

where (X1, Y1), (X2, Y2) are independent copies with the same distribution as (X0, Xk). Motivated

by this example we are interested in the statistical properties of estimators of spectral densities

of the form (1.1) with a measure ξk of lag k dependence that can be represented as

ξk = IE
[
h
((

X
(1)
0

X
(1)
k

)
, . . . ,

(
X

(m)
0

X
(m)
k

))]
.(1.3)

where (X
(1)
0 , X

(1)
k )T , . . . , (X

(m)
0 , X

(m)
k )T are independent copies of (X0, Xk)

T and h is a symmetric

kernel of order m. The representation (1.3) motivates to estimate ξk by a U -statistic, say ξn,k,

and to form the corresponding U-lag-window estimate

f̂n,ξ(ω) =
1

2π

∑
|k|<n

wn(k)ξn,ke
−ikω,(1.4)

where {wn(k)}k=−(n−1),...,n−1 are given weights. In Section 2 we will introduce the necessary no-

tation and illustrate the general approach by several examples. The main results of the paper

can be found in Section 3, where we investigate the asymptotic properties of the new estimates.

In particular we prove consistency of the estimate (1.4) for a broad class of kernels h and estab-

lish its asymptotic normality for several important cases including Kendalls τ . Interestingly the

asymptotic variance of the U -lag-window estimate based on Kendall’s tau depends on the spectral

density (1.1) where the quantities ξk are the lag k Spearman’s rho correlations. The proofs are

very involved and will be deferred to Section 4, while more technical arguments can be found in

Section 5.
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2 Examples of U-lag-window spectral densities and their

estimators

Throughout this paper let {Xt}t∈Z be a real-valued process and denote by F and Fk the marginal

distribution function of Xt and the distribution function of the pair (Xt, Xt+k), respectively (k ∈
Z). Recall the definition of the spectral density fξ in (1.1), where the measure of dependence (at

lag k) has the representation (1.3) for a given kernel h of order m. Throughout this paper, we

will maintain the following assumption

(C0) The process {Xt}t∈Z is strictly stationary. The functions F and Fk are continuous (for all

k ∈ Z) and
∑

k∈Z |ξk| <∞.

Let X1, . . . , Xn be the finite stretch of this process representing the observed data and define for

any k ∈ {−(n− 1), . . . n− 1} the set Tk :=
{
t|t, t+ k ∈ {1, . . . , n}

}
. In the following example we

illustrate how different kernels yield different measures of dependence and as consequence different

spectral densities.

Example 2.1.

(i) If m = 2 and h
(
(x1, y2)T , (x2, y2)T

)
= 1

2
(x1 − x2)(y1 − y2), then the representation (1.3) gives

the auto-covariance at lag k, that is

rk = IE
[1

2
(X

(1)
0 −X

(2)
0 )(X

(1)
k −X

(2)
k )
]

= Cov(X0, Xk)

and we obtain the classical spectral density.

(ii) If m = 2, I(·) denotes the indicator function and the kernel is defined by

h
(
(x1, y2)T , (x2, y2)T

)
= 2I(x1 < x2, y1 < y2) + 2I(x2 < x1, y2 < y1)− 1,(2.1)

the representation (1.3) yields Kendall’s τ at lag k , that is

τk = P[(X
(1)
0 −X

(2)
0 )(X

(1)
k −X

(2)
k ) > 0]− P[(X

(1)
0 −X

(2)
0 )(X

(1)
k −X

(2)
k ) < 0]

= 2P[X
(1)
0 < X

(2)
0 , X

(1)
k < X

(2)
k ] + 2P[X

(2)
0 < X

(1)
0 , X

(2)
k < X

(1)
k ]− 1

The corresponding spectral density will be denoted by

fτ (ω) =
1

2π

∑
k∈Z

τke
−ikω.(2.2)
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As the distribution function F and Fk are assumed to be continuous, τk can also be represented

in the form (1.3) using the kernel

h
(
(x1, y1)T , (x2, y2)T

)
= 4
(
I(x1 < x2)− 1

2

)(
I(y1 < y2)− 1

2

)
(2.3)

(iii) If m = 3, Γ{i, j, k} denotes the set of all permutations of {i, j, k} and the kernel h is defined by

h
(
(x1, y1)T , (x2, y2)T , (x3, y3)T

)
=

1

6

∑
γ∈Γ{1,2,3}

[12I(xγ(1) < xγ(2), yγ(1) < yγ(3))− 3].(2.4)

we obtain the (lag k) population version of Spearman’s ρ, that is

ρk = 3(P[(X
(1)
0 −X

(2)
0 )(X

(1)
k −X

(3)
k ) > 0]− P[(X

(1)
0 −X

(2)
0 )(X

(1)
k −X

(3)
k ) < 0]),

The corresponding spectral density will be denoted by

fρ(ω) =
1

2π

∑
k∈Z

ρke
−ikω.(2.5)

Given continuity of F and Fk, ρk can also be represented in the form (1.3) using the following

kernel

h
(
(x1, y1)T , (x2, y2)T , (x3, y3)T

)
=

∑
γ∈Γ{1,2,3}

[
2
(
I(xγ(1) < xγ(2))−

1

2

)(
I(yγ(1) < yγ(3))−

1

2

)](2.6)

In the remaining part of the manuscript we estimate the dependence measures ξk (at lag k) by a

U -statistic of order m, that is

ξn,k = Un−|k|(h) =
1(

n−|k|
m

) ∑
t1,...,tm∈Tk
t1<···<tm

h
((

Xt1
Xt1+k

)
, . . . ,

(
Xtm
Xtm+k

))
.(2.7)

Estimates of corresponding spectral densities are defined as in (1.4). The asymptotic properties

of such spectral density estimates are investigated in the following section.

Before proceeding, we recall the Hoeffding decomposition for U-statistics. Recall that h is a

symmetric kernel of order m and let Y (1), . . . , Y (m) denote independent identically distributed
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copies of
(
X0
Xk

)
∼ Fk. We now recursively define kernels hc,k by

hc,k(y1, . . . ,yc) := IE[h(Y (1), . . . ,Y (m))|Y (1) = y1, . . . ,Y
(c) = yc](2.8)

−
c−1∑
j=1

∑
{ν1,...,νj}⊂{1,...,c}

ν1<···<νj

hj,k(yν1 , . . . ,yνj )− ξk

=

∫
R2

· · ·
∫
R2

h(u1, . . . ,um)
c∏
j=1

(dGyj (uj)− dFk(uj))
m∏

j=c+1

dFk(uj) ,

where Gyj denotes the distribution of the Dirac measure at yj . If

U
(c)
n−|k|(hc,k) =

1(
n−|k|
c

) ∑
t1,...,tc∈Tk
t1<···<tc

hc,k

((
Xt1
Xt1+k

)
, . . . ,

(
Xtc
Xtc+k

))

is the U-statistic based on the kernel hc,k we obtain for the statistic in (2.7) the decomposition

[see, for example Lee (1990)]

ξn,k − ξk =
m

n− |k|
∑
t∈Tk

h1,k

(
Xt
Xt+k

)
+

m∑
c=2

(
m

c

)
U

(c)
n−|k|(hc,k),(2.9)

which will be an important tool in the asymptotic analysis of the following sections.

3 Asymptotic theory for U-lag-window estimates

3.1 Consistency of U-lag-window estimates

Our first main result shows that for a general class of symmetric kernels the statistic f̂n,ξ consis-

tently estimates the spectral density fξ defined in (1.1) if the following assumptions are satisfied.

(C1) The lag window wn(·) can be written in the form wn(k) = w
(
k
rn

)
, where w(·) is a uniformly

continuous function, supported on the interval [−1, 1], satisfying ‖w‖∞ ≤ 1, w(0) = 1,

w(−x) = w(x) for all x ∈ R, and rn = n
1
2
−ν for some ν ∈ (0, 1

2
).

(C2) There exist constants δ,M0 > 0 such that for all t1, . . . , tm, k ∈ Z, 1 ≤ j ≤ 2m,

max
{∫

R
. . .

∫
R
|h|2+δdG,

∫
R
. . .

∫
R
|h|2+δdG

(1)
j dG

(2)
j

}
≤M0 <∞,
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where G, G
(1)
j and G

(2)
j denote the joint distributions of (Xt(1) , . . . , Xt(2m)

), (Xt(1) , . . . , Xt(j))

and (Xt(j+1)
, . . . , Xt(2m)

), respectively, and t(1) ≤ · · · ≤ t(2m) is the order statistic of {t1, t1 +

k, t2, t2 + k . . . , tm, tm + k}.

(C3) The process {Xt}t∈Z is β-mixing and for some δ′ < δ with β-mixing coefficients satisfying

β(n) = O(n−γ), where γ = 2+δ′

δ′
.

Theorem 3.1. If Assumptions (C0) – (C3) are satisfied, we have for any fixed ω ∈ R

f̂n,ξ(ω)
P→ fξ(ω), (n→∞).

3.2 Asymptotic distribution of U-lag-window estimates

In this section we establish asymptotic normality of the spectral density estimators. Throughout

this section we focus our attention on settings where ξ is Kendall’s τ or Spearman’s ρ. Recalling

the discussion in Example 2.1 it follows that τk und ρk can be estimated by the U -statistics

τn,k
a.s.
=

1(
n−|k|

2

) ∑
t1,t2∈Tk
t1<t2

4
(
I(Xt1 < Xt2)−

1

2

)(
I(Xt1+k < Xt2+k)−

1

2

)
,

and

ρn,k
a.s.
=

1(
n−|k|

2

) ∑
t1,t2,t3∈Tk
t1<t2<t3

∑
γ∈Γ{1,2,3}

2
(
I(Xtγ(1) < Xtγ(2))−

1

2

)(
I(Xtγ(1)+k < Xtγ(3)+k)−

1

2

)
,

respectively. Note that these U -statistics have bounded kernels, satisfy Assumption (C2) and can

be written as a product or sum of products of two centered functions of random variables. This

special structure is crucial for obtaining the asymptotic distribution results given below. It is not

clear if similar results hold without imposing this kind of structure on the kernel h.

Throughout this section we write ξk if assumptions or results are the same for both Kendall’s τ

and Spearman’s ρ. On the other hand we explicitly write τ or ρ if the results or arguments are

different. For example, from (2.9) we obtain for Kendall’s τ and Spearman’s ρ the decomposition

f̂n,ξ(ω) =
1

2π

∑
|k|≤brnc

w
( k
rn

){
ξk +

m

n− |k|
∑
t∈Tk

hξ1,k

(
Xt
Xt+k

)
+

m∑
c=2

(
m

c

)
U

(c)
n−|k|(hc,k)

}
e−ikω,

and therefore only ξk appears in the formula. We will demonstrate that under suitable assumptions

the term corresponding to the linear part converges to a normal distribution and that the term
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corresponding to the degenerate part is asymptotically negligible. In what follows we assume that

(C0) – (C3) hold and impose the following additional conditions.

(N1) The process {Xt}t∈Z is α-mixing with corresponding α-mixing coefficients satisfying α(n) =

O(n−ν), where ν > 7.

(N2) For the lag window generator w there exists a ’characteristic exponent’ d > 0 being the

largest integer such that

Cw(d) := lim
u→0

1− w(u)

|u|d

exists, is finite and non-zero. For this d we have
∑

k∈Z |k|d|ξk| <∞.

(N3) rn = o(nθ) where θ = min
{

2(δ−δ′)
δ′(2+δ)

, 1
}

and δ, δ′ are from conditions (C2),(C3).

Remark 3.2. The summability condition
∑

k∈Z |k|d|ξk| < ∞ in assumption (N2) implies the

existence of the ’generalized dth derivative’ of fξ(ω)

f
[d]
ξ (ω) :=

1

2π

∑
k∈Z

|k|dξke−ikω

and can thus be interpreted as a smoothness condition; note that for even d this coincides with

the usual d’th order derivative. The other part of assumption (N2) places mild restrictions on the

lag-window generator for which the rate of the scale parameter is limited by assumption (N3).

Note that (N3) is satisfied for scale parameters leading to optimal asymptotic mean squared error

rates (see Remark 3.5).

We begin by examining the asymptotic distribution of f̂n,ρ(ω).

Theorem 3.3. Assume that conditions (C0) – (C3) and (N1) – (N3) are satisfied and that ω ∈
(−π, π]. If fρ(ω) 6= 0, then√

n

rn

(
f̂n,ρ(ω)− fρ(ω)− bρ(ω)

)
D−→ N (0, σ2

ρ(ω)),(3.1)

where

σ2
ρ(ω) = (1 + I(ω ∈ {0, π}))f2

ρ(ω)

∫ 1

−1

w2(x)dx.
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and

bρ(ω) := IE[f̂n,ρ(ω)]− fρ(ω) = −Cw(d)r−dn f[d]
ρ (ω) + o(r−dn ) =: r−dn bρ,ω + o(r−dn )

If fρ(ω) = 0, we have √
n

rn

(
f̂n,ρ(ω)− IE[f̂n,ρ(ω)]

)
P−→ 0.

Interestingly, the limiting distribution has exactly the same form as the limiting distribution for

the usual spectral density where ξ corresponds to covariance. This is remarkable, since Spear-

man’s ρ is based on covariances of ranks. Asymptotic normality of f̂n,ρ(ω) was also obtained

in Kley et al. (2016) under a different set of assumptions on the serial dependence and using a

completely different set of proof techniques. Specifically, their results require dependence to decay

exponentially. The next result establishes asymptotic normality of f̂n,ξ(ω) with ξ corresponding to

Kendall’s τ . The asymptotic distribution of f̂n,τ (ω) cannot be obtained from the findings in Kley

et al. (2016) (under any assumptions) since Kendall’s τ is a non-linear functional of the copula.

Theorem 3.4. Assume that conditions (C0) – (C3) and (N1) – (N3) are satisfied and that ω ∈
(−π, π]. If fρ(ω) 6= 0, then√

n

rn

(
f̂n,τ (ω)− fτ (ω)− bτ (ω)

)
D−→ N (0, σ2

τ (ω)),(3.2)

where

σ2
τ (ω) =

4

9
(1 + I(ω ∈ {0, π}))f2

ρ(ω)

∫ 1

−1

w2(x)dx

and

bτ (ω) := IE[f̂n,τ (ω)]− fτ (ω) = −Cw(d)r−dn f[d]
τ (ω) + o(r−dn ) =: r−dn bτ,ω + o(r−dn ).

If fρ(ω) = 0, we have √
n

rn

(
f̂n,τ (ω)− IE[f̂n,τ (ω)]

)
P−→ 0.

