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Abstract

We propose a new sequential monitoring scheme for changes in the parameters of

a multivariate time series. In contrast to procedures proposed in the literature which

compare an estimator from the training sample with an estimator calculated from the

remaining data, we suggest to divide the sample at each time point after the training

sample. Estimators from the sample before and after all separation points are then

continuously compared calculating a maximum of norms of their differences. For open-

end scenarios our approach yields an asymptotic level α procedure, which is consistent

under the alternative of a change in the parameter.
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1 Introduction

Nowadays, nearly all fields of applications require sophisticated statistical modelling and

statistical inference to draw scientific conclusions from the observed data. In many cases

data is time dependent and the involved model parameters or the model itself may not

be necessarily stable. In such situations it is of particular importance to detect changes

in the processed data as soon as possible and to adapt the statistical analysis accordingly.

These changes are usually called change points or structural breaks in the literature. Due

to its universality, methods for change point analysis have a vast field of possible applica-

tions - ranging from natural sciences [for example biology and meteorology] to humanities

[economics, finance, social sciences]. Since the seminal papers of Page (1954, 1955) the

problem of detecting change points in time series has received substantial attention in the

statistical literature. The contributions to this field can be roughly divided into the areas

of retrospective and sequential change point analysis.

In the retrospective case, historical data sets are examined with the aim to test for changes

and identify their position within the data. In this setup, the data is assumed to be com-

pletely available before the statistical analysis is started (a-posteriori analysis). A compre-

hensive overview of retrospective change point analysis can be found in Aue and Horváth

(2013). In many practical applications, however, data arrives consecutively and breaks can

occur at any new data point. In such cases the statistical analysis for changes in the pro-

cessed data has to start immediately with the target to detect changes as soon as possible.

This field of statistics is called sequential change point detection [sometimes also: online

change point detection].

In the major part of the 20th century the problem of sequential change point detection was

tackled using procedures [mostly called control charts, see Lai (1995, 2001) for comprehen-

sive reviews], which are optimized to have a minimal detection delay but do not control the

probability of a false alarm (type I error). A new paradigm was then introduced by Chu

et al. (1996), who use initial data sets and therefrom employ invariance principles to also

control the type I error. The methods developed under this paradigm [see below] can again

be subdivided into closed-end and open-end approaches. In closed-end scenarios monitoring

is stopped at a fixed pre-defined point of time, while in open-end scenarios monitoring can

- in principle - continue forever if no change point is detected.

In the paper at hand we develop a new approach for sequential change point detection

in an open-end scenario. To be more precise let {Xt}t∈Z denote a d-dimensional time

series and let Ft be the distribution function of the random variable Xt at time t. We

are studying monitoring procedures for detecting changes of a parameter θt = θ(Ft), where

θ = θ(F ) is a p-dimensional parameter of a distribution function F on Rd (such as the mean,

variance, correlation etc.). In particular we will develop a decision rule for the hypothesis
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of a constant parameter, that is

H0 : θ1 = · · · = θm = θm+1 = θm+2 = . . . , (1.1)

against the alternative that the parameter changes (once) at some time m+k? with k? ≥ 1,

that is

H1 : ∃k? ∈ N : θ1 = · · · = θm+k?−1 6= θm+k? = θm+k?+1 = . . . . (1.2)

In this setup, which was originally introduced by Chu et al. (1996), the first m observations

are assumed to be stable and will serve as an initial training set. The problem of sequential

change point detection in the hypotheses paradigm as pictured above has received substan-

tial interest in the literature. Since the seminal paper of Chu et al. (1996) several authors

have worked in this area. Aue et al. (2006), Aue et al. (2009), Fremdt (2014b) and Aue

et al. (2014) developed methodology for detecting changes in the coefficients of a linear

model, while Wied and Galeano (2013) and Pape et al. (2016) considered sequential mon-

itoring schemes for changes in special functionals such as the correlation or variance. A

Mosum-approach was employed by Leisch et al. (2000), Horváth et al. (2008) or Chen and

Tian (2010) to monitor the mean and linear models, respectively. Recently, Hoga (2017)

used an `1-norm to detect changes in the mean and variance of a multivariate time series,

Kirch and Weber (2018) defined a unifying framework for detecting changes in different

parameters with the help of several statistics and Otto and Breitung (2019) considered a

Backward CUSUM, which monitors changes based on recursive residuals in a linear model.

