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Abstract

We consider design issues for toxicology studies when we have a continuous re-

sponse but the true mean response is only known to be a member in a class of nested

models. This class of models were proposed by toxicologists who were concerned with

only estimation problems. We develop robust and efficient designs for model discrim-

ination and optimal designs for estimating parameters in the selected model at the

same time. In particular, we propose designs that maximize the minimum of D- or

D1-efficiencies over all models in the given class. We show that these optimal designs

are efficient for determining an appropriate model from the postulated class, quite ef-

ficient for estimating model parameters in the identified model and also robust with

respect to model mis-specification. To facilitate use of these designs in practice, we

have also constructed a web site to enable practitioners to generate optimal designs for

their problems.

Keyword and phrases: continuous design, local optimal design, maximin optimal

design, model discrimination, robust design.
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1 Introduction

This paper addresses design issues for toxicology studies when the primary outcome is con-

tinuous and it is not known a priori which model is an appropriate one to use. Under this

situation, one may consider a class of plausible models within which we believe lies an ade-

quate model for fitting the data at hand. The issues of interest are how to design the study

to ascertain the most appropriate model from within the postulated class of models and at

the same time able to estimate the parameters of the selected model efficiently. Our design

decisions include how to select the number of dose levels to observe the continuous outcome,

where these levels are and how many repeated observations to take at each of these levels.

Ideally, we want the design to be able to identify the correct model within the postulated

class of models and also provide efficient estimates for the parameters in the identified model.

In this paper, it is further assumed for simplicity that there is only one independent variable,

the dose level, and all design issues have to be decided in advance of the study. Sequential

designs are not considered.

Addressing design issues invariably require model assumptions that specify how the mean

outcome relates to the independent variable. Usually a specific functional form is assumed

either from experts’ opinions or from the science of the problem, see Gaylor and Chen (1993),

Catalano et al. (1993), Slob and Pieters (1998), Oscar (2004), Moerbeek et al. (2004), among

several others. When it is problematic to specify a single model to describe the functional

relationship between the mean outcome and the dose level, a strategy is to work with a

class of plausible nested models assumed to include the ’true’ model. This class of models

is usually arrived at after consultation with experts in the area. The key research question

is how to design the study to identify an appropriate model from the postulated class of

models and at the same time able to estimate the model parameters efficiently. Such design

problems are important and arise frequently in practice across disciplines. To our knowledge,

only a couple of papers have tried to address such design questions. A recent example is

Dette et al. (2005) where they wanted to discriminate between two popular nonlinear mod-
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els and at the same time wanted to estimate model parameters, regardless which one of the

two is the more appropriate model. The two models are the Michaelis-Menten model and

the Emax model which are popular among scientists in enzyme-kinetic studies. These are

nested models because when one of the parameters in the Emax model is set to unity, the

Michaelis-Menten obtains. A main reason for lack of research in addressing design issues in

such a setup is that there are serious technical difficulties involved, especially for nonlinear

models.

The motivation for this work comes from repeated proposals recently to use a class of models

to study a continuous outcome in toxicological studies [Moerbeek et al. (2004), Piersma et

al. (2002), Woutersen et al. (2001), Slob (2002)]. In all these papers, the interest was only

in estimation problems and so they did not consider design issues. As is typical in such pub-

lications, the rationale for the design or designs employed is either lacking or not properly

explained. Our purpose here is to develop optimal designs for identifying an appropriate

model within the class of models and also at the same time provide reliable estimates in the

selected model. Design issues are always difficult to address and we begin first by considering

local optimal designs because they are the easiest to construct for nonlinear models [Cher-

noff, (1953)]. However it is well known that such designs are sensitive to nominal values and

more so on the mean function in the model specification. To overcome the risk of selecting

an inappropriate model, we propose maximin optimal designs that appear to be robust to

mis-specification of the model in other settings. These maximin optimal design maximizes

the minimum efficiency regardless which model in the class of models is the appropriate

model. As such, these optimal designs provide some global protection against picking the

wrong model from the postulated class of models. As we will show, they are also quite

robust to mis-specification in the mean function and seem to provide good efficiencies for

estimating parameters in the selected model.

