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Abstract

For a given p × n data matrix Xn with i.i.d. centered entries and a population covari-

ance matrix Σ, the corresponding sample precision matrix Σ̂
−1 is defined as the inverse of

the sample covariance matrix Σ̂ = (1/n)Σ1/2
XnX

⊤
n Σ

1/2. We determine the joint distri-

bution of a vector of diagonal entries of the matrix Σ̂
−1 in the situation, where pn = p < n

and p/n → y ∈ [0, 1) for n → ∞. Remarkably, our results cover both the case where the

dimension is negligible in comparison to the sample size and the case where it is of the

same magnitude. Our approach is based on a QR-decomposition of the data matrix,

yielding a connection to random quadratic forms and allowing the application of a cen-

tral limit theorem for martingale difference schemes. Moreover, we discuss an interesting

connection to linear spectral statistics of the sample covariance matrix. More precisely,

the logarithmic diagonal entry of the sample precision matrix can be interpreted as a

difference of two highly dependent linear spectral statistics of Σ̂ and a submatrix of Σ̂.

This difference of spectral statistics fluctuates on a much smaller scale than each single

statistic.

Keywords: central limit theorem, random matrix theory, sample precision matrix

AMS subject classification: 60B20, 60F05

1 Introduction

Many statistical problems as they occur in biology or finance demand estimates of the covariance

matrix or its inverse, for which the sample precision matrix is a popular choice. Spurred by

the groundbreaking advances of data collecting devices, these applications nowadays call for

analysis tools of high-dimensional data sets (see, e.g., Fan and Li, 2006; Johnstone, 2006, and

references therein). Moreover, they motivate the investigation of the probabilistic properties of

large sample covariance or precision matrices, where the dimension of the data and the sample

size are of the same order. In the last decades, the scientific interest was mainly focused on the
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probabilistic properties of the spectrum of the sample covariance matrix. Since the pioneering

work of Marčenko and Pastur (1967) on the empirical spectral distribution of Σ̂ for the case

p/n → y ∈ (0, ∞), the asymptotic behavior of its eigenvalues and eigenvalue statistics has been

studied by numerous authors. For example, we mention the works of Bai and Yin (1988) on

the limiting spectral distribution in the case y = 0, Jonsson (1982), Bai and Silverstein (2004),

Zheng et al. (2015b), Najim and Yao (2016) on linear spectral statistics, Baik and Silverstein

(2006) on the eigenvalues of spiked population models, and of Johnstone (2001), Bai and Yin

(2008) on the extreme eigenvalues of Σ̂, to name just a few.

From a statistical point of view the sample precision matrix plays a vital role in the analysis of

high-dimensional linear models. In particular, the diagonal elements of the matrix Σ̂−1 are pro-

portional to the conditional variances of the least squares estimator of the individual coefficients

in the linear model (provided that the errors are independent and homoscedastic and there is no

intercept in the model). Despite its importance, the literature on the probabilistic properties of

the spectrum or the diagonal elements of the sample precision matrix in the high-dimensional

paradigm is more scarce. Using techniques from random matrix theory, Zheng et al. (2015a)

established a central limit theorem for linear spectral statistics of a rescaled version of the sam-

ple precision matrix. In the case where the dimension exceeds the sample size, Bodnar et al.

(2016) investigated the asymptotic properties of linear spectral statistics of the Moore-Penrose

inverse of the sample covariance matrix.

The analysis of the fluctuation of the diagonal entries of the sample precision matrix is very

challenging as the structure of the inverse is subtle, which demands sophisticated tools for the

analysis of its diagonal entries as there exists no approachable representation of the entries

of the sample precision matrix as a function of the data. Under the additional assumption

of a multivariate normal distribution, the exact distribution of (Σ̂−1)qr is well-understood for

fixed dimension and sample size (1 ≤ q, r ≤ p). In fact, n−1Σ̂−1 follows an inverse Wishart

distribution (see Gupta and Nagar, 2018; Nydick, 2012; Von Rosen, 1988, for more details).

Apart from this, the asymptotic properties of (Σ̂−1)qq for non-normal distributed data and a

dimension growing with the sample sizes are not well understood so far.

We add to this line of research by establishing a central limit theorem for the diagonal entries

of a large sample precision matrix. Our approach is based on the following consequence of

Cramer’s rule

(Σ̂−1)qq =
|Σ̂(−q)|

|Σ̂|
, 1 ≤ q ≤ p,

where Σ̂(−q) denotes the (p−1)×(p−1) submatrix of Σ̂ with the qth row and qth column being

deleted. This representation reveals an explicit connection to a random quadratic form, which

is shown to satisfy a central limit theorem for martingale difference schemes. Moreover, we also

observe an immediate connection to linear spectral statistics of sample covariance matrices: the
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logarithm of the qth diagonal entry

log(Σ̂−1)qq = log |Σ̂(−q)| − log |Σ̂| (1.1)

is a difference of two linear spectral statistics of Σ̂ and its submatrix Σ̂(−q) ∈ R
(p−1)×(p−1).

However, due to the strong dependence between the eigenvalues of Σ̂ and Σ̂(−q), the asymptotic

behavior of (1.1) cannot be described by the meanwhile classical CLT of Bai and Silverstein

(2004) or one of the many follow-up works. Interestingly, as we will demonstrate below, the

difference in (1.1) fluctuates on a scale 1/
√

n which is of significantly smaller order than the

fluctuations of each single linear spectral statistic log |Σ̂| and log |Σ̂(−q)|. More precisely, after

appropriate normalization, a finite-dimensional vector of diagonal entries follows a multivariate

normal distribution. Similarly to linear spectral statistics of the sample covariance matrix,

the limiting variance of (Σ̂−1)qq is determined by the fourth moment of the underlying data

generating distribution.

The work most similar in spirit to ours is Cipolloni and Erdős (2020) who considered linear

spectral statistics of the sample covariance matrix and its minor from i.i.d. data with finite

moments of any order. Choosing the function log(x) in their main result and combining this

with (1.1) and the delta method gives a CLT for a single diagonal entry of the sample precision

matrix. In contrast to the work of these authors, our approach requires only the existence of

the fourth moment and also allows a proof of the weak convergence of a vector of diagonal

entries of the precision matrix.

The remaining part of this paper is organized as follows. A CLT for a single diagonal entry

is given in Section 2 and is afterwards generalized to the joint convergence of several diagonal

entries. All proofs of our main results are provided in Section 3 and Section 4. In Section 5,

we give an outlook to future work concerning the sample precision matrix. Finally, Section A

in the Appendix sheds some light on the QR-decomposition of the data matrix, which is an

important tool used in the proofs.

