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Abstract

We consider a uniform distribution on the setMk of moments of order k ∈ N corresponding
to probability measures on the interval [0, 1]. To each (random) vector of moments inM2n−1

we consider the corresponding uniquely determined monic (random) orthogonal polynomial
of degree n and study the asymptotic properties of its roots if n→∞.
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1 Introduction

For a probability measure η on the interval [0, 1] let

ck = ck(η) =

∫ 1

0

xkη(dx) k = 0, 1, 2, . . .(1.1)

denote the corresponding moments and consider the moment space (of order n) defined by

Mn = {(c1(η), . . . , cn(η))T | η is a probability measure on the interval [0, 1] } .(1.2)

The setMn is a very small subset of Rn with volume proportional to 2−n
2 and has been studied

extensively in the literature [see e.g. Karlin and Shapeley (1953), Skibinsky (1967, 1968, 1969),
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Chang, Kemperman and Studden (1993) or Gamboa and Lozada-Chang (2004)]. In order to
understand the structure of the moment space Chang, Kemperman and Studden (1993) assigned
a uniform distribution overMn and studied the asymptotic properties of the first k components
of the random vector

(C1,n, . . . , Cn,n)T ∼ U(Mn)(1.3)

if n → ∞. In particular, they showed that an appropriately standardized version of the vector
(C1,n . . . , Ck,n)T converges weakly to a centered normal distribution, that is

√
n {(C1,n, . . . , Ck,n)T − (c01, . . . , c

0
k)
T} → N (0,Σ),(1.4)

where c0k denotes the kth moment of the arcsine distribution defined by

c0k =
1

π

∫ 1

0

xk√
x(1− x)

dx =
1

22k

(
2k

k

)
, k = 0, 1, . . . ,(1.5)

and the matrix Σ ∈ Rk×k is given by

Σ =
1

2

(
c0i+j − c0i c0j

)k
i,j=1

.(1.6)

A large deviation principle for the random moment vector (C1,n . . . , Ck,n)T was derived in Gamboa
and Lozada-Chang (2004), while Dette and Gamboa (2007) investigated the asymptotic properties
of a moment range process.
It is the purpose of the present paper to provide further insight in the probabilistic proper-
ties of quantities associated to random moment sequences. In particular, by the definition
L(xk) = Ck,2n−1 (k = 1, . . . , 2n− 1) each random vector (C1,2n−1, . . . , C2n−1,2n−1)

T ∼ U(M2n−1)

defines a (random) moment functional and a corresponding sequence of monic random orthogonal
polynomials P0,n(x), . . . , Pn,n(x) satisfying

L(Pk,n Pl,n) = 0 if k 6= l ; k, l ∈ {0, . . . , n}(1.7)

[see Chihara (1978)]. These polynomials are carefully introduced in Section 2, where we also
state some non-standard results regarding moment theory. In Section 3 we derive the asymptotic
properties of the (random) roots X1,n, . . . , Xn,n of the polynomial Pn,n(x) associated with the
random moment sequence (C1,2n−1, . . . , C2n−1,2n−1) ∼ U(M2n−1). In particular, it is shown that
the empirical distribution function of the (random) roots X1,n, . . . , Xn,n converges almost surely
to the arcsine distribution if n → ∞ and that an appropriate standardization of the vector
X1,n, . . . , Xk,n is asymptotically normal distributed, where the roots of the Chebyshev polynomial
of the first kind are used for the centering, and the rate of convergence is 1/

√
n.
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2 Random coefficients in a three term recurrence relation

The setMn defined by (1.2) is a very small compact subset of the unit cube [0, 1]n with nonempty
interior and volume

Vol(Mn) =
2n∏
k=1

Γ(k)Γ(k)

Γ(2k)
≈ c · 2−n2

(2.1)

[see Karlin and Shapely (1953)]. The interior of Mn is denoted by M0
n throughout this paper.