A helpful but not exhaustive overview of different sequential procedures can be found in

Section 1, in particular Table 1, of Anatolyev and Kosenok (2018). A common feature of

all procedures in the cited literature consists in the comparison of estimators from different

subsamples of the data. To be precise, let X1, . . . , Xm denote an initial training sample

and X1, . . . , Xm, . . . , Xm+k be the available data at time m + k. Several authors propose

to investigate the differences

θ̂m1 − θ̂m+k
m+1 , (1.3)

(in dependence of k), where θ̂ji denotes the estimator of the parameter from the sample

Xi, . . . , Xj . In the sequential change point literature monitoring schemes based on the

differences (1.3) are usually called (ordinary) CUSUM procedures and have been considered

by Horváth et al. (2004), Aue et al. (2006, 2009, 2014), Schmitz and Steinebach (2010) or

Hoga (2017). Other authors suggest using a function of the differences

{
θ̂m1 − θ̂m+k

m+j+1

}
j=0,...,k−1

(1.4)
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(in dependence of k) and the corresponding procedures are usually called Page-CUSUM

tests [see Fremdt (2014b), Aue et al. (2015), or Kirch and Weber (2018) among others]. As

an alternative we propose - following ideas of Dette and Gösmann (2018) - a monitoring

scheme based on a function of the differences

{
θ̂m+j

1 − θ̂m+k
m+j+1

}
j=0,...,k−1

. (1.5)

The intuitive advantage of (1.5) over (1.3) is the screening for all possible positions of the

change point, which takes into account that the change point not necessarily comes with

observation Xm+1 and so θ̂m+k
m+1 maybe ‘corrupted’ by pre-change observations. This issue

is also partially addressed by (1.4), where different positions are examined and compared

with the estimator of the parameter from the training sample. We will demonstrate in Sec-

tion 4 that sequential monitoring schemes based on the differences (1.5) yield a substantial

improvement in power compared to the commonly used methods based on (1.3) and (1.4).

To avoid misunderstandings, the reader should note that a (total) comparison based on

differences of the form (1.5), is typically also called a CUSUM-approach in the retrospec-

tive change point analysis [see Aue and Horváth (2013) for a comprehensive overview of

(retrospective) change point analysis].

The present paper is devoted to a rigorous statistical analysis of a sequential monitoring

based on the differences defined in (1.5) in the context of an open-end scenario. In Section 2

we introduce the new procedure and develop a corresponding asymptotic theory to obtain

critical values such that monitoring can be performed at a controlled type I error. The

theory is broadly applicable to detect changes in a general parameter θ of a multivariate

time series. As all monitoring schemes in this context the method depends on a threshold

function and we also discuss the choice of this function. In particular we establish an

interesting result regarding this choice and establish a connection to corresponding ideas

made by Horváth et al. (2004) and Fremdt (2014b), which may also be of interest in closed-

end scenarios. In Section 3 we discuss several special cases and demonstrate that the new

methodology is applicable to detect changes in the mean and the parameters of a linear

model. Finally, we present a small simulation study in Section 4, where we compare our

approach to those developed by Horváth et al. (2004) and Fremdt (2014b). In particular

we demonstrate that the monitoring scheme based on the differences (1.5) yields a test

with a controlled type I error and a smaller type II error than the procedures in the cited

references.
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2 Asymptotic properties

Throughout this paper let F denote a d-dimensional distribution function and θ = θ(F ) a

p-dimensional parameter of F . We will denote by

F̂ ji (z) =
1

j − i+ 1

j∑
t=i

I{Xt ≤ z} (2.1)

the empirical distribution function of observations Xi, . . . , Xj (here the inequality is under-

stood component-wise) and consider the canonical estimator θ̂ji = θ(F̂ ji ) of the parameter

θ from the sample Xi, . . . , Xj .