In section 2, we present background and the proposed class of models. We describe rela-

tionships among models in the class and provide local optimal designs for discriminating
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between plausible models. We also show how optimal designs constructed for a set of design

parameters can be used to deduce the optimal design under another set of design parameters.

In section 3, we construct maximin optimal designs for various subclasses of plausible models

and show in section 4 that maximin optimal designs are robust to mis-specification of models

in the postulated class. We offer a conclusion in section 5 and all technical justifications are

given in the appendix.

2 A class of dose response models

In a series of papers published in the toxicology literature, Woutersen et al. (2001), Piersma

et al. (2002), Slob (2002), Moerbeek et al. (2004), among others, proposed a class of dose

response models for modeling the effect of a drug in toxicological studies. On the user-

selected interval [0, T ], the nonlinear regression model is given by

Y = η(t, θ) + ε, (2.1)

where ε is a normally distributed error term with mean 0 and constant variance σ2 > 0. We

assume the unknown parameter θ is m-dimensional and all observations are independent.

The expectation of Y under experimental condition t is E[Y |t] = η(t, θ), and η(t, θ) is one

of the functions defined below:

η(t, θ) = a ; m = 1, θ = a > 0 (2.2)

η(t, θ) = ae−bt ; m = 2, θ = (a, b)T , a > 0, b > 0 (2.3)

η(t, θ) = ae−btd ; m = 3, θ = (a, b, d)T , a, b > 0, d ≥ 1 (2.4)

η(t, θ) = a(c− (c− 1)e−bt) ; m = 3, θ = (a, b, c)T , a, b > 0, c ∈ [0, 1] (2.5)

η(t, θ) = a(c− (c− 1)e−btd) ; m = 4, θ = (a, b, c, d)T , a, b > 0, c ∈ [0, 1], d ≥ 1. (2.6)

The authors gave arguments why this is a reasonable class to use for modeling continuous

(toxicological) endpoints in dose response relationships that cannot be derived from biological

mechanism. Note that the different models are nested, in the sense that the models with

a lower number of parameters can be obtained from an extended model by special choices
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of the parameters. For instance, model (2.6) is an extension of the models (2.5) and (2.4),

model (2.4) is an extension of model (2.3), model (2.5) is an extension of the models (2.3)

and (2.2). The hierarchy of the different models is illustrated in the following diagram.

(2.6)
d=1
=⇒ (2.5)

c=1
=⇒ (2.2)

⇓ c = 0 ⇓ c = 0

(2.4)
d=1
=⇒ (2.3)

We note that when b = 0 all models (2.3) - (2.6) reduce to the constant model (2.2), and

this relation is not shown in the diagram.

Following Kiefer (1974), we consider only continuous designs. A continuous design is sim-

ply a probability measure ξ with a finite number of support points, say t1, . . . , tn ∈ [0, T ]

and corresponding weights ω1, . . . , ωn with ωi > 0,
∑n

i=1 ωi = 1. If we fix the number of

observations N in advance, either by cost or time considerations, then roughly ni = Nωi ob-

servations are taken at point ti, with
∑n

i=1 ni = N . The reason for working with continuous

designs is that they can be described analytically for many problems and so they are easier

to study.

Jennrich (1969) showed that under regularity assumptions, the asymptotic covariance matrix

of the standardized least squares estimator
√

N/σ2 θ̂ for the parameter θ in the model (2.1)

is given by the matrix M−1(ξ, θ), where

M(ξ, θ) =

∫ T

0

f(t, θ)fT (t, θ)dξ(t)

is the information matrix using design ξ for the model (2.1) and

f(t, θ) =
∂η

∂θ
(t, θ) = (f1(t, θ), . . . , fm(t, θ))T (2.7)

is the vector of partial derivatives of the conditional expectation η(t, θ) with respect to the

parameter θ. Additionally, we consider only designs with a non-singular information matrix.

A sufficient condition for this property to hold is that the design has k support points and
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k exceeds the number of parameters in the model.

A local optimal design maximizes an appropriate function of the information matrix M (ξ, θ)

using nominal values of θ (Chernoff, 1953). There are several commonly used optimality

criteria for estimating purposes and for discriminating among competing designs [see Silvey

(1980) or Pukelsheim (1993)]. Our interests here are to find efficient designs for model selec-

tion among models defined by (2.2) – (2.6) and also provide good and robust estimates for

the parameters in the selected model. For this purpose we construct an optimal experimental

design for the following pairs of competing models that fulfills at least two requirements.

