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Abstract

We show that a recent appendix to the Gini-coefficient to make

the latter more sensitive to asymmetric income distributions can be

viewed as an abstract measure of skewness. We develop some of its

properties and apply it to the US-income distribution in 1974 and

2010.
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1. Introduction and Summary

It is well known that the Gini-coefficient is not very sensitive to skewness in the

income distribution. Although symmetry always implies a Gini-coefficient less than

1/2, and Gini-coefficients greater than 1/2 indicate a distribution that is skewed

to the right (depending upon how skewness is defined), for Gini-coefficients less

than 1/2, the difference in skewness of the parent income distributions can be quite

extreme. As an illustration, consider two income vectors x, y ∈ Rn
+ with Lorenz-

curves as in Figure 1. Both have (almost) identical Gini-coefficients G(x) = G(y) =

1/4 (G(y) is a bit smaller due to the finiteness of n), but they differ in skewness

quite a lot: In x, one quarter of the population has an income of zero, and total

income is evenly spread over the rest. In y, the richest individual has one quarter

of the total income and three quarters of the total income are evenly spread over

the rest. Or more formally: x is skewed to the left and y is skewed to the right

(according to conventional criteria).
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Figure 1. Two Lorenz-curves with the same Gini-coefficient and

different skewness of the parent distributions.

Given that the Lorenz-curves intersect exactly once and assuming identical mean

incomes and var(y) ≤ var(x), the income vector y also third-order stochastically

dominates x, so it is preferred in terms of all concave and increasing utility function

with a negative third derivative (Whitmore (1970), Davies and Hoy (1995)). Such
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utility functions are called ”transfer sensitive” or ”averse to downside inequality”

as the value of a given regressive transfer across identical income gaps increases if

the recipient is at the lower end of the income distribution. (Interestingly, in the

current example, welfare is higher for the distribution that is more skewed to the

right.)

In view of its partial blindness to asymmetry, Bowden (2016) suggests to sup-

plement the Gini-coefficient by a measure he calls the v-metric. As his develop-

ment is in terms of random variables and distribution functions, we first translate

his approach to finite-dimensional income vectors in section 2 to allow for an ax-

iomatic treatment and for better comparability to existing measures of inequality

(see Krämer (1998)). It emerges that the v-metric, differently standardized, delivers

a novel measure of skewness which can be expressed as a function of the v-metric

and the Gini-coefficient. Section 3 then applies this measure to two U.S. income

data sets.

2. A novel measure of skewness

In what follows, we view inequality as a property of the elements of the set

D+ :=

∞⋃
n=2

Rn
+,

where Rn
+ =

{
x = (x1, . . . , xn)|xi ∈ R, xi ≥ 0,

∑n
i=1 xi > 0

}
, and skewness as a

property of the elements of the set

D :=

∞⋃
n=2

Rn.

For concreteness, we will argue in terms of income distributions, but most arguments

extend to many other interpretations of the elements of D+ and D. Also, our

discussion of skewness will mostly be in terms of elements of D+, and skewness to

the right. For all x ∈ D, the Bowden (2016) v-coefficient is then given by

v(x) =
1

n

n∑
i=1

(Ui − Li)/x̄,(1)

where x̄ is the arithmetic mean, and where, for i < n,

Ui =
1

n− i

n∑
j=i+1

(x(j) − x(i))(2)
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with 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(n) the ordered elements of x, is the average distance

of x(i) to all incomes larger than x(i). Similarly, for i > 1,

Li =
1

i− 1

i−1∑
j=1

(x(i) − x(j))(3)

is the average distance to all incomes smaller than x(i). We also define L1 = Un = 0.