It is remarkable that the asymptotic variance of estimator f̂n,τ (ω) depends on the spectral measure

fρ(ω) obtained from Spearman’s ρ (provided that fρ(ω) 6= 0). This is in sharp contrast to the

finding in Theorem 3.3 and spectral density estimation based on covariances. The results in
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Theorem 3.4 provide an asymptotic analysis of the estimator introduced in Ahdesmäki et al.

(2005). We conclude this section by commenting on the optimal choice of window length rn.

Remark 3.5. Both theorems allow to determine the scale parameter rn such that the asymptotic

mean squared error is minimized. To be precise, define σ2
ξ,ω := σ2

ξ (ω). Then the asymptotic mean

squared error takes the form

[r−2d
n b2

ξ,ω +
rn
n
σ2
ξ,ω](1 + o(1)).

Assuming that bξ,ω 6= 0, we obtain that this expression is minimized for

rn =
(2db2

ξ,ω

σ2
ξ,ω

n
) 1

2d+1
.

Note that for d = 2 the asymptotic MSE is of the order n−4/5. In that case the above scale

parameter rn is of order n1/5 and satisfies Assumptions (C1) and (N3) if the mixing coefficients

β(n) decay sufficiently quickly. More precisely, as for Kendall’s τ and Spearman’s ρ the kernels of

the U -statistic are bounded, we can choose δ in Assumption (C2) arbitrarily large. Assumption

(N3) is satisfied if 1/5 < θ = min
{

2(δ−δ′)
δ′(2+δ)

, 1
}

, which is equivalent to δ′ < 10δ/(12 + δ). Since δ is

arbitrarily large, we can choose any δ′ < 10 and (N3), (C3) will hold if β(n) = O(n−γ) for some

γ > 6/5.

4 Proofs

4.1 Proof of Theorem 3.1

We first illustrate the main steps in the proofs. These rely on several delicate bounds, which

will be shown below. Rearranging sums in (1.4) and using assumption (C1), the U-lag-window

estimate can be decomposed as follows

f̂n,ξ(ω)− fξ(ω) = sn,1 − sn,2 + sn,3

where

sn,1 =
1

2π

∑
|k|<n

(
w
( k
rn

)
− 1
)
ξke
−ikω,

sn,2 =
1

2π

∑
|k|≥n

ξke
−ikω,
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sn,3 =
1

2π

∑
|k|≤brnc

w
( k
rn

)
(ξn,k − ξk)e−ikω.

We will show in Section 4.1.1 that

(4.1) sn,1
a.s.→ 0 and sn,2

a.s.→ 0.

For a proof of sn,3
P→ 0 we use the Hoeffding decomposition (2.9), which gives

2πsn,3 =
∑
|k|<n

w
( k
rn

)
(ξn,k − ξk)e−ikω = dn,1 + dn,2.(4.2)

where

dn,1 =
∑
|k|≤brnc

w
( k
rn

) m

n− |k|
∑
t∈Tk

h1,k

(
Xt
Xt+k

)
e−ikω

dn,2 =
∑
|k|≤brnc

w
( k
rn

) m∑
c=2

(
m

c

)
U

(c)
n−|k|(hc,k)e

−ikω

The assertion of the theorem now follows from the estimates

dn,2 = OP(rnn
−1/2−θ/2) = oP(1),(4.3)

dn,1 = OP(rnn
−1/2) = oP(1),(4.4)

which are shown in Section 4.1.2 and 4.1.3, respectively.

4.1.1 Proof of (4.1)

Using the fact that w(0) = 1 and sup|k|<n
(∣∣w( k

rn

)∣∣ + 1
)
≤ 2 ∀n ∈ N, we obtain for any fixed

0 ≤ K < n

|sn,1| ≤
∑
|k|<n

∣∣∣w( k
rn

)
− 1
∣∣∣|ξk| ≤ ∑

|k|≤K

∣∣∣w( k
rn

)
− w(0)

∣∣∣ sup
|k|≤K

|ξk|+ 2
∑

n>|k|>K

|ξk|

≤ (2K + 1) sup
|k|≤K

∣∣∣w( k
rn

)
− w(0)

∣∣∣ sup
|k|≤K

|ξk|+ 2
∑

n>|k|>K

|ξk|
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As the lag window generator w(·) is continuous at 0 we obtain for any fixed K

lim
n→∞

[
(2K + 1) sup

|k|≤K

∣∣∣w( k
rn

)
− w(0)

∣∣∣ sup
|k|≤K

|ξk|+ 2
∑

n>|k|>K

|ξk|
]

= 0 + 2
∑
|k|>K

|ξk|.(4.5)

As inequality (4.5) holds for all K, we can conclude that sn,1
a.s.→ 0, as the ξk’s are absolutely

summable. By the same argument, we also have |sn,2| ≤ 1
2π

∑
|k|≥n |ξk| → 0 for n→∞.

4.1.2 Proof of (4.3)

The proof is based on an extension to lagged data of a covariance inequality by Yoshihara (1976).

More precisely, we prove in the technical Appendix, Section 5.3.3, that for fixed 2 ≤ c ≤ m

sup
|k|≤brnc

IE
[(
U

(c)
n−|k|(hc,k)

)2]
= O(n−1−θ).(4.6)

where θ = min
{

2(δ−δ′)
δ′(2+δ)

, 1
}

. Note that the above bound holds uniformly over a growing number of

lags k while the result in Yoshihara (1976) only holds for a fixed k. Observe that,

IE|dn,2| ≤(2rn + 1)
m∑
c=2

(
m

c

)
sup
|k|≤brnc

IE|U (c)
n−|k|(hc,k)| ≤ (2rn + 1)Cm sup

|k|≤brnc

(
IE[(U

(c)
n−|k|(hc,k))

2]
) 1

2

where the constant Cm does not depend on m. Consequently, equation (4.6) yields IE|dn,2| =

O(rnn
−1/2−θ/2), which establishes (4.3).

4.1.3 Proof of (4.4)

Introduce the notation X t,k := (Xt, Xt+k)
T . We only consider positive lags k, negative k can be

treated analogously. Similar arguments as in the proof of (4.3) yield

IE
∣∣∣ ∑

0≤k≤brnc

w
( k
rn

) m

n− |k|
∑
t∈Tk

h1,k(X t,k)e
−ikω

∣∣∣
≤ (rn + 1) sup

0≤k≤brnc

(
IE
[( m

n− k

n−k∑
t=1

h1,k(X t,k)
)2]) 1

2
.

Next,

IE
[( m

n− k

n−k∑
t=1

h1,k(X t,k)
)2]

12



=
m2

(n− k)2

n−k∑
t=1

IE
[(
h1,k(X t,k)

)2]
+

2m2

(n− k)2

n−k−1∑
l=1

n−k−l∑
u=1

IE
[
h1,k(Xu,k)h1,k(Xu+l,k)

]

As (IE|Z|p)
1
p ≤ (IE|Z|q)

1
q for p < q, we have∣∣IE[h1,k(X t,k)
]∣∣2 ≤ (

IE
∣∣h1,k(X t,k)

∣∣2) 1
2
(
IE
∣∣h1,k(X t,k)

∣∣2) 1
2

≤
(
IE
∣∣h1,k(X t,k)

∣∣2+δ) 1
2+δ
(
IE
∣∣∣h1,k(X t,k)

∣∣2+δ) 1
2+δ ≤M

2
2+δ

1 ,

which gives

(4.7) sup
0≤k≤brnc

m2

(n− k)2

n−k∑
t=1

IE
[
h1,k(X t,k)

]2 ≤ sup
0≤k≤brnc

m2

n− k
M

2
2+δ

1 = O(n−1).

The following bound will be established in Lemma 5.5 in the Appendix (see Section 5.2.3)

IE
∣∣∣h1,k(Xu,k)h1,k(Xu+l,k)

∣∣∣ ≤
2M

2
2+δ

1 β
δ

2+δ (l − k), if l > k ≥ 0,

8M
2

2+δ

1 β
δ

2+δ (min{l, k − l}), if 0 ≤ l ≤ k.

Thus

∣∣∣ 2m2

(n− k)2

n−k−1∑
l=1

n−k−l∑
u=1

IE
[
h1,k(Xu,k)h1,k(Xu+l,k)

]∣∣∣
≤ 2m2

(n− k)2

k∑
l=1

n−k−l∑
u=1

IE
∣∣h1,k(Xu,k)h1,k(Xu+l,k)

∣∣
+

2m2

(n− k)2

n−k−1∑
l=k+1

n−k−l∑
u=1

IE
∣∣h1,k(Xu,k)h1,k(Xu+l,k)

∣∣
≤ 16m2

(n− k)2
M

2
2+δ

1

k∑
l=1

n−k−l∑
u=1

β
δ

2+δ (min{l, k − l}) +
4m2

(n− k)2
M

2
2+δ

1

n−k−1∑
l=k+1

n−k−l∑
u=1

β
δ

2+δ (l − k)

≤ 16m2

(n− k)2
M

2
2+δ

1 (n− k)2

b k
2
c∑

v=0

β
δ

2+δ (v) +
4m2

(n− k)2
M

2
2+δ

1 (n− k)
n−2k−1∑
v=1

β
δ

2+δ (v).

By assumption (C3)
∑∞

j=1 β
δ

2+δ (j) <∞. Therefore, we have

(4.8) sup
0≤k≤brnc

2m2

(n− k)2

n−k−1∑
l=1

n−k−l∑
u=1

IE
[
h1,k(Xu,k)h1,k(Xu+l,k)

]
= O(n−1).
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Equations (4.7) and (4.8) yield IE|dn,1| = O(rnn
− 1

2 ) and the assertion follows observing that

rn = n
1
2
−ν . 2

4.2 Proof of Theorem 3.4 and 3.3 - main arguments

In the following proof we write ξ if the results hold for general dependence measures that fulfill

the assumptions (C0) – (C3) and (N1) – (N3). Otherwise we explicitly write τ or ρ.

Under Assumption (N3) and with (4.3),√
n

rn

( 1

2π

∑
|k|≤brnc

w
( k
rn

) m∑
c=2

(
m

c

)
U

(c)
n−|k|(h

ξ
c,k)e

−ikω
)

P−→ 0 (n→∞).

Furthermore, in Section 5.3.4 we will prove that

f̂n,ξ(ω) = f̃n,ξ(ω) + oP

(√rn
n

)
,(4.9)

where f̃n,ξ(ω) = 1
2π

∑
|k|≤rn w

(
k
rn

){
ξk + m

n

∑n
t=1 h

ξ
1,k(X t,k)

}
e−ikω. Then,

f̃n,ξ(ω)− IE[f̃n,ξ(ω)] =
1

2π

∑
|k|≤rn

w
( k
rn

)m
n

n∑
t=1

hξ1,k(X t,k)e
−ikω =:

n∑
t=1

W ξ
n,t(ω),

where, by construction, the random variables (W ξ
n,t)t=1,...,n form a triangular array of β-mixing

random variables with mixing coefficients βW (u) ≤ βX(0 ∨ (u − 2rn)). To prove the asymptotic

normality, we will apply the blocking technique described in Section 5.1. That is, we choose µn

blocks of length pn and µn blocks of length qn such that

qn/pn → 0, rn/qn → 0, pn/n→ 0, µnβ(qn)→ 0.

According to Assumptions (C1), (C3) and (N3) one possible choice is rn = O(n1/2−ν), 0 < ν <

min{θ, 1
2
}, qn = O(n1/2), pn = O(n1/2+ν). Then we decompose

n∑
t=1

W ξ
n,t(ω) =

µn∑
j=1

∑
t∈Γj

W ξ
n,t(ω) +

µn∑
j=1

∑
t∈∆j

W ξ
n,t(ω) +

∑
t∈R

W ξ
n,t(ω).(4.10)

Next, we show that the remaining part and the part corresponding to the “small” blocks are

negligible whereas the “big” blocks satisfy the Lyapunov condition and yield the asymptotic

14



variance. Observe that

hτ1,k(X t,k)
D
= hτ1,−k(X t,−k) and hρ1,−k(X t,k)

D
= hρ1,−k(X t,−k)(4.11)

for all k, t ∈ Z, and hence,
∑n

t=1W
ξ
n,t(ω) is real and symmetric in ω. To prove (4.11) observe

that by stationarity of {Xt}t∈Z we have that (X0,k)
D
= (X0,−k) and (X

(1)
0,k)

D
= (X

(1)
0,−k) and hence,

τk = τ−k, ρk = ρ−k. Consequently, we obtain in the case of Kendall’s τ and Spearmans’s ρ

h1,k((x, y)T ) = h1,−k((y, x)T ), which yields

h1,k(X t,k)
D
= h1,k(X t−k,k)

D
= h1,−k(X t,−k)

Moreover, we will show in section 4.3 that for any an → ∞ with an/n = o(1), rn/an = o(1) and

ω ∈ (−π, π],

∣∣∣IE[ an∑
t1=1

W τ
n,t1

(ω)
an∑
t2=1

W τ
n,t2

(ω)
]
− anrn

n2
σ2
τ (ω)

∣∣∣ = o
(anrn
n2

)
,(4.12)

∣∣∣IE[ an∑
t1=1

W ρ
n,t1(ω)

an∑
t2=1

W ρ
n,t2(ω)

]
− anrn

n2
σ2
ρ(ω)

∣∣∣ = o
(anrn
n2

)
.(4.13)

Next, the last summand in (4.10) contains at most O(pn + qn) summands. Hence, by (4.12) and

(4.13) we have,

Var
(∑
t∈R

W ξ
n,t(ω)

)
= O

((pn + qn)rn
n2

)
= o
(rn
n

)
,

that is
∑

t∈RW
ξ
n,t(ω) = oP

(√
rn
n

)
. Next, we show that the sum over the small blocks is negligible.

