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Abstract

In this paper we propose a new test for the hypothesis of a constant coefficient of variation

in the common nonparametric regression model. The test is based on an estimate of the L2-

distance between the square of the regression function and variance function. We prove

asymptotic normality of a standardized estimate of this distance under the null hypothesis

and fixed alternatives and the finite sample properties of a corresponding bootstrap test

are investigated by means of a simulation study. The results are applicable to stationary

processes with the common mixing conditions and are used to construct tests for ARCH

assumptions in financial time series.

Keywords and Phrases: stationary processes, nonparametric regression, constant coefficient of

variation, multiplicative error structure, generalized nonparametric regression models.

1 Introduction

We consider the common nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, 2, . . . , n,(1.1)
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where m denotes the regression function and σ2 the variance function and the random variables εi

satisfy E[εi|Xi = x] = 0 and E[ε2
i |Xi = x] = 1. In many applications the variance can be assumed

proportional to the squared mean which corresponds to the assumption of a constant coefficient

of variation. Typical examples include models obtained by the logarithmic transformation from

regression models with a multiplicative error structure [see Eagleson and Müller (1997)] or ARCH-

type models [see Engle (1982)]. Several authors have discussed the problem of estimating and

testing the regression function under the restriction that m and σ are proportional - see e.g. Mc

Cullagh and Nelder (1989), who considered generalized linear models, Carroll and Ruppert (1988),

who considered a constant coefficient of variation with a parametric model, and Eagleson and

Müller (1997), who investigated the common nonparametric regression model under the restriction

that m = cσ for some constant c.

In the present paper we will develop a formal test for the hypothesis of a constant coefficient of

variation in the nonparametric regression model (1.1), that is

H0 : m(x) = cσ(x)(1.2)

for some positive (but unknown constant) c. Besides the fact that this test can be used to

check the assumptions for a statistical inference in a nonparametric regression model with a

constant coefficient of variation, it can also be used as an indicator of a multiplicative error

structure (if it is applied to the squares of the data) and an exponentially distributed response Y

where E[Y |X = x] =
√

Var[Y |X = x] = m(x). In Section 2 we introduce the test statistic and

indicate possible applications. Section 3 contains our main results in the case of an i.i.d. sample

{Xi, Yi}n
i=1. We prove asymptotic normality of a standardized version of the test statistic under

the null hypothesis, local and fixed alternatives. In Section 4 we extend these results in the case

of stationary time series with the common mixing properties and discuss an application to test

for an ARCH(1) model. The finite sample properties of a bootstrap version of the new test are

investigated in Section 5 and some of the technical details for the proofs of our main results are

presented in the Appendix in Section 6.

2 Testing for a constant coefficient of variation in non-

parametric regression

Numerous authors have considered testing various hypotheses regarding the mean and the variance

function in the nonparametric regression model (1.1) [see e.g. Dette and Munk (2003) and the
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references in this paper]. These hypotheses include parametric and semi parametric assumptions

regarding the mean and variance function, but much less effort has been spent in investigating the

relation between mean and variance in the nonparametric regression model (1.1). In the present

paper we investigate the hypothesis (1.2) of a constant coefficient of variation using an estimate of

the L2-distance between the variance and squared regression function. Typical examples include

multiplicative models of the form

Yt = m(Xt)ηt

which can be written in the form (1.1) with σ(·) =
√

Var (ηt)m(·) and εt = (ηt − 1)/
√

Var(ηt).

Other examples include nonparametric ARCH models Xt =
√

m(X2
t−1)ηt, for which the squared

process corresponds to a multiplicative times series model.

To be precise let {Xi, Yi}n
i=1 denote a bivariate sample of observations from the nonparametric

regression model (1.1) with the same distribution and let m̂ and σ̂2 denote two nonparametric

estimates of the regression and variance function, respectively, which will be specified in the

following section. For any positive c we define the statistic Tn(c) as

Tn(c) =
1

n(n− 1)

∑

i6=j

Kg(Xi −Xj){c2Y 2
i − (c2 + 1)m̂2(Xi)}w(Xi)(2.1)

× {c2Y 2
j − (c2 + 1)m̂2(Xj)}w(Xj),

where w denotes a weight function, Kg(·) = 1
g
K(·/g), K(·) denotes a kernel and g is a bandwidth

converging to 0 with increasing sample size. Note that the statistic of the form (2.1) has been

considered before by Zheng (1996) for testing the parametric form of the regression function,

by Dette (2002) for testing homoscedasticity, by Dette and von Lieres und Wilkau (2003) and

Gozalo and Linton (2000) for testing additivity in a nonparametric regression model (1.1) with a

multivariate predictor. If the estimate m̂ is consistent it is intuitively clear that for a large sample

size

E[Tn(c)] ≈ E[Kg(X1 −X2){c2σ2(X1)ε
2
1 − 2c2m(X1)σ(X1)ε1 −m2(X1)}

× {c2σ2(X2)ε
2
2 − 2c2m(X2)σ(X2)ε2 −m2(X2)}]

≈ E[f(Xi){c2σ2(Xi)−m2(Xi)}2w2(Xi)]

= E[∆2
c(Xi)f(Xi)w

2(Xi)],(2.2)

where f denotes the density of X and

∆c(x) = m2(x)− c2σ2(x).(2.3)
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Note that E[∆2
c(Xi)f(Xi)w

2(Xi)] = 0 if and only if the null hypothesis (1.2) is satisfied. There

exist a few cases, where the constant c in the statistic Tn(c) is known. For example in ARCH(1)

models with standard normal distributed innovations ηt we have X2
t = a0 + a1X

2
t−1 + (a0 +

a1X
2
t−1)(η

2
t − 1), which gives c = 1/

√
2. However, in most cases of practical interest the constant

c has to be estimated from the data. For this purpose we consider the least squares problem

ĉ2 = arg min
c∈IR>0

n∑
i=1

(m2(Xi)− c2σ2(Xi))
2w(Xi) =

∑n
i=1 m2(Xi)σ

2(Xi)w(Xi)∑n
i=1 σ4(Xi)w(Xi)

(2.4)

and estimate the unknown quantities on the right hand side. We define the residuals

r̂(Xi) = Yi − m̂(Xi), (i = 1, . . . , n)(2.5)

and the estimate

ĉ2 =
(1/n)

∑n
i=1 m̂2(Xi)r̂

2(Xi)w(Xi)

(1/n)
∑n

i=1(σ̂
2(Xi))2w(Xi)

.(2.6)

Note that the squared residuals r̂2(·) are used for estimating the variance function in the numerator

of ĉ2 in order to avoid an additional bias caused by the use of the variance estimator σ̂2(·) [see the

proof of Theorem 3.2 in the Appendix].

It is intuitively clear that the expression ĉ2 estimates

c2
0 =

E[m2(X)σ2(X)w(X)]

E[σ4(X)w(X)]
,(2.7)

which coincides with the constant c2 if the null hypothesis (1.2) is satisfied and corresponds to

the best L2-approximation of m2 by functions of the form c2σ2, otherwise. Consequently the

hypothesis of a constant coefficient of variation will be rejected for large values of the statistic

Tn(ĉ).

In the following sections we specify the asymptotic properties of the statistics Tn(c), ĉ2 and Tn(ĉ) if

the local linear estimate [see Fan and Gijbels (1996)] is used for estimating the mean and variance

function.

