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Abstract

In the common nonparametric regression model the problem of testing for the

parametric form of the conditional variance is considered. A stochastic process based

on the difference between the empirical processes obtained from the standardized

nonparametric residuals under the null hypothesis (of a specific parametric form of

the variance function) and the alternative is introduced and its weak convergence

established. This result is used for the construction of a Cramér von Mises type

statistic for testing the parametric form of the conditional variance. The finite

sample properties of a bootstrap version of this test are investigated by means of

a simulation study. In particular the new procedure is compared with some of the

currently available methods for this problem and its performance is illustrated by

means of a data example.
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1 Introduction

Consider the common nonparametric heteroscedastic regression model

Y = m(X) + σ(X)ε, (1.1)

where (X, Y ) denotes a random vector, Y is a possible transformation of the variable

of interest, X is a covariate, and the centered error variable ε is independent of X with

mean 0 and variance 1. The function m(X) = E(Y |X) is the unknown regression function

and σ2(X) = Var(Y |X) is the unknown conditional variance function. The importance of

being able to test data corresponding to model (1.1) for heteroscedasticity is widely recog-

nized because under the additional assumption of homoscedasticity the statistical analysis

can be simplified substantially in most cases. On the other hand, if the assumption of

homoscedasticity is not met, efficient inference for the regression function requires that

the heteroscedasticity is taken into account. This may result in transformations of the

data, weighted least squares (or modified likelihood) procedures or the choice of a variable

bandwidth in nonparametric kernel smoothing [see Müller and Stadtmüller (1987)].

Early work on detecting heteroscedasticity is based on diagnostic plots based on resid-

uals after fitting a specific regression model to the data. Harrison and McCabe (1979),

Breusch and Pagan (1979), Koenker and Bassett (1981), Cook and Weisberg (1983), Car-

roll and Ruppert (1988), Sec. 3.4, and Diblasi and Bowman (1997) developed formal tests

for the form of the variance function under the additional assumption that a parametric

model for the regression function can be specified. A diagnostic test under a smoothness

assumption on the regression function and the assumption of a normally distributed er-

ror distribution has been proposed by Eubank and Thomas (1993). More recent work on

testing homoscedasticity considers a completely nonparametric specification of the regres-

sion model (1.1). Dette and Munk (1998) used an estimate of the L2-distance between

the variance function and its integral as test statistic, while Zhu, Fujikoshi and Naito

(2001) proposed a test based on a marked empirical process of the squared residuals for

testing homoscedasticity. Recently Dette (2002), Liero (2003) and Francisco-Fernández

and Vilar-Fernández (2005) used estimates for the L2-distance between the variance es-

timators in both models – the underlying heteroscedastic model and the hypothetical

homoscedastic model – as test statistic.

It is the purpose of the present paper to present an alternative approach for the problem

of testing for a parametric form of the variance function in the nonparametric regression

model (1.1). Our investigations are mainly motivated by the observation that all papers
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on testing homoscedasticity in a completely nonparametric regression model consider

test statistics based on squared residuals from a nonparametric fit. In contrast to this

approach we are interested in procedures, which use the residuals directly. Our interest in

such methods is motivated twofold. On one hand we expect tests based on nonparametric

residuals to be more sensitive for detecting deviations from homoscedasticity in the data.

On the other hand the consideration of the residuals instead of their squares is more

naturally related to the commonly used graphical procedures based on visual examination

of the residuals [see Atkinson (1985)].

Moreover, the literature published so far is restricted to tests for homoscedasticity but

there are numerous applications where a test for given parametric form of the variance

function is required. Thus a further difference to the work cited in the previous paragraph

is that we consider the more general problem of testing for a specific parametric form of

the variance function (see our formulation of the null hypothesis in Section 2). Finally,

in the case of testing for homoscedaticity the test statistic we will develop has the nice

property that it can detect local alternatives converging to the null hypothesis of constant

variance with a rate faster than root-n, whereas all other existing tests only attain the rate

root-n or even slower. We propose to compare the empirical processes of the standardized

residuals from a nonparametric fit under the null hypothesis (of a specific parametric form,

e.g. homoscedasticity) and under the alternative (e.g. heteroscedasticity) and reject the

null hypothesis for large differences between these processes. In Section 2 we present

some preliminary notation and a motivation of our approach. Section 3 contains the

main results. We derive a stochastic expansion for the difference between the empirical

processes of the standardized residuals under the null hypothesis and under the alternative

and use this result to prove the weak convergence of the corresponding difference process.

As a consequence a Kolmogorov-Smirnov and a Cramér-von Mises test based on the

difference process are proposed. In Section 4 we study the finite sample properties of a

bootstrap version of the new test and demonstrate that this procedure yields tests with

a reliable approximation of the nominal level and reasonable power. We also compare

the test with the currently available methods proposed in Dette and Munk (1998), Zhu,

Fujikoshi and Naito (2001), Dette (2002) and Francisco-Fernández and Vilar-Fernández

(2005), and demonstrate that in many cases the new procedure yields substantially larger

power in the problem of testing for homoscedasticity. Finally, we analyze data on the

concentration of sulfate in rain at two towns in North Carolina. Some technical details

are deferred to the Appendix.
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2 Notation and motivation of the test statistic

Consider the random vector (X, Y ) satisfying model (1.1) and define Fε(y) = P (ε ≤ y),

F (y|x) = P (Y ≤ y|X = x) and FX(x) = P (X ≤ x) as the distribution function of the

error, the conditional distribution function of Y given X = x and the distribution function

of the predictor, respectively. The probability density functions of Fε(y) and FX(x) are

assumed to exist and will be denoted by fε(y) and fX(x), respectively. We are interested

in a test for the hypothesis

H0 : σ2 ∈ M versus H1 : σ2 /∈ M, (2.1)

where

M = {σ2
θ : θ ∈ Θ} (2.2)

is some parametric class of variance functions and Θ ⊂ IRp is a set of parameters satis-

fying some regularity conditions, which will be specified in the Appendix. Note that the

hypothesis of homoscedasticity is obtained for p = 1, σ2
θ(x) = θ, but (2.1) contains many

other hypotheses of practical interest.