By Lemma 5.1 with the function g̃(·) = I(· ≥ ε) we obtain

∣∣∣P(√ n

rn

µn∑
j=1

∑
t∈∆j

W ξ
n,t(ω) ≥ ε

)
− P

(√ n

rn

µn∑
j=1

∑
t∈∆j

ζξn,t(ω) ≥ ε
)∣∣∣ ≤ (µn − 1)βW (pn),

where ζξn,t(ω) denote the random variables of the independent block sequence corresponding to the

∆-blocks. By the assumptions on pn and βX the term on the right hand side in the above expression

converges to 0. Observing that the variables ζξn,t(ω) are centered and (4.12) or respectively (4.13)
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applied to the independent blocks
∑

t∈∆j
ζξn,t(ω) yields

Var
(√ n

rn

µn∑
j=1

∑
t∈∆j

ζξn,t(ω)
)

=
n

rn

µn∑
j=1

Var
(∑
t∈∆j

W ξ
n,t(ω)

)
= O

(µnqn
n

)
= o(1),

where we have used the definition of ζξn,t and the assumption that qn/pn = o(1). Hence, it remains

to prove that
√

n
rn

∑µn
j=1

∑
t∈Γj

W ξ
n,t(ω) converges weakly. Note that for any measurable set A, by

Lemma 5.1 with function g(·) = I(· ∈ A) and the assumptions on qn and βX , we have

∣∣∣P(√ n

rn

µn∑
j=1

∑
t∈Γj

W ξ
n,t(ω) ∈ A

)
− P

(√ n

rn

µn∑
j=1

∑
t∈Γj

ζξn,t(ω) ∈ A
)∣∣∣ = o(1)

In order to prove the convergence in distribution of
√

n
rn

∑µn
j=1

∑
t∈Γj

W ξ
n,t(ω), it suffices to show

that the triangular array of independent random variables(√ n

rn

∑
t∈Γj

ζξn,t(ω)
)
j=1,...µn

satisfies the Lyapunov condition. To achieve this, we show that together with (4.12) or (4.13),

respectively,

µn∑
j=1

IE
[(∑

t∈Γj

ζξn,t(ω)
)4]

= O
(µnp2

nr
2
n

n4

)
.(4.14)

and if fρ(ω) 6= 0,

( µn∑
j=1

Var
(∑
t∈Γj

ζξn,t(ω)
))2

≥ c
µ2
np

2
nr

2
n

n4
(4.15)

for some constant c > 0 and n sufficiently large. Hence, the Lyapunov condition is satisfied as

µn → ∞ and we can conclude that the distribution of
√

n
rn

∑µn
j=1

∑
t∈Γj

ζξn,t(ω), where ξ is either

Kendall’s τ or Spearman’s ρ, converges weakly to a normal distribution, i.e.√
n

rn

(
f̃n,ξ − IE[f̃n,ξ]

)
D→ N (0, σ2

ξ (ω)).
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If fρ(ω) = 0, it follows from equations (4.12) and (4.13) that

Var
(√ n

rn

(
f̃n,ξ − IE[f̃n,ξ]

))
= o(1)

and hence, by (4.9), √
n

rn

(
f̂n,ξ − IE[f̂n,ξ]

)
P→ 0.

Finally, we have, for ξ representing either τ or ρ,

IE[f̃n,ξ(ω)] =
1

2π

∑
|k|≤rn

(
w
( k
rn

)
− 1
)
ξke
−ikω +

1

2π

∑
|k|≤rn

ξke
−ikω

= fξ(ω)− 1

2π

∑
|k|>rn

ξke
−ikω +

1

2π

∑
|k|≤rn

(
w
( k
rn

)
− 1
)
ξke
−ikω.

Hence, the bias is given by

bξ(ω) = IE[f̃n,ξ(ω)]− fξ(ω) =
1

2π

∑
|k|≤rn

(
w
( k
rn

)
− 1
)
ξke
−ikω − 1

2π

∑
|k|>rn

ξke
−ikω.

Next, choose some Ln →∞ such that Ln/rn → 0. Then,

1

2π

∑
|k|≤rn

(
w
( k
rn

)
− 1
)
ξke
−ikω − 1

2π

∑
|k|>rn

w
( k
rn

)
ξke
−ikω

= r−dn
1

2π

∑
|k|≤Ln

w(k/rn)− 1

|k/rn|d
|k|dξke−ikω + r−dn

1

2π

∑
rn≥|k|>Ln

w(k/rn)− 1

|k/rn|d
|k|dξke−ikω

− r−dn
1

2π

∑
|k|>rn

rdn
|k|d
|k|dξke−ikω =: (I) + (II) + (III).(4.16)

By Assumption (N2),
∑

k∈Z |k|q|ξk| <∞ for q ≤ d and therefore,

|(III)| ≤ O(r−dn )
∑
|k|>rn

|k|d|ξk| = o(r−dn ).

For the second term in (4.16) as by Assumption (N2),
∑

k∈Z |k|q|ξk| is finite for q ≤ d we obtain

|(II)| ≤ O(1)r−dn sup
v∈[0,1]

w(v)− 1

|v|d
∑

rn≥|k|>Ln

|k|d|ξk| = o(r−dn ),
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where supv∈[0,1]
w(v)−1
|v|d is bounded since w is bounded and the limit for |v| → 0 exists by Assumption

(N2). Finally,

(I) + r−dn Cw(d)f
[d]
ξ (ω) = r−dn

1

2π

∑
|k|≤Ln

(w(k/rn)− 1

|k/rn|d
+ Cw(d)

)
|k|dξke−ikω

+ r−dn Cw(d)
1

2π

∑
|k|>Ln

|k|de−ikωξk,

where the first summand is of order o(r−dn ) since Ln
rn
→ 0 and |k|dξk is absolutely summable. The

second summand is of order o(r−dn ) as
∑

k∈Z |k|q|ξk| is finite. Hence,

bξ(ω) = −r−dn Cw(d)f
[d]
ξ (ω) + o(r−dn ).

Conclude applying Slutsky’s theorem. It remains to prove (4.12), (4.13), (4.14) and (4.15). De-

tailed proofs of these results are given in the remaining part of this section. 2
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4.3 Proof of (4.12) – (4.15)

The proofs of Theorem (4.12) – (4.15) rely on two auxiliary results. These will be stated in

this section whereas their detailed proof is deferred to the Appendix. The first Lemma bounds

cumulants through α-mixing coefficients, see Section 5.3.1 for a proof.

Lemma 4.1. For q ∈ N, let (X
(1)
t )t∈Z, . . . , (X

(q)
t )t∈Z be independent copies of a strictly station-

ary polynomially α-mixing process (Xt)t∈Z that are independent. For any t ∈ Z, let Vt :=

(Xt, X
(1)
t , . . . , X

(q)
t ). Then, for p ∈ N, t1, . . . , tp and measurable sets A1, . . . , Ap ⊂ Rq+1, there

exists a constant Cp,q such that

|cum(I(Vt1 ∈ A1), . . . , I(Vtp ∈ Ap)| ≤ Cp,qα
X( max

i,j=1,...,p
|tj − ti|).

The Lemma that follows is a key observation which makes it possible to use theory from classical

spectral density estimation in the case where the kernel h can be written as a sum of a product of

centered functions of random variables. This is a crucial insight for proving asymptotic normality

of the estimators f̂n,ξ.

Lemma 4.2. Let h denote a U-statistic of order m and assume that (X
(1,j)
t )t∈Z, . . . , (X

(m−1,j)
t )t∈Z,

j = 1, . . . , q are independent copies of a strictly stationary process (Xt)t∈Z that are mutually

independent. Then, for tj, kj ∈ Z, j = 1, . . . , q,

IE

[ q∏
j=1

h1,kj

(
Xtj
Xtj+kj

)]
= IE

[ q∏
j=1

(
h
(( Xtj

Xtj+kj

)
,

(
X

(1,j)
tj

X
(1,j)
tj+kj

)
, . . . ,

(
X

(m−1,j)
tj

X
(m−1,j)
tj+kj

))
− ξkj

)]
,

(4.17)

where

h1,kj

(
Xtj
Xtj+kj

)
= IE

[
h
(( Xtj

Xtj+kj

)
,

(
X

(1,j)
tj

X
(1,j)
tj+kj

)
, . . . ,

(
X

(m−1,j)
tj

X
(m−1,j)
tj+kj

))∣∣∣∣( Xtj

Xtj+kj

)]
− ξkj ,

ξkj = IE

[
h
(( Xtj

Xtj+kj

)
,

(
X

(1,j)
tj

X
(1,j)
tj+kj

)
, . . . ,

(
X

(m−1,j)
tj

X
(m−1,j)
tj+kj

))]
.

In particular, if (X
(j)
t )t∈Z, j = 1, . . . , 5 are independent copies of the strictly stationary process

{Xt}t∈Z that are independent of each other,
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(i) for Kendall’s τ

Cov

(
hτ1,k1

(
Xt1
Xt1+k1

)
, hτ1,k2

(
Xt2
Xt2+k2

))
= 16

[
IE[Y

(1)
t1 Y

(1)
t1+k1

Y
(2)
t2 Y

(2)
t2+k2

]− IE[Y
(1)
t1 , Y

(1)
t1+k1

]IE[Y
(2)
t2 , Y

(2)
t2+k2

]

]
= 16

[
cum(Y

(1)
t1 , Y

(1)
t1+k1

, Y
(2)
t2 , Y

(2)
t2+k2

) +
1

144
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1))

+
1

144
ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1))

]
,

where (Y
(j)
t )t∈Z :=

(
I(Xt < X

(j)
t )− 1

2

)
t∈Z

, j = 1, 2.

(ii) for Spearman’s ρ

Cov

(
hρ1,k1

(
Xt1
Xt1+k1

)
, hρ1,k2

(
Xt2
Xt2+k2

))
= 4

∑
γ∈Γ{1,2,3}

∑
γ̃∈Γ{1,4,5}

IE

[(
I(X

(γ(1))
t1 < X

(γ(2))
t1 )− 1

2

)(
I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

)− 1

2

)
(
I(X

(γ̃(1))
t2 < X

(γ̃(2))
t2 )− 1

2

)(
I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)− 1

2

)]
=

∑
γ∈Γ{1,2,3}

∑
γ̃∈Γ{1,4,5}

4 cum

(
I(X

(γ(1))
t1 < X

(γ(2))
t1 ), I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

),

I(X
(γ̃(1))
t2 < X

(γ̃(2))
t2 ), I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)

)
+

1

9
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1)) +

1

9
ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1)),(4.18)

where Γ{i, j, k} denotes the set of all permutations of {i, j, k}.

Lemma 4.2 is proved in Section 5.3.2.

4.3.1 Proof of (4.12)

Let (X
(1)
t )t∈Z and (X

(2)
t )t∈Z be independent copies of the strictly stationary β-mixing process

{Xt}t∈Z that are independent of each other. Define processes (Y
(1)
t )t∈Z and (Y

(2)
t )t∈Z by

(Y
(1)
t )t∈Z =

(
I(Xt < X

(1)
t )− 1

2

)
t∈Z

and (Y
(2)
t )t∈Z =

(
I(Xt < X

(2)
t )− 1

2

)
t∈Z
.
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Note that the processes (Y
(1)
t )t∈Z and (Y

(2)
t )t∈Z are strictly stationary.

By Lemma 4.2 (i) we have for Kendall’s τ ,

IE
[ an∑
t1=1

W τ
n,t1

(ω)
an∑
t2=1

W τ
n,t2

(ω)
]

=
1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 4

n2

an∑
t1=1

an∑
t2=1

IE
[
hτ1,k1(X t1,k1)h

τ
1,k2

(X t2,k2)
]

=
1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 4

n2

an∑
t1=1

an∑
t2=1

16
[
cum(Y

(1)
t1 , Y

(1)
t1+k1

, Y
(2)
t2 , Y

(2)
t2+k2

)

+
1

144
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1)) +

1

144
ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1))

]
.

Next, let Tk,an := {t|t, t+ k ∈ {1, . . . , an}} and define for j = 1, 2,

Hτ
j (ω) :=

1

2π

2

an

∑
|k|≤rn

w
( k
rn

)
e−ikω

∑
t∈Tk,an

4(Y
(j)
t Y

(j)
t+k − IE[Y

(j)
t Y

(j)
t+k]).

Then, similar arguments as in the proof of Lemma 4.2 yield

IE[Hτ
1 (ω)Hτ

2 (ω)] =
1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 4

n2

∑
t1∈Tk1,an

∑
t2∈Tk2,an

16
[
cum(Y

(1)
t1 , Y

(1)
t1+k1

, Y
(2)
t2 , Y

(2)
t2+k2

) +
1

144
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1))

+
1

144
ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1))

]
(4.19)

and consequently,

∣∣∣IE[ an∑
t1=1

W τ
n,t1

(ω)
an∑
t2=1

W τ
n,t2

(ω)
]
− a2

n

n2
IE[Hτ

1 (ω)Hτ
2 (ω)]

∣∣∣ ≤ |D1,n|+ |D2,n|,

where

D1,n :=
1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 64

n2

( an∑
t1=1

an∑
t2=1

−
∑

t1∈Tk1,an

∑
t2∈Tk2,an

)
cum(Y

(1)
t1 , Y

(1)
t1+k1

, Y
(2)
t2 , Y

(2)
t2+k2

),
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D2,n :=
1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 64

n2

( an∑
t1=1

an∑
t2=1

−
∑

t1∈Tk1,an

∑
t2∈Tk2,an

)
1

144

{
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1)) + ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1))

}
.

We will now derive upper bounds for |D1,n| and |D2,n| separately. First, as |w(·)| ≤ 1, |ei·| = 1

and Tk,an ⊂ {1, . . . , an}, we have

|D1,n| ≤ 2
1

4π2

64

n2

∑
|k1|≤rn

∑
|k2|≤rn

an∑
t1=1

an∑
t2=1

|cum(Y
(1)
t1 , Y

(1)
t1+k1

, Y
(2)
t2 , Y

(2)
t2+k2

)|

≤ 32

π2n2

∑
|u3|≤an+rn

∑
|u2|≤an

∑
|u1|≤rn

an∑
t1=1

|cum(Y
(1)
t1 , Y

(1)
t1+u1 , Y

(2)
t1+u2 , Y

(2)
t1+u3)|

=
32an
π2n2

∑
|u3|≤an+rn

∑
|u2|≤an

∑
|u1|≤rn

|cum(Y
(1)

0 , Y (1)
u1
, Y (2)

u2
, Y (2)

u3
)|,

where the latter inequality follows by the strict joint stationarity of the involved processes. Next,

observe that, from Theorem 2.3.1 in Brillinger (1975), it follows that

cum(Y
(1)
t1 , Y

(1)
t2 , Y

(2)
t3 , Y

(2)
t4 ) = cum(I(Xt1 < X

(1)
t1 ), I(Xt2 < X

(1)
t2 ), I(Xt3 < X

(2)
t3 ), I(Xt4 < X

(2)
t4 ))

= cum(I(Vt1 ∈ A1), I(Vt2 ∈ A2), I(Vt3 ∈ A3), I(Vt4 ∈ A4)),

where Vtj := (Xtj , X
(1)
tj , X

(2)
tj ), A1 = {x ∈ R3 : x1 < x2} = A2 and A3 = {x ∈ R3 : x1 < x3} = A4.