3 Main results

In order to state our main results we have to specify nonparametric estimates of the regression

and variance function and several assumptions for the model (1.1). We begin with the definition

of the estimates. For the regression function we use the local linear estimate [see Fan and Gijbels

(1996)]

m̂(x) =

∑n
i=1 Kh(Xi − x) [sn,2(x)− (x−Xi)sn,1(x)] Yi∑n

i=1 Kh(Xi − x) [sn,2(x)− (x−Xi)sn,1(x)]
(3.1)
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where Kh(·) = 1
h
K(·/h), K(·) is a kernel, h denotes a further bandwidth and

sn,l(x) =
n∑

i=1

Kh(Xi − x)(x−Xi)
l l = 1, 2.(3.2)

Similarly, the estimate of the variance function is obtained by replacing the observations Yi by the

squared residuals r̂2(Xi) defined in (2.5) and is given by

σ̂2(x) =

∑n
i=1 Kh(Xi − x) [sn,2(x)− (x−Xi)sn,1(x)] r̂2(Xi)∑n

i=1 Kh(Xi − x) [sn,2(x)− (x−Xi)sn,1(x)]
.(3.3)

For the sake of transparency we first assume that {Xi, Yi}n
i=1 is a sample of independent identically

distributed observations. A corresponding result in the time series context is given in the following

section. Moreover, the same bandwidths are assumed for the calculation of the estimates of the

regression and variance function for the sake of simple notation. The treatment of different

bandwidths in these estimates does not cause additional difficulties (and in the simulation study

presented in Section 5 we used in fact different bandwidths). Throughout this section we assume

that the following assumptions are satisfied

(A1) The density f is twice continuously differentiable on compact sets.

(A2) The regression function m is four times continuously differentiable on compact sets.

(A3) The variance function σ2 is positive and twice continuously differentiable on compact sets.

(A4) The weight function w is twice continuously differentiable and has compact support con-

tained in {x|f(x) > 0}.

(A5) The kernel K is of order 2, and satisfies a Lipschitz condition.

(A6) If n →∞ the bandwidth g and h satisfy

h ∼ n−1/5, g = o(h2), ng →∞.(3.4)

(A7) The function mk(x) = E[εk|X = x] is continuous for k = 3, 4 and for 1 ≤ k ≤ 8 uniformly

bounded, that is

E[εk
t |Xt = x] ≤ C < ∞, k ≤ 8.(3.5)

(A8) The regression and variance function satisfy

E[m(X)]k < ∞ for k = 2, 4, and E[σ2(X)]k < ∞ for k = 1, 2.
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Our first result specifies the asymptotic distribution of the statistic Tn(c), where the constant c

in the hypothesis (1.2) is known. Roughly speaking the statistic Tn(c) is asymptotically normal

distributed with different rates of convergence under the null hypothesis and alternative. The

proof is complicated and therefore deferred to the Appendix.

Theorem 3.1. Assume that the assumptions (A1) - (A7) are satisfied.

(a) Under the null hypothesis (1.2) we have

n
√

g Tn(c)
D−→ N (0, µ2

0),(3.6)

where the asymptotic variance is given by

µ2
0 = 2 E[{−1 + 4c2 + 4cm3(X) + m4(X)}2m8(X)f(X)w4(X)]

∫
K2(u)du.(3.7)

(b) Under a fixed alternative H1 : m 6= cσ we have

√
n (Tn(c)− E[Tn(c)])

D−→ N (0, µ2
1(c)),(3.8)

where

E[Tn(c)] = E[∆2
c(X)f(X)w2(X)] + h2B(c) + o(h2)(3.9)

with ∆c defined in (2.3), κ2 =
∫

u2K(u)du and

B(c) = 2(c2 + 1) κ2E[∆c(X)m(X)m′′(X)f(X)w2(X)].(3.10)

The asymptotic variance is given by

µ2
1(c) = 4Var(∆2

c(X)f(X)w2(X)) + 16E[∆2
c(X)m2(X)σ2(X)f 2(X)w4(X)]

+4c4E[∆2
c(X)σ4(X)f 2(X){m4(X)− 1}w4(X)]

−16c2E[∆2
c(X)m(X)σ3(X)f 2(X)m3(X)w4(X)].

In most applications the value c in the hypothesis (1.2) is not known and has to be estimated

from the data. The following results specify the asymptotic properties of the estimate ĉ2 defined

in (2.6) and the test statistic Tn(ĉ).

Theorem 3.2. If the assumptions (A1) - (A8) are satisfied, then

ĉ2 − E[ĉ2] =
1

n

n∑
i=1

{
τ1

(
m2(Xi)σ

2(Xi)w(Xi)ε
2
i − E[m2(X)σ2(X)w(X)]

)

+ 2τ1m(Xi)σ
3(Xi)w(Xi)εi − τ2

(
σ4(Xi)w(Xi)− E[σ4(X)w(X)]

)
(3.11)

− 2τ2 σ4(Xi)w(Xi){ε2
i − 1}

}
+ op

(
1√
n

)
.
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Moreover, √
n(ĉ2 − E[ĉ2])

D→ N (0, ν2),(3.12)

where

E[ĉ2] = c2
0 + h2Γ + o(h2)(3.13)

and the constants Γ, τ1, τ2 and ν2 are given by

Γ = κ2 E[σ2(X){τ1m(X)m′′(X)− τ2(σ
2(X))′′}w(X)],

τ1 =
1

E[σ4(X)w(X)]
,

τ2 =
E[m2(X)σ2(X)w(X)]

E2[σ4(X)w(X)]
,

ν2 = τ 2
1 Var(m2(X)σ2(X)w(X)) + 4τ 2

1 E[m2(X)σ6(X)w2(X)]

+4τ 2
1 E[m3(X)σ5(X)m3(X)w2(X)] + τ 2

2 Var(σ4(X)w(X))

+4τ 2
2 E[σ8(X){m4(X)− 1}w2(X)]− 2τ1τ2Cov(m2(X)σ2(X)w(X), σ4(X)w(X))

−4τ1τ2E[m2(X)σ6(X){m4(X)− 1} w2(X)]− 4τ1τ2E[m(X)σ7(X)m3(X)w2(X)].

We are now in a position to investigate weak convergence of the statistic Tn(ĉ), where the estimate

ĉ2 is defined in (2.4). We begin with the asymptotic distribution under the null hypothesis (1.2).

Interestingly, in this case the estimation of the scaling factor c has no influence on the asymptotic

properties of the test statistic.

Theorem 3.3. Assume that the assumptions (A1) - (A8) are satisfied. Under the null hypothesis

(1.2) we have

n
√

g Tn(ĉ) = n
√

g Tn(c) + op (1)
D−→ N (0, µ2

0),

where the constant µ2
0 is defined in (3.7).

Our final result in this section refers to the asymptotic properties of the statistic Tn(ĉ) under the

alternative. In this case there appears an additional term in the bias and variance of the test

statistic, which is caused by the estimation of the scaling factor c. Recall that the constant c2
0

corresponds to the best L2-approximation of m2 by functions of the form c2σ2.