2 A CLT for diagonal entries of the empirical precision

matrix

Throughout this paper, let

Xn = (xij) i=1,...,p
j=1,...,n

∈ R
p×n (2.1)

denote a random p × n matrix with i.i.d. centered entries having a continuous distribution,

Σ = Σn ∈ R
p×p nonrandom and (symmetric) positive definite matrix with symmetric square

root Σ1/2. The matrix Σ denotes the population covariance matrix and for most of the following

results, it is assumed to be a diagonal matrix (except for the normal case). We denote the sample
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covariance matrix by

Σ̂ =
1

n
Σ

1

2 XnX⊤
n Σ

1

2 ∈ R
p×p.

If p < n, the inverse matrix Σ̂−1 is almost surely well-defined and called the sample precision

matrix. We are now in the position to formulate the first main result of this section.

Theorem 2.1 (CLT for diagonal entries of full-sample precision matrix). Let Σ ∈ R
p×p be a

diagonal matrix with positive diagonal entries. Assume that the random variables {xij | 1 ≤
i ≤ p, 1 ≤ j ≤ n} in (2.1) are i.i.d. with continuous distribution, E[x11] = 0, Var(x11) = 1

and 1 < E[x4
11] = ν4 < ∞. Then, it holds for n → ∞, p/n → y ∈ [0, 1) and q ∈ {1, . . . , p}

√
n − p + 1

(Σ−1)qq

(

n − p + 1

n

(

Σ̂−1
)

qq
−
(

Σ−1
)

qq

)

D→ N (0, ρ), n → ∞,

where the asymptotic variance is given by ρ = 2 + (ν4 − 3)(1 − y).

The proofs of this and of all other results in this paper are deferred to Section 3 and 4. At

this point, we only sketch the main arguments for the proof of Theorem 2.1. We use a QR-

decomposition of the data matrix to derive a representation of the diagonal entry as the inverse

of a quadratic form. With this knowledge at hand, we prove a CLT for this quadratic form by an

application of a central limit theorem for martingale difference schemes. By the delta method,

we finally get asymptotic normality for (Σ̂−1)qq being its inverse. Note that QR-decompositions

appear in other contexts in random matrix theory. For example, Wang et al. (2018) used this

tool to derive the logarithmic law of the determinant of the sample covariance matrix for the

case p/n → 1, while Heiny and Parolya (2021) recently investigated the log-determinant of the

sample correlation matrix under an infinite fourth moment. We also refer to Nguyen and Vu

(2014) and Bao et al. (2015), who used the QR-decomposition to provide proofs of Girko’s

logarithmic law for a general random matrix with independent entries.

Remark 2.1.

1. Remarkably, our result also covers the low-dimensional case y = 0, where the dimension is

negligible in comparison to the sample size. In this case, we may formulate the statement

of Theorem 2.1 as

√
n

(Σ−1)qq

(

(

Σ̂−1
)

qq
−
(

Σ−1
)

qq

)

D→ W ∼ N (0, ν4 − 1), n → ∞.

2. By the representation (1.1), the statistic log((Σ−1)qq) can be interpreted as a difference of

two linear spectral statistics of sample covariance matrices and a CLT for this random vari-

able would yield a CLT for (Σ−1)qq via the delta method. Recently, Cipolloni and Erdős

(2020) considered the case Σ = I and developed a CLT for the difference of linear spectral
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statistics of a sample covariance matrix and its minor, which is applicable to a standard-

ized and centered version of log(Σ−1)qq. Their result requires i.i.d. entries xij with finite

moments of all order, while we only assume a finite fourth moment in Theorem 2.1. More-

over, in comparison to Theorem 2.1, their asymptotic regime does not include the critical

case p/n → 0. Note that Cipolloni and Erdős (2020) do not assume the existence of the

limit y of p/n. We only need this assumption to determine the limiting variance ρ, but it

is not necessary for proving a CLT as in Theorem 2.1. One could instead normalize by a

factor 1/
√

ρn defined in equation (3.7) in the proof of Theorem 2.1. We also emphasize

that the techniques used for proving Theorem 2.1 sets us in the position to investigate

the joint convergence of several diagonal elements of the sample precision matrix given in

Theorem 2.2 below.

The variance and mean structure of the limiting distribution of linear spectral statistics of sam-

ple covariance matrices are usually expressed via contour integrals and depend on the limiting

spectral distribution of Σ in a subtle way (see Bai and Silverstein, 2004; Najim and Yao, 2016;

Pan and Zhou, 2008). So far, an explicit expression for these quantities has only been found

in the null case Σ = I, and even for diagonal matrices as considered in Theorem 2.1, explicit

expressions are out of reach. In this case, despite its close connection to these kinds of linear

spectral statistics, the corresponding quantities of a diagonal entry (Σ̂−1)qq depend asymptot-

ically on its population version (Σ−1)qq in an explicit form. In particular, for Σ = diag(Σ),

the asymptotic mean and variance of a scaled diagonal entry
√

n − p(Σ̂−1)qq/(Σ−1)qq do not

depend on Σ−1 anymore. Moreover, the following corollary, which is a direct consequence of

Theorem 2.1 and Lemma 3.2 in Section 3.1, shows that these statements are correct for general

population covariance matrices when imposing a normal assumption on the data.

Corollary 2.1. Let Σ ∈ R
p×p be a symmetric positive definite matrix and assume that the

random variables {xij | 1 ≤ i ≤ p, 1 ≤ j ≤ n} in (2.1) are i.i.d. with xij ∼ N (0, 1). Then, it

holds for n → ∞, p/n → y ∈ [0, 1) and q ∈ {1, . . . , p}
√

n − p + 1

(Σ−1)qq

(

n − p + 1

n

(

Σ̂−1
)

qq
−
(

Σ−1
)

qq

)

D→ N (0, 2), n → ∞.

Our final result of this section provides the joint asymptotic distribution of two diagonal entries

and is proven in Section 4.

Theorem 2.2. Let Σ ∈ R
p×p be a diagonal matrix with positive diagonal entries. Assume

that the random variables {xij | 1 ≤ i ≤ p, 1 ≤ j ≤ n} in (2.1) are i.i.d. with continuous

distribution, E[x11] = 0, Var(x11) = 1 and 1 < E[x4
11] = ν4 < ∞ for 1 ≤ i ≤ p, 1 ≤ j ≤ n.