It is well known that there exist an infinite number of probability measures on the interval [0, 1]

with moments up to the order 2n− 1 given by (c1, . . . , c2n−1)
T ∈ M0

2n−1 [see Dette and Studden
(1997)]. Moreover, there exists a unique measure η− supported on exactly n points in the open
interval (0,1) such that ci(η−) =

∫ ′
0
xidη−(x) = ci(i = 1, . . . , 2n − 1) and such that the point

(c1(η
−), . . . , c2n(η−))T ∈ ∂M2n where ∂M2n denotes the boundary of the setM2n. The measure

η− is called lower principal representation of the point (c1, . . . , c2n−1)
T ∈ M0

2n−1 [see Skibinsky
(1967)]. A straightforward calculation shows [see e.g. Szegö (1975) or Chihara (1978)] that for a
given vector

(c1, . . . c2n−1)
T = (c1(η), . . . , c2n−1(η))T ∈M0

2n−1

the polynomials P0,n(x) = 1,

(2.2) Pm,n(x) : =

∣∣∣∣∣∣∣
c0 · · · cm−1 1
... . . . ...

...
cm · · · c2m−1 xm

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣

c0 · · · cm−1

... . . . ...
cm−1 · · · c2m−2

∣∣∣∣∣∣∣ ; m = 1, . . . , n

have leading coefficient 1 and are orthogonal with respect to the measure η−, that is

L(Pk,n Pl,n) =

∫ 1

0

Pk,n(x)Pl,n(x)dη−(x) = 0 if k 6= l,(2.3)

where the moment functional L is defined by

L(xk) = ck =

∫ 1

0

xkdη−(x) (k = 0, . . . , 2n− 1) .(2.4)

In other words: each vector (c1, . . . , c2n−1)
T ∈M0

2n−1 uniquely determines monic orthogonal poly-
nomials P0,n(x), . . . , Pn,n(x) satisfying (2.3). In the following we consider a one-to-one mapping
of the set M0

2n−1 on the cube (0, 1)2n−1, which was introduced by Skibinsky (1967). The new
coordinates are called canonical moments and have been studied by numerous authors [see e.g.
Dette and Studden (1997) for a detailed discussion]. To be precise, let P([0, 1]) denote the set of
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all probability measures on the interval [0, 1], Φk(x) = (x, . . . , xk) the vector of all monomials of
order k and define for a fixed vector c = (c1, . . . , ck)

T ∈Mk

Sk(c) :=

{
µ ∈ P([0, 1]) :

∫ 1

0

Φk(x)µ(dx) = c

}
as the set of all probability measures on the interval [0, 1] whose moments up to the order k
coincide with c = (c1, . . . , ck)

T . Note that this set is a singleton if and only if c ∈ ∂Mk [see Dette
and Studden (1997)]. For k = 2, 3, . . . and for a given point (c1, . . . , ck−1)

T ∈ Mk−1 we define
c+k = c+k (c1, . . . , ck−1) and c−k = c−k (c1, . . . , ck−1) as the largest and smallest value of ck such that
(c1, . . . , ck)

T ∈ ∂Mk, that is

c−k = min
{∫ 1

0

xkµ(dx) | µ ∈ S k−1(c1, . . . , ck−1)
}
,

c+k = max
{∫ 1

0

xkµ(dx) | µ ∈ Sk−1(c1, . . . , ck−1)
}
.

Note that c−k ≤ ck ≤ c+k and that both inequalities are strict if and only if (c1, . . . , ck−1)
T ∈M0

k−1

[see Dette and Studden (1997)]. For a moment point c = (c1, . . . , cn)T in the interior of the moment
spaceMn the canonical moments or canonical coordinates of the vector c are defined by

(2.5) p1 = c1, and pk =
ck − c−k
c+k − c

−
k

k = 2, . . . , n .

Note that 0 < pk < 1 (k = 1, . . . , n) if (c1, . . . , cn)T ∈ M0
n, and that the definition (2.5) defines

a one to one mapping between M0
n and the open unit cube (0, 1)n. For more details regarding

canonical moments we refer to the work of Skibinsky (1967,1968,1969) and to the monograph of
Dette and Studden (1997). In particular it is shown in the lastnamed reference that the three
term recurrence relation corresponding to the monic orthogonal polynomials defined by (2.2) can
be represented in terms of canonical moments, that is P0(x) = 1;P1(x) = x − ζ1 , and for
1 ≤ m ≤ n− 1