Furthermore, let u0 := 0 and consider the set

Sm :=
{

(u1, . . . , up) ∈ Zp| max
i,j=0,...,p

|ui − uj| = m
}

whose cardinality is ≤ cp(m+ 1)p−1. Hence, applying Lemma 4.1 with q = 2 yields∑
|u3|≤an+rn

∑
|u2|≤an

∑
|u1|≤rn

|cum(Y
(1)

0 , Y (1)
u1
, Y (2)

u2
, Y (2)

u3
)|

≤ C4,2

∑
|u3|≤an+rn

∑
|u2|≤an

∑
|u1|≤rn

α( max
i,j=0,1,2,3

|ui − uj|)

≤ C4,2

∞∑
m=0

∑
(u1,u2,u3)∈Sm

α(m) ≤ C4,2c3(1 +
∞∑
m=1

m2α(m)) = O(1),
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where we used Assumption (N1) for the last estimate and α := αX are the mixing coefficients of

the process {Xt}t∈Z. Therefore,

D1,n = O
(an
n2

)
= o
( rn
an

)
.(4.20)

Next,

D2,n =
1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 64

n2

( an∑
t1=1

−
∑

t1∈Tk1,an

) an∑
t2=1

1

144

{
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1)) + ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1))

}
+

1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 64

n2

( an∑
t2=1

−
∑

t2∈Tk2,an

) ∑
t1∈Tk1,an

1

144

{
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1)) + ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1))

}
= D

(1)
2,n +D

(2)
2,n

and observing that (
∑an

t1=1−
∑

t1∈Tk1,an
) contains O(rn) summands, we obtain by assumption (N2),

|D(1)
2,n| ≤

1

(2π)2

1

144

64

n2

∑
|k1|≤rn

( an∑
t1=1

−
∑

t1∈Tk1,an

)[ an∑
t2=1

|ρ(t2 − t1)|
∑
|k2|≤rn

|ρ(t2 + k2 − (t1 + k1))|

+
an∑
t2=1

|ρ(t2 − (t1 + k1))|
∑
|k2|≤rn

|ρ(t2 + k2 − t1)|
]

≤ 2
1

(2π)2

1

144

64

n2
r2
n

∑
t2∈Z

|ρ(t2)|
∑
|k2|≤rn

|ρ(k2) = O
( r2

n

n2

)
.

Analogously, D
(2)
2,n = O

(
r2n
n2

)
and hence,

D2,n = O
( r2

n

n2

)
= o
( rn
an

)
.(4.21)

Then, equations (4.20) and (4.21) together yield

∣∣∣IE[ an∑
t1=1

W τ
n,t1

(ω)
an∑
t2=1

W τ
n,t2

(ω)
]
− a2

n

n2
IE[Hτ

1 (ω)Hτ
2 (ω)]

∣∣∣ = o
( rn
an

)
.(4.22)

Next, observe that hτj (ω), j = 1, 2, is eight times the classical centered lag-window estimator of
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the spectral density of the stationary process (Y
(j)
t )t∈Z based on the observations Y

(j)
1 , . . . , Y

(j)
an .

Consequently, if we show that

16

π2a2
n

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω

∑
t1∈Tk1,an

∑
t2∈Tk2,an

|cum(Y
(1)
t1 , Y

(1)
t1+k1

, Y
(2)
t2 , Y

(2)
t2+k2

)| = o
( rn
an

)(4.23)

the same arguments as given in the proof of Theorem 9.3.4 in Anderson (1971) yield

IE[Hτ
1 (ω)Hτ

2 (ω)] =
4

9

rn
an

f2
ρ(ω)

∫ 1

−1

w2(u)du(1 + I(ω ∈
{

0,±π
}

)) + o
( rn
an

)
.(4.24)

Finally, (4.23) can be proved using similar arguments and equation (4.24) together with equation

(4.22) conclude the proof of (4.12).

4.3.2 Proof of (4.13)

Let (X
(j)
t )t∈Z, j = 1, . . . , 5 be independent copies of the strictly stationary process {Xt}t∈Z that

are independent of each other. Then, by Lemma 4.2 (ii) for Spearman’s ρ,

IE
[ an∑
t1=1

W ρ
n,t1(ω)

an∑
t2=1

W ρ
n,t2(ω)

]
=

1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 9

n2

an∑
t1=1

an∑
t2=1

IE
[
hρ1,k1(X t1,k1)h

ρ
1,k2

(X t2,k2)
]

=
1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 9

n2

an∑
t1=1

an∑
t2=1

[{
4

∑
γ∈Γ{1,2,3}

∑
γ̃∈Γ{1,4,5}

cum
(
I(X

(γ(1))
t1 < X

(γ(2))
t1 ), I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

), I(X
(γ̃(1))
t2 < X

(γ̃(2))
t2 ), I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)
)}

+
1

9
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1)) +

1

9
ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1))

]
,(4.25)

where Γ{i, j, k} denotes the set of all permutations of {i, j, k}.

Next, let Tk,an := {t|t, t+ k ∈ {1, . . . , an}} and define

Hρ
1 (ω) :=

1

2π

3

an

∑
|k|≤rn

w
( k
rn

)
e−ikω

∑
t∈Tk,an

[ ∑
γ∈Γ{1,2,3}
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2
(
I(X

(γ(1))
t < X

(γ(2))
t )− 1

2

)(
I(X

(γ(1))
t+k < X

(γ(3))
t+k )− 1

2

)
− ρ(k)

]
and

Hρ
2 (ω) :=

1

2π

3

an

∑
|k|≤rn

w
( k
rn

)
e−ikω

∑
t∈Tk,an

[ ∑
γ̃∈Γ

{
1,4,5

}
2
(
I(X

(γ̃(1))
t < X

(γ̃(2))
t )− 1

2

)(
I(X

(γ̃(1))
t+k < X

(γ̃(3))
t+k )− 1

2

)
− ρ(k)

]
.

Then, similarly as in the proof of Lemma 4.2,

IE[Hρ
1 (ω)Hρ

2 (ω)]

=
1

(2π)2

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω 1

a2
n

∑
t1∈Tk1,an

∑
t2∈Tk2,an

[{
36

∑
γ∈Γ{1,2,3}

∑
γ̃∈Γ{1,4,5}

cum
(
I(X

(γ(1))
t1 < X

(γ(2))
t1 ), I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

), I(X
(γ̃(1))
t2 < X

(γ̃(2))
t2 ), I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)
)}

+ ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1)) + ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1))
]

(4.26)

and analogous arguments as for Kendall’s τ give

∣∣∣IE[ an∑
t1=1

W ρ
n,t1(ω)

an∑
t2=1

W ρ
n,t2(ω)

]
− a2

n

n2
IE[Hρ

1 (ω)Hρ
2 (ω)]

∣∣∣ = o
( rn
an

)
(4.27)

Next, similar arguments as were used in order to derive (4.20) yield∣∣∣ 1

(2π)2

36

a2
n

∑
|k1|≤rn

∑
|k2|≤rn

w

(
k1

rn

)
w

(
k2

rn

)
e−i(k1+k2)ω

∑
t1∈Tk1,an

∑
t2∈Tk2,an

∑
γ∈Γ{1,2,3}

∑
γ̃∈Γ{1,4,5}

cum
(
I(X

(γ(1))
t1 < X

(γ(2))
t1 ), I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

), I(X
(γ̃(1))
t2 < X

(γ̃(2))
t2 ), I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)
)∣∣∣

= o
( rn
an

)
,

and the same arguments as in the proof of Theorem 9.3.4 in Anderson (1971) show

IE[Hρ
1 (ω)Hρ

2 (ω)] =
rn
an

f2
ρ(ω)

∫ 1

−1

w2(u)du(1 + I(ω ∈
{

0,±π
}

)) + o
( rn
an

)
.(4.28)

Hence, equation (4.28) together with equation (4.27) conclude the proof of (4.13).
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4.3.3 Proof of (4.14) and (4.15)

By Lemma 4.2, we know that for Kendall’s tau

IE
[ 4∏
j=1

hτ1,kj

(
Xtj
Xtj+kj

)]
= IE

[ 4∏
j=1

(
hτ
((

Xtj
Xtj+kj

)
,

(
X

(j)
tj

X
(j)
tj+kj

))
− τkj

)]
= IE

[ 4∏
j=1

(4Y
(j)
tj Y

(j)
tj+kj

− τkj)
]
,

where (Y
(j)
t )t∈Z =

(
I(Xt < X

(j)
t )− 1

2

)
t∈Z

. Therefore, we can write

IE
[(∑

t∈Γj

ζτn,t(ω)
)4]

= IE
[ ∑
t1,t2,t3,t4∈Γj

W τ
n,t1

(ω)W τ
n,t2

(ω)W τ
n,t3

(ω)W τ
n,t4

(ω)
]

= IE
[ ∑
t1,t2,t3,t4∈Γj

ϑτn,t1(ω)ϑτn,t2(ω)ϑτn,t3(ω)ϑτn,t4(ω)
]
,(4.29)

where ϑτtl = 1
2π

∑
|kl|≤rn w

(
kl
rn

)
e−iklω 2

n
[4Y

(l)
tl
Y

(l)
tl+kl
− τkl ], l = 1, . . . , 4. Observing that by construc-

tion IE[
∑

tl∈Γj
ϑτtl(ω)] = 0, we express the fourth moment in terms of a fourth order cumulant and

3 products of second order cumulants, that is

IE
[ ∑
t1,t2,t3,t4∈Γj

ϑτn,t1(ω)ϑτn,t2(ω)ϑτn,t3(ω)ϑτn,t4(ω)
]

= cum
( ∑
tl∈Γj

ϑτn,tl(ω); l = 1, . . . , 4
)

+ cum
( ∑
tl∈Γj

ϑτn,tl(ω); l = 1, 2
)

cum
( ∑
tl∈Γj

ϑτn,tl(ω); l = 3, 4
)

+ cum
( ∑
tl∈Γj

ϑτn,tl(ω); l = 1, 3
)

cum
( ∑
tl∈Γj

ϑτn,tl(ω); l = 2, 4
)

+ cum
( ∑
tl∈Γj

ϑτn,tl(ω); l = 1, 4
)

cum
( ∑
tl∈Γj

ϑτn,tl(ω); l = 2, 3
)

Note that by construction for all k, l ∈ {1, . . . , 4},
∑

tk∈Γj
ϑτn,tk

D
=
∑

tl∈Γj
ϑτn,tl . Therefore, each of

the second order cumulants is equal to

cum
( ∑
tl∈Γj

ϑτn,tl(ω); l = 1, 2
)

= IE
[ ∑
t1∈Γj

ϑτn,t1(ω)
∑
t2∈Γj

ϑτn,t2(ω)
]

= IE
[(∑

t∈Γj

W τ
n,t(ω)

)2]
=
(

Var
(∑
t∈Γj

W τ
n,t(ω)

))2

,
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where we have used a similar argument as in equation (4.29). Hence, we obtain by Theorem 2.3.1

in Brillinger (1975)

IE
[( ∑

tl∈Γj

ϑτn,tl(ω)
)4]

=
∑

t1,t2,t3,t4∈Γj

cum(ϑτn,t1(ω), ϑτn,t2(ω), ϑτn,t3(ω), ϑτn,t4(ω)) + 3
(

Var
(∑
t∈Γj

W τ
n,t(ω)

))2

Following the arguments of Rosenblatt (1984) on pages 1177-1178, we can express the fourth order

cumulant of products in terms of cumulants of the factors, i.e. we obtain∑
t1,t2,t3,t4∈Γj

cum(ϑτn,t1(ω), ϑτn,t2(ω), ϑτn,t3(ω), ϑτn,t4(ω))

=
1

(2π)4

2444

n4

∑
|k1|,|k2|,|k3|,|k4|≤rn

∑
t1,t2,t3,t4∈Γj

( 4∏
l=1

w
( kl
rn

)
e−iklω

)
cum(Y

(l)
tl
Y

(l)
tl+kl

; l = 1, . . . , 4)

=
1

(2π)4

2444

n4

∑
|k1|,|k2|,|k3|,|k4|≤rn

∑
t1,t2,t3,t4∈Γj

( 4∏
l=1

w
( kl
rn

)
e−iklω

)
·
∑
ν

cum(Y (l)
s , s ∈ ν1) · · · cum(Y (l)

s , s ∈ νr)

where the latter sum extends over all indecomposable partitions ν = ν1 ∪ · · · ∪ νr of the table

t1 t1 + k1

t2 t2 + k2

t3 t3 + k3

t4 t4 + k4.

In order to bound this sum, we need that for 2 ≤ p ≤ 8 and t ∈ Z∑
u1,...,up−1∈Z

|cum(I(Vt ∈ A1), I(Vt+u1 ∈ A2), . . . , I(Vt+up−1 ∈ Ap))| <∞,(4.30)

with Vt := (Xt, X
(1)
t , . . . , X

(4)
t ) and measurable sets A1, . . . , Ap ⊂ R5. This follows by Lemma 4.1

and Assumption (N1):∑
u1,...,up−1∈Z

|cum(I(Vt ∈ A1), I(Vt+u1 ∈ A2), . . . , I(Vt+up−1 ∈ Ap))|

≤ Cp,4
∑

u1,...,up−1∈Z

α( max
i,j=0,...,p−1

|ui − uj|)
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≤ Cp,4

∞∑
m=0

∑
u1,...,up−1∈Sm

α(m) ≤ Cp,4cp−1(1 +
∞∑
m=1

mp−2α(m)) <∞,

where u0 := 0 and Sm := {(u1, . . . , up) ∈ Zp|maxi,j=0,...,p |ui − uj| = m} have been introduced in

the proof of (4.12).

Next, arguments as in Rosenblatt (1984) on page 1177–1178 yield

∑
t1,t2,t3,t4∈Γj

|cum(ϑτn,t1(ω), ϑτn,t2(ω), ϑτn,t3(ω), ϑτn,t4(ω))| = O
(p2

nr
2
n

n4

)
and together with (4.12) we obtain

µn∑
j=1

IE
[(∑

t∈Γj

ζτn,t(ω)
)4]

= O
(µnp2

nr
2
n

n4

)
.