The easiest way to motivate our approach is to consider the problem of testing for the

parametric form of the variance function in the nonparametric regression model (1.1) in

terms of distribution functions. For this we introduce the random variables

ε =
Y −m(X)

σ(X)
(2.3)

and

ε0 =
Y −m(X)

σθ̃0(X)
, (2.4)

where θ̃0 ∈ Θ denotes the parameter corresponding to the best approximation of the

variance function σ2 by elements of the class M, that is

θ̃0 = argmin
θ∈Θ

E[{(Y −m(X))2 − σ2
θ(X)}2] (2.5)

= argmin
θ∈Θ

E[{σ2(X)− σ2
θ(X)}2]. (2.6)

Note that under H0, θ̃0 equals θ0, the true value of θ. Throughout this paper we assume

that θ̃0 exists and is uniquely determined. If the null hypothesis

σ2 ∈ M = {σ2
θ | θ ∈ Θ}
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is satisfied, the random variables ε and ε0 defined in (2.3) and (2.4) have the same distri-

bution. In general these distributions are different and we obtain

P (ε0 ≤ y) = P
(
ε ≤ σθ̃0(X)

σ(X)
y
)
. (2.7)

The following result shows that the equality of the distributions of the random variables ε0

and ε is equivalent to the hypothesis (2.1) of a specific parametric form for the conditional

variance. The proof can be found in the Appendix.

Lemma 2.1 Assume that all moments of the distribution of the error ε exist. The dis-

tributions of the random variables ε and ε0 defined in (2.3) and (2.4) coincide if and only

if the hypothesis H0 : σ2 ∈ M = {σ2
θ | θ ∈ Θ} is satisfied.

The construction of a test statistic for the hypothesis (2.1) follows exactly the same

pattern, where we replace the unknown distributions of the random variables ε and ε0 by

appropriate estimates. For this let (Xi, Yi), i = 1, . . . , n, denote independent replications

of (X, Y ). We first estimate the distribution of the error ε in a nonparametric way. Define

for any x in the support [a, b] of the distribution FX of X the estimates

m̂(x) =
n∑

i=1

Wi(x, h)Yi, σ̂2(x) =
n∑

i=1

Wi(x, h)(Yi − m̂(Xi))
2, (2.8)

where

Wi(x, h) =
K
(
x−Xi
h

)

∑n
j=1K

(
x−Xj
h

) (2.9)

are the Nadaraya-Watson weights [see Nadaraya (1964) or Watson (1964)], K is a known

probability density function (kernel) and h is an appropriate bandwidth. This leads to

F̂ε(y) = n−1
n∑

i=1

I(ε̂i ≤ y), (2.10)

as an estimate of the distribution function Fε, where

ε̂i =
Yi − m̂(Xi)

σ̂(Xi)

are the nonparametric residuals. This estimator (modulo a slightly different variance

estimator) has been recently proposed and studied by Akritas and Van Keilegom (2001).

Next, under the null hypothesis H0 we estimate the variance function σ2(x) by σ2
θ̂
(x),

where θ̂ is a minimizer (over θ ∈ Θ) of the expression

Sn(θ) = n−1
n∑

i=1

[(Yi − m̂(Xi))
2 − σ2

θ(Xi)]
2, (2.11)
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and we smooth the parametric estimate by the same bandwidth and kernel as for the

nonparametric estimator σ̂2(x), i.e.

σ̂2
0(x) =

n∑

i=1

Wi(x, h)σ2
θ̂
(Xi).

This leads to

F̂ε0(y) = n−1
n∑

i=1

I(ε̂i0 ≤ y), (2.12)

as an estimator of the distribution function of the random variable ε0 defined in (2.4),

where

ε̂i0 =
Yi − m̂(Xi)

σ̂0(Xi)

are the standardized residuals estimated under the null hypothesis H0.

Under the null hypothesis (2.1) one expects not too large deviations between the empirical

distribution functions F̂ε0 and F̂ε. Consequently we propose the Kolmogorov-Smirnov type

statistic

TKS = n1/2 sup
−∞<y<∞

|F̂ε(y)− F̂ε0(y)|

and the Cramér-von Mises type statistic

TCM = n
∫

[F̂ε(y)− F̂ε0(y)]2 dF̂ε(y)

for testing the hypothesis (2.1) of a specific parametric form of the variance function in

model (1.1).

3 Main results

In the following we will study some asymptotic properties of the these statistics under

the null hypothesis (2.1) and under local (Pitman) alternatives of the form

H1 : σ2(·) ≡ σ2
θ0

(·) + n−1/2r(·), (3.1)

for some function r (note that the null hypothesis H0 is obtained for n → ∞). We

introduce the following additional notation:

Ω =

{
E

[
∂σ2

θ (X)

∂θr

∣∣∣
θ=θ0

∂σ2
θ (X)

∂θs

∣∣∣
θ=θ0

]}

r,s=1,...,p

, (3.2)
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and
∂σ2

θ(x)

∂θ
=

(
∂σ2

θ (x)

∂θr

)

r=1,...,p

is the gradient of the variance function σ2
θ with respect to θ = (θ1, . . . , θp)

′ (here and

throughout this paper we assume its existence). The assumptions mentioned in the results

below can be found in the Appendix, as well as the proofs of Theorems 3.1 and 3.4.

Theorem 3.1 Assume that the conditions (A1)-(A3) in the Appendix are satisfied. Then,

under the null hypothesis H0, the following stochastic expansion is valid:

F̂ε(y)− F̂ε0(y)

=
yfε(y)

2

{
n−1

n∑

i=1

σ−2(Xi)[{Yi −m(Xi)}2 − σ2(Xi)]

−
∫
σ−2(x)

(
∂σ2

θ (x)

∂θ

∣∣∣
θ=θ0

)′
dFX(x) Ω−1 n−1

n∑

i=1

[{Yi −m(Xi)}2 − σ2(Xi)]
∂σ2

θ(Xi)

∂θ

∣∣∣
θ=θ0

}

+Rn(y),

where the random process {Rn(y)}
y∈IR satisfies

sup
−∞<y<∞

|Rn(y)| = oP (n−1/2).

The first term on the right hand side of the above expansion is the result of estimating the

variance function σ2(·) nonparametrically by σ̂2(·), whereas the second term comes from

the parametric estimator σ̂2
0(·). Note that the estimation of m(·) does not contribute to

the main term of this expansion. This is because the same estimator of m(·) is used in

the expressions of ε̂i and ε̂i0 (i = 1, . . . , n), and hence the contribution of this estimator

to the main term cancels out [see our proof in the Appendix]. The following Corollary is

an immediate consequence of Theorem 3.1, since the main term in the above representa-

tion factorizes in a deterministic function only dependent on y and a sum of i.i.d. terms

independent of y.