(2.6) Pm+1(x) = (x− ζ2m − ζ2m+1)Pm(x)− ζ2m−1ζ2mPm−1(x),

where the quantities ζk are given by ζ0 = 0, ζ1 = p1, ζk = qk−1pk with qk−1 = 1 − pk−1 if k ≥ 2.
Moreover, from the representation (2.5) it is easy to see that ∂c1/∂p1 = 1,

∂ck
∂pj

=

{
0 if j > k

rk(c1, . . . , ck−1) if j = k
(2.7)

(k ≥ 1) where

(2.8) rk+1(c1, . . . , ck) = rk+1 = c+k+1 − c
−
k+1 =

k∏
j=1

pj(1− pj).
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denotes the range of the moment space Mk (with the convention r1 = 1). In the following sec-
tion we will use these results to study stochastic properties of the roots of random orthogonal
polynomials associated with a uniform distribution on the moment spaceM2n−1.

3 Asymptotic zero distribution of random orthogonal poly-
nomials

For each n ∈ N let C2n−1 = (C1,2n−1, . . . , C2n−1,2n−1)
T ∼ U(M2n−1) denote a uniformly distributed

vector on the moment spaceM2n−1. From (2.1) it follows that

P (C2n−1 ∈M0
2n−1) = 1 ,

and consequently the random canonical moments, say P1,2n−1, . . . , P2n−1,2n−1, corresponding to
the random vector C2n−1 are well defined with probability 1. Observing the representation (2.7)
it follows that the density of the random vector (P1,2n−1, . . . , P2n−1,2n−1) is given by

(3.1)
2n−2∏
j=1

Γ(4n− 2j)

(Γ(2n− j))2

2n−2∏
j=1

(pi(1− pi))2n−j−1,

which means that {(Pj,2n−1)
2n−1
j=1 | n ∈ N} is a triangular array of rowwise independent random vari-

ables, where Pj,2n−1 has a symmetric Beta-distribution on the interval [0, 1] with parameter 2n−j,
that is Pj,2n−1 ∼ B(2n− j, 2n− j). In what follows, let Pm,n(x) denote the mth random monic or-
thogonal polynomial associated with the random vector C2n−1 by equation (2.2) andX1,n, . . . , Xm,n

the corresponding roots which are real with probability 1 [see Szegö (1975)]. Our first result gives
an explicit representation for the joint density of the random vector (X1,n, . . . , Xn,n)T .

Theorem 3.1. The joint density of the roots X1,n, . . . , Xn,n of the monic random orthogonal poly-
nomial Pn,n(x) corresponding to a random vector C2n−1 = (C1,2n−1, . . . , C2n−1,2n−1)

T ∼ U(M2n−1)

by equation (2.2) is given by

f(x1, . . . , xn) = c ·
∏

1≤i<j≤n

|xi − xj|4
n∏
i=1

I[0,1](xi),(3.2)

where the normalizing constant c is defined by

c =
1

Γ(n+ 1)

n−1∏
r=0

Γ(2r + 2n)

Γ(2r + 1)2Γ(2r + 2)
.
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Proof. Consider the random canonical moments (P1,2n−1, . . . , P2n−1,2n−1)
T corresponding to the

random vector (C1,2n−1, . . . , C2n−1,2n−1)
T ∼ U(M2n−1). Let Ξ1 = Ξ1,2n−1 = P1,2n−1 and for j ≥ 2

Ξj = Ξj,2n−1 = (1 − Pj−1,2n−1)Pj,2n−1, then it follows from the recursive relation (2.6) that the
random orthogonal polynomial Pn,n(x) can be represented as the determinant of a symmetric
tridiagonal matrix, that is

Pn,n(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− Ξ1 −
√

Ξ1Ξ2

−
√

Ξ1Ξ2 x− Ξ2 − Ξ3

−
√

Ξ3Ξ4
. . .

. . .
. . . −

√
Ξ2n−3Ξ2n−2

−
√

Ξ2n−3Ξ2n−2 x− Ξ2n−2 − Ξ2n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.3)

Consequently, the roots X1,n, . . . , Xn,n of the polynomial Pn,n(x) are the eigenvalues of the random
Jacobi matrix Jn,n where for m < n

Jm,n =



Ξ1

√
Ξ1Ξ2√

Ξ1Ξ2 Ξ2 + Ξ3
√

Ξ3Ξ4
. . .

