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1 Introduction

Consider the common linear regression model

y(t) = θ1f1(t) + . . . + θpfp(t) + ε(t) (1.1)

where f1(t), . . . , fp(t) are known functions, ε(t) is a random error, θ1, . . . , θp denote the

unknown parameters and t is the explanatory variable. We assume that N observations,

say y1, . . . , yN can be taken at experimental conditions −T ≤ t1 ≤ . . . ≤ tN ≤ T to

estimate the parameters in the linear regression model (1.1). If an appropriate estimate,

say θ̂ = (θ̂1, . . . , θ̂p)
T has been chosen, an optimal design minimizes a function of the

variance-covariance matrix of this estimate, which is called optimality criterion [see

e.g. Silvey (1980) or Pukelsheim (1993)].

Under the assumption of uncorrelated observations optimal designs have been studied

by numerous authors [see the two books cited above and the textbooks of Fedorov

(1972), Pázman (1986) and Atkinson and Donev (1992)]. However, less results are

available for dependent observations, although this problem is of particular interest,

because in many applications the variable t in the regression model (1.1) represents

the time and all observations correspond to one subject. The reason for this is that

optimal experimental designs for regression models with correlated observations have

a very complicated structure and are difficult to find even in simple cases. Because

explicit solutions are rarely available, an asymptotic theory was developed by Sacks and

Ylvisaker (1966, 1968). In the Sacks–Ylvisaker approach, the design set is fixed and the

number of design points in this set tends to infinity. As a result of this assumption, the

design points become too close to each other and the corresponding asymptotic optimal

designs depend only on the behavior of the correlation function in a neighborhood of

the point 0.

Bickel and Herzberg (1979) and Bickel, Herzberg and Schilling (1981) considered a

different model, where the design interval expands proportionally to the number of

observation points and the correlation structure of errors is not used for construction

of least squares estimate. The variance-covariance matrix of the estimate θ̂ is of order

O(1) in the model considered by Sacks and Ylvisaker (1966) and of order 1/N in the

model discussed by Bickel and Herzberg (1979). Therefore the approach of Bickel and

Herzberg makes the optimal designs derived for the dependent and independent cases

more comparable. These authors assumed that the observations in model (1.1) have a

correlation structure corresponding to a nondegenerate stationary process with short

range dependence where a correlation function ρ satisfies ρ(t) = o(1/t) if t → ∞.

As examples, in Bickel and Herzberg (1979) and Bickel, Herzberg and Schilling (1981)

asymptotic optimal designs are derived for the linear regression model with and without

intercept and for location model.

The purpose of the present paper is to extend the Bickel–Herzberg approach to the

case of a stronger dependence of the errors in the linear regression model (1.1), which

corresponds to an error process with long range dependence. Long range dependence is

observed in many applications including hydrology, geophysics, turbulence, diffusion,
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economics and finance. The phenomenon was already observed by Pearson (1902) in

astronomy and by Smith (1938) in agriculture. Further examples where long range

dependence was discussed can be found in Granger (1980), Mandelbrot (1973), Porter-

Hudak (1990), Beran, Sherman, Taqqu and Willinger (1992), Barndorff-Nielsen, et al.

(1990), Beran (1992), Metzler, et al. (1999) among many others. The interested reader

is referred to the books of Beran (1994) and Doukhan, et al. (2003), which contain

a good description of the basic properties of long range dependence processes and an

extensive bibliography on this subject.

Most of the literature considers the estimation problem but - to the knowledge of the

authors - design problems for regression models with long range dependence error struc-

ture have not been considered so far. In Section 2 we introduce the basic terminology

and describe the optimal design problem. Our main results are given in Section 3,

where we derive an asymptotic expression for the variance-covariance matrix, which

is the basis for the construction of optimal designs in the regression model (1.1) with

a long range dependent error structure. Finally, in Section 4 several asymptotic opti-

mal designs are derived for the linear regression model and compared with the results

obtained by Bickel and Herzberg (1979) under the assumption of a short range error

structure.

2 Optimal designs for dependent observations

Consider the linear regression model (1.1), where the error process ε(t) is the second-

order process with

Eε(t) = 0, Eε(t)ε(s) = σ2r(t, s), (2.1)

and assume that

(C1) the regression functions f1(t), . . . , fp(t) are linearly independent and bounded on

the interval [−T, T ] and satisfy a first order Lipschitz condition, that is |fi(t)−fi(s)| ≤
M |t− s| and |fi(t)| ≤ M for all t, s ∈ [−T, T ], i = 1, . . . , p.