Then, it holds for n → ∞, p/n → y ∈ [0, 1) and 1 ≤ q1 6= q2 ≤ p

{√
n − p + 1

(Σ−1)ii

(

n − p + 1

n

(

Σ̂−1
)

ii
−
(

Σ−1
)

ii

)

}⊤

i=q1,q2

D→ N2 (0, ρI2) , n → ∞,
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where ρ = 2 + (ν4 − 3)(1 − y).

Remark 2.2. Note that Theorem 2.2 provides a nontrivial generalization of Theorem 2.1 since

the diagonal entries of the empirical precision matrix are not independent. For more details

on the concrete dependence structure, we refer the reader to Lemma 4.1 and 4.2 in Section 4.

Moreover, it is notable that these random variables are asymptotically independent, which is

a consequence of Theorem 2.1 and 2.2. In general, this property will not be valid beyond the

diagonal case, and we can observe a proper dependency between two diagonal entries of the

sample precision matrix. In particular, we know for the case of normally distributed data from

the properties of the inverse Wishart distribution (see, e.g. Press, 2005; Von Rosen, 1988) that

Cov
(√

n − p
n − p

n
(Σ̂−1)q1,q1

,
√

n − p
n − p

n
(Σ̂−1)q2,q2

)

= 2(Σ−1)q1,q2
+ o(1)

for 1 ≤ q1, q2 ≤ p and p/n = O(1).

3 Proof of Theorem 2.1

In order to state the proofs rigorously, we need to introduce further notation. We denote the

columns of the random matrix Xn by x1, . . . , xn and the rows by b1, . . . , bp, that is, we write

Xn = (xij) i=1,...,p
j=1,...,n

= (b1, . . . , bp)
⊤ = (x1, . . . , xn) ∈ R

p×n. (3.1)

In the case Σ = I, we denote the sample covariance matrix by

Î =
1

n
XnX⊤

n =
1

n

n
∑

i=1

xix
⊤
i ∈ R

p×p.

In order to pursue the approach based on Cramer’s rule as described in the introduction, we

will introduce several submatrices. If we set for some q ∈ {1, . . . , p}

X̃(−q)
n = (b1, . . . , bq−1, bq+1, . . . , bp)⊤ ∈ R

(p−1)×n,

then

Î(−q) =
1

n
X̃(−q)

n

(

X̃(−q)
n

)⊤ ∈ R
(p−1)×(p−1)

can be obtained from Î by deleting the qth row and the qth column. Similarly, if we set

Yn = Σ
1

2 Xn = (d1, . . . , dp)⊤ ∈ R
p×n and Ỹ(−q)

n = (d1, . . . , dq−1, dq+1, . . . , dp)⊤, we define

Σ̂ =
1

n
YnY⊤

n and Σ̂(−q) =
1

n
Ỹ(−q)

n

(

Ỹ(−q)
n

)⊤
.
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Additionally, the matrix Σ(−q) ∈ R
(p−1)×(p−1) can be obtained from Σ by deleting the qth row

and the qth column.

We continue by proving Theorem 2.1 using a CLT for martingale difference schemes. The

auxiliary results for these proofs can be found in Section 3.1.

Proof of Theorem 2.1. Using Lemma 3.1 and noting that the distribution of Xn is invariant

under a permutation of the qth and the pth row, we see that

(

Σ̂−1
)

qq

(Σ−1)qq

=
(

Î−1
)

qq

D
=
(

Î−1
)

pp
=

(

Σ̂−1
)

pp

(Σ−1)pp

.

Thus, we may assume q = p without loss of generality. From now on, the proof is divided in

several steps.

Step 1: QR decomposition

In this step, we rewrite |Î| and |Î(−p)| in a more handy form via the QR decomposition. More

details on this decomposition can be found in Section A.

As explained in detail in Section A, we get by proceeding the QR-decomposition for X⊤
n

X⊤
n = QR, Xn = R⊤Q⊤, (3.2)

where Q = (e1, . . . , ep) ∈ R
n×p denotes a matrix with orthonormal columns satisfying Q⊤Q = I

and R ∈ R
p×p is an upper triangular matrix with entries rij = (ei, bj) for i ≤ j and rij = 0 for

i > j, i, j ∈ {1, . . . , p}. Note that, since
(

X̃(−p)
n

)⊤
is the same as X⊤

n but with the pth column

bp removed, we have

(

X̃(−p)
n

)⊤
= QR̃, X̃(−p)

n = R̃⊤Q⊤, (3.3)

where R̃ = (rij) 1≤i≤p,
1≤j≤p−1

∈ R
p×(p−1) and we set R̃(−p) = (rij)1≤i,j≤p−1 ∈ R

(p−1)×(p−1). Using

(3.2), we write

|XnX⊤
n | = |R⊤Q⊤QR| = |R⊤R| = |R|2 =

p
∏

i=1

r2
ii

and similarly, by using (3.3) and the Cauchy-Binet formula,

∣

∣

∣

∣

X̃(−p)
n

(

X̃(−p)
n

)⊤
∣

∣

∣

∣

= |R̃⊤R̃| = |R̃(−p)|2 =
p
∏

i=1,
i6=p

r2
ii.
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Thus, we obtain from Lemma 3.1 and Cramer’s rule







(

Σ̂−1
)

qq

(Σ−1)qq







−1

=
(

(

Î−1
)

pp

)−1

=
|Î|

|Î(−q)|
=

1

n
r2

pp. (3.4)

Before continuing with Step 2 of the proof of Theorem 2.1, we visit as an illustrating example

the normal case where the distribution of r2
pp is explicitly known.

Illustration: The normal case

If we assume additionally that xij ∼ N (0, 1) i.i.d. for i ∈ {1, . . . , p}, j ∈ {1, . . . , n}, then it is

well-known that r2
pp ∼ Xn−p+1 (see, e.g., Goodman (1963) or directly use (A.1)), that is,

r2
pp

D
=

n−p+1
∑

j=1

Z2
j ,

where Zj are i.i.d. standard normal distributed random variables, j ∈ {1, . . . , n−p + 1}. Thus,

we are able to apply a CLT for r2
pp, namely,

√
n − p + 1

(

1

n − p + 1
r2

pp − 1

)

=
1√

n − p + 1

n−p+1
∑

j=1

(Z2
j − 1)

D→ N (0, 2).

Applying the delta method, we get

√
n − p + 1

(

n − p + 1

r2
pp

− 1

)

D→ N (0, 2).