Theorem 3.4. Assume that the assumptions (A1) - (A8) are satisfied. Under a fixed alternative

% = E[∆c0(X)σ2(X)f(X)w2(X)] > 0
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we have √
n (Tn(ĉ)− E[Tn(ĉ)])

D−→ N (0, ω2
1),

where

E[Tn(ĉ)] = E[∆2
c0

(X)f(X)w2(X)] + h2(B(c0)− 2%Γ) + o(h2),

and B(c0) is a term in the bias of the statistic Tn(c0). The asymptotic variance ω2
1 is given by

ω2
1 = µ2

1(c0) + 4%2ν2 − 4% υ2(c0),

where µ2
1(c0) is defined in Theorem 3.1(b), ν2 corresponds to the asymptotic variance of ĉ2 in

Theorem 3.2 and

υ2(c0) = 2τ1E[∆c0(X)(m2(X)− c2
0σ

2(X)m4(X))m2(X)σ2(X)f(X)w3(X))

−2τ1E[∆2
c0

(X)f(X)w2(X)]E[m2(X)σ2(X)w(X)]

−4c2
0τ1E[∆c0(X)m(X)σ5(X)f(X)m3(X)w3(X)]

−2τ2Cov(∆2
c0

(X)f(X)w2(X), σ4(X)w(X))

+4c2
0τ2E[∆c0(X)σ6(X)f(X){m4(X)− 1}w3(X)]

+4τ1E[∆c0(X)m3(X)σ3(X)f(X)m3(X)w3(X)]

+8τ1E[∆c0(X)m2(X)σ4(X)f(X)w3(X)]

−8τ2E[∆c0(X)m(X)σ5(X)f(X)m3(X)w3(X)].

Remark 3.5. The term υ2(c0) corresponds to the asymptotic covariance between the statistic

Tn(c0) and the estimate ĉ2 of c2
0.

4 Further discussion

4.1 Asymptotic results for absolutely regular processes

The general nonparametric framework includes time series models. Typical examples are multi-

plicative models Zt = σtηt, where σt is a positive function of the past {Zt−i : i ≥ 1} and possibly

of the past volatility {σt−i : i ≥ 1}. For instance, defining σt by
√

ϑ0 + ϑ1Z2
t−1 for ϑi ≥ 0 we

achieve the linear ARCH(1) model. Therefore our test can also be used as a preliminary step to

identify certain time series. For this purpose it is necessary to extend the asymptotic results under

a more general setup which includes both time series data and i.i.d. observations as special cases.

For this purpose we need the following assumptions for some fixed ε ∈ (0, 1/2) and ξ > 2.
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(M1) The process (Xi, Yi) is absolutely regular, i.e.

β(k) = sup
s∈Z

E[sup{|P (A|F s
−∞)− P (A)|A ∈ F∞

s+k}] → 0, as k → 0,

where F t
s is the σ-algebra generated by {(Xl, Yl) : s ≤ l ≤ t}. Further,

∞∑
j=1

j2β
ε

1+ε (j) < ∞.

(M2) The innovations εt in the model (1.1) satisfy

E[εt|Xt,F t−1
−∞(X, Y )] = E[εt|Xt] = 0,

and

Var(Yt|Xt,F t−1
−∞(X,Y )) = σ2(x).

Further, E|εt|k < ∞ to the order k ≤ 48ξ(1 + ε).

(M3) The regression function m(·) satisfies

E|m(X)|k < ∞ for k ≤ 4(1 + ε) and

E|m′′(X)|k < ∞ for k ≤ 20ξ(1 + ε),

whereas the variance function σ2(·) fulfills

E|σ2(X)|k < ∞ for k ≤ 12ξ(1 + ε).

Note that assumption (M3) contains assumption (A8) which is therefore omitted. Under the as-

sumptions (A1) - (A7) together with (M1) - (M3) the asymptotic results for Tn(c), ĉ2 and Tn(ĉ) can

be established for strictly stationary, β-mixing processes {Xi, Yi}i∈Z. The proof of the following

results is obtained from the proof of the statements presented in Section 3 for the independent case

using similar arguments as given by Dette und Spreckelsen (2004), where the authors investigate

the asymptotic distribution of goodness-of-fit tests of linearity for absolutely regular processes.

For the sake of brevity the details are omitted and we refer the interested reader to the PhD thesis

of Wieczorek (2007). Moreover, we only state the results for the statistic Tn(ĉ). Note that under

the null hypothesis the asymptotic distribution of Tn(ĉ) under mixing assumptions coincides with

the distribution for the i.i.d. case.
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Theorem 4.1 Assume that the assumptions (A1) - (A7) and (M1) - (M3) are satisfied. Under

the null hypothesis, we have

n
√

g Tn(ĉ)
D−→ N (0, µ2

0),

where µ2
0 is the asymptotic variance of Tn(c) defined in (3.7).

Our final theoretical result states the asymptotic properties of the statistic Tn(ĉ) under fixed al-

ternatives. Note that in this case the variance of the limit distribution contains the variance of

the limit distribution for the i.i.d. case as well as additional covariances. For a precise statement

of the result we introduce the notation E⊗, which denotes the expectation with respect to the

product measure.

Theorem 4.2. If the assumptions (A1) - (A7) and (M1) - (M3) are satisfied, then under a fixed

alternative % > 0 we have

√
n

(
Tn(ĉ)− E⊗[Tn(ĉ)]

) D−→ N (0, ω̃2
1).

In particular,
∣∣E[Tn(ĉ)]− E⊗[Tn(ĉ)]

∣∣ = o

(
1√
n

)
,

where the mean E⊗[Tn(ĉ)] and the constant % are given in Theorem 3.4. The asymptotic variance

is given by

ω̃2
1 = µ̃2

1(c0) + 4%2ν̃2 − 4% υ̃2(c0),(4.1)

where µ̃2
1(c0) denotes the asymptotic variance of Tn(c0) defined by

µ̃2
1(c0) = µ2

1(c0) + 8
∞∑

t=1

Cov(∆c0(X1)[∆c0(X1, ε1) + 2m(X1)σ(X1)ε1]f(X1)w
2(X1),

∆2
c0

(X1+t)f(X1+t)w
2(X1+t)),

µ2
1(c0) is defined in Theorem 3.1(b). The term ν̃2 in (4.1) corresponds to the asymptotic variance

of the estimate ĉ2 given by

ν̃2 = ν2 + 2
∞∑

t=1

Cov
(
2τ1m(X1)σ

3(X1)w(X1)ε1 − τ2σ
4(X1)w(X1){2ε2

1 − 1}

+τ1m
2(X1)σ

2(X1)w(X1)ε
2
1, τ1m

2(X1+t)σ
2(X1+t)w(X1+t)− τ2σ

4(X1)w(X1)
)
,
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where ν2 is given in Theorem 3.2 and υ̃2(c0) corresponds to the asymptotic covariance between

Tn(c0) and ĉ2 defined by

υ̃2(c0) = υ2(c0) + 2
∞∑

t=1

Cov
(
∆c0(X1)f(X1) {∆c0(V1) + 2m(X1)σ(X1)ε1}w2(X1),

{
τ1m

2(X1+t)σ
2(X1+t)− τ2σ

4(X1+t)
}

w(X1+t)
)

+ 2
∞∑

t=1

Cov
(
∆2

c0
(X1+t)f(X1+t)w

2(X1+t),

{
τ1m

2(X1)σ
2(X1)ε

2
1 + 2τ1m(X1)σ

3(X1)ε1 − τ2σ
4(X1)(2ε

2
1 − 1)

}
w(X1)

)
,

and υ2(c0) is defined in Theorem 3.4.

Remark 4.3. It is worthwhile to mention that in the case where the stationary process is

absolutely regular with a geometric rate, i.e. β(j) = O(ρj) for some ρ ∈ (0, 1), the asymptotic

covariance of the test statistic given in Theorem 4.2 coincides with the asymptotic covariance

given in Theorem 3.4 for the independent case, that is:

µ̃2
1(c0) = µ2

1(c0) , ν̃2 = ν2 , ν̃2(c0) = ν2(c0) .