The difference Ui − Li can be viewed as a measure of net deprivation or net

envy experienced by the i-th richest individual: If people to the right in the income

distribution are on average farther away from myself than I am from the average of

those below, I feel deprived. And I feel privileged if I am on average farther away

from those below than from those above. This point of view dates back to Pyatt

(1976) who considers the average gain in income if any individual could randomly

choose another one and keep the difference in income, if positive. It is easily checked

that the expected average gain is then one half of Gini’s mean difference

∆(x) =
1

n2

n∑
i=1

n∑
j=1

|xi − xj |,(4)

so standardizing this gain by the mean income x̄ yields the Gini-coefficient

G(x) =
∆(x)

2x̄
.(5)

The v-metric from equation (1) can also be viewed as the minimum percentage

of total income that needs to be redistributed to make net envy equal to zero

(Bowden (2016)). As such, it is similar in spirit to the well-known Pietra-Index of

inequality (also known as the Ricci-Schutz-coefficient, see Krämer (1998)), which is

the minimum percentage of total income that needs the be redistributed to make

all incomes equal to each other.

Next we show that, by employing a different standardization in (1), one obtains

a novel measure of skewness which we call the Bowden-index B. This measure is

defined by

B(x) =
1

n

n∑
i=1

(Ui − Li)/∆(x)(6)

and it is related to the v-index and the Gini-coefficient via

B(x) ·G(x) =
1

2
· v(x).(7)

The Bowden-index immediately qualifies as a measure of skewness as it is easily

checked that B(x) = 0 whenever x is symmetric, i.e.

x̃− x̄e = −(x∗ − x̄e),(8)
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where x̃ is the x-vector reordered from small to large, x∗ is the x-vector reordered

from large to small, and e = (1, 1, . . . , 1) is a vector of ones. In addition, the

Bowden-index is continuous and homogenous:

B(ax) = sign(a)B(x) (a 6= 0)(9)

and invariant to shifts:

B(x+ λe) = B(x).(10)

And quite trivially, B(x) depends on x only via x̃, i.e. it does not depend on the

ordering of the xi’s. In contrast to the conventional Pearson skewness coefficient

P (x) =
1
n

∑
(xi − x̄)3

s3x
(11)

(here sx is the standard deviation of the elements of x) the Bowden-coefficient

B(x) does not depend on higher moments. It is similar in spirit to quantile-based

measures of skewness introduced by Groeneveld and Meeden (1984, 2009). However,

unlike these measures, it is not bounded from either below or above. For instance,

consider

xn := (0, 0, . . . , 0︸ ︷︷ ︸
n−1

, 1).(12)

Then it is easily checked that

1

n

∑
(Ui − Li) = O(1),(13)

whereas

∆(x) = O(1/n),(14)

so B(xn) → ∞ as n → ∞. This property seems quite appealing, as the vector xn

from (12) appears more and more skewed to right as n increases.

Another increase in right-skewness occurs if, for fixed n, x(n) increases. Intu-

itively this always means more skewness to the right or less skewness to the left,

depending on x, no matter how skewness is defined. An obvious generalization of

this concept, when comparing two n−dimensional vectors x and y, is the require-

ment that

y(i) = f(x(i))(15)

for some convex and increasing function f (see Figure 2). We call this the right-

skewness-ordering in Rn, denoted by y ≥RS x.
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Figure 2. y is more skewed to the right than x.

It is easily checked that the requirement (15) also translates into the convexity of

G−1[F (x)] which was first suggested by Van Zwet (1964) as a criterion for increasing

skewness of two continuous random variables X and Y with differentiable and

strictly increasing distribution functions F and G.

It turned out to be surprisingly difficult to prove that our skewness measure B

is consistent with ≥RS . We could not find a counterexample in numerous empirical

tests and can formally prove the following result.

Theorem: Let x be symmetric and y ≥RS x. Then B(y) ≥ B(x).

The proof is in the appendix.

The Bowden-index as defined in (6) is not population invariant, i.e. in general,

B(x, x) 6= B(x),(16)

when (x, x) is a 2n row vector obtained by appending x to itself. Or more formally,

B(x) is not uniquely determined by the empirical distribution function of x. It is

rather easy to obtain population invariance by a different treatment of ties, i.e. by

defining, whenever x(i−1) < x(i) = . . . = x(i+k) < x(i+k+1), another index B∗(x) in

terms of

U∗i = U∗i+1 = . . . = U∗i+k =
1

n− i− k

n∑
j=i+k+1

(x(j) − x(i))(17)
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and

L∗i = L∗i+1 = . . . = L∗i+k =
1

i− 1

i−1∑
j=1

(x(i) − x(j)).(18)

If there are k ties with x(1), U
∗
i is defined as in (17) and L∗1 = . . . = L∗k = 0. If

there are k ties with x(n), L
∗
n−k+1 = . . . = L∗n is defined as in (18) and U∗n−k+1 =

. . . = U∗n = 0.