. . .
. . .

√
Ξ2m−3Ξ2m−2√

Ξ2m−3Ξ2m−2 Ξ2m−2 + Ξ2m−1


∈ Rm×m .(3.4)

Now define for j = 0, . . . , 2n−1 the quantities αj = 2Pj+1,2n−1−1 then α0, . . . , α2n−1 are indepen-
dent random variables and αj follows a symmetric Beta-distribution on the interval [−1, 1] with
parameter 2n−j−1. Moreover, a straightforward calculation shows that the matrix J̃n = 4Jn,n−In
can be represented as

J̃n :=


b1 a1

a1 b2
. . .

. . . . . . an−1

an−1 bn

 ∈ Rn×n(3.5)

with entries

bk+1 = (1− α2k−1)α2k − (1 + α2k−1)α2k−2

ak+1 =
{

(1− α2k−1)(1− α2
2k)(1 + α2k+1)

}1/2
.

and α−1 = −1. This matrix has been considered recently by Killip and Nenciu (2004) in a
more general context. By the results of these authors we obtain that the density of the random
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eigenvalues λ1, . . . , λn of the matrix J̃n is given by c̃
∏

1≤i<j≤n |λi−λj|4, where c̃ is an appropriate
normalizing constant. Transferring this result to the eigenvalues of the matrix Jn,n it follows that
the density of the roots of the random polynomial Pn,n(x) is given by (3.2). 2

The density defined by (3.2) is a special case of the Jacobi ensemble in the symplectic case [see
e.g. Mehta (2004)] which has found considerable interest in the recent literature [see e.g. Collins
(2005) or Johnstone (2008) among others]. The density of the general Jacobi β-ensemble is given
by

cnan,bn

∏
1≤i≤j≤n

|λi − λj|β
n∏
i=1

λan
i (1− λi)bn I[0,1](λi)

where an, bn ≥ −1, cnan,bn
is a normalizing constant and β > 0 [see Killip and Nenciu (2004)].

While most authors consider the case where n → ∞, an/n → α; bn/n → β, much less attention
has been paid to the case where an and bn are fixed. We use the explicit representation for the
density of the roots of Pn,n(x) in terms of eigenvalues of the random matrix Jn,n defined in (3.4)
to derive asymptotic properties for the empirical distribution function of the random variables
X1,n, . . . , Xn,n.

Theorem 3.2. Let

Fn(x) =
1

n

n∑
j=1

I{Xj,n ≤ x}

denote the empirical distribution function of the roots of the monic random orthogonal polynomial
Pn,n(x) associated with the random vector C2n−1 = (C1,2n−1, . . . , C2n−1,2n−1)

T ∼ U(M2n−1), then
for all x ∈ [0, 1]

lim
n→∞

Fn(x) =
1

π

∫ x

0

dt√
t(1− t)

a.s.

Proof. Define

Dm,n =



1
2

1
2
√

2
1

2
√

2
1
2

1
4

1
4

1
2

. . . 1
4

1
4

1
2


∈ Rm×m,(3.6)

then a straightforward calculation shows that the characteristic polynomial of the matrix Dn,n is
given by the monic Chebyshev polynomial of the first kind on the interval [0, 1], that is

T n(x) := det(xIn −Dn,n) = 2−2n+1 cos(n arccos(2x− 1)),(3.7)
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which has roots

xk,n =
cos((2k − 1) π

2n
) + 1

2
; k = 1, . . . , n.(3.8)

Moreover, define Tk(x) = 22k−1 T k(x) for k ≥ 1, T0(x) = 1/
√

2 and T (x) = (T0(x), . . . , Tn−1(x))T ,
then it follows from the relation cos((n+1)z)+cos((n−1)z) = 2 cos(nz) cos(z) by a straightforward
calculation that

xk,n T (xk,n) = Dn,n T (xk,n) ; k = 1, . . . , n .(3.9)

This shows that the vectors

tk,n = T (xk,n) =

(
1/
√

2, cos(
2k − 1

2n
π), . . . , cos((n− 1)