Remark 4.4. The moment assumption (M3) is quite restrictive and limits the applicability of

the test to many interesting time series models such as ARCH or GARCH models. One possible

way to circumvent assumption (M3) is the introduction of an additional weight function in the

estimates. As a consequence a slight modification of the estimates can be arranged in our testing

procedure eliminating assumption (M3). The details can be found in Wieczorek (2007), and only

the modification is mentioned for the sake of brevity. We introduce in a first step an additional

weight function w∗, satisfying

(A9) w∗ is twice continuously differentiable and has compact support contained in {x|w(x) > 0}.

Next, we propose a modified estimate of the regression function given by m̂∗(x) = â, where

(â, b̂) = arg min
a,b

n∑
i=1

{Yi − a− b(Xi − x)}2 w(Xi)K

(
Xi − x

h

)
(4.2)

is the local linear estimate (additionally weighted by w) of the regression function and its deriva-

tive. Note that the modified local linear regression estimator m̂∗ differs from the local linear
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estimate m̂ in (3.1) by the introduction of the weight function w in (4.2). Similarly, we propose

(σ2)∗(x) = α̂ as the modified estimate of the variance function, where

(α̂, β̂) = arg min
α,β

n∑
i=1

{
(r̂∗)2(Xi)− a− b(Xi − x)

}2
w∗(Xi)K

(
Xi − x

h

)

is the local linear estimate (weighted by the second weight function w∗) based on the nonparametric

residuals r̂∗(Xi) defined by

r̂∗(Xi) = Yi − m̂∗(Xi).

Based on the modified estimates of the regression function and the variance function the new test

statistic is defined by

T ∗
n(c) =

1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)
{
c2Y 2

i − (c2 + 1)(m̂∗)2(Xi)
}

w∗(Xi)

× {
c2Y 2

j − (c2 + 1)(m̂∗)2(Xj)
}

w∗(Xj).(4.3)

In addition, we consider the modified least squares problem

(ĉ2)∗ = arg min
c∈IR>0

n∑
i=1

(m2(Xi)− c2σ2(Xi))
2(w∗)3(Xi).

Therefore, we define the estimate of c2 by

(ĉ2)∗ =
(1/n)

∑n
i=1(m̂

∗)2(Xi)(r̂
∗)2(Xi)(w

∗)3(Xi)

(1/n)
∑n

i=1((σ̂
2)∗(Xi))2(w∗)3(Xi)

.

As an immediate consequence of the modified definitions the asymptotic results in Theorem 4.1

and 4.2 can also be established for the test statistic T ∗
n(ĉ∗). No additional assumptions are needed,

in particular, the introduction of the weight functions in the estimators avoids the assumption

(M3) about the boundedness of the moments of the regression and variance function [see Wiec-

zorek (2007) for details]. This modification makes the test applicable to financial time series, as

demonstrated in the following section.

4.2 Example: Application to financial time series

The hypothesis of the proportionality of the regression function m and the volatility function σ

can also be used to test for a multiplicative model structure. In particular, the proposed test

can be viewed as a preliminary step in time series analysis before applying other procedures such

as specific testing procedures for ARCH or GARCH models. One important criterion in order

12



to establish all asymptotic results in such a context is assumption (M3). There the existence of

bounds for the absolute moments of the regression function m, its second derivative m′′ and the

variance function σ2 is required. But often financial time series do not satisfy this assumption.

For instance, consider the linear ARCH(1) model

Zt =
√

ϑ0 + ϑ1Z2
t−1ηt

for some constants ϑ0, ϑ1 ≥ 0, ϑ1 < 1, where ηt has mean 0 and variance 1 and is independent of

Zt−1 for all t. The squared ARCH(1) process can be written as

Z2
t = (ϑ0 + ϑ1Z

2
t−1) + (ϑ0 + ϑ1Z

2
t−1)εt,(4.4)

where εt = η2
t − 1. Clearly, model (4.4) can be identified as a particular case of the general

nonparametric regression model (1.1) by taking Yt = Z2
t , Xt = Z2

t−1, m(Xt) = ϑ0 + ϑ1Xt and

σ(Xt) = c−1(ϑ0 + ϑ1Xt). The scaling factor c is given by c2 = (E[η4]− 1)−1 and depends only on

the error distribution.

For the ARCH(1) process the assumption (M3) can therefore be formulated in terms of the bound-

edness of absolute moments of Zt. So it is important to know whether the stationary solution Zt

has moments of higher orders to apply the test. For stationary ARCH(p) processes with a sym-

metric error distribution, a necessary and sufficient condition for the existence of such moments

has been given by Milhøj (1985). In particular, let m > 0, then the mth moment of an ARCH(1)

model exists if and only if E[ϑ1η
2
0]

m < 1. As an immediate consequence, one sees that in many

cases ARCH processes do not have finite moments of higher orders.

In such cases we refer to Remark 4.4. In order to circumvent the assumption of existing high-order

moments of Zt we apply the (slightly) modified testing procedure. In particular, the identification

of the regression function m and the variance function σ2 provides the assumptions (A2) and (A3)

to be satisfied. Furthermore, from

E[εk|X = x] = ckE[(η2 − 1)k|Z2
t−1] = ckE[(η2 − 1)k]

it follows that (εt) fulfills (A7) and (M2) if the innovations ηt satisfy certain moment conditions.

If the assumptions (A1), (A4) - (A7), (A9) are satisfied and the ARCH(1) process (Zt) fulfills the

assumption (M1) the asymptotic normality under the null hypothesis of the corresponding test

statistic T ∗
n(ĉ∗) can be established, that is

n
√

g (T ∗
n(ĉ∗)− E[T ∗

n(ĉ∗)]) D→ N (0, (µ2
0)
∗),

where the asymptotic variance (µ2
0)
∗ is given by

(µ2
0)
∗ = 1152

∫
K2(u)du

8∑

k=0

(
n

k

)
ϑn−k

0 ϑk
1E[Z2kf(Z2)(w∗)4(Z2)].

13



5 Finite sample properties

In order to study the finite sample properties of the new test we have conducted a small simulation

study. Because it is well known that the approximation of the nominal level by the normal

distribution provided by Theorem 3.3 is not very accurate for moderate sample sizes, we do not

recommend to estimate the asymptotic variance and bias and to compare the standardized statistic

with the quantiles of a normal distribution. In contrary, we propose to use resampling methods.

As an example we have implemented a smooth bootstrap procedure to obtain the critical values.