Following Bickel and Herzberg (1979) we assume that ε(t) = ε(1)(t) + ε(2)(t), where

ε(1)(t) denotes a stationary process with correlation function ρ(t) and ε(2)(t) is white

noise. Consequently, we obtain

r(t, s) = γρ(t− s) + (1− γ)δt,s (2.2)

where δ denotes Kronecker’s symbol. If N observations, say y = (y1, . . . , yN)T are

available and the form of the correlation function is known, the vector of parameters

can be estimated by the weighted least squares, i.e. θ̂ = (XT Σ−1X)−1XT Σ−1y with

XT = (fi(tj))
j=1,...,N
i=1,...,p , and the variance-covariance matrix of this estimate is given by

D(θ̂) = σ2(XT Σ−1X)−1 (2.3)
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with Σ = (ρ(ti− tj))i,j, i, j = 1, . . . , N . However in most applications knowledge about

the correlation structure is not available and the unweighted least squares estimate

θ̃ = (XT X)−1XT y is used. For this estimate the variance-covariance matrix is given

by

D(θ̃) = σ2(XT X)−1XT ΣX(XT X)−1. (2.4)

An experimental design ξ = {t1, . . . , tN} is a vector of N points in the interval

[−T, T ], which defines the time points or experimental conditions where observations

are taken. Optimal designs minimize a functional of the variance-covariance matrix

of the weighted or unweighted least squares estimate. Following Bickel and Herzberg

(1979), we consider a correlation function which depends on the sample size N and is

of the form ρN(t) = ρ(Nt), where the function ρ satisfies ρ(t) → 0 if t →∞; this cor-

responds to expanding the interval as the number of observations grows. The standard

least squares estimate is considered in the following discussion because for computing

this estimate, the form of the correlation function ρ(t) is not used. Despite this, the

least squares estimate often has good properties compared to the best linear unbiased

estimate, see e.g. Beran (1994, p. 179).

For our asymptotic investigations we consider a sequence of designs ξN = {t1N , . . . ,

tNN}, which is generated by a continuous nondecreasing function

a : [0, 1] → [−T, T ] (2.5)

by

tiN = a ((i− 1)/(N − 1)) , i = 1, . . . , N, (2.6)

where the function a(u) is the inverse of a distribution function. Note that the function

a is obtained as the weak limit of ξN as N → ∞ and that the equally-spaced design

corresponds to the choice a(u) = (2u − 1)T (u ∈ [0, 1]). We further assume several

regularity conditions on the function a, which are required for the following asymptotic

results. More precisely,

(C2) let a(u) be twice differentiable and assume that there exists a positive constant

M < ∞ such that for all u ∈ (0, 1)

1

M
≤ a′(u) ≤ M, |a′′(u)| ≤ M. (2.7)

(C3) the correlation function ρ is differentiable with bounded derivative, that is |ρ′(t)| ≤
M, t ∈ (0,∞) and satisfies ρ′(t) ≤ 0 for sufficiently large t.

The last assumption implies that ρ(t) is nonnegative for sufficiently large t. In contrast

to Bickel and Herzberg (1979) we assume that

∫ ∞

0

|ρ(t)| dt = ∞ (2.8)
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and this assumption corresponds to the long-range dependence of the observations.

Note that in this case it follows that

∫ ∞

0

|ρ(t)| dt =
∞∑

k=0

|ρ(k)| = ∞

where ρ(k) = cov(ε(1)(t), ε(1)(t + k)). The correlation function of a stationary process

with long range dependence can be written as

ρα(t) =
L(t)

|t|α , |t| → ∞ (2.9)

where 0 < α ≤ 1 and L(t) is a slowly varying function (SVF) for large t (Doukhan et

al., 2003) and satisfies

ρα(t) = O(1/|t|α) , |t| → ∞.

In this case we will say that ρα(t) belongs to SVF family.

3 Main results

At first we introduce two parametric families of correlation functions which are impor-

tant in applications.

The correlation function ρα(t) belongs to the Cauchy family if it is defined by

ρα(t) =
1

(1 + |t|β)α/β
, (3.1)

where β > 0, 0 < α ≤ 1 [see Gneiting (2000), Anh, et al. (2004), Barndorff-Nielsen,

Leonenko (2005)]. This family includes

ρ(1)
α (t) =

1

(1 + |t|2)α/2
, ρ(2)

α (t) =
1

1 + |t|α , ρ(3)
α (t) =

1

(1 + |t|)α
,

which have a totally different shape at t = 0, but the same asymptotic behavior for

large t [see Figure 1]. These three functions are known as characteristic functions of

symmetric Bessel distribution, Linnik distribution and symmetric generalized Linnik

distribution, correspondingly.