2k − 1

2n
π)

)T
; k = 1, . . . , n(3.10)

are the eigenvectors of the matrix Dn,n corresponding to the eigenvalues x1,n, . . . , xn,n, respectively.
In the following discussion define

Nn(x) =
1

n

n∑
j=1

I{xj,n ≤ x}

as the empirical distribution function of the roots of T n(x) (or Tn(x)), then an elementary calcu-
lation shows that for all x ∈ [0, 1]

lim
n→∞

Nn(x) =
1

π

∫ x

0

dt√
t(1− t)

.(3.11)

From Bai (1999) we have for the Levy distance between the empirical distribution functions Fn
and Nn the estimate

L3(Fn, Nn) ≤ 1

n

n∑
j=1

| X(j),n − x(j),n |2 ≤
1

n
tr (Jn,n −Dn,n)2

≤ 1

n

n∑
i=1

(Jii −Dii)
2 +

2

n

n−1∑
i=1

(Jii+1 −Dii+1)
2,(3.12)

where X(1),n ≤ · · · ≤ X(n),n and x(1),n ≤ · · · ≤ x(n),n denote the ordered roots of the polynomials
Pn,n(x) and T n(x), respectively, and Jij and Dij are the elements of the tridiagonal matrices
Jn,n and Dn,n defined in (3.4) and (3.6), respectively. Using the notation Qj,2n−1 = 1 − Pj,2n−1

(j = 1, . . . , 2n− 1) it now follows by a straightforward calculation that for 2 ≤ i ≤ n

(Jii −Dii)
2 =

(
Q2i−3,2n−1P2i−2,2n−1 +Q2i−2,2n−1P2i−1,2n−1 −

1

2

)2

≤
{∣∣Q2i−3,2n−1 −

1

2

∣∣+
1

2

∣∣P2i−2,2n−1 −
1

2

∣∣+
∣∣Q2i−2,2n−1 −

1

2

∣∣+
1

2

∣∣P2i−1,2n−1 −
1

2

∣∣}2

≤
∣∣P2i−3,2n−1 −

1

2

∣∣2 + 9
∣∣P2i−2,2n−1 −

1

2

∣∣2 +
∣∣P2i−1,2n−1 −

1

2

∣∣2
8



and (J11 −D11)
2 ≤ |P1,2n−1 − 1

2
|2. Similarly we obtain for 2 ≤ i ≤ n− 1∣∣Jii+1 −Dii+1

∣∣2 ≤ ∣∣Q2i−2,2n−1P2i−1,2n−1Q2i−1,2n−1P2i,2n−1 −
1

16

∣∣
≤ 1

8

{
2
∣∣P2i−2,2n−1 −

1

2

∣∣+ 3
∣∣P2i−1,2n−1 −

1

2

∣∣+
∣∣P2i,2n−1 −

1

2

∣∣}
and

∣∣J1,2 −D1,2

∣∣2 ≤ 5
2

∣∣P1,2n−1 − 1
2

∣∣+ 1
4

∣∣P2,2n−1 − 1
2

∣∣. In the following discussion we will show that

1

n

n−1∑
i=1

∣∣P2i,2n−1 −
1

2

∣∣2 a.s.−→ 0,(3.13)

1

n

n∑
i=1

∣∣P2i−1,2n−1 −
1

2

∣∣2 a.s.−→ 0,(3.14)

which directly implies
1

n

n∑
i=1

(Jii −Dii)
2 a.s.−→ 0.

Moreover, for the remaining sum in (3.12) it follows that

1

n

n−1∑
i=1

(Jii+1 −Dii+1)
2 ≤ γ

{
1

n

n−1∑
i=1

∣∣P2i,2n−1 −
1

2

∣∣2}1/2

+

{
1

n

n∑
i=1

∣∣P2i−1,2n−1 −
1

2

∣∣2}1/2

a.s.
= o (1),

where the constant γ does not depend on n. The assertion is now a consequence of (3.11) and
(3.12), which yields for the Levy-distance between the empirical distribution function Fn and
distribution function F of the arcsine measure

L(Fn, F ) ≤ L(Fn, Nn) + L(Nn, F ) = o (1) a.s.