For this purpose we estimate the regression and variance function by the local linear estimates

defined in (3.1) and (3.3), respectively, and consider the standardized residuals

ηi =
Yi − m̂(Xi)

σ̂(Xi)
i = 1, . . . , n ,(5.1)

which are normalized to have mean 0 and variance 1, that is

ε̂i =
ηi − η√

1
n−1

∑n
i=1(ηi − η)2

i = 1, . . . , n .(5.2)

The bootstrap errors are then defined as

ε∗i = ε̃∗i + vNi,(5.3)

where ε̃∗i , . . . , ε̃
∗
n are drawn randomly with replacement from the empirical distribution of the

standardized residuals ε̂1, . . . , ε̂n and N1, . . . , Nn are i.i.d standard normal distributed random

variables independent of the sample Yn = {(X1, Y1), . . . , (Xn, Yn)} and v=vn is a smoothing

parameter converging to 0 with increasing sample size. In the next step bootstrap data is generated

according to the model

Y ∗
i = ĉ σ̂(Xi) + σ̂(Xi)ε

∗
i i = 1, . . . , n ,(5.4)

where ĉ is the least squares estimate (2.6) obtained from the data corresponding to the range

[5%, 95%] of the predictors. The test statistic T ∗
n is calculated from the bootstrap data (X1, Y

∗
1 ),

. . . , (Xn, Y ∗
n ). If B bootstrap replications have been performed, the null hypothesis (1.2) is rejected

if

Tn > T ∗(bB(1−α)c)
n ,(5.5)

where T
∗(1)
n < < T

∗(B)
n denote the order statistic of the bootstrap sample. For the size of

the bootstrap replications we chose B = 100, while 1000 simulation runs are performed for the

calculation of the empirical level of this test. The sample sizes are given by n = 50, 100, 200

and the smoothing parameters in the test statistic and the bootstrap procedure are chosen by
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g = n−1/2 and v = 0.1, respectively. The bandwidths for the estimation of the variance and

regression function are chosen separately by least squares cross validation.

Our first example considers the model

m(x) = c(1 + 0.1x) ; σ(x) = (1 + 0.1x),(5.6)

where c = 0.5, 1, 1.5. The predictors X1, . . . , Xn are independent identically distributed following

a uniform distribution on the interval [0,1], while the errors ε1, . . . , εn have a standard normal

distribution. The first part of Table 1 shows the approximation of the nominal level, which is

rather accurate for sample sizes larger than n = 100. In a second step we study the power of the

test and consider the models

m(x) = c(1 + 0.1x) ; σ(x) = (1 + 0.1x +
√

x) ,(5.7)

m(x) = c(1 + 0.1x) ; σ(x) = (1 + 0.1x + 2
√

x) .(5.8)

The corresponding results are depicted in the lower part of Table 1. For the model (5.7) we observe

a moderate increase in power, which corresponds to intuition. Because the predictor varies in the

interval [0,1], the deviation from a multiplicative structure is extremely small for model (5.7). On

the other hand, the alternative model (5.8) is detected with larger power, which is also reflected

by rather high simulated rejection probabilities.

n 50 100 200

c \ α 2.5 % 5 % 10 % 20 % 2.5 % 5 % 10 % 20 % 2.5 % 5 % 10 % 20 %

0.5 .028 .056 .104 .229 .035 .063 .108 .211 .032 .052 .099 .207

(5.6) 1.0 .042 .051 .105 .210 .031 .049 .099 .194 .033 .054 .104 .204

1.5 .051 .069 .123 .241 .041 .061 .109 .202 .038 .055 .096 .205

0.5 .043 .067 .144 .267 .051 .074 .148 .269 .122 .187 .281 .442

(5.7) 1.0 .041 .069 .136 .264 .044 .094 .168 .281 .105 .144 .233 .368

1.5 .064 .091 .141 .247 .077 .109 .166 .273 .114 .152 .208 .341

0.5 .049 .092 .167 .283 .066 .097 .213 .368 .097 .155 .261 .421

(5.8) 1.0 .073 .122 .215 .362 .092 .156 .297 .464 .177 .266 .388 .554

1.5 .063 .107 .203 .378 .123 .187 .281 .442 .233 .316 .424 .559

Table 1: Simulated rejection probabilities of the bootstrap test (5.5), for three nonparametric re-

gression models, where the first line corresponds to a multiplicative model.
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Our second example investigates the performance of the bootstrap test in the context of stationary

time series. To this end we consider two models corresponding to the null hypothesis, that is

Xt = (1 + 0.1 Xt−1) + (1 + 0.1 Xt−1)εt(5.9)

Xt = sin(1 + 0.5 Xt−1) + sin(1 + 0.5 Xt−1)εt(5.10)

and two models corresponding to the alternatives of no multiplicative structure, i.e.

Xt = (1 + 0.1 Xt−1) + 0.5
√
|Xt−1| εt(5.11)

Xt = sin(1 + 0.5 Xt−1) + cos(1 + 0.5 Xt1)εt(5.12)

where the innovations are again independent standard normal distributed. The corresponding

results are displayed in Table 2. We observe a reasonable approximation of the nominal level for

the two models corresponding to the null hypothesis. On the other hand, the two alternatives in

(5.11) and (5.12) are detected with reasonable power.

n 50 100 200

α 2.5 % 5 % 10 % 20 % 2.5 % 5 % 10 % 20 % 2.5 % 5 % 10 % 20 %

(5.9) .029 .047 .097 .217 .023 .048 .089 .187 .024 .048 .097 .189

(5.10) .038 .057 .109 .201 .035 .054 .092 .191 .036 .057 .109 .205

(5.11) .053 .077 .161 .295 .074 .092 .182 .314 .113 .156 .237 .395

(5.12) .084 .117 .189 .299 .097 .133 .212 .321 .129 .176 .289 .417

Table 2: Simulated rejection probabilities of the bootstrap test (5.5) for four nonparametric au-

toregressive time series models. The models (5.9) and (5.10) correspond to the null hypothesis of

a multiplicative model, while models (5.11) and (5.12) represent the alternative.

6 Appendix: proofs

6.1 Proof of Theorem 3.1.

A straightforward calculation gives the decomposition

Tn(c) = (c2 + 1)2T1n − 2(c2 + 1){2c2T2n − T3n(c)}+ T4n(c)− 4c2{T5n(c)− c2T6n},(6.1)
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with

T1n =
1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)δn(Xi)w(Xi)δn(Xj)w(Xj),

T2n =
1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)δn(Xi)w(Xi)m(Xj)σ(Xj)w(Xj)εj,

T6n =
1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)m(Xi)σ(Xi)w(Xi)εim(Xj)σ(Xj)w(Xj)εj,

T3n(c) =
1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)δn(Xi)w(Xi)∆c(Xj, εj)w(Xj),

T4n(c) =
1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)∆c(Xi, εi)w(Xi)∆c(Xj, εj)w(Xj),

T5n(c) =
1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)∆c(Xi, εi)w(Xi)m(Xj)σ(Xj)w(Xj)εj,

where we have used the notation

∆c(Xi, εi) = m2(Xi)− c2σ2(Xi)ε
2
i(6.2)

δn(Xi) = m̂2(Xi)−m2(Xi).(6.3)

At the end of the proof we will show that the terms T1n and T2n are asymptotically negligible

under the null hypothesis and under fixed alternatives, that is

n
√

g Tjn
p−→ 0, j = 1, 2.(6.4)

We now have to distinguish the case of the null hypothesis and alternative.

Proof of Theorem 3.1(a). Note that the statistic T3n(c) reduces under the null hypothesis to

T3n(c)
H0=

1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)δn(Xi)w(Xi)m
2(Xj)w(Xj){1− ε2

j}.(6.5)

H0= 2T̃
(1)
3n + T̃

(2)
3n

with

T̃
(1)
3n =

1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)m(Xi)δ̃n(Xi)w(Xi)m
2(Xj)w(Xj){1− ε2

j},

T̃
(2)
3n =

1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)δ̃
2
n(Xi)w(Xi)m

2(Xj)w(Xj){1− ε2
j},
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where we use the notation

δ̃n(x) = m̂(x)−m(x).(6.6)

An application of Lemma 2 in Yao and Tong (2000) and a straightforward calculation [similar to

the proof of the estimate (6.4) given at the end of this section] yields

T̃
(1)
3n = Op

(
1

nh

)
, T̃

(2)
3n = Op

(
h

n

)
.(6.7)

Observing the conditions on the bandwidths we therefore have

T3n(c)
H0= op

(
1

n
√

g

)
.(6.8)

We note again that this estimate holds only under the null hypothesis.