Corollary 3.2 Assume that the conditions (A1)-(A3) in the Appendix are satisfied. Then,

under the null hypothesis H0, the process {n1/2(F̂ε(y)− F̂ε0(y))}
y∈IR converges weakly to

the process {yfε(y)W}
y∈IR, where W is a zero-mean normal random variable with vari-

ance

Var(W ) =
1

4
E
[
ε4 − 1

]
E



(

1−
∫ σ2

θ0(X)

σ2
θ0

(x)

(∂σ2
θ(x)

∂θ

∣∣∣
θ=θ0

)′
dFX(x)Ω−1∂σ

2
θ(X)

∂θ

∣∣∣
θ=θ0

)2

 .
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We are now ready to establish the weak convergence of the test statistics TKS and TCM .

Corollary 3.3 Assume that the conditions (A1)-(A3) in the Appendix are satisfied. Then,

under the null hypothesis H0,

TKS
d→ sup
−∞<y<∞

|yfε(y)| |W | ,

TCM
d→
∫
y2f 2

ε (y) dFε(y)W 2,

where the random variable W has been defined in Corollary 3.2.

The proof for the statistic TKS follows from the continuous mapping theorem, while for

TCM the proof mimics almost exactly that of Corollary 3.3 in Van Keilegom, González-

Manteiga and Sánchez-Sellero (2005).

Note that the limiting process in Corollary 3.2 has an extremely simple structure, as it

factorizes in a deterministic function and a random variable independent of y. However,

the deterministic factor depends on the unknown density of the error distribution, which

may be difficult to estimate in many cases, although estimators for this density have

been proposed and studied in the literature (see e.g. Van Keilegom and Veraverbeke

(2002)). Therefore we propose the application of a smoothed bootstrap procedure for the

calculation of the critical values (see our discussion in Section 4). We conclude this section

considering the limiting behavior of the two test statistics under the local alternative H1

and two illustrative examples.

Theorem 3.4 Assume that the conditions (A1)-(A4) in the Appendix are satisfied. Then,

under local alternatives of the form (3.1),

TKS
d→ sup
−∞<y<∞

|yfε(y)| |W + b|

TCM
d→
∫
y2f 2

ε (y) dFε(y) (W + b)2,

where

b = −
∫
σ−2
θ0

(x)
(∂σ2

θ(x)

∂θ

∣∣∣
θ=θ0

)′
dFX(x) Ω−1

∫
r(x)

∂σ2
θ(x)

∂θ

∣∣∣
θ=θ0

dFX(x)

+
∫
σ−2
θ0

(x)r(x)dFX(x).

Example 3.1 In the important problem of testing for homoscedasticity (i.e. H0 : σ2(·) ≡
θ for some θ > 0), it follows that ∂σ2

θ/∂θ = 1 and a straightforward calculation shows
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that the main term of the asymptotic representation in Theorem 3.1 vanishes, i.e.

sup
−∞<y<∞

|F̂ε(y)− F̂ε0(y)| = oP (n−1/2).

As a consequence the limit distribution in Corollary 3.2, 3.3 and 3.4 degenerates to a Dirac

measure concentrated at the point 0. Hence, in the problem of testing for homoscedastic-

ity, tests based on the process

{n1/2(F̂ε(y)− F̂ε0(y))}
y∈IR

can detect local alternatives converging to the null hypothesis with a rate faster than

root-n.

Example 3.2 The following example shows that one cannot expect that the statement of

Example 3.1 is correct for more general hypotheses on the conditional variance. Consider

for example the case p = 1 and σ2
θ(x) = θk(x) for a given nonnegative function k. In this

case the distribution of the random variable W is a centered normal with variance

Var(W ) =
1

4
E[ε4 − 1]Var[k2(X)]/E[k2(X)]2,

which vanishes if and only the function k is constant.

4 Finite sample properties and a data example

4.1 A simulation study

In this section we study the finite sample properties of the new test and compare it

with four other procedures, which are currently available in the literature for testing

for homoscedasticity. We limit attention to the Cramér-von Mises test and demonstrate

that in many cases the new procedure yields a larger power. Note that the asymptotic

distribution of this test depends on the unknown density of the error ε. Although this

can be estimated in principle, we decided to implement a smooth bootstrap version of the

test. To be precise, first define

ε∗i = ε̃i + vNi i = 1, . . . , n (4.1)

where ε̃1, . . . , ε̃n are a sample of i.i.d. observations with distribution function F̂ε, N1, . . . , Nn

are i.i.d. standard normal distributed random variables independent of ε̃1, . . . , ε̃n, and v
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is a smoothing parameter. In a next step we generate bootstrap data according to the

model

Y ∗i = m̂(Xi) + σθ̂(Xi)ε
∗
i ,

where σ2
θ̂
(·) is the estimate of the variance function under the null hypothesis (2.1), and

calculate the corresponding Cramér-von Mises statistic T ∗CM from the bootstrap data. If

B bootstrap replications have been performed and T
∗(1)
CM < . . . < T

∗(B)
CM denote the order

statistics of the calculated bootstrap sample, the null hypothesis (2.1) is rejected if

TCM > T
∗(bB(1−α)c)
CM . (4.2)

B = 100 bootstrap replications are performed to calculate the rejection probabilities of

the test (4.2) and 1000 simulation runs are used for each scenario. In order to investigate

the impact of the bandwidth for the Nadaraya-Watson weights in the testing procedure

we considered the two cases h = 0.3 and h = 0.5 and for the factor v in (4.1) we used

v = 0.2.

Example 4.1. Our first example considers the problem of testing for homoscedasticity

in the nonparametric regression model (1.1). In particular we consider the nonparametric

regression models

(I) m(x) = 1 + sin x σ(x) = σ exp(cx)

(II) m(x) = 1 + x σ(x) = σ(1 + c · sin(10x))2

(III) m(x) = 1 + x σ(x) = σ(1 + cx)2,

(4.3)

where the standard deviation is chosen as σ = 0.5 and the parameter c is given by 0, 0.5

and 1.0. In Table 4.1 and 4.2 we show the simulated rejection probabilities for the sample

sizes n = 50, 100, 200 and for the two bandwidths h = 0.3 and h = 0.5, respectively.