Furthermore, as fξ(ω) 6= 0, by (4.12)

( µn∑
j=1

Var
(∑
t∈Γj

ζτn,t(ω)
))2

≥ c
µ2
np

2
nr

2
n

n4

for some constant c > 0 and n sufficiently large. This yields (4.14) and (4.15) in the case where ξ

is Kendall’s τ .

In the case where ξ is Spearman’s ρ we have by Lemma 4.2

IE
[(∑

t∈Γj

ζρn,t(ω)
)4]

= IE
[ ∑
t1,t2,t3,t4∈Γj

W ρ
n,t1(ω)W ρ

n,t2(ω)W ρ
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]

= IE
[ ∑
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ϑρn,t1(ω)ϑρn,t2(ω)ϑρn,t3(ω)ϑρn,t4(ω)
]
,(4.31)

where

ϑρtl =
1

2π

∑
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w
( kl
rn

)
e−iklω

3

n

[ ∑
γl∈Γ{1,2l,2l+1}

2
(
I(X

(γl(1))
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< X
(γl(2))
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)− 1

2

)
·
(
I(X

(γl(1))
tl+kl

< X
(γl(3))
tl+kl

)− 1

2

)
− ρkl

]
, l = 1, . . . , 4.
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Observing that by construction IE[
∑

tl∈Γj
ϑρtl(ω)] = 0, we have similarly as for Kendall’s τ

IE
[( ∑

tl∈Γj

ϑρn,tl(ω)
)4]

=
∑

t1,t2,t3,t4∈Γj

cum(ϑρn,t1(ω), ϑρn,t2(ω), ϑρn,t3(ω), ϑρn,t4(ω)) + 3
(

Var
(∑
t∈Γj

W ρ
n,t(ω)

))2

,

where, ∑
t1,t2,t3,t4∈Γj

cum4(ϑρn,t1(ω), ϑρn,t2(ω), ϑρn,t3(ω), ϑρn,t4(ω))

=
1

(2π)4

3424

n4

∑
|k1|,|k2|,|k3|,|k4|≤rn

∑
t1,t2,t3,t4∈Γj

( 4∏
l=1

w
( kl
rn

)
e−iklω

∑
γl∈Γ{1,2l,2l+1}

)
cum4

(
I(X

(γl(1))
tl

< X
(γl(2))
tl

)I(X
(γl(1))
tl+kl

< X
(γl(3))
tl+kl

); l = 1, . . . , 4
)
.(4.32)

Following the arguments of Rosenblatt (1984) on pages 1177-1178, we express the fourth order

cumulants of products of random variables in terms of cumulants of the factors which, similarly

as in (4.30), can be bounded by Lemma 4.1 for Vt := (X
(1)
t , . . . , X

(9)
t ) and A1, . . . , Ap ∈ R9. After

that, arguments as in Rosenblatt (1984) yield

∑
t1,t2,t3,t4∈Γj

|cum(ϑρn,t1(ω), ϑρn,t2(ω), ϑρn,t3(ω), ϑρn,t4(ω))| = O
(p2

nr
2
n

n4

)

and together with (4.13) we obtain
∑µn

j=1 IE
[(∑

t∈Γj
ζρn,t(ω)

)4]
= O

(µnp2nr2n
n4

)
. Furthermore, as

fξ(ω) 6= 0, by (4.13),

( µn∑
j=1

Var
(∑
t∈Γj

ζρn,t(ω)
))2

≥ c
µ2
np

2
nr

2
n

n4

for some constant c > 0 and n sufficiently large. This concludes the proof. 2
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5 Appendix: technical details

The proofs of Theorems 3.3 and 3.4 rely on a blocking technique which will be summarized in

Section 5.1. In Section 5.2 we state and prove the covariance inequalities that are crucial in order

to derive the convergence of the linear and degenerate parts of the U-lag-window estimate. Finally,

in Section 5.3 we provide the details for the proofs of results and equations given in Section 4.

For simplicity of notation, let X t,k := (Xt, Xt+k)
T .

5.1 Blocking results for stationary β-mixing processes

In order to transfer classical results from the iid case to sums of β-mixing stationary time series,

we apply a blocking technique with alternate ”large” blocks of size pn and ”small” blocks of size qn

from Arcones and Yu (1994) based on a blocking technique introduced by Yu (1994) with blocks of

equal size pn. For each fixed n, we divide the original sequence X := (X1, . . . , Xn) into µn blocks of

size pn alternating with µn blocks of size qn and a remainder block R of length n−2µn. The block

size qn of the ”small” ∆ blocks is chosen depending on the mixing conditions on X and the size

of rn. That is, qn is chosen large enough such that the Γ blocks are ”almost” independent of each

other, but small enough such that the sequence composed of these Γ blocks behaves similarly to

the original mixing sequence. The block size pn is chosen analogously. More precisely, we assume

that

(5.1) (µn − 1)(pn + qn) < n ≤ µn(pn + qn)

and define for j = 1, . . . , µn

Γj := {i : (j − 1)(pn + qn) + 1 ≤ i ≤ (j − 1)(pn + qn) + pn},
∆j := {i : (j − 1)(pn + qn) + pn + 1 ≤ i ≤ j(pn + qn)}
ΓR := {i : µn(pn + qn) + 1 ≤ i ≤ n ∧ µn(pn + qn) + pn}
∆R := {i : (n ∧

[
µn(pn + qn) + pn

]
) + 1 ≤ i ≤ n}.

R := ΓR ∪∆R

We denote the random variables of X belonging to block Γj, ∆j, j = 1, . . . , µn or R by

X(Γj) := {Xi : i ∈ Γj}, X(∆j) := {Xi : i ∈ ∆j}, X(R) := {Xi : i ∈ R},
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respectively. This yields a sequence of alternating Γ and ∆ blocks

X(Γ1), X(∆1), X(Γ2), X(∆2), . . . , X(Γµn), X(∆µn), X(R)

We then construct a one-dependent sequence Y of independent blocks defined as

Y (Γ1), Y (∆1), Y (Γ2), Y (∆2), . . . , Y (Γµn), Y (∆µn), Y (R),

and independent of the original sequence X. Furthermore, the blocks Y (Γj) := {Yi : i ∈ Γj},
Y (∆j) := {Yi : i ∈ ∆j}, j = 1, . . . , µn and Y (R) := {Yi : i ∈ R} are identically distributed as the

corresponding blocks in the sequence X, i.e.

X(Γj)
D
= Y (Γj) and X(∆j)

D
= Y (∆j) and X(R)

D
= Y (R).

The existence of a proper measurable space that hosts both sequences, X and the independent

block sequence Y , as well as measurability issues on this space are adressed in Yu (1994). Denote

by XΓ and YΓ block sequences corresponding to the Γ blocks and by X∆ and Y∆ the block sequences

corresponding to the ∆ blocks, e.g.

XΓ := X(Γ1), X(Γ2), . . . , X(Γµn)

Note that we choose the block size qn such that the dependence between the blocks XΓ of the

original β-mixing sequence X becomes weaker as qn increases. The next lemma is a slightly

adapted version of Lemma 4.1 in Yu (1994) and is proven analogously. It shows that the Γ or,

respectively, ∆ blocks of the original sequence X can be related to the Γ or, respectively, ∆ blocks

of the independent block sequence Y in the following way.

Lemma 5.1. Denote by Q and Q̃ be the distributions of XΓ and YΓ, respectively. Then, for any

measurable function g on Rµnpn with ‖g‖∞ ≤M <∞,∣∣∣IEQ[g(XΓ)]− IEQ̃[g(YΓ)]
∣∣∣ ≤M(µn − 1)β(qn).

Similarly, if P and P̃ denote the distributions of X∆ and Y∆, respectively, and if g̃ is a measurable

function on Rµnqn with ‖g̃‖∞ ≤ N <∞, then∣∣∣IEP [g̃(X∆)]− IEP̃ [g̃(Y∆)]
∣∣∣ ≤ N(µn − 1)β(pn).

In order to establish the convergence in probability of the parts of the U-lag-window estimate
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corresponding to the linear and degenerate part in the Hoeffding decomposition we prove several

covariance inequalities for β-mixing data. To this end we apply a coupling technique by Berbee

(1979). The idea is to replace successively dependent variables by variables that have the same

distribution but are independent of the original variables and all other involved variables with the

smallest error possible. Berbee (1979) found the following in the case of β-mixing data.

Lemma 5.2 (Berbee (1979)). Suppose on a probability space there is defined a pair (X, Y ) of

random variables with values in Borel spaces. If the probability space is rich enough, it can be

extended with a random variable Y ′, independent of X and distributed as Y such that

P(Y ′ 6= Y ) =
1

2

∥∥∥P(X,Y ) − PX ⊗ PY
∥∥∥
TV

= β(σ(X), σ(Y )).

5.2 Auxiliary technical results

Lemma 5.3. Let Assumption (C2) hold. Then, the kernels hc,k defined in (2.8), c = 1, . . . ,m

have uniform (2 + δ) moments, i.e. there exist δ,Mc > 0 such that for all t1, . . . , tc, k ∈ Z,

1 ≤ j ≤ 2c,

max
{∫

R
. . .

∫
R
|hc,k|2+δdGc,

∫
R
. . .

∫
R
|hc,k|2+δdG

(1)
j,c dG

(2)
j,c

}
≤M0 <∞,

where Gc, G
(1)
j,c and G

(2)
j,c denote the joint distributions of (Xt(1) , . . . , Xt(2c)), (Xt(1) , . . . , Xt(j)) and

(Xt(j+1)
, . . . , Xt(2c)), respectively, with (t(1), t(2), . . . , t(2m)), t(1) ≤ · · · ≤ t(2c) the sorted version of

the vector (t1, t1 + k, t2, t2 + k . . . , tc, tc + k).

Lemma 5.4. Let X∗
tj ,k

denote an independent and identically distributed copy of X tj ,k on a

possibly richer probability space that is independent of X t1,k, . . . ,X t2c,k. Then, for 2 ≤ c ≤ m

and arbitrary t1, . . . , t2c ∈ Z,

IE
[
hc,k(X

∗
t1,k
,X t2,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)

]
= 0,

where the latter equation also holds if any other pair X tj ,k is replaced by an iid copy X∗
tj ,k

.

Lemma 5.5. If Assumptions (C1) – (C3) are satisfied, we have for any fixed 0 ≤ k ≤ brnc

(1) For any t ∈ Z,

∣∣∣IE[h1,k

(
X t,k

)
h1,k

(
X t+l,k

)
]
∣∣∣ ≤

2M
2

2+δ

1 β
δ

2+δ (l − k), if l > k,

8M
2

2+δ

1 β
δ

2+δ (min{l, k − l}), if 0 ≤ l ≤ k.
(5.2)
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(2) If 1 ≤ t1 < t2 < · · · < t2c ≤ n− k and

m(t1, . . . , t2c) := max
{

min{t2 − t1, (t1 + k)− t2},min{t2c − t2c−1, (t2c−1 + k)− t2c}
}

we have for any permutation γ of {1, . . . , 2c}

(i) |IE[hc,k(X tγ(1),k, . . . ,X tγ(c),k)hc,k(X tγ(c+1),k, . . . ,X tγ(2c),k)]| ≤M
2

2+δ
c .

(ii) if (t2 − t1) > k or (t2c − t2c−1) > k,

|IE[hc,k(X tγ(1),k, . . . ,X tγ(c),k)hc,k(X tγ(c+1),k, . . . ,X tγ(2c),k)]|

≤2M
2

2+δ
c β

δ
2+δ (max

{
t2 − (t1 + k), t2c − (t2c−1 + k)

}
).(5.3)

(iii) if t2 − t1 ≤ k, t2c − t2c−1 ≤ k, t3 − t2 > 2k and t2c−1 − t2(c−1) > 2k, then

|IE[hc,k(X tγ(1),k, . . . ,X tγ(c),k)hc,k(X tγ(c+1),k, . . . ,X tγ(2c),k)]| ≤ 12M
2

2+δ
c β

δ
2+δ (m).(5.4)

5.2.1 Proof of Lemma 5.3

From assumption (C2), we have

IE
∣∣∣IE[h(Y (1), . . . ,Y (m))|Y (1), . . . ,Y (c)]− IE[h(Y (1), . . . ,Y (m))]

∣∣∣2+δ

≤ 22+δM0

and therefore, by the definition of the Hoeffding decomposition,

IE
∣∣∣h1,k

(
Y1

)∣∣∣2+δ

≤ 22+δM0.

As hc,k is recursively defined by

hc,k(y1, . . . ,yc) = IE[h(Y (1), . . . ,Y (m))|Y (1) = y1, . . . ,Y
(c) = yc]− IE[h(Y (1), . . . ,Y (m))]

−
c−1∑
j=1

∑
{ν1,...,νj}⊂{1,...,c}

ν1<···<νj

hj,k(yν1 , . . . ,yνj ),

hc,k also has uniform (2 + δ)-moments. 2
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5.2.2 Proof of Lemma 5.4

Recall the following property of the conditional expectation [see Theorem 6.4 in Kallenberg (2010)]

which can easily be adapted to more than one F -measurable random variable:

Let X and Y be random variables and F a σ-algebra such that X is F-measurable and Y is

independent of F . Then, for any measurable function f(x, y) with IE|f(X, Y )| <∞,

IE[f(X, Y )|F ] = F (X) a.s.,(5.5)

where F (x) = IE[f(x, Y )].

Thus, by the law of total expectation, we have

IE
[
hc,k(X

∗
t1,k
,X t2,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)

]
= IE

[
IE
[
hc,k(X

∗
t1,k
,X t2,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)|X t2,k, . . . ,X t2c,k

]]
= IE

[
IE
[
hc,k(X

∗
t1,k
,X t2,k, . . . ,X tc,k)|X t2,k, . . . ,X t2c,k

]
hc,k(X tc+1,k, . . . ,X t2c,k)

]
Obviously, X t2,k, . . . ,X tc,k are σ(X t2,k, . . . ,X t2c,k)-measurable and X∗

t1,k
is independent of

σ(X t2,k, . . . ,X t2c,k). As, additionally, IE|hc,k(X∗
t1,k
,X t2,k, . . . ,X tc,k)| <∞ by Lemma 5.3 we have

that

IE[hc,k(X
∗
t1,k
,X t2,k, . . . ,X tc,k)|X t2,k, . . . ,X t2c,k] =: Hc−1,k(X t2,k, . . . ,X tc,k),

where

Hc−1,k(y2, . . . ,yc) = IE[hc,k(X
∗
t1,k
,y2, . . . ,yc)].