(1) The design should allow to test the hypothesis corresponding to the problem of dis-

criminating between two rival models. For example the hypothesis for discriminating

between the model (2.5) and (2.3) is given by

H0 : c = 0 vs H1 : c ∈ (0, 1]

(2) The design should be efficient for the estimation of the parameters in the corresponding

pair of the regression models and for all models which are sub models of the model with

the larger number of parameters. For example, for the model (2.5) the corresponding

sub models are given by (2.3) and (2.4).

(3) The design should also be efficient for discriminating between the different sub models

of the model with the larger number of parameters (which may also be nested). For ex-

ample, the optimal design for discriminating between the models (2.3) and (2.5) should

also be efficient for discriminating between the models (2.2)/(2.5) and (2.2)/(2.3).

In the rest of this section we concentrate on local optimal designs, and restrict ourselves to

the em-optimality criterion, where em = (0, . . . , 0, 1)T denotes the mth unit vector (and m is

the larger of the number of parameters in the two regression models under consideration).

For a fixed θ a local em-optimal design minimizes

eT
mM−1(ξ, θ)em =

det M̃(ξ, θ)

det M(ξ, θ)
, (2.8)
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where the matrix M(ξ, θ) is the information matrix in the model with the larger number

of parameters, and the matrix M̃(ξ, θ) is obtained from M(ξ, θ) by deleting the m-th row

and the m-th column. We note that the expression (2.8) is proportional to the asymp-

totic variance of the least squares estimate for the parameter eT
mθ, which is relevant for

model discrimination. In other words, minimizing the asymptotic variance (2.8) provides

a design with maximal power for testing a simple hypothesis for the parameter eT
mθ. For

example, in the problem of discriminating between model (2.5) and (2.3) we have m = 3,

eT
mθ = (0, 0, 1)(a, b, c)T = c and the cases c 6= 0 and c = 0 give the two rival models (2.5)

and (2.3), respectively. Consequently, a design that minimizes expression (2.8), which is

proportional to the variance of the least squares estimate for the parameter c, is optimal for

discriminating between the two models.

In the following subsections we construct local em-optimal designs for the pairs of the models

(2.4) – (2.6). We give a detailed description for the model (2.4) and briefly summarize the

corresponding results for the other models.

2.1 Optimal discriminating designs for the models (2.3) and (2.4)

For the model (2.4) we have θ = (a, b, d)T and a straightforward calculation yields that the

vector of partial derivatives defined by (2.7) is given by

f(t, θ) = f(t, a, b, d) =
(
e−btd ,−atde−btd ,−abtd ln(t)e−btd

)T

. (2.9)

Our first result establishes basic properties of local e3-optimal designs for model (2.4), and

facilitates their numerical calculation.

Lemma 2.1 The local e3-optimal design in the regression model (2.4) does not depend on

the parameter a. Moreover, if ti(b, d, T ) is a support point of a local e3-optimal design on

the interval [0, T ] with corresponding weight ωi(b, d, T ), then for any r > 0 and d > 0,

ti(b, d, T
1
d ) = ti(b, 1, T )

1
d , ωi(b, d, T

1
d ) = ωi(b, 1, T ),

ti(rb, 1, T ) = 1
r
ti(b, 1, rT ), ωi(rb, 1, T ) = ωi(b, 1, rT ).

(2.10)
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Note that we are interested in efficient designs for discriminating between models (2.3) and

(2.4). Because this problem is most difficult if the parameter d is close to unity we assume

that an initial parameter value of d is set equal to unity throughout this section. The lemma

also implies that it is enough to calculate local e3-optimal designs on a fixed design space for

various values of b after the remaining parameters a, d are fixed. Local optimal designs on

a different design space or have other values of the parameters can then be calculated using

the relationships in the lemma.

Our next result characterizes the local e3-optimal designs explicitly. We recall that a set of

k functions h1, . . . , hk : I → R is a Chebyshev system (on the interval I) if there exists an

ε ∈ {−1, 1} such that the inequality

ε ·

∣∣∣∣∣∣∣∣∣

h1(t1) . . . h1(tk)
...