Thus, using (3.4), we conclude

√
n − p + 1

(Σ−1)pp

(

n − p + 1

n

(

Σ̂−1
)

pp
−
(

Σ−1
)

pp

)

=
√

n − p + 1







n − p + 1

n

(

Σ̂−1
)

pp

(Σ−1)pp

− 1







=
√

n − p + 1

(

n − p + 1

r2
pp

− 1

)

D→ N (0, 2). (3.5)

Note that in the normal case, we have ν4 = 3. Thus, we have recovered the assertion of Theorem

2.1 in this special case.
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Step 2: CLT for quadratic forms

In this step, we will show that the random variable r2
pp meets the conditions of a CLT for

martingale difference schemes. In Section A, it is shown that (see (A.1))

r2
pp = b⊤

p P(p − 1)bp,

where P(0) = In and for q > 1

P(q) =I − X̃⊤
n,q

(

X̃n,qX̃
⊤
n,q

)−1
X̃n,q ∈ R

n×n (3.6)

denotes the projection matrix on the orthogonal complement of the subspace generated by the

first q rows of Xn, that is, that is,

X̃n,q =(b1, . . . , bq)
⊤ ∈ R

q×n.

Note that the random vector bp is defined in (3.1). For the following analysis, we denote

P(p − 1) = P = (pik)1≤i,k≤n, which only depends on the random variables b1, . . . , bp−1 and is

independent of bp.

We write

√

n − p + 1

ρn

1

n − p + 1

(

r2
pp − (n − p + 1)

)

=
1

√

ρn(n − p + 1)

(

b⊤
p Pbp − Ebq

[

b⊤
q Pbp

])

=
1

√

ρn(n − p + 1)

n
∑

i=1

Zpi,

where for i ∈ {1, . . . , n}, n ∈ N

Zpi =2bpi

i−1
∑

k=1

pkibpk + pii

(

b2
pi − E[b2

pi]
)

,

ρn =2 +
ν4 − 3

n − p + 1

n
∑

i=1

p2
ii. (3.7)

For i ∈ {1, . . . , n}, let Ei denote the conditional expectation with respect to the σ-field Fpi

generated by {b1, . . . , bp−1} ∪ {bpk : 1 ≤ k ≤ i}. Furthermore, E0[X] = E[X] denotes the usual

expectation.

Since bpk is measurable with respect to Fp,i−1 for k ∈ {1, . . . , i − 1} and bpj is independent of

Fp,i−1 for j ∈ {i, . . . , n}, and P is measurable with respect to Fpi for all i ∈ {1, . . . , n}, we

obtain

Ei−1[Zpi] =2
i−1
∑

k=1

Ei−1[bpipki]bpk + Ei−1

[

pii

(

b2
pi − E[b2

pi]
)]

9



=2E[bpi]
i−1
∑

k=1

pkibpk + pii

(

E[b2
pi] − E[b2

pi]
)

= 0, 2 ≤ i ≤ n.

Note that Zpi is measurable with respect to Fpi (1 ≤ i ≤ n). These observations imply that

for each n ∈ N, (Zpi)1≤i≤n forms a martingale difference sequence with respect to the filtration

(Fpi)1≤i≤n. This representation of a random quadratic form as a martingale difference scheme

generalizes the one of Bhansali et al. (2007). Note that we are not able to apply their Theorem

2.1 directly in order to prove asymptotic normality, since in our case P is a random matrix

and the random vectors bp vary with n ∈ N. Thus, we have to give a direct proof showing

that it satisfies the conditions of the central limit theorem for martingale difference sequences

provided in Lemma 3.3 in Section 3.1. More precisely, we will show that for all δ > 0

σ2
n =

1

ρn(n − p + 1)

n
∑

i=1

Ei−1[Z2
pi]

P→ 1, (3.8)

rn(δ) =
1

ρn(n − p + 1)

n
∑

i=1

E

[

Z2
piI{|Zpi|≥δ

√
(n−p+1)ρn}

]

→ 0, (3.9)

as n → ∞.

As a preparation for the following steps, we note that

max
l=1,...,n

n
∑

m=1

p2
lm ≤ ||P||2 ≤ 1, (3.10)

tr
(

P2
)

=
n
∑

i,k=1

pkipik = ||P||22 = tr P = n − p + 1, (3.11)

where ||P|| denotes the spectral norm of P and ||P||2 denotes the Euclidean norm of P. The

first inequality in (3.10) is a well-known estimate for general symmetric matrices and can be

shown by choosing the unit vectors for the maximum appearing in the definition of the spectral

norm, while the equality in (3.11) follows from the fact that P2 = P.

Step 2.1: Calculation of the variance

We begin with a proof of (3.8). For this purpose, we calculate

σ2
n =

1

ρn(n − p + 1)

n
∑

i=1

Ei−1

[

Z2
pi

]

=
4

ρn(n − p + 1)

n
∑

i=1

Ei−1





(

i−1
∑

k=1

pkibpk

)2




+
4

ρn(n − p + 1)

n
∑

i=1

{

(

E

[

b3
pi

]

− E[bpi]E
[

b2
pi

])

i−1
∑

k=1

bpkEi−1[pkipii]

}
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+
1

ρn(n − p + 1)

n
∑

i=1

Ei−1[p
2
ii]E

[

b2
pi − E[b2

pi]
]2

=
4

ρn(n − p + 1)

n
∑

i=1

Ei−1





(

i−1
∑

k=1

pkibpk

)2


+
4E

[

b3
p1

]

ρn(n − p + 1)

n
∑

i=1

{

i−1
∑

k=1

bpkpkipii

}

+
(ν4 − 1)

ρn(n − p + 1)

n
∑

i=1

p2
ii. (3.12)

Here, we used that bpk is measurable with respect to Fpi for k ∈ {1, . . . , i} and bpj is independent

of Fpi for j ∈ {i + 1, . . . , n}, and P is measurable with respect to Fpi for all i ∈ {1, . . . , n}.