To test the hypotheses (1.1) and (1.2) in the described online setting in a open-end

scenario we propose a monitoring scheme defined by

Êm(k) = m−1/2 k−1
max
j=0

(k − j)
∥∥∥θ̂m+j

1 − θ̂m+k
m+j+1

∥∥∥
Σ̂−1

, (2.2)

where the statistic Σ̂ denotes an estimator of the long-run variance matrix Σ (defined in

Assumption 2.2) and the symbol ‖v‖2A = v>Av denotes a weighted norm of the vector v

induced by the positive definite matrix A. The monitoring is then performed as follows.

With observation Xm+k arriving, one computes Êm(k) and compares it to an appropriate

threshold function, which is also called weighting function in the literature, say w. If

Êm(k) > cαw(k/m) (2.3)

monitoring is stopped and the null hypothesis (1.1) is rejected in favor of the alternative

(1.2). If the inequality (2.3) does not hold, monitoring is continued with the next observa-

tion Xm+k+1. We will derive the limiting distribution of sup∞k=1 Êm(k)/w(k/m) in Theorem

2.6 below to determine the constant cα involved in (2.3), such that the test keeps a nominal

level of α (asymptotically as m→∞).

Remark 2.1 The statistic (2.2) is related to a detection scheme, which was recently pro-

posed by Dette and Gösmann (2018) for the closed-end case, where monitoring ends with

observation mT , for some T ∈ N. These authors considered the statistic

D̂m(k) = m−3/2 k−1
max
j=0

(m+ j)(k − j)‖θ̂m+j
1 − θ̂m+k

m+j+1‖Σ̂−1 , (2.4)

and showed

mT
max
k=1

D̂m(k)

w(k/m)

D
=⇒ max

t∈[0,T ]
max
s∈[0,T ]

|(s+ 1)W (t+ 1)− (t+ 1)W (s+ 1)|
w(t)

, (2.5)

where W denotes a p-dimensional Brownian motion and throughout this paper the symbol
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D
=⇒ denotes weak convergence (in the space under consideration). However, this statistic

cannot be considered in an open-end scenario for the typical threshold functions considered

in the literature satisfying lim supt→∞ t/w(t) <∞ (in this case the limit on the right-hand

side of (2.5) would be almost surely infinite for T =∞). As threshold functions satisfying

lim supt→∞ t
2/w(t) < ∞ will cause a loss in power as demonstrated in an unpublished

simulation study, we propose to replace the factor (m+ j) in (2.4) by the size of the initial

sample m, which leads to the monitoring scheme defined by (2.2).

To discuss the asymptotic properties of our approach, we require the following notation.

The symbol
P

=⇒ denotes convergence in probability. The process {W (s)}s∈[0,∞) will usually

represent a standard p-dimensional Brownian motion. For a vector v ∈ Rd, we denote by

|v| =
(∑d

i=1 v
2
i

)1/2
its Euclidean norm. For the sake of a clear distinction we will employ

n
sup
i=1

a(i)

for discrete indexing (with integer arguments) and

sup
0≤x≤1

a(x)

for continuous indexing (with arguments taken from the interval [0, 1] or another subset of

R).

Next, we define the influence function (assuming its existence) by

IF(x, F, θ) = lim
ε↘0

θ((1− ε)F + εδx)− θ(F )

ε
, (2.6)

where δx(z) = I{x ≤ z} is the distribution function of the Dirac measure at the point

x ∈ Rd and the inequality in the indicator is again understood component-wise. We will

focus on functionals that allow for an asymptotic linearization in terms of the influence

function, that is

θ̂ji − θ = θ(F̂ ji )− θ(F ) =
1

j − i+ 1

j∑
t=i

IF(Xt, F, θ) +Ri,j (2.7)

with asymptotically negligible remainder terms Ri,j . Finally, for the sake of readability we

introduce the following abbreviation

IF t = IF(Xt, Ft, θ) ,

where Ft is again the distribution function of Xt. Under the null hypothesis (1.1) we will

impose the following assumptions on the underlying time series.
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Assumption 2.2 (Approximation) The time series {Xt}t∈Z is (strictly) stationary, such

that Ft = F for all t ∈ Z. Further, for each m ∈ N there exist two independent, p-

dimensional standard Brownian motions Wm,1 and Wm,2, such that for some positive con-

stant ξ < 1/2 the following approximations hold

∞
sup
k=1

1

kξ

∣∣∣∣ m+k∑
t=m+1

IF t −
√

ΣWm,1(k)