. . .
...

hk(t1) . . . hk(tk)

∣∣∣∣∣∣∣∣∣
> 0

holds for all t1, . . . , tk ∈ I with t1 < t2 < . . . < tk. From Karlin and Studden (1966, Theorem

II 10.2), we know that if {h1, . . . , hk} is a Chebyshev system, there exists a unique function,

say
∑k

i=1 c∗i hi(t) = c∗T h(t), (h = (h1, . . . , hk)
T ) with the following properties

(i) |c∗T h(t)| ≤ 1 ∀ t ∈ I

(ii) there exist k points t∗1 < . . . < t∗k such that c∗T h(t∗i ) = (−1)i, i = 1, . . . , k.

The function c∗T h(t) alternates at the points t∗1, . . . , t
∗
k and is called the Chebyshev poly-

nomial. The points t∗1, . . . , t
∗
k are called Chebyshev points and they need not to be unique.

However, they are unique in many cases, in particular if 1 ∈ span{h1, . . . , hk}, k ≥ 1 and

I is a bounded and closed interval. In this case it follows t∗1 = mint∈I t, t∗k = maxt∈I t. The

following result characterizes the local e3-optimal design.

Theorem 2.1 The components of the vector defined by (2.9) form a Chebyshev system on

the interval [0, T ]. The local optimal e3-optimal design for model (2.4) is unique and is

supported at the uniquely determined three Chebyshev points, say t∗1 < t∗2 < t∗3. The corre-
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sponding weights ω∗1, ω
∗
2, ω

∗
3 can be obtained explicitly as

ω∗ = (ω∗1, ω
∗
2, ω

∗
3)

T =
JF−1e3

13JF−1e3

, (2.11)

where the matrices F and J are defined by F = (f(t∗1, θ), f(t∗2, θ), f(t∗3, θ)), J = diag(1,−1, 1),

respectively, and 13 = (1, 1, 1)T .

Local e3-optimal designs for model (2.4) on the design space [0, T ] with T = 1 are given in

Table 1 for various values of the parameter b. We observe that the boundary points of the

design space are support points of the local optimal designs if T is enough small, i.e. t∗1 = 0

and t∗3 = 1.

Table 1: Local e3-optimal designs for models (2.4) and (2.5) on the design space [0, 1] for

various values of the parameter b.

model (2.4) model (2.5)

b t1 t2 t3 ω1 ω2 ω3 t1 t2 t3 ω1 ω2 ω3

0.1 0 0.355 1 0.311 0.500 0.189 0 0.492 1 0.242 0.500 0.259

0.5 0 0.305 1 0.294 0.493 0.213 0 0.458 1 0.212 0.492 0.296

1.0 0 0.251 1 0.276 0.473 0.251 0 0.418 1 0.180 0.469 0.351

2.0 0 0.167 1 0.241 0.403 0.356 0 0.343 1 0.127 0.384 0.490

3.0 0 0.112 0.751 0.232 0.381 0.387 0 0.281 1 0.083 0.267 0.650

2.2 Optimal discriminating designs for the models (2.4) and (2.5)

and (2.2) and (2.5)

We now briefly mention the corresponding results for regression model (2.5). In this case

we have θ = (a, b, c)T and when c = 0 or c = 1, model (2.5) reduces to model (2.4) or

(2.2), respectively. Therefore the e3-optimal design is optimal for two purposes, namely,

discriminating between (2.4) and (2.5) and discriminating between (2.2) and (2.5). A direct
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calculation shows the vector of partial derivatives in (2.7) is

f(t, θ) = f(t, a, b, c) =
(
c− (c− 1)e−bt, a(c− 1)te−bt, a(1− e−bt)

)T
.

It can be shown that the components of this vector form a Chebyshev system on the interval

[0, T ] and that the local e3-optimal design does not depend on the parameter a. Moreover,

for other positive values of b and T , the support points ti(b, T ) and corresponding weights

ωi(b, T ) of the optimal design are found using the relationships ti(rb, T ) = 1
r
ti(b, rT ) and

ωi(rb, T ) = ωi(b, rT ).