Note that the case c = 0 corresponds to the null hypothesis of homoscedasticity and that

the test beds defined by (4.3) were also considered in a simulation study by Dette and

Munk (1998), who used an estimate of Var[σ2(X)] as test for homoscedasticity. Thus

our results are directly comparable with the corresponding rejection probabilities given

in Table 1 of this reference. The models (I) and (III) have also been considered in Dette

(2002), who proposed to estimate Var[σ2(X)] by smoothing methods, see Table 1 and

2 in this reference. Francisco-Fernández and Vilar-Fernández (2005) investigated Liero’s

(2003) proposal to use an L2-distance between a nonparametric and a constant estimate

of the variance function and also considered the models (I) and (III) [see Table 3-4 in this
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reference]. These authors propose a further test for homoscedasticity, which is based on

a combination of a polynomial least squares fit to the squared nonparametric residuals

with a test if this polynomial is constant. Because this test is not consistent in general,

it is not included in our comparison.

We observe a rather precise approximation of the nominal level by the new test in all

cases (see the rows labeled with c = 0 in Table 4.1 and 4.2). Moreover, for model (I)

and (III) the impact of the choice of the bandwidth h seems to be less critical compared

to the oscillating case (II). In this situation the power of the bootstrap test decreases

substantially with an increasing bandwidth. A comparison with the results of Dette and

Munk (1998) and Dette (2002) shows that in the test beds (I) and (III) the new test

yields substantially larger power than the test proposed by these authors. For example in

model (I) with c = 1 the power of the new test at level α = 10% with n = 50 observations

is 0.614 and 0.651 corresponding to the cases h = 0.3 and h = 0.5, respectively. This

power is even not reached by the test of Dette and Munk (1998) for n = 200 observations,

where the power is 0.458. On the other hand the power of Dette’s (2002) test is 0.566 for

n = 50 observations. For a comparison with the test of Francisco-Fernández and Vilar-

Fernández (2005) we have to consider the sample size n = 100, because these authors did

not present results for smaller sample sizes. In this case the power of the new procedure

is 0.922 (h = 0.3) and 0.930 (h = 0.5), while the power of the test based on the L2-

distance is 0.945. This slight improvement can be explained by the fact that the test of

Francisco-Fernández and Vilar-Fernández (2005) does not keep the 10% level (it is 0.129,

while the level of the new test is 0.103). This phenomenon was observed by many authors

for L2-type statistics [see e.g. Fan and Linton (2003)].

The situation in the test bed (III) is very similar: the power of the new test obtained

for 50 observations is 0.810 and 0.814 corresponding to the cases h = 0.3 and h = 0.5,

respectively, and exceeds the power of the test of Dette and Munk (1998) with n = 200

observations (which is 0.598). The power of Dette’s (2002) test is 0.774 for n = 50

observations. For the sample size n = 100 the test of Francisco-Fernández and Vilar-

Fernández (2005) has power 0.995, while the new test yields the rejection probabilities

0.991 and 0.990 corresponding to the cases h = 0.3 and h = 0.5 (note again that the

test of Francisco-Fernández and Vilar-Fernández (2005) exceeds the 10%-level by more

than 25%). The other cases for model (I) and (III) show a similar superiority of the new

procedure.

In the situation of an oscillating variance function considered in model (II) the situation
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is different. Here the power of the new test depends sensitively on the bandwidth chosen

for the regression estimate. If h = 0.5 the test of Dette and Munk (1998) is more powerful

in most cases, while a smaller bandwidth h = 0.3 yields a substantially larger power than

the test of Dette and Munk (1998).

n = 50 n = 100 n = 200

h = 0.3 c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.038 0.058 0.101 0.038 0.057 0.103 0.032 0.052 0.106

(I) 0.5 0.136 0.173 0.246 0.292 0.352 0.471 0.564 0.638 0.736

1 0.431 0.502 0.614 0.822 0.863 0.922 0.991 0.997 0.999

0 0.033 0.061 0.109 0.039 0.054 0.099 0.037 0.055 0.109

(II) 0.5 0.219 0.279 0.414 0.497 0.600 0.740 0.949 0.968 0.992

1 0.466 0.539 0.650 0.789 0.838 0.902 0.988 0.993 0.999

0 0.035 0.057 0.108 0.038 0.061 0.099 0.038 0.049 0.098

(III) 0.5 0.285 0.351 0.471 0.631 0.700 0.797 0.948 0.967 0.984

1 0.651 0.708 0.810 0.959 0.973 0.991 1.000 1.000 1.000

Table 4.1. Simulated rejection probabilities of the bootstrap test with bandwidth h = 0.3 for the

regression and variance functions in (4.3). The error has a standard normal distribution and

the explanatory variable X has a uniform distribution on the interval [0, 1].

n = 50 n = 100 n = 200

h = 0.5 c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.024 0.046 0.100 0.038 0.058 0.103 0.032 0.054 0.109

(I) 0.5 0.137 0.182 0.217 0.294 0.362 0.487 0.592 0.676 0.777

1 0.438 0.523 0.651 0.794 0.862 0.930 0.992 0.995 0.997

0 0.032 0.055 0.097 0.033 0.050 0.111 0.035 0.055 0.103

(II) 0.5 0.072 0.092 0.157 0.084 0.124 0.200 0.095 0.152 0.284

1 0.184 0.237 0.305 0.294 0.349 0.427 0.470 0.525 0.630

0 0.029 0.039 0.085 0.040 0.060 0.112 0.037 0.056 0.103

(III) 0.5 0.261 0.323 0.455 0.653 0.731 0.822 0.935 0.957 0.981

1 0.637 0.708 0.814 0.959 0.976 0.990 0.999 1.000 1.000

Table 4.2. Simulated rejection probabilities of the bootstrap test with bandwidth h = 0.5 for the

regression and variance functions in (4.3). The error has a standard normal distribution and

the explanatory variable X has a uniform distribution on the interval [0, 1].
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n = 50 n = 70 n = 100

h = 0.3 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

(IV) 0.767 0.826 0.916 0.961 0.974 0.993 1.000 1.000 1.000

(V) 0.994 0.996 0.998 1.000 1.000 1000 1.000 1.000 1.000

(VI) 0.916 0.961 0.997 0.991 0.999 1.000 1.000 1.000 1.000

Table 4.3. Simulated rejection probabilities of the bootstrap test with bandwidth h = 0.3 for the

regression and variance functions in (4.4). The error has a standard normal distribution and

the explanatory variable X has a uniform distribution on the interval [0, 1].

n = 50 n = 70 n = 100

h = 0.5 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

(IV) 0.718 0.811 0.902 0.943 0.968 0.996 1.000 1.000 1.000

(V) 0.989 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000

(VI) 0.902 0.950 0.999 0.987 0.992 1.000 1.000 1.000 1.000

Table 4.4. Simulated rejection probabilities of the bootstrap test with bandwidth h = 0.5 for the

regression and variance functions in (4.4). The error has a standard normal distribution and

the explanatory variable X has a uniform distribution on the interval [0, 1].