The correlation function ρα(t) belongs to the Mittag-Leffler family if it is defined by

ρα(t) = Eν,β(−|t|α), Eν,β(−t) = Γ(β)
∞∑

k=0

(−t)k

Γ(νk + β)
, (3.2)

where 0 < α ≤ 1, 0 < ν ≤ 1, β ≥ ν [see Schneider (1996), Barndorff-Nielsen, Leonenko

(2005)]. This family is a smooth interpolation of long-range dependence (0 < α < 1,

β = 1) and short-range dependence (α = 1). Note that the case α = 1 corresponds to
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Figure 1: The three correlation functions, where α = 0.5.

ordinary diffusion while the case 0 < α < 1, β = 1 corresponds to subdiffusion or slow

diffusion [see Metzler, Klafter (2000)]. In particular,

E1,1(−t) = e−t, E1,2(−t) = (1− e−t)/t, E1,3(−t) = 2(e−t − 1 + t)/t2,

E1/2,1(−t) = et2
(

1− 2√
π

∫ t

0

e−u2

du

)
.

In the following discussion we derive optimal designs for the three families of correlation

functions, which are given by (2.9), (3.1) and (3.2). The function Q(t) =
∑∞

j=1 ρ(jt)

plays an important role in the asymptotic analysis by Bickel and Herzberg (1979),

but in the case of long range dependence this function is infinite. For an asymptotic

analysis under long range dependence we introduce the function

Qα(t) = lim
N→∞

1

dα(N)

N∑
j=1

ρα(jt), (3.3)

where the normalizing sequence is given by

dα(N) =





N1−α if α < 1 and ρα has the form (3.1) or (3.2)

ln N if α = 1 and ρα has the form (3.1) or (3.2)

L(N)N1−α if α < 1 and ρα has the form (2.9)

L(N) ln N if α = 1 and ρα has the form (2.9)

and show in Lemma 1 below that the function Qα(t) is well defined.

Remark. Consider the correlation function

ρ(t) = (1− t2)e−t2/2 (3.4)

which is used to describe scaling laws in the Burgers turbulence problem with weakly

dependent random initial conditions [see Leonenko, Woyczynski (1999)]. This function
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is singular since it is not positive, its spectral density equals t2e−t2/2 and
∫

ρ(t) dt = 0.

Note that function Q(t) is finite for the choice (3.4), but the rate of decrease of the

variance of the least squares estimate is much faster than for short range dependence.

For example, let p = 1, f(t) ≡ 1, T = 1, ti = −1 + 2(i − 1)/(N − 1), i = 1, . . . , N ,

ρN(t) = ρ((N − 2)t/2). Then we have XT X = N and the variance of the least squares

estimate (2.4) has the form D(θ) = σ2
∑N

i,j=1 ρN(ti − tj)/N
2 ≤ 6σ2/N2. For f(t) ≡ t

and the same points we have D(θ) ≤ 20σ2/N2.

Lemma 1. If the correlation function ρα(t) belongs either to the Cauchy, Mittag-Leffler

or SVF family, then the limit in (3.3) exists and is given by

Qα(t) =





c

(1− α)|t|α , 0 < α < 1,

c
|t| , α = 1,

where

c =

{
Γ(β)

Γ(β−ν)
, if ρα(t) belongs to the Mittag-Leffler family,

1 , otherwise.

Proof. Define the function

Qα,N(t) =
1

dα(N)

N∑
j=1

ρα(jt),

and assume that the correlation function ρα(t) is an element of the Cauchy family.

Since the function ρα(t) defined in (3.1) is positive and decreasing for 0 < α < 1 we

have

Qα,N(t) =
1

N1−α

∫ N

0

1

(1 + |st|β)α/β
ds + O

(
1

N1−α

)

=
1

N1−α
N

∫ N

0

d(s/N)

Nα(1/Nβ + |st/N |β)α/β
+ O

(
1

N1−α

)

=

∫ 1

0

dv

(|vt|β)α/β
+ O

(
1

Nα−α2

)
=

1

(1− α)|t|α + O

(
1

Nα−α2

)

= Qα(t) + O

(
1

Nα−α2

)
.