For a proof of the almost sure convergence in (3.13) and (3.14) we restrict ourselves to the statement
(3.13), the remaining case is treated similarly. In order to prove (3.13) we will use a strong law of
large numbers for arrays of rowwise independent random variables. To be precise, define

Zn,k = (P2k,2n−1 −
1

2
)2 − 1

8(2n− 2k) + 4
k = 1, . . . , n− 1

then E[Zn,k] = 0 and a tedious calculation shows that for k = 1, . . . , n− 1 and any t > 0

P (|Zn,k| > t) ≤ P (|Zn,n−1| > t) ,

where the distribution of the random variable Zn,n−1 does not depend on n [note that P2n−2,2n−1 ∼
B(2, 2)]. Consequently, we obtain from Theorem 2 in Hu, Móricz and Taylor (1989) that

Zn =
1

n1/p

n−1∑
k=1

Zn,k
a.s.−→ 0
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for any p ∈ [1, 2). Observing that

1

4

n−1∑
k=1

1

2(2n− 1− 2k) + 1
= O(log n)

it follows for any p ∈ [1, 2) that

1

n

n−1∑
k=1

∣∣P2k,2n−1 −
1

2

∣∣2 =
1

n1−1/p

{
Zn +O

( log n

n1/p

)}
= o

(
1

n1−1/p

)
a.s.,

which establishes (3.13) and completes the proof of Theorem 3.2. 2

Our final result refers to the asymptotic behaviour of the roots of the mth orthogonal polynomial
associated with the randommoment vector C2n−1 = (C1,2n−1, . . . , C2n−1,2n−1)

T ∼ U(M2n−1), where
m is fixed. In this case, the limiting distribution is normal, where the roots of the Chebyshev
polynomial T n(x) defined in (3.7) are used for the centering.

Theorem 3.3. Let X1,n, . . . , Xm,n denote the roots of the m-th random monic orthogonal poly-
nomial Pm,n(x), which corresponds to the random vector C2n−1 ∼ U(M2n−1) by equation (2.2),
then

4
√
n
{

(X1,n, . . . , Xm,n)T − (x1,n, . . . , xm,n)T
} D
−−−→n→∞ N (0,Γ),

where x1,m, . . . , xm,m are the roots of the Chebyshev polynomial of the first kind defined by (3.8)
and the matrix Γ is given by Γ = 2

m
(γk,l)

m
k,l=1, where

γk,l =
1

4
+

1

2

m∑
j=2

T 2
j−1(xk,m) T 2

j−1(xl,m)− 1

4

m−1∑
j=1

(
T 2
j−1(xk,m) T 2

j (xl,m) + T 2
j−1(xl,m) T 2

j (xk,m)
)

+
1

4
T1(xk,m) T1(xl,m) +

1

2

m−1∑
j=2

Tj−1(xk,m) Tj(xk,m) Tj−1(xl,m) Tj(xl,m)

− 1

4

m−2∑
i=1

(Tj−1(xk,m) Tj(xk,m) Tj(xl,m) Tj+1(xl,m) + Tj−1(xl,m) Tj(xl,m) Tj(xk,m) Tj+1(xk,m)) ,

Tj(x) = cos(j arccos(2x− 1)) and xk,m is the kth zero of the polynomial Tm(x) defined in (3.8).

Proof. It is easy to see that for fixed m ∈ N we have for k = 1, . . . ,m

4
√
n
(
Pk,2n−1 −

1

2

)
D
−−−→n→∞ N (0, 1) ,(3.15)
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which implies that the vector 4
√
n(P1,2n−1, . . . , Pm,2n−1)

T is asymptotically multivariate normal
distributed with mean 0 and covariance matrix Im (note that P1,2n−1, . . . , Pm,2n−1 are independent
random variables). A straightforward calculation now shows that

4
√
n
{(

Ξ1,2n−1, . . . ,Ξ2m−1,2n−1

)T
−
(1

2
,
1

4
, . . . ,

1

4

)T} D
−−−→n→∞ N2m−1(0, A2m−1) ,(3.16)

where the matrix A2m−1 ∈ R2m−1×2m−1 is tridiagonal and given by

A2m−1 =



1 −1
2

−1
2

1
2
−1

4

−1
4

1
2
−1

4
. . . . . . . . .