Example 4.2. Our second example refers to the work of Zhu, Fujikoshi and Naito (2001),

who proposed functionals of a marked empirical process of the squared nonparametric

residuals as test statistic in the problem of testing for homoscedasticity. In a simula-

tion study they investigated the finite sample properties for the following regression and

variance functions :

(IV ) m(x) = 1 + 2x σ(x) = 0.25 + x

(V ) m(x) = 1 + 2x σ(x) = 0.25 + 4(x− 0.25)2

(V I) m(x) = 1 + 2x σ(x) = 0.25 exp(x log 5).

(4.4)

In Table 4.3 and 4.4 we display the rejection probabilities of the new Cramér von Mises

(bootstrap) test proposed in Section 3 for the sample sizes n = 50, n = 70 and n = 100.

The two tables correspond again to the bandwidths h = 0.3 and h = 0.5, respectively. We

observe no substantial differences between the two choices of the bandwidth. The results

in the tables for sample size n = 50 and n = 70 and the 5% level are directly comparable

with Table 2 in Zhu, Fujikoshi and Naito (2001). We observe that in model (IV) and (VI)

the rejection probabilities of the test of Zhu, Fujikoshi and Naito (2001) are very similar
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to those obtained by the new test. However, in model (V) the power of the new test is at

least three times larger as the power of the test of Zhu, Fujikoshi and Naito (2001). Thus

the new procedure performs reasonably well in the examples considered by these authors.

n = 50 n = 100 n = 200

h = 0.3 c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.034 0.055 0.110 0.034 0.049 0.096 0.023 0.095 0.093

(VII) 0.5 0.200 0.248 0.337 0.368 0.440 0.544 0.662 0.723 0.827

1 0.383 0.456 0.604 0.715 0.794 0.888 0.956 0.976 0.990

Table 4.5. Simulated rejection probabilities of the bootstrap test with bandwidth h = 0.3 for

the one-parametric hypothesis (4.5). The regression and variance functions are given by (4.6),

the error has a standard normal distribution and the explanatory variable X has a uniform

distribution on the interval [0, 1].

n = 50 n = 100 n = 200

h = 0.5 c 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

0 0.025 0.042 0.087 0.021 0.043 0.089 0.021 0.046 0.087

(VII) 0.5 0.167 0.218 0.304 0.262 0.321 0.416 0.417 0.473 0.586

1 0.348 0.424 0.578 0.690 0.752 0.821 0.919 0 .942 0.967

Table 4.6. Simulated rejection probabilities of the bootstrap test with bandwidth h = 0.5 for

the one-parametric hypothesis (4.5). The regression and variance functions are given by (4.6),

the error has a standard normal distribution and the explanatory variable X has a uniform

distribution on the interval [0, 1].

Example 4.3. Our final example considers the problem of testing for a one-parametric

class of variance functions, that is

H0 : σ2(x) = 1 + θx2 (4.5)

for some θ ∈ IR. For this we simulate data according to the model

(V II) m(x) = 1 + x σ(x) = 1 + 3x2 + 2.5c sin(2πx) (4.6)

where the case c = 0 corresponds to the null hypothesis and the choices c = 0.5, 1 to two

alternatives. The errors in model (1.1) are standard normal and the covariates follow again

a uniform distribution on the interval [0, 1]. The rejection probabilities of the Cramér von
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Mises test are displayed in Table 4.5 and 4.6 corresponding to the bandwidths h = 0.3 and

h = 0.5, respectively. We observe a good approximation of the nominal level (for both

choices of the bandwidth) and reasonable rejection probabilities under the two alternatives

(c = 0.5, 1). In this case the power of the test depends again sensitively on the choice of

the bandwidth.

4.2 Data example

We consider data on (log of) concentration of sulfate in rain at two towns (Coweeta

and Lewiston) in North Carolina. The data were previously analyzed by Hall and Hart

(1990), in the context of bootstrap tests for nonparametric analysis of covariance, where

the covariate is ‘amount of rainfall’. The sulfate concentration was available on a weekly

basis over a five year period from 1979 to 1983. There were 220 weeks among all 261

weeks where data were available at Coweeta and 215 weeks where data were available at

Lewiston. Hall and Hart (1990) restricted their analysis to the 189 weeks where data were

available at both towns.

A crucial assumption in the applicability of their test for the comparison of two regression

curves is a constant (not necessary equal) variance of the observations in both towns. In

order to investigate whether this assumption is justified we applied the new bootstrap

test to each data set, respectively. The bandwidth h was chosen by least squares cross

validation, b = 500 bootstrap replications were used and we transformed the covariate

(week) onto the interval [0, 1] by dividing by 261. For the Lewiston data a p-value of 0.397

and for the Coweeta data a p-value of 0.418 were observed. Hence, Hall and Hart’s (1990)

assumption of constant variability in both groups is strictly supported by our test.

Appendix : Proofs

In what follows ‖ · ‖ denotes the Euclidean norm. For our main asymptotic results we

require the following regularity conditions.

(A1) :

(i) As n→∞: h→ 0, nh4 → 0 and nh3+2δ(log h−1)−1 →∞ for some δ > 0.

(ii) K has compact support,
∫
uK(u) du = 0 and K is twice continuously differentiable.
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(A2) :

(i) FX is three times continuously differentiable and infa≤x≤b fX(x) > 0.

(ii) F ′(y|x) exists, is continuous in (x, y) for all x and y and supx,y |y2F ′(y|x)| <∞, and

the same holds for all other partial derivatives of F (y|x) with respect to x and y up to

order two.

(iii) m(x) is twice continuously differentiable.

(iv) All partial derivatives up to order three of σ2
θ(x) with respect to x and the components

of θ exist and are continuous in (x, θ) for all x and θ. Moreover, infa≤x≤b σ(x) > 0.

(v) E(ε4) <∞.

(A3) :

(i) Θ is a compact subspace of IRp.

(ii) θ0 is an interior point of Θ.