∣∣∣∣ = OP(1) (2.8)

and

1

mξ

∣∣∣∣ m∑
t=1

IF t −
√

ΣWm,2(k)

∣∣∣∣ = OP(1) (2.9)

as m→∞, where Σ =
∑

t∈Z Cov
(
IF0, IF t

)
∈ Rp×p denotes the long-run variance matrix

of the process
{
IF t

}
t∈Z, which we assume to exist and to be non-singular.

Assumption 2.3 (Threshold function) The threshold function w : R≥0 → R+ is uniformly

continuous, has a positive lower bound, say `w > 0, and satisfies

lim sup
t→∞

t

w(t)
<∞ .

Assumption 2.4 (Linearization) The remainder terms in the linearization (2.7) satisfy

k
max
i,j=1
i<j

(j − i+ 1)√
k

|Ri,j | = o(1) (2.10)

as k →∞ with probability one.

Remark 2.5 Let us give a brief explanation on the assumption stated above.

(i) Assumption 2.2 is a uniform invariance principle and frequently used in the (sequen-

tial) change point literature [see for example Aue et al. (2006) or Fremdt (2014b)

among others]. In the one-dimensional case, Assumption (2.8) was verified by Aue

and Horváth (2004) for different classes of time series including GARCH or strongly

mixing processes and can be easily extended to the multivariate case considered here.

Assumption 2.2 is stronger than a functional central limit theorem, which is usually

sufficient to work in a closed-end setup [see for example Wied and Galeano (2013),

Pape et al. (2016) or Dette and Gösmann (2018)]

(ii) Assumption 2.3 gives necessary restrictions on the feasible set of threshold functions,

which are required for the existence of a (weak) limit derived in Theorem 2.6. It is also

worth mentioning that the assumption of a lower bounded threshold can be relaxed
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to

lim
t→0

tγ

w(t)
= 0

for a constant 0 ≤ γ < 1/2. In this case, the assumption for the remainders in (2.10)

has to be replaced by

m+k
max
1=i,j
i<j

(j − i+ 1)

(m+ k)1/2−γ |Ri,j | = o(1) a.s.

For the sake of a transparent presentation we use the assumption of a lower bound

here as this also simplifies the technical arguments in the proofs later on.

(iii) Assumption 2.4 is crucial for the proof of our main theorem and directly implies

∞
sup
k=1

m+k
max
1=i,j
i<j

(j − i+ 1)

(m+ k)1/2
|Ri,j | =

∞
sup

k=m+1

k
max
i,j=1
i<j

(j − i+ 1)

k1/2
|Ri,j | = o(1) a.s.

Note that in the location model θ(F ) = EF [X] we have Ri,j = 0 and (2.10) obviously

holds. In general however, Assumption 2.4 is highly non-trivial and crucially depends

on the structure of the functional θ and the time series {Xt}t∈Z. For a comprehensive

discussion the reader is referred to Dette and Gösmann (2018), where the estimate

(2.10) has been verified in probability for different functionals including quantiles and

variance.

The following result is the main theorem of this section.

Theorem 2.6 Assume that the null hypothesis (1.1) and Assumptions 2.2 - 2.4 hold. If

further Σ̂m is a consistent and non-singular estimator of the long-run variance matrix Σ it

holds that

∞
sup
k=1

Êm(k)

w(k/m)

D
=⇒ sup

0≤t<∞
max
0≤s≤t

t+ 1

w(t)

∣∣∣W( s

s+ 1

)
−W

( t

t+ 1

)∣∣∣ , (2.11)

where W is a p-dimensional Brownian motion with independent components.