. . . −1
4

−1
4

1
2


.(3.17)

A further application of the delta-method finally yields

4
√
n

{


Ξ1

Ξ2 + Ξ3

...
Ξ2m−2 + Ξ2m−1√

Ξ1Ξ2√
Ξ3Ξ4

...
√

Ξ2m−3Ξ2m−2


−



1/2

1/2
...

1/2

1/(2
√

2)

1/2
...

1/2



}
D
−−−→n→∞ N (0, V )(3.18)

where the covariance matrix V = diag(V11, V22) ∈ R2m−1×2m−1 is block diagonal with blocks
V11 = Am ∈ Rm×m and

V22 =
1

8



1 − 1√
2

− 1√
2

1 −1
2

−1
2

1 −1
2

. . . . . . . . .
. . . −1

2

−1
2

1


∈ Rm−1×m−1.

Consequently, the difference of the matrices Jm,n−Dm,n defined by (3.4) and (3.6) converges also
weakly, that is

lim
n→∞

4
√
n (Jm,n −Dm) = S (weakly),
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where S denotes a triangular matrix given by

S =



M1 N1

N1 M2 N2

N2 M3 N3

. . . . . . . . .
. . . Nm−1

Nm−1 Mm


,

and {M1, . . . ,Mm} and {N1, . . . , Nm−1} define independent samplesM1 ∼ N (0, 1),Mj ∼ N (0, 1/2)

(j = 2, . . . ,m) Nj ∼ N (0, 1/8) (j = 1, . . . ,m− 1) such that

Cov (Mi,Mj) =


−1

2
if i = 1, j = 2 or i = 2, j = 1

−1
4

if j = i+ 1 or j = i− 1

0 else
(3.19)

Cov (Ni,Nj) =


− 1

8
√

2
if i = 1, j = 2 or i = 2, j = 1

− 1
16

if j = i+ 1 or j = i− 1

0 else
(3.20)

Using the same arguments as in Dimitriu and Edelman (2005) it now follows that the first order
properties of the matrix Jm,n are the same as the first order properties of the matrix Dm,n+ 1

4
√
n
S.

In particular, using Lemma 2.1 in this reference we obtain for i = 1, . . . ,m that the asymptotic
distribution of the vector

4
√
n
{

(X1,n, . . . , Xm,n)T − (x1,n, . . . xm,n)T
}

coincides with the distribution of the random vector

G =

(
tT1,m S t1,m
tT1,mt1,m

, . . . ,
tTm,m S tm,m
tTm,mtm,m

)T

(3.21)

where the vectors t1,m, . . . , tm,m ∈ Rm are defined by (3.10). Obviously, G has a multivariate
normal distribution with mean zero and it remains to calculate the corresponding covariance
matrix. For this purpose we note that for k = 1, . . . ,m

tTk,m tk,m =
1

2
+

m−1∑
l=1

cos2(l
2k − 1

2m
π) =

m

2
.

Therefore it remains to calculate the covariance matrix of the vector (tT1,m S t1,m, . . . , tTm,m S tm,m).
For this purpose we denote by (v1, . . . , vm) and (w1, . . . , wm) the components of the vectors tk,m
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and tl,m, respectively, and obtain

Cov (tTk,m S tk,m, tTl,m S tl,m) = Cov
( m∑
i=1

v2
iMi,

m∑
j=1

w2
jMj

)
+ 4 Cov

(m−1∑
i=1

vivi+1Ni,

m−1∑
j=1

wjwj+1Nj

)
= v2

1w
2
1 +

1

2

m∑
j=2

v2
jw

2
j −

1

4

{
w2

2 + v2
2 +

m−1∑
i=2

(v2
iw

2
i+1 + v2

i+1w
2
i )
}

+
1

2

m−1∑
i=1

vivi+1wiwi+1 −
1

4

{
v2w2w3 + w2v2v3 +

m−2∑
i=2

(vivi+1wi+1wi+2 + vi+1vi+2wiwi+1)
}
,

where we have used (3.19) and (3.20) and w1 = v1 = 1/
√

2. This proves the assertion of the
Theorem. 2.
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