For α = 1 we obtain

Q1(t) = lim
N

1

ln N

N∑
j=1

1

(1 + |jt|β)1/β
= lim

N

1

|t| ln N

∫ N

0

1

(1 + |st|β)1/β
d(st)

= lim
N

1

|t| ln N

∫ Nt

0

1

1 + |v| dv =
1

|t| ,
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which completes the proof for the case where ρα(t) belongs to the Cauchy family.

Now assume that the correlation function ρα(t) is an element of the Mittag-Leffler

family. Since

Eν,1(−|t|α) ∼ 1

|t|αΓ(1− ν)

as t →∞ and 0 < α < 1 [see Djrbashian (1993)] we have

Qα(t) = lim
N

1

N1−α

N∑
j=1

Eν,1(−|t|α) =
1

(1− α)Γ(1− ν)|t|α .

Observing

Eν,β(−|t|) ∼ Γ(β)

|t|Γ(β − ν)

for t →∞ and α = 1 [see Djrbashian (1993)] we obtain

Q1(t) = lim
N

1

ln N

N∑
j=1

ρ1(jt) =
Γ(β)

|t|Γ(β − ν)
.

Finally, assume that the correlation function ρα(t) is an element of the SVF family.

Then we obtain

Qα(t) = lim
N

1

L(N)N1−α

∫ N

0

L(st)

|st|α ds

= lim
N

1

L(N)N1−α
N

∫ N

0

L(Nts/N) d(s/N)

Nα|st/N |α

= lim
N

∫ 1

0

L(Ntv)dv

L(N)|vt|α =

∫ 1

0

dv

|vt|α =
1

(1− α)|t|α ,

where we have used Theorem 2.6 from Seneta (1976) in last line. For α = 1 we have

Q1(t) = lim
N

1

L(N) ln N

∫ N

1

L(st)

|st| ds = lim
N

1

ln N

∫ N

1

L(st)/L(N)

st
ds

= lim
N

1

ln N

∫ N

1

1

|st| ds + lim
N

1

ln N

∫ N

1

L(st)/L(N)− 1

|st| ds

=
1

|t| + lim
N

1

ln N

∫ 1

1/N

L(Nvt)/L(N)− 1

|vt| dv =
1

|t|
which completes proof of Lemma 1. ¤

Next we find a comfortable asymptotic representation for the main term in the variance-

covariance matrix of the least squares estimates.

Lemma 2. Assume that the correlation function ρα(t) belongs either to the Cauchy,

Mittag-Leffler or SVF family, such that
∫ 1

0

Qα(a′(t)) dt < ∞, (3.5)
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and that the regularity conditions (C1)-(C3) in Section 2 and 3 are satisfied. We have

1

dα(N)N

∑

i6=j

fs(tiN)fr(tjN)ρα(N(tjN − tiN)) = 2

∫ 1

0

fs(a(u))fr(a(u))Qα(a′(u)) du + o(1)

as N →∞ for all s, r = 1, . . . , p, 0 < α ≤ 1.

Proof. We only give a proof for the correlation function from the Cauchy family and

0 < α < 1, the proof for the other cases is similar. We use the notation f = fs, g = fr,

ρ = ρα and the decomposition

Nα−2
∑

i6=j

f(tiN)g(tjN)ρ(N(tjN − tiN)) = S1 + S2 ,

where

S1 = 2Nα−2

N∑
i=1

f(tiN)g(tiN)
N∑

j=i+1

ρ(N(tjN − tiN)), (3.6)

S2 = 2Nα−2

N∑
i=1

f(tiN)
N∑

j=i+1

(g(tjN)− g(tiN))ρ(N(tjN − tiN)). (3.7)

With the notation iN = (i − 1)/(N − 1) we obtain from the differentiability of the

functions a and ρ

ρ(N(tjN − tiN)) = ρ(N(a(jN)− a(iN))) = ρ(a′(iN)(j − i)) + ν
(j − i)2

N − 1

where |ν| ≤ M2/2. Let rN denote a sequence such that rN →∞ slowly as o(N (1−α)/3)

and consider the cases i ≤ rN and i > rN in (3.6) and (3.7) separately. Note that
∣∣∣∣∣

N∑
j=i+rN

ρ(N(tjN − tiN))

∣∣∣∣∣ =
N∑

j=i+rN

ρ(N(a(jN)− a(iN)))

≤ M̃

N∑
j=i+rN

ρ((j − i)/M) ≤ M̃

∞∑

k=rN

ρ(k/M) = o(N1−α)

as N → ∞ uniformly with respect to j, where M̃ is a constant and we have used the

fact that the function a′(u) is bounded from below and Lemma 1. Similarly, we obtain
∣∣∣∣∣