For the sake of completeness, the reader should note that due to Assumption 2.3 the

asymptotic behaviour of the threshold guarantees that the random variable on the right-

hand side of (2.11) is finite (with probability one).

In light of Theorem 2.6 one can choose a constant c(α), such that

P
(

sup
0≤t<∞

max
0≤s≤t

t+ 1

w(t)

∣∣∣W( s

s+ 1

)
−W

( t

t+ 1

)∣∣∣ > c(α)

)
≤ α . (2.12)

8



The following corollary then states that our approach leads to a level α detection scheme.

Corollary 2.7 Grant the Assumptions of Theorem 2.6 and further let c(α) satisfy inequality

(2.12), then

lim sup
m→∞

P
(
∞

sup
k=1

Êm(k)

w(k/m)
> c(α)

)
≤ α .

The limit distribution obtained in Theorem 2.6 strongly depends on the considered

threshold. A special family of thresholds that has received considerable attention in the

literature [see Horváth et al. (2004), Fremdt (2014b), Kirch and Weber (2018) among many

others] is given by

wγ(t) = (1 + t) max
{( t

1 + t

)γ
, ε
}

with 0 ≤ γ < 1/2 , (2.13)

where the cutoff ε > 0 can be chosen arbitrary small in applications and only serves to

reduce the assumptions and technical arguments in the proof [see also Wied and Galeano

(2013)]. With these functions the limit distribution in (2.11), with the threshold function

as the denominator, can be simplified to an expression that is more easily tractable via

simulations. Straightforward calculations yield that Assumption 2.3 is satisfied by the

function wγ and the limit distribution in Theorem 2.6 simplifies as follows.

Corollary 2.8 For a p-dimensional Brownian motion W with independent components it

holds that

sup
0≤t<∞

max
0≤s≤t

t+ 1

wγ(t)

∣∣∣W( s

s+ 1

)
−W

( t

t+ 1

)∣∣∣ D= sup
0≤t<1

max
0≤s≤t

1

max{tγ , ε}

∣∣∣W (t)−W (s)
∣∣∣ := L1,γ .

For the investigation of the consistency of the monitoring scheme (2.2) we require the

following assumption.

Assumption 2.9 Under the alternative H1 defined in (1.2) let

θ(1) := θ(F1) = θ(F2) = · · · = θ(Fm+k∗) 6= θ(2) := θ(Fm+k∗+1) = θ(Fm+k∗+1) = · · ·

Further assume that k∗ is independent of m and that the process {IF t} is of the following

order before and after the change, respectively,

1√
m

∣∣∣∣m+k∗∑
t=1

IF t
∣∣∣∣ = OP(1) and

1√
m

∣∣∣∣ 2m∑
t=m+k∗+1

IF t
∣∣∣∣ = OP(1) . (2.14)
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Additionally assume that the remainders defined in (2.4) satisfy

|R1,m+k∗ | = OP

( 1√
m

)
and |Rm+k∗+1,2m| = OP

( 1√
m

)
. (2.15)

Remark 2.10 The assumptions stated above are substantially weaker than those used

to investigate the asymptotic properties of sup∞k=1 Êm(k)/w( km) under the null hypothesis.

Basically, we only assume reasonable behavior of the time series before and after the change

point and can drop the uniform approximation in Assumption 2.2 and the uniform negligi-

bility of the remainders in Assumption 2.4. It is easy to see, that (2.14) is already satisfied

if both, the phases before and after the change fulfill a central limit theorem. Finally, it is

worth mentioning that one can also derive the subsequent results when replacing the 2m

by cm for an arbitrary constant c > 1, however - for the sake of better readability - we will

work with this (minimally stricter) assumption.

The next Theorem yields consistency under the alternative hypothesis.

Theorem 2.11 Assume that the alternative hypothesis (1.2) and Assumptions 2.3 and 2.9

hold. If further Σ̂m is a consistent and non-singular estimator of the long-run variance

matrix Σ it holds that

∞
sup
k=1

Êm(k)

w(k/m)

P
=⇒∞ .

Consequently,

lim
m→∞

P
(
∞

sup
k=1

Êm(k)

w(k/m)
> c

)
= 1

for any constant c ∈ R.