Moreover, we obtain using (3.11)

1 =ρ−1
n

(

2 +
ν4 − 3

n − p + 1

n
∑

i=1

p2
ii

)

=
2

ρn(n − p + 1)

n
∑

i,k=1,
i6=k

p2
ki +

ν4 − 1

ρn(n − p + 1)

n
∑

i=1

p2
ii

=
4

ρn(n − p + 1)

n
∑

i=1

i−1
∑

k=1

p2
ki +

ν4 − 1

ρn(n − p + 1)

n
∑

i=1

p2
ii. (3.13)

Denoting ν4 = 1 + ε for some small ε > 0, we note that ρn is uniformly bounded away from 0,

since for all n ∈ N

ρn = 2 − 2 − ε

n − p + 1

n
∑

i=1

p2
ii ≥ 2 − 2 − ε

n − p + 1

n
∑

i=1

pii = ε > 0. (3.14)

In the following, we will show that (3.8) holds true with σ2 = 1. For this purpose, we write

using (3.12), (3.13) and (3.14)

|σ2
n − 1| ≤ 4

ρn(n − p + 1)

∣

∣

∣

∣

∣

∣

n
∑

i=1



Ei−1

[

i−1
∑

k=1

pkibpk

]2

−
i−1
∑

k=1

p2
ki





∣

∣

∣

∣

∣

∣

+
4E|bp1|3

ρn(n − p + 1)

∣

∣

∣

∣

∣

n
∑

i=1

{

i−1
∑

k=1

bpkpkipii

}∣

∣

∣

∣

∣

.
1

n − p + 1
(δn,1 + δn,2 + δn,3) , (3.15)

where

δn,1 =

∣

∣

∣

∣

∣

∣

n
∑

i=1

∑

1≤k<j≤i−1

pkipjibpkbpj

∣

∣

∣

∣

∣

∣

,

δn,2 =

∣

∣

∣

∣

∣

n
∑

i=1

i−1
∑

k=1

(

b2
pk − 1

)

p2
ki

∣

∣

∣

∣

∣

,
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δn,3 =

∣

∣

∣

∣

∣

n
∑

i=1

i−1
∑

k=1

bpkpkipii

∣

∣

∣

∣

∣

.

Similarly as in Bhansali et al. (2007), one can show that δn,i/(n − p + 1) = oP(1), as n → ∞ for

i ∈ {1, 2, 3}, by bounding the second moments of δn,1, δn,2, δn,3. Exemplarily, we demonstrate

this for the term δn,3. Notice that an application of Lemma 2.1 in Bhansali et al. (2007) and

(3.11) yields







n
∑

i,i′=1





min(i,i′)−1
∑

k=1

pikpi′k





2






1

2

.
√

n − p + 1||P|| ≤ √
n − p + 1. (3.16)

Using the Cauchy-Schwarz inequality, (3.16) and (3.11),

E[δ2
n,3] = E





n
∑

i,i′=1

piipi′i′

min(i,i′)−1
∑

k=1

pkipki′





≤ E









(

n
∑

i

p2
ii

)







n
∑

i,i′=1





min(i,i′)−1
∑

k=1

pkipki′





2






1

2









. (n − p + 1)
3

2 = o
(

(n − p + 1)2
)

, n → ∞.

Proceeding similarly for the remaining terms δn,1 and δn,2, we get σ2
n = 1+oP(1) as n → ∞. By

an application of Lemma 3.4 given at the end of this section, the normalizing term ρn converges

in probability towards ρ as n → ∞.

Step 2.2: Verifying the Lindeberg-type condition (3.9)

Using a truncation argument as in Bhansali et al. (2007), it is sufficient to prove (3.9) under

the assumption E[b8
11] < ∞. Then, we obtain by using (3.14)

rn(δ) ≤ 1

(n − p + 1)2ρ2
nδ2

n
∑

i=1

E

[

Z4
pi

]

. J1 + J2,

where

J1 =
1

(n − p + 1)2δ2

n
∑

i=1

E



b4
pi

(

i−1
∑

k=1

pkibpk

)4




.
1

(n − p + 1)2δ2

n
∑

i=1

E











i−1
∑

j,k=1

pkipjibpkbpj





2






12



.
1

(n − p + 1)δ2

n
∑

i=1

E





(

i−1
∑

k=1

p2
kib

2
pk

)2




+
1

(n − p + 1)δ2

n
∑

i=1

E

















i−1
∑

j,k=1
j<k

pkipjibpkbpj









2







,

J2 =
1

(n − p + 1)2δ2

n
∑

i=1

E

[

p4
ii

(

b2
pi − E[b2

pi]
)4
]

.
1

(n − p + 1)δ2

n
∑

i=1

E

[

p4
ii

]

.

This implies using (3.10) and (3.11)

J1 + J2 .
1

(n − p + 1)2δ2

n
∑

i=1





i−1
∑

j,k=1

E[p2
kip

2
ji] + E[p4

ii]



 .
1

(n − p + 1)2δ2

n
∑

i,j,k=1

E[p2
kip

2
ji]

.
1

(n − p + 1)2δ2

n
∑

j,k=1

E

[

p2
jk max

l=1,...,n

n
∑

m=1

p2
lm

]

.
1

(n − p + 1)2δ2

n
∑

j,k=1

E[p2
jk] = o(1).

Step 3: Conclusion via delta method

In Step 2, we have shown that an appropriately centered and standardized version of r2
pp satisfies

a CLT. By applying the delta method and using (3.4), we conclude that

√
n − p + 1

(Σ−1)pp

(

n − p + 1

n

(

Σ̂−1
)

pp
−
(

Σ−1
)

pp

)

=
√

n − p + 1

(

n − p + 1

r2
pp

− 1

)

D→ N (0, ρ), n → ∞,

which finishes the proof of Theorem 2.1.

3.1 Auxiliary results

As the following result reveals, the diagonal entries of the sample precision matrix for stan-

dardized data are closely connected to those for data with inhomogeneous variances.

Lemma 3.1. For 1 ≤ q ≤ p and a diagonal matrix Σ ∈ R
p×p, it holds

(

Î−1
)

qq
=

(

Σ̂−1
)

qq

(Σ−1)qq

.

13



Proof of Lemma 3.1. Applying Cramer’s rule and noting that |Σ̂| = |Σ||Î|, we get

(

Σ̂−1
)

qq

(Σ−1)qq

=
|Σ|
|Σ̂|

|Σ̂(−q)|
|Σ(−q)| =

1

|Î|
|Σ̂(−q)|
|Σ(−q)| . (3.17)

Let (Σ1/2)(−q,·) denote the (p−1)×p submatrix of Σ1/2 where the qth row is deleted. Similarly,

(Σ1/2)(·,−q) denotes the p × (p − 1) submatrix of Σ1/2 where the qth column is deleted. Using

these definitions, we see that

Σ̂(−q) = (Σ1/2)(−q,·)XnX⊤
n (Σ1/2)(·,−q) = (Σ1/2)(−q,·)Xn

(

(Σ1/2)(−q,·)Xn

)⊤
. (3.18)

(In order to enforce (3.18), Σ does not need to be a diagonal matrix.) Since Σ is a diagonal

matrix, it holds

(Σ1/2)(−q,·)Xn =
(

Σ(−q)
)1/2

X̃(−q)
n ,

which implies

|Σ̂(−q)| = |Σ(−q)||Î(−q)|. (3.19)

Using (3.17), (3.19) and Cramer’s rule again, we obtain

(

Σ̂−1
)

qq

(Σ−1)qq

=
|Î(−q)|

|Î|
=
(

Î−1
)

qq
.