(iii) For all ε > 0, inf‖θ−θ0‖>εE[(σ2
θ(X)− σ2

θ0
(X))2] > 0.

(iv) The matrix Ω defined in (3.2) is non-singular.

(A4) : E[r2(X)] <∞ and r(x) is twice continuously differentiable for all x.

A.1 Proof of Lemma 2.1.

The necessary part follows from (2.7). In order to show that the equality of the distribu-

tions of the random variables is also sufficient for the hypothesis σ2 ∈ M = {σ2
θ | θ ∈ Θ},

we note that it follows from (2.7) that

E[ε2n] = E[ε2n
0 ] = E

[( σ2(X)

σ2
θ̃0

(X)
ε2
)n]

= E[ε2n]E
[( σ2(X)

σ2
θ̃0

(X)

)n]

for all n ∈ IN , which implies that

E
[( σ2(X)

σ2
θ̃0

(X)

)n]
= 1

for all n ∈ IN . Therefore we obtain from Carleman’s condition [see e.g. Feller (1966)

p. 228] that the distribution of the random variable σ2(X)/σ2
θ̃0

(X) coincides with the

distribution of the constant random variable U ≡ 1, that is σ2 ∈ M = {σ2
θ | θ ∈ Θ}. 2
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A.2 Proof of Theorem 3.1 and 3.4.

The proof requires several auxiliary results.

Lemma A.1 If the assumptions of Theorem 3.1 are satisfied, then the following stochastic

expansion is valid :

∫
σ−2(x)[σ̂2(x)− σ2(x)] dFX(x)

= n−1
n∑

i=1

σ−2(Xi)[{Yi −m(Xi)}2 − σ2(Xi)] + oP (n−1/2).

Proof. With the notation Kh(·) = h−1K(·/h) we obtain the decomposition

∫
σ−2(x)σ̂2(x) dFX(x) = n−1

n∑

i=1

∫
Kh(x−Xi)f̂

−1
X (x)σ−2(x) dFX(x)Y 2

i

−2n−1
n∑

i=1

∫
Kh(x−Xi)f̂

−1
X (x)σ−2(x) dFX(x)Yim̂(Xi)

+n−1
n∑

i=1

∫
Kh(x−Xi)f̂

−1
X (x)σ−2(x) dFX(x) m̂2(Xi)

= T1 + T2 + T3, (A.1)

where the last equality defines the random variables T1, T2, T3. For the first term T1 in

(A.1) we have

T1 = n−1
n∑

i=1

∫
Kh(x−Xi)σ

−2(x)[Y 2
i − E(Y 2|X = x)] dx

+n−1
n∑

i=1

∫
Kh(x−Xi)[fX(x)− f̂X(x)]f̂−1

X (x)σ−2(x)[Y 2
i − E(Y 2|X = x)] dx

+
∫
σ−2(x)E(Y 2|X = x) dFX(x)

= n−1
n∑

i=1

σ−2(Xi)[Y
2
i − E(Y 2

i |Xi)] + E[σ−2(X)E(Y 2|X)] + oP (n−1/2). (A.2)

Using a similar decomposition as for T1 we obtain

T2 = −2n−1
n∑

i=1

σ−2(Xi)Yi[m̂(Xi)− E{m̂(Xi)|X}]

−2n−1
n∑

i=1

∫
Kh(x−Xi)f̂

−1
X (x)σ−2(x) dFX(x)YiE{m̂(Xi)|X}+ oP (n−1/2)

= T2,1 + T2,2, (A.3)
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where the last line defines the random variables T2,i (i = 1, 2) and X = (X1, . . . , Xn) is

the vector of covariates. The second term on the right hand side of (A.3) equals (using

again a similar derivation as for the stochastic expansion of T1)

T2,2 = − 2

n

n∑

i=1

∫
Kh(x−Xi)f̂

−1
X (x)σ−2(x) dFX(x)Yim(Xi) + oP (n−1/2)

= − 2

n

n∑

i=1

σ−2(Xi)[Yim(Xi)−m2(Xi)]− 2E[σ−2(X)m2(X)] + oP (n−1/2), (A.4)

whereas the first term can be written as

T2,1 = − 2

n2

n∑

i=1

n∑

j=1

Kh(Xi −Xj)f
−1
X (Xi)σ

−2(Xi)Yi(Yj −m(Xj)) + oP (n−1/2)

=
1

n2

n∑

i=1

n∑

j=1

Unij + oP (n−1/2) ,

where the random variables Unij are defined by

Unij = −2Kh(Xi −Xj)f
−1
X (Xi)σ

−2(Xi)Yi(Yj −m(Xj)).

Now a standard argument shows that

T2,1 = n−2
n∑

i=1

n∑

j=1

[Unij − E{Unij|Xi, Yi} − E{Unij|Xj, Yj}+ E{Unij}]

+n−1
n∑

i=1

E{Uni1|Xi, Yi}+ n−1
n∑

j=1

E{Un1j|Xj, Yj} − n−2
n∑

i=1

n∑

j=1

E{Unij}

+oP (n−1/2)

=
4∑

k=1

Ank + oP (n−1/2) , (A.5)

where the last line defines the random variables Ank (k = 1, . . . , 4). For An1, note that

E[An1] = 0 and hence, by Chebyshev’s inequality, for any K > 0,

P (|An1| > Kn−1E{U∗n12(U∗n12 + U∗n21)}1/2) (A.6)

≤ K−2n2E{U∗n12(U∗n12 + U∗n21)}−1E(A2
n1)

= K−2n−2E{U∗n12(U∗n12 + U∗n21)}−1
∑

i,j

∑

l,m

E(U∗nijU
∗
nlm),

where U∗nij = Unij − E{Unij|Xi, Yi} − E{Unij|Xj, Yj} + E{Unij}. Since E[U∗nij] = 0, the

terms for which both i and j are different from l and m are zero. The terms for which
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either i or j equals l or m and the other differs from l and m, are also zero, because, for

example when i = l and j 6= m,

E[U∗nijE{U∗nim|Xi, Yi, Xj, Yj}] = 0.

Thus, only the 2n2 terms for which (i, j) equals (l, m) or (m, l) are non-zero. Hence,

(A.6) is bounded by K−2, which can be made arbitrarily small for K large enough. It

now follows that An1 = OP (n−1h−1/2) = oP (n−1/2), since it is easily seen that

E{U∗n12(U∗n12 + U∗n21)} = O(h−1).