3 Some specific change point problems

In this section we briefly illustrate how the theory developed in Section 2 can be employed

to construct monitoring schemes for a specific parameter of the distribution function. For

the sake of brevity we restrict ourselves to the mean and the parameters in a linear model.

Other examples such as the variance or quantiles can be found in Dette and Gösmann

(2018).
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3.1 Changes in the mean

The sequential detection of changes in the mean

µ(F ) = EF [X] =

∫
Rd

xdF (x) .

has been extensively discussed in the literature [see Aue and Horváth (2004), Fremdt

(2014b) or Hoga (2017) among many others].

Is is easy to verify (and well known), that the influence function for the mean is given

by

IF(x, F, µ) = x− EF [X] ,

and Assumption 2.4 and the second part of Assumption 2.9 are obviously satisfied in this

case since we have Ri,j = 0 for all i, j. For the remaining assumptions in Section 2 it

now suffices that the centered time series
{
Xt − E[Xt]

}
t∈Z fulfills Assumption 2.2, which

also implies the remaining part of Assumption 2.9 [see also the discussion in Remark 2.5].

In this situation both, Theorem 2.6 and Theorem 2.11 are valid provided that the chosen

threshold fulfills Assumption 2.3.

3.2 Changes in linear models

Consider the time-dependent linear model

Yt = P>t βt + εt , (3.1)

where the random variables {Pt}t∈N are the Rp-valued predictors, βt ∈ Rp is a p-dimensional

parameter and {εt}t∈N is a centered random sequence independent of {Pt}t∈N. The identi-

fication of changes in the vector of parameters in the linear model represents the prototype

problem in sequential change point detection as it has been extensively studied in the lit-

erature [see Chu et al. (1996), Horváth et al. (2004), Aue et al. (2009), Fremdt (2014b),

among many others].

This situation is covered by the general theory developed in Section 2 and 3. To be precise

let

Xt = (P>t , Yt)
> ∈ Rd , d = p+ 1 and t = 1, 2 . . . (3.2)
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be the the joint vectors of predictor and response with (joint) distribution function Ft, such

that the marginal distributions of Yt and Pt are given by

Ft,Y = Ft(∞, . . . ,∞, ·) and Ft,P = Ft(·, . . . , ·,∞) ,

respectively, where we will assume that the predictor sequence is stationary, that is Ft,P =

FP . In a first step we will consider the case, where the moment matrix

M := E[P1P
>
1 ] =

∫
Rd

p · p>dFP (p)

is known (we will discuss later on why this assumption is non-restrictive) and non-singular.

In this setup, the parameter βt can be represented as a functional of the distribution function

Ft, that is

βt = β(Ft) := M−1 ·
∫
Rd

p · ydFt(y, p) = M−1 · E
[
PtYt

]
,

which leads to the estimators

β̂ji = β(F̂ ji ) =
M−1

j − i+ 1

j∑
t=i

PtYt (3.3)

from the sample (Pi, Yi), . . . , (Pj , Yj). To compute the influence function, let (p, y) ∈ Rp×R,

then

IF
(
(p, y), Ft, β

)
= lim

η↘0

β
(
(1− η)Ft + εδ(p,y)

)
− β(Ft)

η

= lim
η↘0

M−1

[
(1− η)E[PtYt] + ηpy

η
− βt
η

]
= M−1

(
py − E[PtYt]

)
,

which is the influence function (for β) in the linear model stated above [see for example

Hampel et al. (1986) for a comprehensive discussion of influence functions]. In the following,

we will use the notation IF t = IF
(
Xt, Ft, β

)
again. Note that

IF t = M−1
(
PtYt − E[PtYt]

)
= M−1PtYt − βt , (3.4)
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which directly gives E[IF t] = 0. Under the null hypothesis the random sequence (Xt)t∈N

is stationary and the linearization defined in (2.7) simplifies to

β̂ji − β1 = β(F̂ ji )− β1 =
M−1

j − i+ 1

j∑
t=i

PtYt − β1 =
1

j − i+ 1

j∑
t=i

(
M−1PtYt − βt

)
=

1

j − i+ 1

j∑
t=i

IF t .