We will now show that Hc−1,k(y2, . . . ,yc) = 0. To this end, we consider the integral representation

of hc,k, i.e. similarly as in the proof of Theorem 2 in [Lee (1990), pg. 28], we obtain by the

symmetry of h,

hc,k(y1, . . . ,yc) =

∫
R2

· · ·
∫
R2

h(u1, . . . ,um)
c∏
j=1

(dGyj (uj)− dFk(uj))
m∏

j=c+1

dFk(uj)

=

∫
R2

· · ·
∫
R2

h(y1,u2, . . . ,um)
c∏
j=2

(dGyj (uj)− dFk(uj))
m∏

j=c+1

dFk(uj)
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−
∫
R2

· · ·
∫
R2

h(u1, . . . ,um)dFk(u1)
c∏
j=2

(dGyj (uj)− dFk(uj))
m∏

j=c+1

dFk(uj)

=

∫
R2

· · ·
∫
R2

h(y1,u2 . . . ,um)
c∏
j=2

(dGyj (uj)− dFk(uj))
m∏

j=c+1

dFk(uj)

− hc−1,k(y2, . . . ,yc).

Integrating both sides with respect to u1 ∼ Fk yields∫
R2

hc,k(u1,y2, . . . ,yc)dFk(u1)

=

∫
R2

· · ·
∫
R2

h(u1, . . . ,um)dFk(u1)
c∏
j=2

(dGyj (uj)− dFk(uj))
m∏

j=c+1

dFk(uj)

− hc−1,k(y2, . . . ,yc)

= hc−1,k(y2, . . . ,yc)− hc−1,k(y2, . . . ,yc) = 0.

Observing that∫
R2

hc,k(u1,y2, . . . ,yc)dFk(u1) = IE[hc,k(X
∗
t1,k
,y2, . . . ,yc)] = Hc−1,k(y2, . . . ,yc)

we have

IE
[
hc,k(X

∗
t1,k
,X t2,k, . . . ,X tc,k)|X t2,k, . . . ,X t2c,k

]
= Hc−1,k(X t2,k, . . . ,X tc,k) = 0

and altogether,

IE
[
hc,k(X

∗
t1,k
,X t2,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)

]
= IE

[
IE
[
hc,k(X

∗
t1,k
,X t2,k, . . . ,X tc,k)|X t2,k, . . . ,X t2c,k

]
hc,k(X tc+1,k, . . . ,X t2c,k)

]
= 0

which concludes the proof. 2

5.2.3 Proof of Lemma 5.5

(1) If l > k ≥ 0 replace the pair X t,k :=
(
Xt
Xt+k

)
using Berbee’s coupling technique by an identically

distributed copy X∗
t,k that is independent of X t,k and X t+l,k and such that

P(X t,k 6= X∗
t,k) ≤

1

2

∥∥∥P(Xt,k,Xt+l,k) − PXt,k
⊗ PXt+l,k

∥∥∥
TV

= β(l − k).
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Then, ∣∣∣IE[h1,k(X t,k)h1,k(X t+l,k)]− IE[h1,k(X
∗
t,k)h1,k(X t+l,k)]

∣∣∣
≤
∣∣∣IE[(h1,k(X t,k)− h1,k(X

∗
t,k)
)
h1,k(X t+l,k)I(X t,k 6= X∗

t,k)
]∣∣∣

By Hölder’s inequality ( 1
2+δ

+ 1
2+δ

+ 1
δ+2
δ

= 1) we obtain

∣∣∣IE[
(
h1,k(X t,k)− h1,k(X

∗
t,k)
)
h1,k(X t+l,k)I(X t,k 6= X∗

t,k)]
∣∣∣

≤ 2M
2

2+δ

1

(
IE[I(X t,k 6= X∗

t,k)]
) δ

2+δ ≤ 2M
2

2+δ

1 β
δ

2+δ (l − k),

which gives∣∣∣IE[h1,k(X t,k)h1,k(X t+l,k)]
∣∣∣ ≤ 2M

2
2+δ

1 β
δ

2+δ (l − k) +
∣∣∣IE[h1,k(X

∗
t,k)h1,k(X t+l,k)]

∣∣∣.
Now, h1,k(X

∗
t ) is independent of h1,k(Xt+l) and the result follows by Lemma 5.4.

If 0 ≤ l ≤ k, using Berbee’s coupling technique, first replace Xt by an identically distributed

copy X∗t that is independent of Xt+k, Xt+l and Xt+l+k and such that

P(X∗t 6= Xt) ≤
1

2

∥∥∥P(Xt,Xt+l,Xt+k,Xt+l+k) − PXt ⊗ P(Xt+l,Xt+k,Xt+l+k)

∥∥∥
TV

= β(l).

By Hölder’s inequality, we obtain with similar arguments as in the case l > k ≥ 0 that∣∣∣IE[h1,k

(
Xt
Xt+k

)
h1,k

(
Xt+l
Xt+k+l

) ]∣∣∣ ≤ 2M
2

2+δ

1 β
δ

2+δ (l) +
∣∣∣IE[h1,k

(
X∗t
Xt+k

)
h1,k

(
Xt+l
Xt+k+l

) ]∣∣∣,
Then, replace Xt+l by an independent copy X∗t+l that is independent of X∗t , Xt+k, Xt+l and

Xt+l+k such that

P(X∗t+l 6= Xt+l) ≤
1

2

∥∥∥P(X∗t ,Xt+l,Xt+k,Xt+l+k) − PXt+l ⊗ P(X∗t ,Xt+k,Xt+l+k)

∥∥∥
TV

≤ 1

2

∥∥∥PX∗t ⊗ P(Xt+l,Xt+k,Xt+l+k) − PX∗t ⊗ PXt+l ⊗ P(Xt+k,Xt+l+k)

∥∥∥
TV

≤ 1

2

∥∥∥P(Xt+l,Xt+k,Xt+l+k) − PXt+l ⊗ P(Xt+k,Xt+l+k)

∥∥∥
TV

= β(k − l),
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where we have used Lemma 1 in Eberlein (1984). Then,∣∣∣IE[h1,k

(
X∗t
Xt+k

)
h1,k

(
Xt+l
Xt+k+l

) ]∣∣∣ ≤ 2M
2

2+δ

1 β
δ

2+δ (k − l) +
∣∣∣IE[h1,k

(
X∗t
Xt+k

)
h1,k

(
X∗t+l
Xt+k+l

) ]∣∣∣.
Finally, replace Xt+k by an independent copy X∗t+k that is independent of X∗t , X∗t+l, Xt+k and

Xt+l+k and such that

P(X∗t+k 6= Xt+k) ≤
1

2

∥∥∥P(X∗t ,X
∗
t+l,Xt+k,Xt+l+k) − PXt+k ⊗ P(X∗t ,X

∗
t+l,Xt+l+k)

∥∥∥
TV

≤ 1

2

∥∥∥PX∗t ⊗ PX∗t+l ⊗ P(Xt+k,Xt+l+k) − PX∗t ⊗ PX∗t+l ⊗ PXt+k ⊗ PXt+l+k
∥∥∥
TV

≤ 1

2

∥∥∥P(Xt+k,Xt+l+k) − PXt+k ⊗ PXt+l+k
∥∥∥
TV

= β(l)

which gives∣∣∣IE[h1,k

(
X∗t
Xt+k

)
h1,k

(
X∗t+l
Xt+k+l

) ]∣∣∣ ≤ 2M
2

2+δ

1 β
δ

2+δ (l) +
∣∣∣IE[h1,k

(
X∗t
X∗t+k

)
h1,k

(
X∗t+l
Xt+k+l

) ]∣∣∣.
Altogether,∣∣∣IE[h1,k

(
Xt
Xt+k

)
h1,k

(
Xt+l
Xt+k+l

) ]∣∣∣ ≤ 6M
2

2+δ

1 β
δ

2+δ (min
{
l, k − l

}
)

+
∣∣∣IE[h1,k

(
X∗t
X∗t+k

) ]
IE
[
h1,k

(
X∗t+l
Xt+k+l

) ]∣∣∣.
Next, observe that the last summand does not vanish as

(
X∗t
X∗t+k

)
does not have distribution Fk.

Therefore, using Berbee’s coupling technique, we rereplace X∗t by an independent copy X◦t such

that the couple
(
X◦t
X∗t+k

)
has distribution Fk, is independent of

(
X∗t+l
Xt+k+l

)
and

P(X◦t 6= X∗t ) ≤ 1

2

∥∥∥PX∗t ⊗ PX∗t+k − P(X◦t ,X
∗
t+k)

∥∥∥
TV

= β(k).

Hence, ∣∣∣IE[h1,k

(
X∗t
X∗t+k

)
− h1,k

(
X◦t
X∗t+k

) ]∣∣∣ ≤ 2M
1

2+δ

1 β
δ

2+δ (k).

Observing that min
{
l, k − l

}
≤ k and that the β-mixing coefficients are monotone decreasing,

we have

β
δ

2+δ (k) ≤ β
δ

2+δ (min
{
l, k − l

}
)
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and as IE
[
h1,k

(
X◦t
X∗t+k

) ]
= 0, we can conclude that

∣∣∣IE[h1,k

(
Xt
Xt+k

)
h1,k

(
Xt+l
Xt+k+l

) ]∣∣∣ ≤ 8M
2

2+δ

1 β
δ

2+δ (min
{
l, k − l

}
).

(2) (i) By Hölder’s inequality ( 1
2+δ

+ 1
2+δ
1+δ

= 1) and as 2+δ
1+δ

< 2 + δ we obtain

|IE[hc,k(X tγ(1),k, . . . ,X tγ(c),k)hc,k(X tγ(c+1),k, . . . ,X tγ(2c),k)]|

≤
(

IE|hc,k(X tγ(1),k, . . . ,X tγ(c),k)|
2+δ
) 1

2+δ
(

IE|hc,k(X tγ(c+1),k, . . . ,X tγ(2c),k)|
2+δ
1+δ

) 1+δ
2+δ

≤
(

IE|hc,k(X tγ(1),k, . . . ,X tγ(c),k)|
2+δ
) 1

2+δ
(

IE|hc,k(X tγ(c+1),k, . . . ,X tγ(2c),k)|
2+δ
) 1

2+δ
.

where we have used that (IE[|Z|p])1/p ≤ (IE[|Z|q])1/q for 0 < p ≤ q. Hence, by Lemma 5.3,

|IE[hc,k(X tγ(1),k, . . . ,X tγ(c),k)hc,k(X tγ(c+1),k, . . . ,X tγ(2c),k)]| ≤ M
2

2+δ
c .

(ii) For brevity, we only consider the case γ = id. The other cases are treated similarly but

require a more complex notation.

In order to prove inequality (5.3), according to the coupling Lemma 5.2 by Berbee (1979),

depending on whether (t2 − t1) > (t2c − t2c−1) > k or k < (t2 − t1) ≤ (t2c − t2c−1), we can

choose a random variable X∗
t1,k

or respectively X∗
t2c,k

that has the same distribution as X t1,k

or respectively X t2c,k, independent of X t1,k, . . . ,X t2c,k and such that

P(X∗
t1,k
6= X t1,k) ≤ β(t2 − (t1 + k))

First, consider the case where (t2 − t1) > (t2c − t2c−1) > k, that is we replace X t1,k by an

independent identically distributed copy X∗
t1,k

. Then, by Lemma 5.4,

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|
= |IE[(hc,k(X t1,k, . . . ,X tc,k)− hc,k(X∗

t1,k
,X t2,k, . . . ,X tc,k))hc,k(X tc+1,k, . . . ,X t2c,k)]|

Splitting the probability space, we obtain

|IE[(hc,k(X t1,k, . . . ,X tc,k)− hc,k(X∗
t1,k
,X t2,k, . . . ,X tc,k))hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ IE[|(hc,k(X t1,k, . . . ,X tc,k)− hc,k(X∗
t1,k
,X t2,k, . . . ,X tc,k))

· hc,k(X tc+1,k, . . . ,X t2c,k)I(X∗
t1,k
6= X t1,k)|]

40



+ IE[|(hc,k(X t1,k, . . . ,X tc,k)− hc,k(X∗
t1,k
,X t2,k, . . . ,X tc,k))

· hc,k(X tc+1,k, . . . ,X t2c,k)I(X∗
t1,k

= X t1,k)|].

The second summand vanishes and for the first summand Hölder’s inequality ( 1
2+δ

+ 1
2+δ

+
1

2+δ
δ

= 1) yields

IE[|(hc,k(X t1,k, . . . ,X tc,k)− hc,k(X∗
t1,k
,X t2,k, . . . ,X tc,k))

· hc,k(X tc+1,k, . . . ,X t2c,k)I(X∗
t1,k
6= X t1,k)|]

≤ (IE|hc,k(X t1,k, . . . ,X tc,k)− hc,k(X∗
t1,k
,X t2,k, . . . ,X tc,k)|2+δ)

1
2+δ

· (IE|hc,k(X tc+1,k, . . . ,X t2c,k)|2+δ)
1

2+δ (P(X∗
t1,k
6= X t1,k))

δ
2+δ

≤ 2M
2

2+δ
c β

δ
2+δ (t2 − (t1 + k)),(5.6)

where the latter inequality is due to Lemma 5.2. In the case where k < (t2−t1) ≤ (t2c−t2c−1),

we obtain

|IE[(hc,k(X t1,k, . . . ,X tc,k)− hc,k(X∗
t1,k
,X t2,k, . . . ,X tc,k))hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ 2M
2

2+δ
c β

δ
2+δ (t2c − (t2c−1 + k))(5.7)

Inequalities (5.6) and (5.7) together yield result (ii).