Next, note that An2 = An4 = 0, and that

An3 = −2n−1
n∑

i=1

σ−2(Xi)m(Xi)(Yi −m(Xi)) + oP (n−1/2).

Hence it follows from (A.3)

T2 = − 4

n

n∑

i=1

σ−2(Xi)m(Xi)[Yi −m(Xi)]− 2E[σ−2(X)m2(X)] + oP (n−1/2). (A.7)

It remains to consider the term T3 in the decomposition (A.1), for which a similar argu-

ment as used for the stochastic expansion of the term T1 yields

T3 = n−1
n∑

i=1

∫
Kh(x−Xi)σ

−2(x)[m̂2(Xi)− E{m̂(Xi)|X}2] dx (A.8)

+n−1
n∑

i=1

∫
Kh(x−Xi)f̂

−1
X (x)σ−2(x)E{m̂(Xi)|X}2 dFX(x) + oP (n−1/2).

The second term of (A.8) can be written as E[σ−2(X)m2(X)] + oP (n−1/2), whereas the

first term equals (using similar techniques as for the stochastic expansion of the term T2,1)

n−3
n∑

i=1

n∑

j=1

n∑

k=1

Kh(Xi −Xj)Kh(Xi −Xk)f
−2
X (Xi)σ

−2(Xi)[YjYk −m(Xj)m(Xk)]

+oP (n−1/2)

= 2n−1
n∑

i=1

σ−2(Xi)m(Xi)[Yi −m(Xi)] + oP (n−1/2). (A.9)

It now follows from (A.1), (A.2), (A.7) and (A.9) that
∫
σ−2(x)σ̂2(x) dFX(x)

= n−1
n∑

i=1

σ−2(Xi)[Y
2
i − E(Y 2

i |Xi)] + E[σ−2(X)E(Y 2|X)]
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−2n−1
n∑

i=1

σ−2(Xi)m(Xi)[Yi −m(Xi)]− E[σ−2(X)m2(X)] + oP (n−1/2)

= n−1
n∑

i=1

σ−2(Xi)[Y
2
i − E(Y 2|Xi)− 2m(Xi){Yi −m(Xi)}+ σ2(Xi)] + oP (n−1/2)

= n−1
n∑

i=1

σ−2(Xi)[Yi −m(Xi)]
2 + oP (n−1/2).

2

Lemma A.2 If the assumptions of Theorem 3.1 are satisfied, then under the null hypoth-

esis H0,

θ̂ − θ0 →P 0.

Proof. Recall the definition Sn in (2.11) and define

S0(θ) = E{σ4
θ0(X)}E(ε4 − 1) + E{[σ2

θ(X)− σ2
θ0(X)]2}, (A.10)

It follows from Theorem 5.7 in van der Vaart (1998, p. 45) that it suffices to show that

sup
θ
|Sn(θ)− S0(θ)| →P 0

inf
‖θ−θ0‖>ε

S0(θ) > S0(θ0) ∀ε > 0.

The latter follows from assumption (A3)(iii), whereas for the former, note that

sup
θ
|Sn(θ)− S0(θ)| ≤ sup

θ
|Sn(θ)− S̃n(θ)|+ sup

θ
|S̃n(θ)− S0(θ)|, (A.11)

where the random variable S̃n is given by

S̃n(θ) = n−1
n∑

i=1

[(Yi −m(Xi))
2 − σ2

θ(Xi)]
2.

From the uniform consistency of m̂(·) it follows that the first term on the right hand side

of (A.11) is oP (1). For the second term, apply e.g. Theorem 2 in Jennrich (1969). 2

Lemma A.3 If the assumptions of Theorem 3.1 are satisfied, then under the null hypoth-

esis H0,

θ̂ − θ0 = Ω−1 n−1
n∑

i=1

[{Yi −m(Xi)}2 − σ2(Xi)]
∂σ2

θ (Xi)

∂θ

∣∣∣
θ=θ0

+oP (n−1/2).
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Proof. First note that θ̂− θ0 = oP (1) by Lemma A.2. Hence, it follows from assumption

(A3)(ii) that θ̂ is an interior point of Θ for n large enough. Now write

∂Sn(θ)

∂θ

∣∣∣
θ=θ̂
− ∂Sn(θ)

∂θ

∣∣∣
θ=θ0

=
∂2Sn(θ)

∂θ∂θ′

∣∣∣
θ=θ1n

(θ̂ − θ0),

for some θ1n between θ̂ and θ0. Then, we obtain that

θ̂ − θ0 = −
(
∂2Sn(θ)

∂θ∂θ′

∣∣∣
θ=θ1n

)−1
∂Sn(θ)

∂θ

∣∣∣
θ=θ0

, (A.12)

where

∂Sn(θ)

∂θ

∣∣∣
θ=θ0

= −2n−1
n∑

i=1

[(Yi − m̂(Xi))
2 − σ2

θ0
(Xi)]

∂σ2
θ (Xi)

∂θ

∣∣∣
θ=θ0

. (A.13)

In order to prove that m̂(Xi) can be replaced by m(Xi) in the above expression, we can

follow the same type of arguments as presented in the proof of Lemma A.1, the main

difference being that the weights are now all equal to n−1. It can be shown in this way

that the left hand side of (A.13) equals

∂Sn(θ)

∂θ

∣∣∣
θ=θ0

= −2n−1
n∑

i=1

[(Yi −m(Xi))
2 − σ2

θ0(Xi)]
∂σ2

θ (Xi)

∂θ

∣∣∣
θ=θ0

+oP (n−1/2).

Finally, we obtain from the continuity of
∂σ2
θ

∂θ∂θ′ and Lemma A.2,

∂2Sn(θ)

∂θ∂θ′

∣∣∣
θ=θ1n

=
2

n

n∑

i=1

∂σ2
θ(Xi)

∂θ

∣∣∣
θ=θ1n

(
∂σ2

θ(Xi)

∂θ

∣∣∣
θ=θ1n

)′
− 2

n

n∑

i=1

[(Yi − m̂(Xi))
2 − σ2

θ1n
(Xi)]

∂2σ2
θ(Xi)

∂θ∂θ′

∣∣∣
θ=θ1n

=
2

n

n∑

i=1

∂σ2
θ(Xi)

∂θ

∣∣∣
θ=θ0

(
∂σ2

θ(Xi)

∂θ

∣∣∣
θ=θ0

)′
− 2

n

n∑

i=1

[(Yi −m(Xi))
2 − σ2

θ0
(Xi)]

∂2σ2
θ(Xi)

∂θ∂θ′

∣∣∣
θ=θ0

+oP (1)

= 2Ω + oP (1),

and the assertion of Lemma A.3 follows. 2

Proof of Theorem 3.1. From the proof of Theorem 1 in Akritas and Van Keilegom

(2001) (hereafter called AVK) it follows that

F̂ε(y)− Fε(y) = n−1
n∑

i=1

I(εi ≤ y)− Fε(y) (A.14)

+fε(y)
∫
σ−1(x)[y{σ̂(x)− σ(x)}+ m̂(x)−m(x)] dFX(x) +Rn1(y),
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where

sup
y∈IR
|Rn1(y)| = oP (n−1/2).