N∑
j=i+rN

(g(tjN)− g(tiN))ρ(N(tjN − tiN))

∣∣∣∣∣ ≤ 2MT

∞∑
j=i+rN

|ρ(N(tjN − tiN))| = o(N1−α)

as N → ∞ uniformly with respect to j, because the function g is bounded. This

implies

S1 = 2Nα−2

N∑
i=1

f(tiN)g(tiN)

i+rN∑
j=i+1

ρ(N(tjN − tiN)) + o(1), (3.8)

S2 = 2Nα−2

N∑
i=1

f(tiN)

i+rN∑
j=i+1

(g(tjN)− g(tiN))ρ(N(tjN − tiN)) + o(1) (3.9)
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as N →∞. For the the first term on the right hand side of (3.9) we obtain the estimate

S̃2 = Nα−2

∣∣∣∣∣
N∑

i=1

f(tiN)

i+rN∑
j=i+1

(g(tjN)− g(tiN))ρ(N(tjN − tiN))

∣∣∣∣∣

≤ 2Nα−1M2T

i+rN∑
j=i+1

|ρ(N(tjN − tiN))|

≤ 2Nα−1M2T

i+rN∑
j=i+1

(
|ρ(a′(iN)(j − i))|+ M2 (j − i)2

N − 1

)

≤ 2Nα−1M2T (MrN + M2r3
N/N) = o(1)

as N →∞ while the dominating term on the right hand side of (3.8) is given by

S̃1 = Nα−2

N∑
i=1

f(tiN)g(tiN)

i+rN∑
j=i+1

ρ(N(tjN − tiN))

= Nα−2

N∑
i=1

f(tiN)g(tiN)

i+rN∑
j=i+1

ρ(a′(iN)(j − i))) + o(1)

= N−1

N∑
i=1

f(tiN)g(tiN)Qα(a′(iN)) + o(1)

=

∫ 1

0

f(a(u))g(a(u))Qα(a′(u)) du + o(1).

as N →∞ which proves the assertion of Lemma 2. ¤

Theorem 1. Let the correlation function ρα(t) be either an element of the Cauchy,

Mittag-Leffler or SVF family. If (3.5) and the regularity assumptions (C1)–(C3) stated

in Sections 2 and 3 are satisfied, then we obtain for the variance-covariance matrix of

the least squares estimate defined in (2.4)

σ2 N

dα(N)
D(θ̃) = 2γW−1(a)Rα(a)W−1(a) + O(1/dα(N)),

where the matrices W and Rα are given by

W (a) =

(∫ 1

0

fi(a(u))fj(a(u)) du

)p

i,j=1

,

Rα(a) =

(∫ 1

0

fi(a(u))fj(a(u))Qα(a′(u)) du

)p

i,j=1

.
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Proof. In view of (2.2) we obtain that

XT ΣX =

(
γ

∑

i6=j

fk(tiN)fl(tjN)ρα(N(tjN − tiN)) +
N∑

i=1

fk(tiN)fl(tjN)

)p

k,l=1

where XT = (fi(tjN))j=1,...,N
i=1,...,p and tiN = a ((i− 1)/(N − 1)) , i = 1, . . . , N . An applica-

tion of Lemma 2 yields

XT X

N
= W (a) + O

(
1

N

)
,

XT ΣX

dα(N)N
= 2γRα(a) + O

(
1

dα(N)

)
.

The assertion of the theorem now follows by inserting these limits into (2.4). ¤

Note that the constant γ only appears as a factor in the asymptotic variance-covariance

matrices of the least squares estimate. Because most optimality criteria are positively

homogeneous [see e.g. Pukelsheim (1993)] it is reasonable to consider the matrix

W−1(a)Rα(a)W−1(a),

which is proportional to the asymptotic variance-covariance matrix of the least squares

estimate. Moreover, if the function a corresponds to a continuous distribution with a

density, say φ, then a′(t) = 1/φ(t) and the asymptotic variance-covariance matrix of

the least squares estimate is proportional to the matrix

Ψα(φ) = W−1(φ)Rα(φ)W−1(φ),

where the matrices W (φ) and Rα(φ) are given by

W (φ) =

(∫ T

−T

fi(t)fj(t)φ(t) dt

)

i,j=1,...,p

,

Rα(φ) =

(∫ T

−T

fi(t)fj(t)Qα(1/φ(t))φ(t) dt

)

i,j=1,...,p

=
c

1− α

(∫ T

−T

fi(t)fj(t)φ
1+α(t) dt

)

i,j=1,...,p

,

and we have used the representation Qα(t) = c/((1 − α)|t|α) for the last identity. An