(iii) As in (ii), we only consider the case γ = id. Then, if

min{t2 − t1, (t1 + k)− t2} ≥ min{t2c − t2c−1, (tc−1 + k)− t2c}

replace one after another Xt1 , Xt2 , Xt1+k and Xt2+k according to Lemma 5.2 by independent

identically distributed copies X ′t1 , X
′
t2

, X ′t1+k and X ′t2+k that are independent of the other

involved random variables. Denote by X ′
tj ,k

the pair (X ′tj , X
′
tj+k

)T , where j = 1, 2. Then, by

Lemma 5.3 and similarly as in the proof of part (i)

|IE[(hc,k(X t1,k, . . . ,X tc,k)− hc,k(X ′
t1,k
,X ′

t2,k
,X t3,k, . . . ,X tc,k))hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ 8M
2

2+δ
c β

δ
2+δ (min{t2 − t1, (t1 + k)− t2, t3 − (t2 + k)})
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= 8M
2

2+δ
c β

δ
2+δ (min{t2 − t1, (t1 + k)− t2}),

(5.8)

where the latter equality is due to the assumption that (t3 − t2) > 2k. Hence,

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ 8M
2

2+δ
c β

δ
2+δ (min{t2 − t1, (t1 + k)− t2})

+ |IE[hc,k(X
′
t1,k
,X ′

t2,k
,X t3,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

Note that the second summand does not necessarily vanish because, having replaced Xt1 ,

Xt1+k, Xt2 and Xt2+k by independent identically distributed copies one after another, the

couple (X ′tj , X
′
tj+k

)T does not have distribution Fk. However, it is possible to bound

|IE[hc,k(X
′
t1,k
,X ′

t2,k
,X t3,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

by applying Lemma 5.2 again in order to ”rereplace” successively X ′
t1,k

and X ′
t2,k

by inde-

pendent pairs X◦
t1,k

and X◦
t2,k

with distribution Fk. More precisely, according to Lemma

5.2 we can replace X ′t1 by a random variable X◦t1 with the same distribution as X ′t1 that is

independent of the other involved variables such that the couple X◦
t1,k

:= (X◦t1 , X
′
t1+k)

T has

distribution Fk. Then, similarly as in the proof of (ii),

|IE[hc,k(X
′
t1,k
,X ′

t2,k
,X t3,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ 2M
1

2+δ
c β

δ
2+δ (k) + |IE[hc,k(X

◦
t1,k
,X ′

t2,k
,X t3,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|,

where we have used that due to the independence of X ′t1 , X
′
t1+k and all other involved vari-

ables, P(X ′t1 6= X◦t1) = β(k). Analogously, we can replace X ′t2 by a random variable X◦t2 such

that the couple X◦
t2,k

:= (X◦t2 , X
′
t2+k)

T has distribution Fk and is independent of X◦
t1,k

. Then,

|IE[hc,k(X
′
t1,k
,X ′

t2,k
,X t3,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ 2M
1

2+δ
c β

δ
2+δ (k) + |IE[hc,k(X

◦
t1,k
,X◦

t2,k
,X t3,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|,

Then, X◦
t1,k

and X◦
t2,k

both have distribution Fk and are independent. Similar arguments as

42



in the proof of Lemma 5.4 (ii) show that also

IE[hc,k(X
◦
t1,k
,X◦

t2,k
,X t3,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)] = 0

and hence,

(5.9) |IE[hc,k(X
′
t1,k
,X ′

t2,k
,X t3,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]| ≤ 4M

1
2+δ
c β

δ
2+δ (k).

Observing that by the definition of the β-mixing coefficients and since (t2 − t1) ≤ k

β
δ

2+δ (k) ≤ β
δ

2+δ (min{t2 − t1, (t1 + k)− t2}),

equations (5.8) and (5.9) yield

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]| ≤ 12M
2

2+δ
c β

δ
2+δ (min{t2 − t1, (t1 + k)− t2}).

Analogously, if min{t2 − t1, (t1 + k)− t2} < min{t2c − t2c−1, (t2c−1 + k)− t2c}, we obtain

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ 12M
2

2+δ
c β

δ
2+δ (min{t2c − t2c−1, (t2c−1 + k)− t2c}).

Combining these inequalities yields (iii), which concludes the proof.

2
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5.3 Proofs of results from Section 4

5.3.1 Proof of Lemma 4.1

By Theorem 5.2 of Bradley (2005), (Vt)t∈Z is α-mixing with mixing coefficients

αV (m) ≤ αX(m) + αX
(1)

(m) + · · ·+ αX
(q)

(m) = (q + 1)αX(m),

where the latter identity is due to the definition of the processes (X
(j)
t )t∈Z, j = 1, . . . , q. Following

the arguments in the proof of Lemma 4.1 in Kley (2014), we obtain the result. 2

5.3.2 Proof of Lemma 4.2

For notational convenience, let X tj ,kj := (Xtj , Xtj+kj)
T . Note that,

IE
[ q∏
j=1

h1,kj(X tj ,kj)
]

= IE

[ q∏
j=1

IE
[
h
(
X tj ,kj ,X

(1,j)
tj ,kj

, . . . ,X
(m−1,j)
tj ,kj

)
− ξkj

∣∣∣X tj ,kj

]]
.

Define

Gj := σ
(
X t1,k1 , . . . ,X tq ,kq ,X

(1,j+1)
tj+1,kj+1

, . . . ,X
(1,q)
tq ,kq

, . . . ,X
(m−1,j+1)
tj+1,kj+1

, . . . ,X
(m−1,q)
tq ,kq

)
.

By the law of the total expectation we obtain

IE

[ q∏
j=1

(
h
(
X tj ,kj ,X

(1,j)
tj ,kj

, . . . ,X
(m−1,j)
tj ,kj

)
− ξkj

)]
= IE

[
IE
[(
h
(
X t1,k1 ,X

(1,1)
t1,k1

, . . . ,X
(m−1,1)
t1,k1

)
− ξk1

)
q∏
j=2

(
h
(
X tj ,kj ,X

(1,j)
tj ,kj

, . . . ,X
(m−1,j)
tj ,kj

)
− ξkj

)∣∣∣G1

]]
= IE

[
IE
[(
h
(
X t1,k1 ,X

(1,1)
t1,k1

, . . . ,X
(m−1,1)
t1,k1

)
− ξk1

)∣∣∣G1

]
q∏
j=2

(
h
(
X tj ,kj ,X

(1,j)
tj ,kj

, . . . ,X
(m−1,j)
tj ,kj

)
− ξkj

)]
,

where the latter inequality follows as

q∏
j=2

(
h(X tj ,kj ,X

(1,j)
tj ,kj

, . . . ,X
(m−1,j)
tj ,kj

)− ξkj
)
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is G1-measurable. Moreover, X t1,k1 is G1-measurable and σ(X
(1,1)
t1,k1

, . . . ,X
(m−1,1)
t1,k1

) is independent of

G1. From the property of the conditional expectation stated in the proof of Lemma 5.4, it follows

that

IE
[(
h
(
X t1,k1 ,X

(1,1)
t1,k1

, . . . ,X
(m−1,1)
t1,k1

)
− ξk1

)∣∣∣G1

]
= IE

[(
h
(
X t1,k1 ,X

(1,1)
t1,k1

, . . . ,X
(m−1,1)
t1,k1

)
− ξk1

)∣∣∣σ(X t1,k1)
]

= h1,k1(X t1,k1).

Hence, the same arguments as above yield

IE

[ q∏
j=1

(
h
(
X tj ,kj ,X

(1,j)
tj ,kj

, . . . ,X
(m−1,j)
tj ,kj

)
− ξkj

)]
= IE

[
h1,k1(X t1,k1)

q∏
j=2

(
h
(
X tj ,kj ,X

(1,j)
tj ,kj

, . . . ,X
(m−1,j)
tj ,kj

)
− ξkj

)]
= IE

[
IE
[(
h
(
X t2,k2 ,X

(2,2)
t2,k2

, . . . ,X
(m−1,2)
t2,k2

)
− ξk2

)∣∣∣G2

]
· h1,k1(X t1,k1)

q∏
j=3

(
h
(
X tj ,kj ,X

(1,j)
tj ,kj

, . . . ,X
(m−1,j)
tj ,kj

)
− ξkj

)]
= IE

[
h1,k2(X t2,k2)h1,k1(X t1,k1)

q∏
j=3

(
h
(
X tj ,kj ,X

(1,j)
tj ,kj

, . . . ,X
(m−1,j)
tj ,kj

)
− ξkj

)]
.

Repeating these steps q − 1 times yields the result.

(i) Under (C0) we have hτ1,k
(x1y1

)
= IE

[
hτ
( (x1y1

)
,
(
X0
Xk

))]
with

hτ
( (x1y1

)
,
(x2y2

) )
= 4
(
I(x1 < x2)− 1

2

)(
I(y1 < y2)− 1

2

)
.

Note that IE[Y
(j)
t ] = 0 under (C0), we obtain from (4.17) that

Cov
(
hτ1,k1

(
Xt1
Xt1+k1

)
, hτ1,k2

(
Xt2
Xt2+k2

))
= IE

[(
hτ
((

Xt1
Xt1+k1

)
,

(
X

(1)
t1

X
(1)
t1+k1

))
− τk1

)(
hτ
((

Xt2
Xt2+k2

)
,

(
X

(2)
t2

X
(2)
t2+k2

))
− τk2

)]
= IE

[(
4
(
I(Xt1 < X

(1)
t1 )− 1

2

)(
I(Xt1+k1 < X

(1)
t1+k1

)− 1

2

)
− τk1

)
·
(

4
(
I(Xt2 < X

(2)
t2 )− 1

2

)(
I(Xt2+k2 < X

(2)
t2+k2

)− 1

2

)
− τk2

)]
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= IE[(4Y
(1)
t1 Y

(1)
t1+k1

− τk1)(4Y
(2)
t2 Y

(2)
t2+k2

− τk2)]
= 16IE[Y

(1)
t1 Y

(1)
t1+k1

Y
(2)
t2 Y

(2)
t2+k2

]− 4IE[Y
(1)
t1 Y

(1)
t1+k1

]τk2 − 4IE[Y
(2)
t2 Y

(2)
t2+k2

]τk1 + τk1τk2 .

(5.10)

The equivalent representation of moments in terms of cumulants yields

IE[Y
(1)
t1 Y

(1)
t1+k1

Y
(2)
t2 Y

(2)
t2+k2

] = cum(Y
(1)
t1 , Y

(1)
t1+k1

, Y
(2)
t2 , Y

(2)
t2+k2

)

+ cum(Y
(1)
t1 , Y

(1)
t1+k1

)cum(Y
(2)
t2 , Y

(2)
t2+k2

) + cum(Y
(1)
t1 , Y

(2)
t2 )cum(Y

(1)
t1+k1

, Y
(2)
t2+k2

)

+ cum(Y
(1)
t1 , Y

(2)
t2+k2

)cum(Y
(1)
t1+k1

, Y
(2)
t2 )

For all t, k ∈ Z and l = 1, 2, IE[Y
(l)
t ] = 0 and we have

cum(Y
(l)
t , Y

(l)
t+k) = IE[Y

(l)
t Y

(l)
t+k]

=

∫
R2

(
I(xt < x

(l)
t )− 1

2

)(
I(xt+k < x

(l)
t+k)−

1

2

)
dFk

(
x

(l)
t

x
(l)
t+k

)
dFk

( xtxt+k
)

=

∫
R2

Fk
( xtxt+k

)
dFk

( xtxt+k
)
− 1

4

=

∫
[0,1]2

Ck(u, v)dCk(u, v)− 1

4
=

1

4
τk(5.11)

and

cum(Y
(1)
t , Y

(2)
t+k) = IE[Y

(1)
t Y

(2)
t+k]

=

∫
R2

(
I(xt < x

(1)
t )− 1

2

)(
I(xt+k < x

(2)
t+k)−

1

2

)
dF (x

(1)
t )dF (x

(2)
t+k)dFk

( xtxt+k
)

=

∫
R2

F (xt)F (xt+k)dFk
( xtxt+k

)
− 1

4

=

∫
[0,1]2

uvdCk(u, v)− 1

4
=

1

12
ρ(k)(5.12)

where Ck is the copula associated with (Xt, Xt+k) [see e.g. Schmid et al. (2010)] and ρ(k) is

the population version of Spearman’s ρ at lag k. Hence,

IE[Y
(1)
t1 Y

(1)
t1+k1

Y
(2)
t2 Y

(2)
t2+k2

] = cum(Y
(1)
t1 , Y

(1)
t1+k1

, Y
(2)
t2 , Y

(2)
t2+k2

) +
1

16
τk1τk2

+
1

144
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1)) +

1

144
ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1))

(5.13)
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and inserting equations (5.11) and (5.13) in (5.10) yield the result.

(ii) Under (C0) we have hρ1,k (xy) = IE
[
hρ
(

(xy) ,

(
X

(1)
0

X
(1)
k

)
,

(
X

(2)
0

X
(2)
k

))]
with

hρ
( (x1y1

)
,
(x2y2

)
,
(x3y3

) )
=

∑
γ∈Γ{1,2,3}

2
(
I(xγ(1) < xγ(2))−

1

2

)(
I(yγ(1) < yγ(3))−

1

2

)
.

The first order kernel being centered by definition of the Hoeffding decomposition, from

(4.17) we know that

Cov
(
hρ1,k1

(
Xt1
Xt1+k1

)
, hρ1,k2

(
Xt2
Xt2+k2

))
= IE

[(
hρ
((

X
(1)
t1

X
(1)
t1+k1

)
,

(
X

(2)
t1

X
(2)
t1+k1

)
,

(
X

(3)
t1

X
(3)
t1+k1

))
− ρk1

)
·
(
hρ
((

X
(1)
t2

X
(1)
t2+2

)
,

(
X

(4)
t2

X
(4)
t2+k2

)
,

(
X

(5)
t2

X
(5)
t2+k2

))
− ρk2

)]
.

Thus, as IE[I(X
(i)
t < X

(j)
t )− 1

2
] = 0 under (C0) for any i, j = 1, . . . , 5; i 6= j, we obtain from

(4.17) that

Cov
(
hρ1,k1

(
Xt1
Xt1+k1

)
, hρ1,k2

(
Xt2
Xt2+k2

))
= 4

∑
γ∈Γ{1,2,3}

∑
γ̃∈Γ{1,4,5}

{
IE
(
I(X

(γ(1))
t1 < X

(γ(2))
t1 )− 1

2

)(
I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

)− 1

2

)
·
(
I(X

(γ̃(1))
t2 < X

(γ̃(2))
t2 )− 1

2

)(
I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)− 1

2

)}
− ρk1ρk2

= 4
∑

γ∈Γ{1,2,3}

∑
γ̃∈Γ{1,4,5}

[
cum

(
I(X

(γ(1))
t1 < X

(γ(2))
t1 ), I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

),

I(X
(γ̃(1))
t2 < X

(γ̃(2))
t2 ), I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)
)

+ cum
(
I(X

(γ(1))
t1 < X

(γ(2))
t1 )− 1

2
, I(X

(γ̃(1))
t2 < X

(γ̃(2))
t2 )− 1

2

)
· cum

(
I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

)− 1

2
, I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)− 1

2

)
+ cum

(
I(X

(γ(1))
t1 < X

(γ(2))
t1 )− 1

2
, I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)− 1

2

)
· cum

(
I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

)− 1

2
, I(X

(γ̃(1))
t2 < X

(γ̃(2))
t2 )− 1

2

)]
,(5.14)

where we have used the representation of centered fourth moments in terms of cumulants,
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property (v) of Theorem 2.3.1 in Brillinger (1975) and (5.12)

cum
(
I(X

(γ(1))
t1 < X

(γ(2))
t1 )− 1

2
, I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

)− 1

2

)
· cum

(
I(X

(γ̃(1))
t2 < X

(γ̃(2))
t2 )− 1

2
, I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)− 1

2

)
=

1

144
ρk1ρk2 .