Theorem 2.2 Let 0 ≤ c < 1. The e3-optimal design for model (2.5) is unique and it has

three points, say t∗1 < t∗2 < t∗3. Moreover, t∗1 = 0, t∗3 = T and

t∗2 =
1

b
+

t∗1e
−bt∗1 − t∗3e

−bt∗3

e−bt∗1 − e−bt∗3
,

and the corresponding weights ω∗1, ω
∗
2, ω

∗
3 can be obtained explicitly by formula (2.11).

2.3 Optimal discrimination designs for the models (2.5) and (2.6),

(2.2) and (2.6), (2.4) and (2.6)

For model (2.6) we have θ = (a, b, c, d)T . This model reduces to model (2.4), (2.2) and (2.5),

when c = 0, c = 1 and d = 1 respectively. Therefore, we are interested in e3-optimal designs

corresponding to hypothesis about the parameter c and e4-optimal designs referring to the

parameter d. A direct calculation shows the vector of partial derivatives of η for model (2.6)

is

f(t, θ) =
(
c− (c− 1)e−btd , a(c− 1)tde−btd , a(c− 1)td ln(t)be−btd , a(1− e−btd)

)T

(2.12)

and forms a Chebyshev system on the interval [0, T ]. Similar arguments as given in the

proof of Lemma 2.1 show that the support points ti(b, d, T ) and weights ωi(b, d, T ) of a local

e3- or e4-optimal design on the interval [0, T ] satisfy relations (2.10). Moreover, the optimal

designs do not depend on the parameter a.

The following result describe the e3- and e4-optimal design for the model (2.6). The proof is

similar to the proof of Theorem 2.1 and therefore omitted. Some numerical results are listed

in Table 2.
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Theorem 2.3 The e3- and e4-optimal designs for model (2.6) are unique and supported at

the unique determined four Chebyshev points, say t∗1 < t∗2 < t∗3 < t∗4 corresponding to the

Chebyshev system defined by the components of the vector in (2.12). The corresponding

weights ω∗1, . . . , ω
∗
4 are explicitly given by

ω∗ = (ω∗1, . . . , ω
∗
4)

T =
JF−1ek

14JF−1ek

, k = 3, 4,

where the matrices F and J are defined by F = (f(t∗1, θ), f(t∗2, θ), f(t∗3, θ), f(t∗4, θ)), J =

diag(1,−1, 1,−1), respectively, 14 = (1, 1, 1, 1)T and f(t, θ) is given in (2.12).

Table 2: Local e3- and e4-optimal designs for model (2.6) on the design space [0, 1] for various

values of the parameter b.

e3-optimal e4-optimal

b t1 t2 t3 t4 ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

0.1 0 0.131 0.648 1 0.286 0.416 0.214 0.084 0.174 0.328 0.326 0.172

0.5 0 0.123 0.626 1 0.277 0.410 0.223 0.090 0.156 0.302 0.342 0.200

1.0 0 0.113 0.596 1 0.267 0.403 0.233 0.097 0.137 0.272 0.352 0.239

2.0 0 0.094 0.530 1 0.253 0.392 0.246 0.108 0.106 0.215 0.341 0.338

3.0 0 0.079 0.463 1 0.244 0.382 0.256 0.118 0.080 0.163 0.289 0.468

3 Maximin optimal discriminating designs

In general, when a class of models is available, an optimal discriminating design should be

efficient for testing several hypotheses among the competing models. For this reason we

now consider the problem of constructing an experimental design, that is efficient for testing

several hypotheses corresponding to the discrimination problem between the models (2.4)

and (2.3), (2.5) and (2.3), (2.6) and (2.4), and, (2.6) and (2.5). In section 4, we investigate

the efficiencies of these optimal designs for estimating parameters in the various models,
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including the identified model.

To fix ideas, consider the problem of finding an optimal design to discriminate between two

models (2.i) and (2.j). Let

eff(2.i)−(2.j)(ξ, θ)

be the efficiency of the design ξ for discriminating between the two models. To calculate this

quantity, consider an illustrative case for finding the local optimal design for discriminating

between the models (2.4) and (2.3). This optimal design minimizes eT
3 M−1

(2.4)(ξ, θ)e3 in the

class of all designs for which the matrix is regular (see Theorem 2.1). Here the matrix

M(2.4)(ξ, θ) is the information matrix relative to model (2.4). If ξ∗3(θ) is the local optimal

design for discriminating between models (2.4) and (2.3), the efficiency of a design ξ for

discriminating between the models (2.4)-(2.3) is defined by

eff(2.4)−(2.3)(ξ, θ) =
eT
3 M−1

(2.4)(ξ
∗
3(θ), θ)e3

eT
3 M−1

(2.4)(ξ, θ)e3

.