Note that AVK assume that the regression function m and the variance function σ2 are

L-functionals that depend on a certain score function, say J . It is easy to show that the

representation (A.14) can be extended to the choice J ≡ 1, which leads to the conditional

mean and variance that we consider in this paper (it suffices to replace Propositions 3–5

in AVK by their analogues for the estimators of the conditional mean and variance).

We will now construct a similar representation for the differences F̂ε0(y)−Fε(y). We will

do this by showing that Theorem 1 in AVK can be adapted to the case where σ̂(x) is

replaced by σ̂0(x). It can be easily seen that Propositions 3–5 in AVK continue to hold true

when σ̂ is replaced by σ̂0 (use assumption (A2)(iv) and the fact that θ̂− θ0 = OP (n−1/2)).

We can now follow exactly the same derivation as for the above representation, and find

in this way that

F̂ε0(y)− Fε(y) = n−1
n∑

i=1

I(εi ≤ y)− Fε(y) (A.15)

+ fε(y)
∫
σ−1(x)[y{σ̂0(x)− σ(x)} + m̂(x)−m(x)] dFX(x) +Rn2(y),

where

sup
y∈IR
|Rn2(y)| = oP (n−1/2).

Hence, under the null hypothesis we obtain

F̂ε(y)− F̂ε0(y) = yfε(y)
∫
σ−1(x)[σ̂(x)− σ̂0(x)] dFX(x) + oP (n−1/2)

=
yfε(y)

2

∫
σ−2(x)[σ̂2(x)− σ̂2

0(x)] dFX(x) + oP (n−1/2) (A.16)

uniformly in y. On the other hand it follows from Lemma A.1 that
∫
σ−2(x)[σ̂2(x)− σ2(x)] dFX(x)

= n−1
n∑

i=1

σ−2(Xi)[{Yi −m(Xi)}2 − σ2(Xi)] + oP (n−1/2), (A.17)

whereas Lemma A.3 and a Taylor expansion yield
∫
σ−2(x)[σ̂2

0(x)− σ2(x)] dFX(x)

= n−1
n∑

i=1

∫
σ−2(x)Kh(x−Xi){σ2

θ̂
(x)− σ2

θ0
(x)}dx + oP (n−1/2)
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= n−1
n∑

i=1

σ−2(Xi){σ2
θ̂
(Xi)− σ2

θ0(Xi)}+ oP (n−1/2)

= n−1
n∑

i=1

σ−2(Xi)

(
∂σ2

θ (Xi)

∂θ

∣∣∣
θ=θ0

)′
Ω−1 n−1

n∑

i=1

[{Yi −m(Xi)}2 − σ2(Xi)]
∂σ2

θ(Xi)

∂θ

∣∣∣
θ=θ0

+oP (n−1/2)

=
∫
σ−2(x)

(
∂σ2

θ (x)

∂θ

∣∣∣
θ=θ0

)′
dFX(x) Ω−1 n−1

n∑

i=1

[{Yi −m(Xi)}2 − σ2(Xi)]
∂σ2

θ(Xi)

∂θ

∣∣∣
θ=θ0

+oP (n−1/2). (A.18)

The assertion of Theorem 3.1 now follows from (A.16) - (A.18). 2

Proof of Theorem 3.4. In a similar way as in the proof of Lemmas A.1 and A.2

in Van Keilegom, González-Manteiga and Sánchez-Sellero (2005), it can be shown that

under the alternative hypothesis H1,

θ̂ − θ0 = Ω−1 n−1
n∑

i=1

[{Yi −m(Xi)}2 − σ2
θ̃0n

(Xi)]
∂σ2

θ(Xi)

∂θ

∣∣∣
θ=θ̃0n

+Ω−1n−1/2
∫
r(x)

∂σ2
θ(x)

∂θ

∣∣∣
θ=θ0

dFX(x) + oP (n−1/2),

where

θ̃0n = argmin
θ∈Θ

E[{(Y −m(X))2 − σ2
θ(X)}2]

= argmin
θ∈Θ

E[{σ2(X)− σ2
θ(X)}2].

The proof parallels that of Theorem 3.1, except for the term considered in (A.18). For

this expression we obtain under local alternatives
∫
σ−2(x)[σ̂2

0(x)− σ2(x)]dFX(x)

=
∫
σ−2
θ0

(x)
(∂σ2

θ(x)

∂θ

∣∣∣
θ=θ0

)′
dFX(x)Ω−1 n−1

n∑

i=1

[{Yi −m(Xi)}2 − σ2
θ̃0n

(Xi)]
∂σ2

θ(Xi)

∂θ

∣∣∣
θ=θ̃0n

+
∫
σ−2
θ0

(x)
(∂σ2

θ (x)

∂θ

∣∣∣
θ=θ0

)′
dFX(x)Ω−1n−1/2

∫
r(x)

∂σ2
θ (x)

∂θ

∣∣∣
θ=θ0

dFX(x)

−n−1/2
∫
σ−2
θ0

(x)r(x)dFX(x) + oP (n−1/2).

It is easy to show that the asymptotic distribution of the random variable

n−1
n∑

i=1

[{Yi −m(Xi)}2 − σ2
θ̃0n

(Xi)]
∂σ2

θ(Xi)

∂θ
|θ=θ̃0n
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under H1 equals the asymptotic distribution of

n−1
n∑

i=1

[{Yi −m(Xi)}2 − σ2
θ0

(Xi)]
∂σ2

θ(Xi)

∂θ
|θ=θ0

under H0. The rest of the proof is similar as in the proofs of Theorem 3.1 and Corollaries

3.2 and 3.3. Hence, the assertion of Theorem 3.4 follows. 2
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