We now obtain from (6.4) and (6.8) under the null hypothesis H0 : m(·) = c σ(·) that

Tn(c)
H0= T4n(c)− 4c2T5n(c) + 4c4T6n + op

(
1

n
√

g

)
,(6.9)

and the assertion follows if the weak convergence can be established for the statistic

T̃n(c) = T4n(c)− 4c2T5n(c) + 4c4T6n =
2

n(n− 1)

∑
i<j

hn(Vi, Vj),(6.10)

where Vi = (Xi, εi),

hij = hn(Vi, Vj) = Kg(Xi −Xj)π(Vi)w(Xi)π(Vj)w(Xj),

π(Vi) = m2(Xi){1− ε2
i − 2cεi}.

For a proof of weak convergence of T̃n(c) we note that the kernel hn(·, ·) is degenerate, i.e.

E [hn(Vi, Vj)|Vi] = E [hn(Vi, Vj)|Vj] = 0 a.s.(6.11)

and apply Theorem 2.1 in de Jong (1987). For this purpose we calculate the variance as

σ2
n = Var(T̃n(c)) =

22

n2(n− 1)2

∑
i<j

E[h2
ij]

=
2

n(n− 1)
E

[
K2

g (Xi −Xj)m
4(Xi)w

2(Xi)m
4(Xj)E[a2(εi)|Xi]E[a2(εj)|Xj]w

2(Xj)
]

=
µ2

0

n(n− 1)g
+ o

(
1

n2g

)
,

where we have used the notation

a(εi) = 1− ε2
i − 2cεi(6.12)
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and µ2
0 is defined in (3.7). Observing that by this calculation σ2

ij := E[h2
ij] = 1

g

µ2
0

2
· (1 + o(1)) we

therefore have

σ−2
n

n
max
i=1

( 1

n2(n− 1)2

∑
1≤j≤n

σ2
ij

)
= O

( 1

n

)
,

which proves the first assumption in de Jong’s (1987) Theorem 2.1. In order to establish the

second assumption we derive the decomposition [see de Jong (1987)]

E[T̃ 4
n(c)] = GI + 6GII + 12GIII + 24GIV + 6GV ,(6.13)

where

GI =
24

n4(n− 1)4

∑
i<j

E[h4
ij],

GII =
24

n4(n− 1)4

∑

i<j<k

E[h2
ijh

2
ik] + E[h2

jih
2
jk] + E[h2

kih
2
kj],

GIII =
24

n4(n− 1)4

∑

i<j<k

E[h2
ijhkihkj] + E[h2

ikhjihjk] + E[h2
kjhijhik],

GIV =
24

n4(n− 1)4

∑

i<j<k<l

E[hijhikhljhlk] + E[hijhilhkjhkl] + E[hikhilhjkhjl],

GV =
24

n4(n− 1)4

∑

i<j<k<l

E[h2
ijh

2
kl] + E[h2

ikh
2
jl] + E[h2

ilh
2
jk].

It is easy to see that [recall the notation of a(εi) in (6.12)]

E[h4
12] =

1

g4

∫ ∫
K4

g (x1 − x2)m
8(x1)m

8(x2)E[a4(ε1)|X1 = x1]E[a4(ε2)|X2 = x2]f(x1)f(x2)

w4(x1)w
4(x2) dx1 dx2

= O

(
1

g3

)
,

which gives

GI =
24

n4(n− 1)4

∑
i<j

E[h4
ij] = O

(
1

n6g3

)
.

The other terms are estimated similarly, i.e. GII = O( 1
n5g2 ), GIII = O( 1

n5g2 ), GIV = O( 1
n4g

) and

it follows from (6.13) that

E[T̃ 4
n(c)] = 6GV + o

(
1

n4g2

)
.(6.14)
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On the other hand a straightforward calculation shows

1

n4(n− 1)4

∑
i<j

σ4
ij = O

(
1

n6g3

)
,

1

n4(n− 1)4

∑

i<j<k

σ2
ijσ

2
ik = O

(
1

n5g2

)
,

and we obtain

σ4
n = 2GV + o

(
1

n4g2

)
,

which proves the second assumption in Theorem 2.1 of de Jong (1987), that is

E[T̃ 4
n(c)]− 3σ4

n = o

(
1

n4g2

)
.

Now this theorem yields asymptotic normality of n
√

g T̃n(c) , i.e. n
√

g T̃n(c)
D→ N (0, µ2

0), and the

assertion of Theorem 3.1(a) follows from (6.9) and (6.10).

Proof of Theorem 3.1(b). We first note that under a fixed alternative the statistic T3n(c) is

not negligible. More precisely, we show at the end of the proof

T3n(c)− E[T3n(c)] = 2T5n(c) + op

(
1√
n

)
(6.15)

where

E[T3n(c)] = h2κ2E[∆c(X)m(X)m′′(X)f(X)w2(X)] + o(h2).

We obtain for the statistic T6n in (6.1)

V ar(T6n) =
2

n2(n− 1)2

∑

i6=j

E
[
K2

g (Xi −Xj)m
2(Xi)σ

2(Xi)w
2(Xi) m2(Xj)σ

2(Xj)w
2(Xj)

]

=
2

n(n− 1)g
E[m4(x)σ4(x)f(x)w4(x)]

(∫
K2(u)du

)
+ o

( 1

n2g

)
,

which gives √
n T6n

p−→ 0(6.16)

(note that the expectation of T6n vanishes). A similar calculation yields

T4n(c)− E[T4n(c)] =
2

n

∑
i=1

∆c(Xi, εi)∆c(Xi)f(Xi)w
2(Xi) + op

(
1√
n

)
,

(6.17)

T5n(c) =
1

n

n∑
i=1

∆c(Xi)m(Xi)σ(Xi)f(Xi)w
2(Xi)εi + op

( 1√
n

)
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and E[T4n(c)] = E[∆2
c(X)f(X)w2(X)] + O(g2). Consequently we obtain from (6.1), (6.4), (6.16)

and (6.17) with

E[Tn(c)] = E[∆2
c(X)f(X)w2(X)] + h2B(c) + o(h2)

the following stochastic expansion under a fixed alternative

Tn(c)− E[Tn(c)] = (T4n(c)− E[∆2
c(X)f(X)w2(X)]) + 4T5n(c) + op

( 1√
n

)
(6.18)

= Zn(c) + op

( 1√
n

)
,

where the random variable Zn(c) is defined by

Zn(c) =
2

n

n∑
i=1

[
∆c(Xi, εi)∆c(Xi)f(Xi)w

2(Xi)− E[∆2
c(X)f(X)w2(X)]

+ 2m(Xi)σ(Xi)∆c(Xi)f(Xi)w
2(Xi)εi

]
,(6.19)

and the assertion of Theorem 3.1(b) follows by a standard application of the central limit theorem

verifying Ljapunoff’s condition and observing that the dominating term on the right hand side of

(6.18) has expectation 0 and variance
µ2

1(c)

n
.

The proof of Theorem 3.1 is now completed showing the remaining estimates (6.4) and (6.15).