This ratio is always between 0 and 1; if the value is 0.5, this means that twice as many

observations are required from the design ξ than the optimal design, to discriminate the

two models with the same level of precision. The efficiencies of ξ for discriminating other

pairs of models are similarly defined and denoted by eff(2.5)−(2.3)(ξ, θ), eff(2.6)−(2.4)(ξ, θ) and

eff(2.6)−(2.5)(ξ, θ). Here and elsewhere in our work, we remind readers that we assume θ is

fixed throughout and so all optimal designs are only locally optimal.

We next apply the maximin efficient approach proposed by Dette (1995), Müller (1995)

to find efficient designs for all four discrimination problems [see also Müller and Pázman

(1998)]. More precisely, for fixed θ, we call a design maximin optimal discriminating design

for the models (2.2) – (2.6), if it maximizes

min
{

eff(2.4)−(2.3)(ξ, θ), eff(2.5)−(2.3)(ξ, θ), eff(2.6)−(2.4)(ξ, θ), eff(2.6)−(2.5)(ξ, θ)
}

. (2.13)

In general maximin optimal discriminating designs have to be found numerically in all cases

of practical interest. Table 3 shows maximin optimal discriminating designs for the param-
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eter θ = (a, b, d, c)T = (1, b, 1, 0)T for different values b and their efficiencies. We observe

that the maximin optimal discriminating design yields are between 68% − 85% efficient for

discriminating between different pairs of rival models from the postulated class.

Table 3: Maximin optimal discriminating designs for the optimality criterion (2.13) on the

design space [0, 1] and their efficiencies.

b t1 t2 t3 t4 ω1 ω2 ω3 ω4 (2.4)-(2.3) (2.5)-(2.3) (2.6)-(2.4) (2.6)-(2.5)

0.1 0 0.175 0.552 1 0.236 0.255 0.322 0.187 0.724 0.724 0.724 0.786

0.5 0 0.170 0.531 1 0.220 0.260 0.308 0.212 0.719 0.719 0.719 0.787

1.0 0 0.160 0.507 1 0.200 0.265 0.287 0.249 0.714 0.714 0.714 0.793

2.0 0 0.130 0.468 1 0.161 0.250 0.249 0.340 0.705 0.702 0.702 0.848

3.0 0 0.105 0.440 1 0.141 0.233 0.199 0.427 0.705 0.682 0.682 0.871

4 Efficiencies of maximin optimal designs for estimat-

ing model parameters under model uncertainty

In this section we investigate performance of maximin discrimination designs for estimating

parameters in the different models. We first present results for estimating each parameter in

the model and D-efficiencies of the maximin discrimination design for estimating all parame-

ters in the model. We recall that D-efficiencies are computed relative to the D-optimal design

for the specific model and D-optimal designs are found by maximizing the determinant of

the expected information matrix over all designs on the design space. D-optimal designs

are appealing because they minimize the generalized variance and so provide the smallest

possible confidence ellipsoid for all parameters in the mean function.

In Table 4, we display efficiencies of selected maximin optimal discriminating design for
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estimating the individual parameters in models (2.3) and (2.4). We observe that the effi-

ciencies for estimating the parameter a are consistently low, but with improving efficiencies

for estimating b and d. The average efficiency for estimating a, b in model (2.3) are 0.364

and 0.511 respectively, and the average efficiency for estimating a, b and d in model (2.4)

respectively are 0.235, 0.494 and 0.725. For model (2.5), mean efficiencies are 0.271, 0.727

and 0.722 for estimating a, b and c, and for model (2.6), the mean efficiencies are 0.218,

0.767, 0.722 and 0.785 for estimating a, b, c and d. It is not surprising to observe that the

efficiencies are highest for estimating the particular parameter that sets the two models apart.