However, B∗ is not continuous, as can be shown by simple counterexamples.

One might speculate whether, when measuring skewness, there are axioms, each

sensible taken by itself, but incomplatible when taken together, as explored by e.g.

Eichhorn (1976) in the context of index numbers. This issue is however beyond the

scope of the present paper.

3. Application

Figure 3 shows the Lorenz-curve of the U.S.-income distribution 40 years apart,

in 1974 and 2014, where the data are in quantiles (plus the 95% quantile) and were

obtained from the current population survey of the U.S. census bureau (2015). It

is obvious that inequality has increased.
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Figure 3. Lorenz-curves of the U.S.-income distribution in 1974

and 2014.

The respective Gini- and Bowden-indices are given in Table 1. Similar to the

Lorenz-curves, they were computed assuming identical incomes in the various classes

and are therefore slightly below the true values.
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Table 1. Bowden- and Gini-index for U.S.-income distribution in

1974 and 2014.

Gini-index Bowden-index

1974 0.4017071 0.2930017

2014 0.4874533 0.3989899

As the table shows, the Gini-index has increased, but remains below 1
2 . Taken

by itself, this is compatible with a wide range of skewness, as shown in Figure 1.

In particular, if 48.7% of the population earned nothing and the remaining income

was evenly spread over the rest, one would obtain a Gini-coefficient of 0.487 as

in 2014, but a distribution that is negatively skewed. Therefore, it makes sense to

report skewness separately, and as the table shows, this has increased as well.
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Appendix

Proof of the Theorem. As x is symmetric and all measures are location invariant,

we may assume without loss of generality that

x(k) = −x(n−k+1); k = 1, . . . , n.(19)

In this case we have B(x) = 0 and the assertion follows from B(y) ≥ 0, which is

equivalent to

D(y) =

n∑
i=1

Ui −
n∑

i=1

Li ≥ 0.(20)

For the proof of (20) note that

n∑
i=1

Ui =

n−1∑
i=1

Ui =

n−1∑
i=1

( 1

n− i

n∑
j=i+1

y(j) − y(i)
)

= −ny· + y(n) +

n∑
j=2

y(j)

j−1∑
i=1

1

n− i

where y· = 1
n

∑n
i=1 y(i). Similarly, we have

n∑
i=1

Li =

n∑
i=2

Li = ny· − y(1) −
n−1∑
j=1

y(j)

n∑
i=j+1

1

i− 1
,

which implies

D(y) = −2ny· + y(n) + y(1) +

n−1∑
j=2

y(j)

{ j−1∑
i=1

1

n− i
+

n∑
i=j+1

1

i− 1

}

+y(n)

n−1∑
i=1

1

n− i
+ y(1)

n∑
i=2

1

i− 1

=

n∑
j=1

ajy(j),

where the coefficients aj are defined by

aj =


∑j−1

i=1
1

n−i +
∑n

i=j+1
1

i−1 − 2 if j ∈ {2, . . . , n− 1}∑n
i=2

1
i−1 − 1 if j ∈ {1, n}

(21)

and we show at the end of the poof that

an+1−j = aj j ∈ {1, . . . , n}(22)

n∑
j=1

aj = 0(23)
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Observing Abel’s partial sum formula

n∑
k=1

akbk = Anbn −
n−1∑
k=1

Ak(bk+1 − bk)

(where Ak =
∑k

`=1 a`) we obtain

D(y) =

n−1∑
k=1

(y(k+1) − y(k))(−Ak)−Anbn =

n−1∑
k=1

(y(k+1) − y(k))(−Ak),

where

Ak =

k∑
`=1

ak =

n∑
`=1

a` −
n∑

`=k+1

a` = −
n−k∑
`=1

an+1−` = −
n−k∑
`=1

a` = −An−k.(24)

If n = 2m+ 1 is odd, it is shown below that

Ak ≥ 0 k ∈ {1, . . . ,m}.(25)

We obtain

D(y) =

2m∑
k=1

Bk

y(k+1) − y(k)
x(k+1) − x(k)

(26)

where

Bk = (−Ak)(x(k+1) − x(k)).