Proof of the estimate (6.4). We consider exemplarily the case j = 1 (the other case is treated

by similar arguments) and obtain the decomposition

T1n = 4T
(1)
1n + 4T

(2)
1n + T

(3)
1n(6.20)

with

T
(1)
1n =

1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)m(Xi)δ̃n(Xi)w(Xi)m(Xj)δ̃n(Xj)w(Xj),

T
(2)
1n =

1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)m(Xi)δ̃n(Xi)w(Xi)δ̃
2
n(Xj)w(Xj),

T
(3)
1n =

1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)δ̃
2
n(Xi)w(Xi)δ̃

2
n(Xj)w(Xj)

[recall the definition of δ̃n(x) in (6.6)]. The terms T
(`)
1n are all treated similarly and we consider

again only the case ` = 1. With the notation

dk(x) =
Kh(Xk − x)

f(x)
(6.21)
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and Lemma 2 in Yao and Tong (2000) it follows

T
(1)
1n =

(
T

(1.1)
1n + κ2T

(1.2)
1n +

κ2
2

4
T

(1.3)
1n

)
{1 + op(1)}(6.22)

with

T
(1.1)
1n =

1

n3(n− 1)

∑

i6=j,k,l

Kg(Xi −Xj)dk(Xi)m(Xi)w(Xi)dl(Xj)m(Xj)w(Xj)σ(Xk)εkσ(Xl)εl,

T
(1.2)
1n =

h2

n2(n− 1)

∑

i6=j,k

Kg(Xi −Xj)dk(Xi)m(Xi)w(Xi)σ(Xk)εkm(Xj)m
′′(Xj)w(Xj),

T
(1.3)
1n =

h4

n(n− 1)

∑

i 6=j

Kg(Xi −Xj)m(Xi)m
′′(Xi)w(Xi)m(Xj)m

′′(Xj)w(Xj).

The terms T
(1.k)
1n , k = 1, 2, 3, can now be treated by calculating expectation and variance. For

example,

E[T
(1.1)
1n ]

=
1

n3(n− 1)

∑

i6=j,k

E
[
Kg(Xi −Xj)dk(Xi)m(Xi)w(Xi)dk(Xj)m(Xj)w(Xj)σ

2(Xk)
]
+ O

( 1

n2h2

)

=
1

n

∫
Kg(xi − xj)Kh(xk − xi)Kh(xk − xj)

×m(xi)w(xi)m(xj)w(xj)σ
2(xk)f(xk)dxidxjdxk + O

( 1

n2h2

)

=
1

nh

∫
m2(x)σ2(x)f(x)w2(x) dx

∫
K2(w) dw + o

(
1

nh

)
+ O

( 1

n2h2

)
.

= O

(
1

nh

)
+ O

(
1

n2h2

)
= O

(
1

nh

)
.

For the calculation of the variance of T
(1.1)
1n we introduce the notation Vi = (Xi, εi),

t
(1.1)
1n (Vi, Vj, Vk, Vl) = Kg(Xi −Xj)dk(Xi)m(Xi)w(Xi)σ(Xk)εkdl(Xj)m(Xj)w(Xj)σ(Xl)εl

and obtain

Var(T
(1.1)
1n ) ≤ E[(T

(1.1)
1n )2]

=
1

n6(n− 1)2

∑

i6=j,k,l

∑

p6=q,r,s

E
[
t
(1.1)
1n (Vi, Vj, Vk, Vl) t

(1.1)
1n (Vp, Vq, Vr, Vs)

]
= O

(
1

n2h2

)
,(6.23)

where we have used the fact, that the sum in (6.23) is dominated by those expectations, for which

two indices of k, l, r, s coincide. Markov’s inequality and the assumptions on the bandwidth now
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yield T
(1.1)
1n = op(n

−1g−1/2). The terms T
(1.2)
1n and T

(1.3)
1n in (6.22) are treated similarly, which

implies T
(1)
1n = op(n

−1g−1/2). A similar argument for the statistics T
(2)
1n and T

(3)
1n yields assertion

(6.4) for j = 1. The second case j = 2 is treated in the same way.

Proof of the estimate (6.15). With the representation

δn(x) = m̂2(x)−m2(x) = 2m(x)δ̃n(x) + δ̃2
n(x)

[recall the definition of δ̃(x) in (6.6)] we have

T3n(c) = 2T
(1)
3n (c) + T

(2)
3n (c)(6.24)

with

T
(1)
3n (c) =

1

n(n− 1)

∑

i 6=j

Kg(Xi −Xj)m(Xi)δ̃n(Xi)w(Xi)∆c(Xj, εj)w(Xj),

T
(2)
3n (c) =

1

n(n− 1)

∑

i 6=j

Kg(Xi −Xj)δ̃
2
n(Xi)w(Xi)∆c(Xj, εj)w(Xj).

A similar calculation as used in the proof of (6.4) yields

T
(2)
3n (c) = Op

(
1

nh

)
= op

(
1√
n

)
.(6.25)

For the first term in (6.24) we introduce a further decomposition applying Lemma 2 in Yao and

Tong (2000) and obtain

T
(1)
3n (c) =

(
T

(1.1)
3n (c) +

κ2

2
T

(1.2)
3n

)
{1 + op(1)}(6.26)

with [recall the definition of dk(·) in (6.21)]

T
(1.1)
3n (c) =

1

n2(n− 1)

∑

i6=j,k

Kg(Xi −Xj)dk(Xi)m(Xi)w(Xi)σ(Xk)εk∆c(Xj, εj)w(Xj),

T
(1.2)
3n =

h2

n(n− 1)

∑

i 6=j

Kg(Xi −Xj)m(Xi)m
′′(Xi)w(Xi)∆c(Xj, εj)w(Xj).

A straightforward but tedious calculation shows that T
(1.1)
3n (c) and T5n(c) are asymptotically equiv-

alent, that is

E[(T
(1.1)
3n (c)− T5n(c))2] = o

(
1

n

)
.(6.27)

For the second term we obtain by a Taylor expansion

E[T
(1.2)
3n ] = h2E[∆c(X)m(X)m′′(X)f(X)w2(X)] + o

(
1√
n

)
(6.28)
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and

Var(T
(1.2)
3n ) = o

(
1

n

)
,

which yields √
n

(
T

(1.2)
3n − E[T

(1.2)
3n ]

)
= op(1).(6.29)

Combining (6.24) - (6.29) and noting that E[T3n(c)] = κ2E[T 1.2
3n (c)] + o(h2) now establishes (6.15)

and completes the proof of Theorem 3.1. 2

6.2 Proof of Theorem 3.2.

Note that ĉ2 = R1

R2
where

R1 :=
1

n

n∑
i=1

m̂2(Xi)r̂
2(Xi)w(Xi), R2 :=

1

n

n∑
i=1

(σ̂2(Xi))
2w(Xi).

We now apply Lemma 2 in Yao and Tong (2000) and Lemma 1 in Fan and Yao (1998), which

give asymptotic representations of m̂(x)−m(x) and σ̂2(x)−σ2(x). A straightforward but tedious

calculation yields

R1 − E[R1] =
1

n

n∑
i=1

{(
m2(Xi)σ

2(Xi)w(Xi)ε
2
i − E[m2(X)σ2(X)w(X)]

)
(6.30)

+ 2 m(Xi)σ
3(Xi)w(Xi)εi

}
+ op

(
1√
n

)
,

R2 − E[R2] =
1

n

n∑
i=1

{(
σ4(Xi)w(Xi)− E[σ4(X)w(X)]

)
(6.31)

+ 2 σ4(Xi)w(Xi){ε2
i − 1}

}
+ op

(
1√
n

)

with

E[R1] = E[m2(X)σ2(X)w(X)] + h2κ2E[m(X)m′′(X)σ2(X)w(X)] + o(h2),

E[R2] = E[σ4(X)w(X)] + h2κ2E[σ2(X)(σ2(X))′′w(X)] + o(h2).