Table 4: Efficiencies of the maximin optimal discriminating designs in Table 3 for estimating

individual coefficients in model (2.3), (2.4), (2.5) and (2.6). The first two columns are

efficiencies for estimating a and b in model (2.3), then the three columns are for estimating

a, b, d in model (2.4), then the three columns are efficiencies for estimating a, b and c in

model (2.5) and the last four columns are for estimating a, b, c and d in model (2.6).

model (2.3) model (2.4) model (2.5) model (2.6)

b eff1 eff2 eff1 eff2 eff3 eff1 eff2 eff3 eff1 eff2 eff3 eff4

0.1 0.42 0.495 0.26 0.495 0.724 0.30 0.726 0.724 0.24 0.784 0.724 0.786

0.5 0.37 0.501 0.25 0.490 0.719 0.27 0.725 0.719 0.22 0.773 0.719 0.787

1.0 0.32 0.545 0.22 0.495 0.714 0.25 0.716 0.714 0.20 0.760 0.714 0.793

2.0 0.24 0.609 0.17 0.325 0.705 0.21 0.661 0.702 0.16 0.759 0.702 0.849

3.0 0.20 0.429 0.15 0.514 0.705 0.18 0.560 0.682 0.14 0.708 0.682 0.871

Table 5 shows D-efficiencies of the maximin optimal discriminating designs in Table 3. These

are efficiencies relative to each of the local D-optimal designs found for each model in the

class. D-optimal designs are suitable for estimating all the parameters in the model and

are probably the most popular and over-used optimal designs in the literature. For the

values of b in Table 5, all efficiencies are very high. Recall that the optimal discriminating

designs were constructed for discriminating between models (2.3) and (2.4) and we observe
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that these efficiencies are highest for the most complicated model (2.6) averaging 96% while

the efficiencies are about 67% for the least complicated model (2.3). This implies that the

maximin optimal designs are quite robust to mis-specification of models in the class of models

and also quite insensitive to small changes to the nominal values of the parameter b common

to all the models. In models (2.3) and (2.4), we note that the D-efficiencies can vary by

roughly 15% or 10% when the nominal value of b is increased from 2 to 3.

Table 5: D-efficiencies for the maximin designs from Table 3 under different model assump-

tions.

b eff
(2.3)
D eff

(2.4)
D eff

(2.5)
D eff

(2.6)
D

0.1 0.710 0.851 0.851 0.963

0.5 0.737 0.862 0.861 0.968

1.0 0.786 0.873 0.869 0.972

2.0 0.703 0.864 0.860 0.959

3.0 0.525 0.716 0.820 0.917

5 Conclusions

Our work is motivated from toxicologists’ recent interest in working with a class of nonlinear

nested models in studies where the outcomes are continuous. The toxicologists were primar-

ily interested in estimating model parameters or function of model parameters. The designs

employed in their studies lacked justifications. Our work is the first to address design issues

for such a problem, where there is model uncertainty and all candidate models are nonlinear

models nested among one another. The optimal designs proposed here are efficient for model

discrimination and parameter estimation at the same time. Previous work on an explicit

construction of optimal designs for discriminating between nonlinear models usually focuses

on two possible models; our work represents among the first to propose efficient designs for

discriminating among several nonlinear models. In addition, our work provides closed for-
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mulae for describing local optimal designs for discriminating between pairs of models within

the stipulated class.

Our proposed optimal designs was constructed using large sample theory. The variances of

the parameters were obtained via the asymptotic covariance matrix and our optimal designs

minimize the asymptotic variances. It is reasonable to ask if the asymptotic variance is a

good approximation to the actual variance of the parameters in practice with realistic sample

size. To this end, we briefly investigate this issue using a small and limited simulation study.

For example, in Piersma et al. (2002), rats were prenatally exposed to diethylstilbestrol and

the design ξu had 6 animals in each of the 10 dose groups at 0, 1.0, 1.7, 2.8, 4.7, 7.8, 13, 22,

36 and 60 mg/kg body weight per day. Thus we have 60 observations on the design space

[0, 60]. The maximin design ξmm for b = 0.1, d = 1, c = 0 is given by

{0, 3.6, 24, 60; 7/60, 12/60, 13/60, 28/60}.