(asymptotic) optimal design minimizes an appropriate function of the matrix Ψα(φ)

(for classical least squares estimation). Note that under long range dependence the

variance-covariance matrix of the least squares estimate converges slower to zero than

in the case of independent or short-range dependent errors. In the case of short-range

dependence, no other normalization is necessary apart from normalizing the variance-

covariance matrix. Under long-range dependence an additional factor dα(N)/N is

needed. Moreover, it is worthwhile to note that under long range dependence the

asymptotic variance-covariance matrix is fully determined by the function Qα(t) and

does not otherwise depend on the particular correlation function ρα(t). In the following

section we discuss several examples in order to illustrate the concept.
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4 Examples

In most cases, the asymptotic optimal designs for the regression model (1.1) have to

be found numerically; explicit solutions are only possible for very simple models. In

this section we consider models with one or two parameters.

4.1 Optimal designs for linear models with one parameter

Consider the linear regression model with p = 1, that is y(t) = θf(t) + ε(t) (θ ∈ R).

In this case the problem of minimizing the asymptotic variance-covariance of the least

squares estimate reduces to the minimization of the function

Ψα(p) =

∫
f 2(t)Qα(1/p(t))p(t) dt(∫

f 2(t)p(t) dt
)2

∫
p(t) dt

in the class of all nonnegative functions p(t) on the interval [−T, T ]. Because Qα(t) is

strictly convex on (0,∞) it follows from Theorem 3.1 in Bickel and Herzberg (1979)

that a minimizer, say p∗(t), exists and that φ∗(t) = p∗(t)/
∫

p∗(t) dt is the asymptotic

optimal density. For the minimizing function p∗ we obtain

∂

∂ε
Ψα(p∗ + ε(p− p∗))

∣∣∣∣
ε=0

≥ 0

for all nonnegative functions p on the interval [−T, T ]. Consequently the asymptotic

optimal density should satisfy
∫

p∗(t) dt = 1 and

∫ (
f 2(t)

(
Hα(1/p∗(t))− µ

)
+ τ̃

)
(p(t)− p∗(t)) dt ≥ 0 (4.1)

for all nonnegative functions p on the interval [−T, T ], where the function Hα : (0,∞) →
R+ is given by

Hα(t) = Qα(t)− tQ′
α(t) =

{
1+α
1−α

/tα, 0 < α < 1

2/t α = 1

µ = 2

∫
f 2(t)Qα(1/p∗(t))p∗(t) dt∫

f 2(t)p∗(t) dt
, (4.2)

τ̃ =

∫
f 2(t)Qα(1/p∗(t))p∗(t) dt.

Assume first that 0 < α < 1. Note that the function Hα is strictly decreasing with

Hα(+0) = ∞, Hα(∞) = 0 and that its inverse is given by

H−
α (t) =

( 1 + α

t(1− α)

)1/α

.
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Hence the solution of (4.1) has the form

p∗(t) =





1

H−1
α (µ− τ/f 2(t))

=
(1− α

1 + α
(µ− τ/f 2(t))

) 1
α
, µ− τ/f 2(t) ≥ 0,

0, otherwise,

(4.3)

where µ is defined by (4.2) and

τ =

∫
f 2(t)Qα(1/p∗(t))p∗(t) dt +

∫
f 2(t)Q′

α(1/p∗(t)) dt. (4.4)

Note that τ is a solution of equation
∫

p(t) dt = 1. Indeed, multiplying f 2(t)Hα(1/p∗(t)) ≡
µf 2(t)− τ with p∗(t) and integrating with respect to t yields

∫
f 2(t)Hα(1/p∗(t))p∗(t) dt =

∫
(µf 2(t)− τ)p∗(t) dt = µ

∫
f 2(t)p∗(t) dt− τ

Now the definition of Hα(t) and µ gives

∫
f 2(t)Qα(1/p∗(t))p∗(t) dt−

∫
f 2(t)Q′

α(1/p∗(t)) dt = 2

∫
f 2(t)Qα(1/p∗(t))p∗(t) dt− τ

which yields (4.4). Consequently we proved the following result.

Theorem 2. Assume that the correlation function ρα(t) is either an element of the

Cauchy, Mittag-Leffler or SVF family. Then, for the one-parameter linear regression

model, the asymptotic optimal design exists, it is absolute continuous with respect to

the Lebesgue measure and has the density p∗(t) defined in (4.3), where µ and τ are

given by (4.2) and (4.4), respectively.