The connection given in Lemma 3.1 can be generalized to the case of dependent coordinates if

we assume that the data follows a standard normal distribution.

Lemma 3.2. If Σ is a general (not necessarily diagonal) p × p population covariance matrix

and xij
i.i.d.∼ N (0, 1) (1 ≤ i ≤ p, 1 ≤ j ≤ n), then for any 1 ≤ q ≤ p

(

Σ̂−1
)

qq

(Σ−1)qq

D
=
(

Î−1
)

qq
.

Proof of Lemma 3.2. Recall formula (3.18) from the proof of Lemma 3.1. It follows from our

normal assumption that

(Σ1/2)(−q,·)xi ∼ N (0, Σ(−q)), 1 ≤ i ≤ n,

14



where we used that

(Σ1/2)(−q,·)
(

(Σ1/2)(−q,·)
)⊤

= (Σ1/2)(−q,·)(Σ1/2)(·,−q) = Σ(−q).

This implies that

(Σ(−q))1/2X̃(−q)
n

D
= Ỹ(−q)

n .

Using Cramers rule, we get

(

Σ̂−1
)

qq

(Σ−1)qq

=
|Σ|
|Σ̂|

|Σ̂(−q)|
|Σ(−q)|

D
=

|Î(−q)|
|Î|

=
(

Î−1
)

qq
.

The proof of Lemma 3.2 concludes.

In order to prove asymptotic normality of the quadratic forms appearing in the previous proofs,

we make use of the following CLT for martingale difference schemes.

Lemma 3.3 (Theorem 35.12 in Billingsley (1995)). Suppose that for each n ∈ N, Zn1, ..., Znrn

form a real martingale difference sequence with respect to the increasing σ-field (Fnj) having

second moments. If, as n → ∞
rn
∑

j=1

E[Z2
nj |Fn,j−1]

P→ σ2, (3.20)

where σ2 > 0, and for each ε > 0,

rn
∑

j=1

E[Z2
njI{|Znj |>ε}] → 0, (3.21)

then

rn
∑

j=1

Znj
D→ N (0, σ2).

We conclude this section by proving the following lemma, which was used in the proof of

Theorem 2.1 and provides the limiting variance.

Lemma 3.4. It holds

ρn
P→ ρ, n → ∞,

where ρ is defined in Theorem 2.1 and ρn in (3.7).
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Proof of Lemma 3.4. Assume that y = 0. For this case, we note that

1

n

n
∑

i=1

p2
ii =

1

n

n
∑

i=1

(1 − pii)
2 − 1 +

2

n

n
∑

i=1

pii =
2(n − p + 1)

n
− 1 + oP(1)

= 1 + oP(1), n → ∞, (3.22)

where we used

1

n

n
∑

i=1

E(1 − pii)
2 ≤ 1

n

n
∑

i=1

E[1 − pii] =
1

n
tr(I − P) =

p − 1

n
= o(1), n → ∞.

Then, (3.22) implies

ρn = 2 +
(ν4 − 3)n

n − p + 1
+ oP(1) = ν4 − 1 = ρ.

Let y ∈ (0, 1). Then we have from Theorem 3.2 in Anatolyev and Yaskov (2017)

1

n

n
∑

i=1

(1 − pii − y)2 P→ 0, n → ∞,

which implies

1

n

n
∑

i=1

p2
ii =

1

n

n
∑

i=1

(1 − pii − y)2 − (1 − y)2 +
2(1 − y)

n

n
∑

i=1

pii

=
2(1 − y)(n − p + 1)

n
− (1 − y)2 + oP(1) = (1 − y)2 + oP(1), n → ∞.

We conclude for n → ∞

ρn = 2 +
(ν4 − 3)(1 − y)2n

n − p + 1
+ oP(1) = 2 + (ν4 − 3)(1 − y) + oP(1) = ρ + oP(1).

4 Proof of Theorem 2.2

Proof of Theorem 2.2. Since the distribution of Î−1 is invariant under interchanging rows of

Xn, we have using Lemma 3.1







(

Σ̂−1
)

q1,q1

(Σ−1)q1,q1

,

(

Σ̂−1
)

q2,q2

(Σ−1)q2,q2





 =
(

(

Î−1
)

q1,q1

,
(

Î−1
)

q2,q2

)

D
=
(

(

Î−1
)

p−1,p−1
,
(

Î−1
)

pp

)

=
(

(

Î−1
)

p−1,p−1
,
(

Î−1
)

pp

)

.
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Thus, we may assume q1 = p − 1 and q = p without loss of generality. Similar to the proof of

Theorem 2.1, we start by investigating the asymptotic properties of

Wn =







1√
n − p + 1









n







(

Σ̂−1
)

pp

(Σ−1)pp







−1

− (n − p + 1)









,

1√
n − p + 1









n







(

Σ̂−1
)

p−1,p−1

(Σ−1)p−1,p−1







−1

− (n − p + 1)















⊤

=







1√
n − p + 1

(

n
(

Î−1
)−1

pp
− (n − p + 1)

)

,

1√
n − p + 1

(

n
(

Î−1
)−1

p−1,p−1
− (n − p + 1)

)







⊤

=
1√

n − p + 1







b⊤
p P(p − 1)bp − (n − p + 1),

b⊤
p−1(P(p − 2) − Q(p))bp−1 − (n − p + 1)







⊤

,

where we used Lemma 3.1 and Lemma 4.2 and the projection matrix Q(p) is defined in (4.1).

From now on, the proof is divided in several steps.

Approximation and MDS

Note that for any rank-one projection matrix Q ∈ R
n×n independent of bp, we have

Var(b⊤
p Qbp) . 1 ∀n ∈ N,

and consequently, by Slutsky’s lemma, it is sufficient to investigate

W (1)
n =

1√
n − p + 1

{

b⊤
p P(p − 2)bp − (n − p + 2), b⊤

p−1P(p − 2)bp−1 − (n − p + 2)
}

= Wn + oP(1).