We simulated data with a = 1 and σ = 0.05 and several values of parameters b, d and c. A

total of 1000 repetitions were used in each simulation. In Table 6 we give simulated normal-

ized variances of estimated parameters that are most important for discrimination. We see

that in all the cases we investigated, the variances using the maximin optimal design ξmm are

smaller than the variances obtained from using the design ξu and in many cases by a huge

margin. This simple illustration shows the benefits of incorporating optimal design ideas in

the design of a toxicology study. The toxicologists’ design is not theory based and so can

result in poorer estimates. This means that in addition to extra labor, material and time

cost, more animals are unnecessarily sacrificed without a corresponding gain in precision

for the estimates when compared to the optimal design. Additional simulation results not

shown here also confirm that the asymptotic variances are close to the simulated variances.

Current work is underway to implement computer algorithms to generate these optimal

designs on a web site housed at http://www.optimal-design.org/ so that practitioners can

17



Table 6: Simulated normalized variances of some parameters in models (2.4)-(2.6) for several

true values of parameters (left three columns).

maximin design ξmm design ξu

(2.4) (2.5) (2.6) (2.6) (2.4) (2.5) (2.6) (2.6)

b d c var (d̂) var (ĉ) var (d̂) var (ĉ) var (d̂) var (ĉ) var (d̂) var (ĉ)

0.10 1.0 0.0 58.85 2.02 71.07 2.48 62.73 5.53 88.42 7.81

0.10 0.8 0.0 30.38 5.39 83.93 28.91 34.93 26.72 86.34 58.80

0.10 1.0 0.2 11.86 1.96 103.40 2.79 18.43 4.83 138.97 7.77

0.10 0.8 0.2 19.39 4.21 135.00 35.91 23.57 10.88 148.29 81.56

0.06 1.0 0.0 61.67 3.91 103.78 7.17 61.62 11.35 115.70 23.33

0.08 1.0 0.1 22.58 2.47 92.44 3.68 36.83 6.48 113.39 10.80

freely find tailor-made optimal designs for their specific problems. This web site is funded by

the National Institutes of General Medical Sciences and already has an array of algorithms

for generating a variety of optimal designs for a broad range of models. We hope that this

site will help inform practitioners of design issues and enable them to incorporate optimal

design ideas in their work.

6 Appendix: Proofs of Lemma 2.1 and Theorem 2.1

6.1 Proof of Lemma 2.1

Let I(t, a, b, d) = f(t, a, b, d)fT (t, a, b, d), where f(t, a, b, d) is given in (2.9). Lemma 2.1

follows from the identities

det

∫ T

0

I(t, a, b, d)dξ(t) = γ det

∫ T d

0

I(td, 1, b, 1)dξ(t) = γ det

∫ T

0

I(t, 1, b, 1)dξ(t1/d)

and

det

∫ T

0

I(t, a, rb, 1)dξ(t) = γ′ det

∫ T

0

I(rt, 1, b, 1)dξ(t) = γ′ det

∫ T

0

I(t, 1, b, 1)dξ(t/r)
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where γ and γ′ denote appropriate constants. 2

6.2 Proof of Theorem 2.1.

Let g(t) = pT f(t) be an arbitrary linear combination of the functions e−bt,−te−bt,−t ln(t)e−bt.

It is easy to see that the function (g(t)ebt)′′ = c/t does not have any roots in the interval

[0, T ]. Consequently, the function g(t) has at most two roots, which proves the Cheby-

shev property for system of functions e−bt,−te−bt,−t ln(t)e−bt. Moreover, this argument also

shows that there exist precisely three Chebyshev points.

The proof of the remaining part now follows by a standard argument from classical optimal

design theory. Using arguments similar to above, one shows the functions e−bt,−te−bt form

a Chebyshev system on the interval [0, T ]. Consequently,

∣∣∣∣∣∣∣∣∣

e−bt1 e−bt2 0

−t1e
−bt1 −t2e

−bt2 0

−t1 ln(t1)e
−bt1 −t2 ln(t2)e

−bt2 1

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
e−bt1 e−bt2

−t1e
−bt1 −t2e

−bt2

∣∣∣∣∣∣
6= 0

for all 0 ≤ t1 < t2 ≤ T , and we obtain from Theorem 7.7 (Chap X) in Karlin and Studden

(1966) that the local e3-optimal design is supported at the Chebyshev points. The assertion

on the weights of the local e3-optimal design follows from Pukelsheim and Torsney (1991).
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