We now consider two special cases, which are of particular importance. If p = 1 and

f(t) ≡ 1 we obtain the location model and the asymptotic optimal density is the

uniform density, that is

p∗(t) =

{
1

2T
, |t| ≤ T,

0, otherwise.
(4.5)

Similarly, in the linear regression through the origin we have p = 1, f(t) ≡ t, and the

asymptotic optimal density is given by

p(t) =





0, |t| ≤
√

τ/µ,(
1−α
1+α

(µ− τ/t2)
)1/α

,
√

τ/µ ≤ |t| ≤ T,

0, otherwise,

where

µ = 2

∫
t2p1+α(t) dt

(1− α)
∫

t2p(t) dt
, τ =

∫
t2p1+α(t) dt,

13



and α is the parameter of the correlation function. The above formulas are given for

0 < α < 1. For α = 1 and f(t) = t, the asymptotic optimal density is the uniform

density (4.5). The optimal densities for the parameters α = 1/4, 1/2, 3/4, 0.95 and

T = 1 are displayed in Figure 2. The parameters µ and τ and the efficiency of uniform

design are shown in Table 1. We observe that the uniform design is rather inefficient

for small values of the parameter α. The uniform design has a reasonable efficiency

only if α is close to 1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

α=0.25

α=0.5

α=0.75

α=0.95

Figure 2: Asymptotic optimal design densities for the linear regression through the

origin, T = 1.

Table 1: Parameters of the asymptotic optimal design density for the linear regression

through the origin and the efficiency of uniform design (4.5), T = 1. The optimal

density for α = 1 is p(t) = 1/2, −1 ≤ t ≤ 1.

α µ τ
√

τ/µ effuni

0.05 2.34 1.06 0.67 0.40

0.25 3.19 0.96 0.55 0.59

0.50 4.32 0.70 0.40 0.78

0.75 6.84 0.44 0.25 0.93

0.95 24.78 0.25 0.10 0.99

It is worthwhile to mention that the asymptotic optimal designs derived so far depend

sensitively on the parameter α, which is usually not available before the experiment.

Because misspecification of this parameter can yield to a substantial loss of efficiency

of the optimal design we propose to construct robust designs, which are less sensitive

with respect to such misspecifications. More precisely, we denote by p∗α(t) the optimal

density design for parameter α. Following Dette (1995) or Müller and Pázman (1998)

a robust version of the optimality criterion is of the form

ΨA(p) = min
α∈A

eff(p, α) = min
α∈A

Ψα(p∗α)

Ψα(p)
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where p∗α is the optimal design for the correlation function ρα and A is set of possi-

ble α values specified by the experimenter. A design maximizing ΨA is called stan-

dardized maximin optimal. Numerical optimization of this function for the set A =

{0.1, 0.2, . . . , 0.9} shows that standardized maximin optimal design has a density which

can be approximated by the function

p∗A(t) = (5.7275t2 − 1.16963− 3.0264t4)+ (4.6)

which is close to the optimal density p∗α for α = 0.44. In Table 2 we show the efficiency

of this design for various values of α. We observe that the design p∗A is very efficient

for all elements in the set A.

Table 2: Efficiency of the standardized maximin optimal design p∗A defined by (4.6) in

the linear regression through the origin. The correlation structure is given by the SVF

family with parameter α.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

eff(p∗, α) 0.84 0.92 0.97 0.99 0.99 0.97 0.94 0.89 0.84

4.2 Linear regression

Consider the case p = 2, f1(t) = 1, f2(t) = t, which corresponds to the linear regression

model. In this case the asymptotic variance-covariance matrix is proportional to

Ψα(p) =

(
1

∫
tp(t) dt∫

tp(t) dt
∫

t2p(t) dt

)−1

R(p)

(
1

∫
tp(t) dt∫

tp(t) dt
∫

t2p(t) dt

)−1

where

R(p) =

( ∫
Qα(1/p(t))p(t) dt

∫
tQα(1/p(t))p(t) dt

∫
tQα(1/p(t))p(t) dt

∫
t2Qα(1/p(t))p(t) dt

)

For a symmetric density this matrix is diagonal and

Ψα(p) = diag

(∫
Qα(1/p(t))p(t) dt,

∫
t2Qα(1/p(t))p(t) dt(∫

t2p(t) dt
)2

)
.