Throughout the rest of this proof, we denote P(p − 2) = P = (pij)1≤i,j≤n. By an application of

the Cramer-Wold device, we note that it is sufficient to prove a one-dimensional central limit

theorem for

W (2)
n =

1√
n − p + 1

{

a
(

b⊤
p Pbp − (n − p + 2)

)

+ b
(

b⊤
p−1Pbp−1 − (n − p + 2)

)}

, a, b ∈ R,
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in order to ensure that the vector W (1)
n converges to a two-dimensional normal distribution.

We write

1√
ρn

W (2)
n =

1
√

(n − p + 1)ρn

n
∑

i=1

Wpi,

where

Wpi =a

(

2bpi

i−1
∑

k=1

pkibpk + pii

(

b2
pi − 1

)

)

+ b

(

2bp−1,i

i−1
∑

k=1

pkibp−1,k + pii

(

b2
p−1,i − 1

)

)

,

ρn =2 +
ν4 − 3

n − p + 1

n
∑

i=1

p2
ii.

For p ∈ N, 1 ≤ i ≤ n, let Api denote the σ field generated by {b1, . . . , bp−2} ∪ {bpk, bp−1,k :

1 ≤ k ≤ i}. Similar to in the proof of Theorem 2.1, one can show that (Wpi)1≤i≤n forms a

martingale difference sequence with respect to the σ-fields (Api)1≤i≤n for each p ∈ N. In order

to apply the central limit theorem given in Lemma 3.3, we need to verify the conditions (3.20)

and (3.21).

Calculation of the variance

We begin with a proof of condition (3.20). Note that

1

ρn(n − p + 1)

n
∑

i=1

E[W 2
pi|Ai−1]

=
a2

ρn(n − p + 1)
E





(

2bpi

i−1
∑

k=1

pkibpk + pii

(

b2
pi − 1

)

)2
∣

∣

∣

∣

Ai−1





+
b2

ρn(n − p + 1)
E





(

2bp−1,i

i−1
∑

k=1

pkibp−1,k + pii

(

b2
p−1,i − 1

)

)2
∣

∣

∣

∣

Ai−1





+
2ab

ρn(n − p + 1)
E





(

2bp−1,i

i−1
∑

k=1

pkibp−1,k + pii

(

b2
p−1,i − 1

)

)

×
(

2bpi

i−1
∑

k=1

pkibpk + pii

(

b2
pi − 1

)

)

∣

∣

∣

∣

Ai−1





=
a2

ρn(n − p + 1)
E





(

2bpi

i−1
∑

k=1

pkibpk + pii

(

b2
pi − 1

)

)2
∣

∣

∣

∣

Ai−1





+
b2

ρn(n − p + 1)
E





(

2bp−1,i

i−1
∑

k=1

pkibp−1,k + pii

(

b2
p−1,i − 1

)

)2
∣

∣

∣

∣

Ai−1





=a2 + b2 + oP(1), n → ∞,
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where we used (3.8) from the proof of Theorem 2.1.

Verification of the Lindeberg-type condition

For a proof of condition (3.21), we use the results from Step 2.2 in the proof of Theorem 2.1

and obtain

1

ρn(n − p + 1)

n
∑

i=1

E

[

W 2
piI{|Wpi|≥δ

√
(n−p+1)ρn}

]

≤ 1

(n − p + 1)2ρ2
nδ2

n
∑

i=1

E

[

W 4
pi

]

.
a4

(n − p + 1)2ρ2
nδ2

n
∑

i=1

E





(

2bpi

i−1
∑

k=1

pkibpk + pii

(

b2
pi − 1

)

)4




+
b4

(n − p + 1)2ρ2
nδ2

n
∑

i=1

E





(

2bp−1,i

i−1
∑

k=1

pkibp−1,k + pii

(

b2
p−1,i − 1

)

)4


 = o(1), n → ∞.

Conclusion via delta method

Summarizing the steps above, we obtain from Lemma 3.3

Wn
D→ N2(0, ρI2), n → ∞.

By an application of the multivariate delta method, we have

(Zn,p, Zn,p−1)
⊤ =







√
n − p + 1

(

n − p + 1

b⊤
p P(p − 1)bp

− 1

)

,

√
n − p + 1

(

n − p + 1

b⊤
p−1(P(p − 2) − Q(p))bp−1

− 1

)







⊤

D→N2(0, ρI2), n → ∞.

4.1 Auxiliary results

The following lemma gives a concrete representation for any diagonal element of the sample

precision matrix in terms of the entries of the triangular matrix R.

Lemma 4.1. For 1 ≤ q ≤ p, it holds

n
(

Î−1
)−1

qq
= r2

qq

p
∏

i=q+1

r2
ii

r2
ii,q

,
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where the matrix R is defined in the proof of Theorem 2.1 and,

r2
ii,q = b⊤

i P(i − 1, q)bi, 1 ≤ i 6= q ≤ p.

Here, P(i−1, q) denotes the projection matrix on the orthogonal complement of span({b1, . . . , bi−1}\
{bq} ). In particular, if q = p − 1, we obtain

n
(

Î−1
)−1

p−1,p−1
=

r2
ppr

2
p−1,p−1

b⊤
p P(p − 2)bp

.

Proof of Lemma 4.1. Recall the QR-decomposition of X⊤
n given in Section A and the resulting

formula

|XnX⊤
n | =

p
∏

i=1

r2
ii.

Note that the first (q − 1) step in the QR-decomposition of the matrices X̃⊤
n = (X̃(−q)

n )⊤ and

X⊤
n coincide, which implies

|X̃nX̃⊤
n | =

q−1
∏

i=1

r2
ii

p
∏

i=q+1

r2
ii,q.

Combining these formulas with Cramer’s rule, we conclude

n
(

Î−1
)−1

qq
=

|XnX⊤
n |

|X̃nX̃⊤
n | = r2

qq

p
∏

i=q+1

r2
ii

r2
ii,q

.

Recall from the proof of Theorem 2.1 (or see Section A for more details) that

(

Î−1
)−1

pp
=

1

n
r2

pp =
1

n
b⊤

p P(p − 1)bp,

while it follows from the fact the entries xij of the matrix Xn are i.i.d. random variables that

(

Î−1
)−1

qq

D
=
(

Î−1
)−1

pp
, 1 ≤ q ≤ p.