From (24) and (19) we have

Bn−k = (−An−k)(x(n−k+1) − x(n−k)) = Ak(x(k+1) − x(k)) = −Bk.

As Bk ≤ 0 for k ∈ {1, . . . ,m} we obtain from (26)

D(y) =

m∑
k=1

Bk

{ y(k+1) − y(k)
x(k+1) − x(k)

−
y(2m+2−k) − y(2m+1−k)

x(2m+2−k) − x(2m+1−k)

}
≥ 0

as the sequence { y(k+1) − y(k)
x(k+1) − x(k)

}
k∈{1,...,n−1}

is increasing (which follows from the assumption (15) and the convexity of f). This

proves the assertion of the theorem in the case n = 2m+ 1. The other case n = 2m

is treated similarly.
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Proof of some technical details.

Proof of (22). For j ∈ {2, . . . , n− 1} we have

an+1−j =

n−j∑
i=1

1

n− i+ 1
+

n∑
i=n+2−j

1

i− 1
− 2

=

n∑
k=j+1

1

k − 1
+

j−1∑
k=1

1

n− k
− 2 = aj .

The assertion for j ∈ {1, n} is obvious.

Proof of (23). Recall the definition of aj in (21), then

n∑
j=1

aj = 2

n−1∑
i=2

1

i
+

n−1∑
j=2

j−1∑
i=1

1

n− i
+

n−1∑
j=2

n∑
i=j+1

1

i− 1
− 2(n− 2)

= 2

n−1∑
i=2

1

i
+

n−2∑
i=1

n− i− 1

n− i
+

n∑
i=3

i− 2

i− 1
− 2(n− 2)

= 2(n− 2)− 2(n− 2) = 0.

Proof of (25). Recall that n = 2m+ 1 and observe that for all k ∈ {2, . . . ,m}

ak+1 − ak =
1

2m+ 1− k
− 1

k
< 0.(27)

Note that a1 > 0 (as n ≥ 3). If ak ≥ 0 for all k = 1, . . . ,m the assertion is obvious.

Otherwise, there exists an integer k0 ∈ {2, . . . ,m}, such that

am < am−1 < . . . < ak0
≤ 0 < ak0−1 < . . . < a1.(28)

Consequently, Ak ≥ 0 for all k ∈ {1, . . . , k0 − 1}. From (28) we have for all k ∈

{k0 − 1, . . . ,m}

Am −Ak =

m∑
`=k+1

a` ≤ 0

and consequently the assertion (25) follows if the inequality Am ≥ 0 can be estab-

lished. For this purpose we use a similar calculation as in the proof of (23) and
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obtain

Am =

2m+1∑
i=2

1

i− 1
− 1 +

m∑
`=2

(`−1∑
i=1

1

2m+ 1− i
+

2m+1∑
i=`+1

1

i− 1

)
− 2(m− 1)

=

2m∑
i=2

1

i
+

m−1∑
i=1

m− i
2m+ 1− i

+

m∑
i=2

i− 1

i
+ (m− 1)

2m∑
i=m+1

1

i
− 2(m− 1)

= m

2m∑
i=m+1

1

i
+

2m∑
i=m+2

i− (m+ 1)

i
− (m− 1)

=
m

m+ 1
−

2m∑
i=m+2

1

i
≥ m

m+ 1
−
∫ 2m

m+1

dx

x

=
m

m+ 1
− log

( 2m

m+ 1

)
=

m

m+ 1
− log

(
1 +

m− 1

m+ 1

)
≥ m

m+ 1
− m− 1

m+ 1
=

1

m+ 1
> 0 ,

which completes the proof of (25).