Consequently the optimal design for estimating the slope in the linear regression has

the density (4.3) where µ and τ are defined in (4.2) and (4.4) (this follows from the

fact that the element in the position (2, 2) of the matrix Ψα(p) corresponds to the

optimality criterion for the linear regression through the origin).

The D-optimal designs for the linear regression model have to be determined numer-

ically in all cases. Some D-optimal design densities corresponding to the parameters

α = 1/4, 1/2, 3/4, 0.95 and T = 1 are displayed in Figure 3.
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Figure 3: Asymptotic D-optimal design densities for the linear regression, T = 1.

4.3 Comparison of optimal designs under long and short range

dependence

It is of some interest to compare the asymptotic optimal designs under short and long

range dependence. For this purpose we consider again the linear regression model with

no intercept. Bickel and Herzberg (1979) discussed the correlation function ρλ(t) =

e−λ|t|. The asymptotic optimal designs are given by

p(t) =





0, |t| ≤
√

τ/µ,
1

H−(µ−τ/t2)
,

√
τ/µ ≤ |t| ≤ T,

0, otherwise,

where the quantities µ, τ are defined by

µ =
1

2γ
+ 2

∫
f 2(t)Qα(1/p∗(t))p∗(t) dt∫

f 2(t)p∗(t) dt
,

τ =
1

2γ

∫
f 2(t)p∗(t) dt +

∫
f 2(t)Qα(1/p∗(t))p∗(t) dt +

∫
f 2(t)Q′

α(1/p∗(t)) dt,

respectively, [see Bickel, Herzberg and Schilling (1981)] and depend on the parameters

λ and γ defined in (2.2). Some of these designs are shown in Figure 4, while the

relevant parameters are given in Table 3, which also contains the efficiency of the

uniform design. We observe that - in contrast to the case of long range dependence -

the uniform design is rather efficient provided that either the parameter λ is not too

large or γ is not too small.

We now compare asymptotic optimal designs derived under the assumption of a long-

range dependence with asymptotic optimal designs under short range dependence. In

Table 4 we show the efficiency of a design derived under the assumption of short range

dependence, in the situation, where the “true” correlation structure is a member of the
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Figure 4: Asymptotic optimal design densities for the linear regression through the

origin, where the correlation function is given by ρλ(t) = e−λ|t|.

Table 3: Parameters of the asymptotic optimal design density for the linear regression

through the origin, where the correlation function is given by ρλ(t) = e−λ|t| . The last

column of the table shows the efficiency of the uniform design (4.5).

λ γ µ τ
√

τ/µ effuni

0.5 0.5 3.41 0.32 0.30 0.89

0.5 0.1 9.82 3.23 0.57 0.63

0.5 0.9 2.38 0.08 0.18 0.97

0.1 0.5 12.70 0.22 0.13 0.99

2.5 0.5 1.45 0.54 0.61 0.57

SVF family. We observe that the loss of efficiency is only substantial if the parameter α

is small. The opposite situation is displayed in Table 5 which shows the efficiency of the

asymptotic optimal design under long range dependence (from the the SVF family) but

the “true” correlation structure is in fact of exponential type. Again, the asymptotic

optimal designs derived under the long range dependence are rather efficient, except

when the parameter α is very small.

Table 4: Efficiency of the asymptotic optimal design density for the correlation function

ρλ(t) = e−λ|t| in the linear regression through the origin, while the “true” correlation

function belongs to the SVF family.

α 0.05 0.25 0.50 0.75 0.95

λ=0.5 γ =0.5 0.62 0.82 0.96 1.00 0.97

λ=0.5 γ =0.1 0.81 0.97 0.99 0.89 0.77

λ=0.5 γ =0.9 0.53 0.73 0.90 0.99 1.00

λ=0.1 γ =0.5 0.50 0.70 0.88 0.98 1.00

λ=2.5 γ =0.5 0.81 0.97 0.98 0.89 0.77
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Table 5: Efficiency of asymptotic optimal design density for a long range dependence

error structure in the linear regression through the origin, while the “true” correlation

function is given by ρλ(t) = e−λ|t|.
λ 0.5 0.5 0.5 0.1 2.5

γ 0.5 0.1 0.9 0.5 0.5

α=0.05 0.19 0.40 0.15 0.15 0.35

α=0.25 0.69 0.94 0.59 0.58 0.93

α=0.50 0.94 0.98 0.87 0.86 0.98

α=0.75 1.00 0.88 0.98 0.98 0.85

α=0.95 0.95 0.73 0.99 1.00 0.68
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