These quantities can also be written as a quadratic form, but its concrete structure is unknown

so far. The next lemma provides such a representation and specifies the dependency structure

between two diagonal elements. Moreover, it helps us to understand the dependence structure

between two diagonal entries and, thus, is crucial for proving Theorem 2.2. For convenience,

we restrict ourselves to the case q = p − 1.
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Lemma 4.2. It holds

n
(

Î−1
)−1

p−1,p−1
= b⊤

p−1 (P(p − 2) − Q(p)) bp−1,

where P(p − 2) − Q(p) is a projection matrix of rank n − p + 1 and independent of bp−1. More

precisely, Q(p) denotes the matrix corresponding to the projection to P(p − 2)bp, that is,

Q(p) =
P(p − 2)bpb

⊤
p P(p − 2)

b⊤
p P(p − 2)bp

. (4.1)

Proof of Lemma 4.2. Recall from Lemma 4.1 that

n
(

Î−1
)−1

p−1,p−1
=

r2
ppr

2
p−1,p−1

b⊤
p P(p − 2)bp

.

Note that P(p − 1)bp = P(p − 2)bp − projep−1
(bp), where the projection of a vector a ∈ R

n to

a vector e ∈ R
n is given by

proje(a) =
(e, a)

(e, e)
e

and (for details, see Section A)

up−1 = P(p − 2)bp−1, ep−1 =
up−1

||up−1||2
.

Thus, we obtain

n
(

Î−1
)−1

p−1,p−1
=b⊤

p−1P(p − 2)bp−1

(

1 −
b⊤

p projep−1
(bp)

b⊤
p P(p − 2)bp

)

=b⊤
p−1P(p − 2)bp−1

(

1 − b⊤
p

(up−1, bp)

(up−1, up−1)b⊤
p P(p − 2)bp

up−1

)

=b⊤
p−1P(p − 2)bp−1 − b⊤

p (up−1, bp)up−1

b⊤
p P(p − 2)bp

=b⊤
p−1P(p − 2)bp−1 − b⊤

p−1Q(p)bp−1.

Note that Q(p)2 = Q(p) and P(p − 2)Q(p) = Q(p)P(p − 2) = Q(p). Consequently, we obtain

(P(p − 2) − Q(p))2 =P(p − 2)2 + Q(p)2 − P(p − 2)Q(p) − Q(p)P(p − 2)

=P(p − 2) + Q(p) − 2Q(p) = P(p − 2) − Q(p).
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This implies that P(p − 2) − Q(p) is a projection matrix independent of bp−1 of rank

tr (P(p − 2) − Q(p)) = n − p + 2 − 1 = n − p + 1.

5 Conclusions

In this paper, we have provided a multivariate central limit theorem for the diagonal entries

of a sample precision matrix if the dimension-to-sample-size ratio satisfies p/n → y ∈ [0, 1)

as n → ∞ and the population covariance matrix is diagonal. An important direction of

future research is to find the asymptotic distribution of the diagonal entries for a general

structure of the population covariance matrix. We emphasize that this question results in

a substantially more complicated problem, since the method of the proofs used in this work

is tailored to the diagonal case. In particular, we reduce the diagonal case Σ = diag(Σ) to

the null case Σ = I. For a general distribution and a general population covariance matrix,

this step is no longer correct. Then again, if we conduct a QR-decomposition for (Σ1/2Xn)⊤

instead of X⊤
n (as in step 1 of the proof of Theorem 2.1), we obtain a quadratic form where the

random vectors depend on the projection matrix in an implicit form. Our proofs, especially

the martingale argument for applying a CLT, rely crucially on the fact that the random vector

bp (defined in (3.1)) is independent of the random projection matrix P(p − 1) (defined in

(3.6)). Similarly, the techniques used in Cipolloni and Erdős (2020), which can be used to

derive a central limit theorem for a single diagonal entry of the sample precision matrix by a

representation as a difference of two linear spectral statistics (see Remark 2.1), require the even

stronger assumption Σ = I. Additionally, it is not straightforward to adapt the tools provided

by Bai and Silverstein (2004) due to the different normalizations appearing in the CLT for a

single linear spectral statistic and the difference of two. The development of novel techniques

that meet the challenges of the dependent case Σ 6= diag(Σ) will be the objective of our future

work.
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A Details on the QR-decomposition of X⊤
n

In this section, we give more details on the QR-decomposition of the matrix X⊤
n (compare

Section 2 in Wang et al., 2018) and provide an explicit representation of the diagonal elements

of R as a quadratic form in the rows of Xn.

To begin with, we describe the QR-decomposition of a general full-column rank matrix A =

(a1, . . . , ap) ∈ R
n×p by applying the Gram-Schmidt procedure to the vectors a1, . . . , ap. Recall

the definition of the projection of a vector a ∈ R
n on a vector e ∈ R

n, e 6= 0, is given by

proje(a) =
(e, a)

(e, e)
e.

It holds

u1 = a1, e1 =
u1

‖u1‖
,

u2 = a2 − proju1
a2, e2 =

u2

‖u2‖
,

u3 = a3 − proju1
a3 − proju2

a3, e3 =
u3

‖u3‖
,

...
...

un = an −
n−1
∑

j=1

projuj
an, en =

un

‖un‖ .

Rearranging these equations, we may write A = QR, where Q = (e1, . . . , ep) ∈ R
n×p denotes

a matrix with orthonormal columns satisfying Q⊤Q = I and R ∈ R
p×p is an upper triangular

matrix with entries rij = (ei, aj) for i ≤ j and rij = 0 for i > j, i, j ∈ {1, . . . , p}.

In order to ensure formal correctness of the QR decomposition for the matrix X⊤
n = (b1, . . . , bp),

we note that the matrix X⊤
n has full column rank since we assumed that each xij follows a

continuous distribution for 1 ≤ i ≤ p, 1 ≤ j ≤ n. Performing the QR decomposition for the
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special choice A = X⊤
n = (b1, . . . , bp), we get

X⊤
n = QR,

where Q = (e1, . . . , ep) ∈ R
n×p denotes a matrix with orthonormal columns satisfying Q⊤Q = I

and R ∈ R
p×p is an upper triangular matrix with entries rij = (ei, bj) for i ≤ j and rij = 0 for

i > j, i, j ∈ {1, . . . , p}. Using the definitions r2
qq = (ei, bi)

2 for 1 ≤ q ≤ p and P(0) = I, we

have

r2
11 = (e1, b1)2 = ||b1||22 = b⊤

1 P(0)b1,

and for 2 ≤ q ≤ p

r2
qq = (eq, bq)

2 =

(

u⊤
q bq

||uq||2

)2

=

(

b⊤
q P(q − 1)bq

||P(q − 1)bq||2

)2

= b⊤
q P(q − 1)bq, (A.1)

where the projection matrix P(q − 1) is defined in (3.6) and satisfies P(q − 1)2 = P(q − 1).
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