Furthermore, the only permutations γ and γ̃ for which not all products of second order

cumulants in (5.14) contain one cumulant with one independent factor and thus equal 0 are

those with γ(1) = γ̃(1) = 1. For each of these 4 combinations we obtain

cum
(
I(X

(γ(1))
t1 < X

(γ(2))
t1 )− 1

2
, I(X

(γ̃(1))
t2 < X

(γ̃(2))
t2 )− 1

2

)
· cum

(
I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

)− 1

2
, I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)− 1

2

)
=

1

144
ρ(t2 − t1)ρ(t2 + k2 − (t1 + k1))(5.15)

and

cum
(
I(X

(γ(1))
t1 < X

(γ(2))
t1 )− 1

2
, I(X

(γ̃(1))
t2+k2

< X
(γ̃(3))
t2+k2

)− 1

2

)
· cum

(
I(X

(γ(1))
t1+k1

< X
(γ(3))
t1+k1

)− 1

2
, I(X

(γ̃(1))
t2 < X

(γ̃(2))
t2 )− 1

2

)
=

1

144
ρ(t2 + k2 − t1)ρ(t2 − (t1 + k1)).(5.16)

Plugging (5.15) and (5.16) into (5.14) concludes the proof.

2
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5.3.3 Proof of (4.6)

We will prove this result only for positive lags k as the proof for negative lags is analogous. More

precisely we consider

IE
[((n− k

c

)
U

(c)
n−k

)2]
=

∑
1≤t1<···<tc≤n−k

∑
1≤tc+1<···<t2c≤n−k

IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)](5.17)

and prove that

sup
0≤k≤brnc

IE
[((n− k

c

)
U

(c)
n−k

)2]
= O(n2c−1−θ)

Finally, using that inf0≤k≤brnc
(
n−k
c

)
≥ Knc for some constant K, establishes (4.6).

For any fixed 0 ≤ k ≤ brnc, decompose (5.17) into sums according to the following 3 cases:

(1) all 2c indices are different,

(2) 2c− 1 indices are different or

(3) 2(c− 1) or less indices are different,

that is ∣∣∣ ∑
1≤t1<···<tc≤n−k

∑
1≤tc+1<···<t2c≤n−k

IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]
∣∣∣

≤
∑

1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k
case (1)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

+
∑

1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k
case (2)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

+
∑

1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k
case (3)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

In the sequel, denote by t(j) the j-th smallest of all distinct indices among t1, . . . , t2c.

In case (1) we distinguish the following cases:
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(1.1) (t(2) − t(1)) > k or (t(2c) − t(2c−1)) > k.

(1.2) (t(2) − t(1)) ≤ k and (t(2c) − t(2c−1)) ≤ k.

In case (1.1), consider the set

S(1.1)
k (v) := {t1, . . . , t2c : 1 ≤ t1 < · · · < tc; 1 ≤ tc+1 < · · · < t2c; t1 6= · · · 6= t2c;

(t(2) − t(1)) > k or (t(2c) − t(2c−1)) > k; max{t(2) − t(1), t(2c) − t(2c−1)} = v}

and observe that #S(1.1)
k (v) ≤ (v + k)n2(c−1), where #S denotes the cardinality of the set S.

Then, we obtain from Lemma 5.5 (2) (ii), for some constant K,∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

t1 6=···6=t2c
(t(2)−t(1))>k or (t(2c)−t(2c−1))>k

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ K
n−k∑
v=1

∑
t1,...,t2c∈S(1.1)k (v)

β
δ

2+δ (max{t(2) − (t(1) + k), t(2c) − (t(2c−1) + k)})

≤ K
n−k∑
v=1

β
δ

2+δ (v)#S(1.1)
k (v) ≤ Kn2(c−1)

n−k∑
v=1

(v + k)β
δ

2+δ (v)

≤ O(n1−θ)n2(c−1) = O(n2c−1−θ),(5.18)

where we have bounded
∑n

v=1 vβ
δ

2+δ (v) from above by an integral and then concluded with As-

sumption (C3).

Next, in case (1.2),∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

t1 6=···6=t2c
(t(2)−t(1))≤k and (t(2c)−t(2c−1))≤k

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

=
∑

1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k
t1 6=···6=t2c

(t(2)−t(1))≤k and (t(2c)−t(2c−1))≤k
and ((t(3)−t(2))≤2k or (t(2c−1)−t(2(c−1)))≤2k)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

+
∑

1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k
t1 6=···6=t2c

(t(2)−t(1))≤k and (t(2c)−t(2c−1))≤k
and (t(3)−t(2))>2k and (t(2c−1)−t(2(c−1)))>2k

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|
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= (I) + (II).

For (I), we apply similar arguments as in the proof of Lemma 5.5 (2) (iii). That is, if we replace one

after another all random variables by independent copies and then rereplace them by independent

pairs with cdf Fk. We have for any permutation γ of {1, . . . , 2c},

|IE[hc,k(X tγ(1),k, . . . ,X tγ(c),k)hc,k(X tγ(c+1),k, . . . ,X tγ(2c),k)]|

≤ KcM
2

2+δ
c β

δ
2+δ ( min

i,j=1,...,2c
i 6=j

{|t(j) − t(i)|, |(t(j) + k)− t(i)|}).

for a constant Kc depening only on c. Next, let u(t(1), . . . , t(2c)) := mini,j=1,...,2c
i 6=j

{|t(j)− t(i)|, |(t(j) +

k)− t(i)|} which is always smaller than k and consider the set

S(I)
k (v) := {t1, . . . , t2c : 1 ≤ t1 < · · · < tc; 1 ≤ tc+1 < · · · < t2c; t1 6= · · · 6= t2c;

(t(2) − t(1)) ≤ k and (t(2c) − t(2c−1)) ≤ k; (t(3) − t(2)) ≤ 2k

or (t(2c−1) − t(2c−2)) ≤ 2k;u(t(1), . . . , t(2c)) = v}.

Then, for some constant K,

|(I)| ≤ K
k∑
v=0

∑
t1,...,t2c∈S(I)k (v)

β
δ

2+δ (u(t(1), . . . , t(2c)))

≤ K
k∑
v=0

β
δ

2+δ (v)#S(I)
k (v) ≤ O(1)r2

nn
2c−3

since sup
v=0,...,k

#S(I)
k (v) ≤ 2r2

nn
2c−3. Hence, (I) = O(r2

nn
2c−3) = o(n2c−1−θ). From Lemma 5.5 (2)

(iii) we know that

(II) ≤ 12M
2

2+δ
c

∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

t1 6=···6=t2c
(t(2)−t(1))≤k and (t(2c)−t(2c−1))≤k

and (t(3)−t(2))>2k and (t(2c−1)−t(2(c−1)))>2k

β
δ

2+δ (m(t1, . . . , t2c)).

Consider the set

S(II)
k (v) := {t1, . . . , t2c : 1 ≤ t1 < · · · < tc; 1 ≤ tc+1 < · · · < t2c; t1 6= · · · 6= t2c;

(t(2) − t(1)) ≤ k and (t(2c) − t(2c−1)) ≤ k; (t(3) − t(2)) > 2k
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and (t(2c−1) − t(2c−2)) > 2k;m(t(1), . . . , t(2c)) = v}

with #S(II)
k (v) ≤ 2(v + 1)n2c−2. Then, for some constant K,

|(II)| ≤ K

k∑
v=0

∑
t1,...,t2c∈S(II)k (v)

β
δ

2+δ (m(t(1), . . . , t(2c))) ≤ K
k∑
v=0

β
δ

2+δ (v)#S(II)
k (v)

≤ K

k∑
v=0

2(v + 1)β
δ

2+δ (v)n2c−2 ≤ O(r1−θ
n )n2c−2 = O(r1−θ

n n2c−2)

and hence, (II) = O(r1−θ
n n2c−2) = O(n2c−1−θ).

Therefore, in case (1.2) we have∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

t1 6=···6=t2c
(t(2)−t(1))≤k and (t(2c)−t(2c−1))≤k

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

= O(n2c−1−θ).(5.19)

Combining equations (5.18) and (5.19) yields

∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

case (1)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]| = O(n2c−1−θ),

(5.20)

which concludes the consideration of case (1).

In case (2), we encounter the following situations:

(2.1) the index appearing twice is not t(1) or t(2).

(2.2) the index appearing twice is t(1) or t(2).

Then, ∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

case (2)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

=
( ∑

1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k
case (2.1)

+
∑

1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k
case (2.2)
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|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|
=: S1 + S2

In case (2.1), consider the following situations:

(a) t(2) − t(1) > k

(b) t(2) − t(1) ≤ k and t(3) − t(2) > 2k

(c) t(2) − t(1) ≤ k and t(3) − t(2) ≤ 2k

In situation (a), similarly as in the proof of Lemma 5.5 (ii), we replace the pair with the

smallest index X t(1),k by an independent copy in order to bound the summand from above by

2M
2

2+δβ
δ

2+δ (t(2) − (t(1) + k)). Hence, by assumption (C3),∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

case (2.1) (a)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ n2c−32M
2

2+δ
c

∑
t(2)−t(1)>k

β
δ

2+δ (t(2) − (t(1) + k))

≤ n2c−22M
2

2+δ
c

∞∑
u=1

β
δ

2+δ (u) = O(n2(c−1)).

Next, in situation (b), with similar arguments as in the proof of Lemma 5.5 (iii), we replace one

after another Xt(1) , Xt(2) , Xt(1)+k and Xt(2)+k by independent copies and obtain with assumption

(C3), ∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

case (2.1) (a)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ n2c−312M
2

2+δ
c

∑
t(2)−t(1)≤k

β
δ

2+δ (min
{
t(2) − t(1), t(1) + k − t(2)

}
)

≤ n2c−212M
2

2+δ
c

k∑
u=1

β
δ

2+δ (min
{
u, k − u

}
)

≤ n2c−212M
2

2+δ
c 2

b k
2
c∑

u=0

β
δ

2+δ (u) = O(n2(c−1)).

In situation (c), we use Lemma 5.5 (i) and the fact that in this case the number of summands
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is of order O(r2
nn

2c−3), that is∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

case (2.1) (c)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

≤ n2c−4
∑

t(2)−t(1)≤k
t(3)−t(2)≤2k

M
2

2+δ
c = O(r2

nn
2c−3) = O(n2(c−1))

Therefore, ∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

case (2.1)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]| = O(n2(c−1))

Since in case (2.2), the index appearing twice is t(1) or t(2), the indices t(2c−2) and t(2c−1) appear

only once. Thus the case can be handled by the similar arguments as case (2.1), i.e. we obtain∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

case (2.2)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]| = O(n2(c−1)).

Cases (2.1) and (2.2) yield∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

case (2)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

= O(n2(c−1)) = O(n2c−1−θ)(5.21)

which concludes the consideration of case (2).

In case (3) observe that the number of summands is of order O(n2(c−1)), such that together with

Lemma 5.5 (2) (i) we can conclude that∑
1≤t1<···<tc≤n−k, 1≤tc+1<···<t2c≤n−k

case (3)

|IE[hc,k(X t1,k, . . . ,X tc,k)hc,k(X tc+1,k, . . . ,X t2c,k)]|

= O(n2(c−1)) = O(n2c−1−θ)(5.22)

Finally, combining equations (5.20), (5.21) and (5.22) yields the result. 2
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5.3.4 Proof of (4.9)

We have by (4.3) that

f̂n,ξ(ω) =
1

2π

∑
|k|≤rn

w
( k
rn

){
ξk +

m

n− |k|
∑
t∈Tk

hξ1,k(X t,k)
}
e−ikω +OP

(
rnn

−1/2−θ/2
)
.

Next,

f̂n,τ (ω)−f̃n,τ (ω) =
1

2π

∑
|k|≤rn

w
( k
rn

)( m

n− |k|
− m

n

)∑
t∈Tk

hξ1,k(X t,k)e
−ikω

+
1

2π

∑
|k|≤rn

w
( k
rn

)m
n

(∑
t∈Tk

hξ1,k(X t,k)−
n∑
t=1

hξ1,k(X t,k)
)
e−ikω +OP

(
rnn

−1/2−θ/2
)

= An +Bn +OP

(
rnn

−1/2−θ/2
)

Similar arguments as in the proof of (4.4) yield

IE|An| ≤
m

2π
(2rn + 1)

∣∣∣ 1

n− rn
− 1

n

∣∣∣ sup
|k|≤rn

IE
∣∣∣∑
t∈Tk

hξ1,k(X t,k)
∣∣∣ = O

( r2
n

n3/2

)
,

where we have used that | 1
n−rn −

1
n
| = O

(
rn
n2

)
and sup|k|≤rn IE|

∑
t∈Tk h

ξ
1,k(X t,k)| = O(n1/2). Next,

Bn = − m

2π

∑
0≤k≤brnc

w
( k
rn

) 1

n

n∑
t=n−k+1

hξ1,k(X t,k)e
−ikω

− m

2π

∑
−brnc≤k<0

w
( k
rn

) 1

n

|k|∑
t=1

hξ1,k(X t,k)e
−ikω

=: B1,n +B2,n.

Note that by the stationarity of the process {Xt}t∈Z,

B1,n
D
= −m

2π

∑
0≤k≤brnc

w
( k
rn

) 1

n

k∑
t=1

hξ1,k(X t,k)e
−ikω.

Similarly as for An we obtain

IE|B1,n| ≤
m

2π
(2rn + 1)

1

n
sup

0≤k≤brnc
IE
∣∣∣ k∑
t=1

hξ1,k(X t,k)
∣∣∣ = O

(r3/2
n

n

)
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and analogously,

IE|B2,n| ≤
m

2π
(2rn + 1)

1

n
sup

−brnc≤k<0

IE
∣∣∣ |k|∑
t=1

hξ1,k(X t,k)
∣∣∣ = O

(r3/2
n

n

)
.

Altogether,

f̂n,τ (ω)− f̃n,τ (ω) = OP

(
rnn

−1/2−θ/2 + r3/2
n n−1

)
.

This concludes the proof of (4.9). 2
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