With this representation and the notations r1 := E[m2(X)σ2(X)w(X)] and r2 := E[σ4(X)w(X)]

it is easy to see that
1

R2

=
1

r2

{
1− R2 − r2

r2

+ o
( 1√

n

)
+ op

( 1√
n

)}
,

which implies

ĉ2 − c2
0 =

R1 − r1

r2

− R1(R2 − r2)

r2
2

+ op

( 1√
n

)
,(6.32)
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where c2
0 is defined in (2.7). Observing (6.30) we have

R1(R2 − r2) = E[R1](R2 − r2) + (R1 − E[R1])(R2 − r2)

= E[R1](R2 − E[R2]) + E[R1](E[R2]− r2) + Op

( h2

√
n

)

= r1(R2 − E[R2]) + E[R1](E[R2]− r2) + Op

( h2

√
n

)
,

and we obtain

ĉ2 − c2
0 =

R1 − E[R1]

r2

+
E[R1]− r1

r2

− r1(R2 − E[R2])

r2
2

− E[R1](E[R2]− r2)

r2
2

+ op

( 1√
n

)

= h2Γ + o(h2) + Z̃n + op

( 1√
n

)
,

where the random variable Z̃n is defined as

Z̃n =
1

n

n∑
i=1

{
τ1

(
m2(Xi)σ

2(Xi)w(Xi)ε
2
i − E[m2(X)σ2(X)w(X)]

)
+ 2τ1m(Xi)σ

3(Xi)w(Xi)εi

− τ2

(
σ4(Xi)w(Xi)− E[σ4(X)w(X)]

)
− 2τ2 σ4(Xi)w(Xi){ε2

i − 1}
}

.(6.33)

The assertion finally follows from the central limit theorem and a straightforward but tedious

calculation of the variance nVar(Z̃n) = ν2. 2

6.3 Proof of Theorem 3.3.

The assertion of the theorem follows, if the estimate

Tn(c)− Tn(ĉ) = op

(
1

n
√

g

)
(6.34)

can be established. For this purpose we introduce the analogue of the decomposition (6.1), and

obtain

Tn(ĉ) = (ĉ2 + 1)2T1n − 4ĉ2(ĉ2 + 1)T2n + 2(ĉ2 + 1)T3n(ĉ) + T4n(ĉ)− 4ĉ2T5n(ĉ) + 4ĉ4T6n(6.35)

= 2(ĉ2 + 1)T3n(ĉ) + T4n(ĉ)− 4ĉ2T5n(ĉ) + 4ĉ4T6n + op

( 1

n
√

g

)
,

where the last equality follows from (6.4) and Theorem 3.2. For the third term in (6.35) we have

T3n(ĉ) = T3n(c0)−
(
ĉ2 − c2

0

)
T

(a)
3n ,

where

T
(a)
3n =

1

n(n− 1)

∑

i 6=j

Kg(Xi −Xj)δn(Xi)w(Xi)σ
2(Xj)w(Xj)ε

2
j = Op(h

2) + Op

( 1

nh

)
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[this estimate can be shown by similar arguments as presented in the proof of the estimate (6.4)].

Consequently we obtain from Theorem 3.2

T3n(ĉ)− T3n(c0) = op

( 1

n
√

g

)
.(6.36)

The corresponding estimates

T4n(ĉ)− T4n(c0)
H0= op

( 1

n
√

g

)
,(6.37)

ĉ2T5n(ĉ) = c2
0T5n(c0) + op

( 1

n
√

g

)
,(6.38)

(ĉ2)2T6n = c4
0T6n + Op

( h2

n
√

g

)
(6.39)

are proved by similar arguments, which are not given here for the sake of brevity. Note that the

estimates (6.38) and (6.39) hold also under a fixed alternative. Recalling

c2
0

H0= c2

and combining (6.35) - (6.38) with Theorem 3.2 yields

Tn(ĉ)
H0= T4n(c)− 4c2T5n(c) + 4c4T6n + op

( 1

n
√

g

)
H0= Tn(c) + op

( 1

n
√

g

)
(6.40)

where the last equality follows from the proof of Theorem 3.1(a). This proves the first identity in

Theorem 3.3, while the remaining part follows again from Theorem 3.1. 2

6.4 Proof of Theorem 3.4.

Recalling the decomposition (6.35) and (6.38), (6.39) we obtain

Tn(ĉ) = 2(ĉ2 + 1)T3n(ĉ) + T4n(ĉ)− 4c2
0T5n(c0) + 4c4

0T6n + op

(
1√
n

)
,(6.41)

and it remains to investigate the asymptotic properties of T3n(ĉ) and T4n(ĉ) under the fixed

alternative. For this we note that (6.36) and the obvious estimate T3n(c0) = op(1) yield

(ĉ2 + 1)T3n(ĉ)− (c2
0 + 1)E[T3n(c0)] = 2(c2

0 + 1)T5n(c0) + op

( 1√
n

)
.(6.42)

The corresponding estimate for the term T4n(ĉ) is more difficult. Note first that

T4n(ĉ) = T4n(c0)− 2
(
ĉ2 − c2

0

)
T

(a)
4n (c0) +

(
ĉ2 − c2

0

)2
T

(b)
4n ,(6.43)
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where

T
(a)
4n (c0)

H1=
1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)(m
2(Xi)− c2

0σ
2(Xi)ε

2
i )w(Xi)σ

2(Xj)w(Xj)ε
2
j ,

T
(b)
4n

H1=
1

n(n− 1)

∑

i6=j

Kg(Xi −Xj)σ
2(Xi)w(Xi)ε

2
i σ

2(Xj)w(Xj)ε
2
j .

A standard calculation yields T
(b)
4n = Op(1), which shows that the second term in (6.43) is of order

op(
1√
n
). From Theorem 3.2. it follows

(ĉ2 − c2
0)T

(a)
4n (c0) = %(ĉ2 − E[ĉ2]) + h2ΓE[∆c0(X)σ2(X)f(X)w2(X)] + o(h2) + op

( 1√
n

)
,

where ∆c0(X) is defined in (2.3). Combining this with (6.43) therefore yields

Tn(ĉ)− E[Tn(ĉ)] = T4n(c0)− E[T4n(c0)] + 4T5n(c0)− 2%(ĉ2 − E[ĉ2]) + op

( 1√
n

)

= Zn(c0)− 2%Z̃n + op

( 1√
n

)
,

where the random variables Zn(c0) and Z̃n are defined in (6.19) and (6.33), respectively, and

E[Tn(ĉ)] = E[∆2
c0

(X)f(X)w2(X)] + h2(B(c0)− 2%Γ) + o(h2).

The variances of Zn(c0) and Z̃n have been determined in the proof of Theorem 3.1 and 3.2 and a

straightforward calculation gives nCov(Zn(c0), Z̃n) = υ2(c0), where υ2(c0) is defined in Theorem

3.4. The assertion now follows from a standard application of the central limit theorem. 2
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