(3.5)

Consequently, the remainders in (2.7) vanish and Assumption 2.4 is obviously satisfied.

Next, note that the long-run variance matrix is given by

Σ =
∑
t∈Z

Cov
(
IF0, IF t

)
= M−1ΓM−1 (3.6)

with Γ =
∑

t∈Z Cov
(
Y0P0, YtPt

)
, which can be estimated by Σ̂ = M−1Γ̂M−1 where Γ̂ is

an estimator for Γ. Observing (3.5) it is now easy to see that in the resulting statistic Êm

the matrix M cancels out, that is

Êm(k) = m−1/2 k−1
max
j=0

(k − j)
∥∥∥β̂m+j

1 − β̂m+k
m+j+1

∥∥∥
Σ̂−1

= m−1/2 k−1
max
j=0

(k − j)
∥∥∥ 1

m+ j

m+j∑
t=1

YtPt −
1

k − j

m+k∑
t=m+j+1

YtPt

∥∥∥
Γ̂−1

(3.7)

and therefore does not depend on the matrix M . We therefore obtain the following result,

which describes the asymptotic properties of the monitoring scheme based on the statistic

Êm for a change in the parameter in the linear regression model (3.1). The proof is a direct

consequence of Theorem 2.6 and 2.11.

Corollary 3.1 Assume that the predictor sequence {Pt}t∈N is strictly stationary with a non-

singular second moment matrix M = E[P1P
>
1 ]. Let Γ̂m denote a non-singular, consistent

estimator of the non-singular long-run variance matrix Γ defined in (4.8). Further suppose

that the sequences {Pt}t∈N and {εt}t∈N are independent and let the threshold function under

consideration fulfill Assumption 2.3.

(i) Under the null hypothesis H0 of no change assume additionally that the sequence

{IF t}t∈N defined in (3.4) admits the approximation in Assumption 2.2. Then moni-

toring based on the statistic Ê in (3.7) is an asymptotic level α procedure.

(ii) Under the alternative hypothesis H1 assume that {IF t}t∈N fulfills (2.14) of Assump-

tion 2.9. Then the monitoring based on the statistic Ê in (3.7) is consistent.
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4 Finite sample properties

In this section we investigate the finite sample properties of our monitoring procedure

and demonstrate its superiority with respect to the available methodology. We choose the

following two statistics as our benchmark

Q̂m(k) :=
k

m1/2

∥∥∥θ̂m1 − θ̂m+k
m

∥∥∥
Σ̂−1

,

P̂m(k) :=
k−1
max
j=0

k − j
m1/2

∥∥∥θ̂m1 − θ̂m+k
m+j+1

∥∥∥
Σ̂−1

.
(4.1)

The procedure based on Q̂ was originally proposed by Horváth et al. (2004) for detecting

changes in the parameters of linear models and since then reconsidered for example by Aue

et al. (2012), Wied and Galeano (2013) and Pape et al. (2016) for the detection of changes

in the CAPM-model, correlation and variances, respectively. A statistic of the type P̂

was recently proposed by Fremdt (2014b) and has been already reconsidered by Kirch and

Weber (2018). In the simulation study we will restrict ourselves to the commonly used class

of threshold functions wγ defined in (2.13), where we set the involved, technical constant

ε = 0.

Under the assumptions made in Section 2, it can be shown by similar arguments as given

in Appendix A that

∞
sup
k=1

Q̂m(k)

wγ(k/m)

D
=⇒ sup

0≤t<1

|W (t)|
max{tγ , ε}

=: L2,γ (4.2)

and

∞
sup
k=1

P̂m(k)

wγ(k/m)

D
=⇒ sup

0≤t<1
max
0≤s≤t

1

max{tγ , ε}

∣∣∣W (t)− 1− t
1− s

W (s)
∣∣∣ =: L3,γ , (4.3)

where W denotes a p-dimensional Brownian motion. For detailed proofs (under slightly

different assumptions) of (4.2) and (4.3), the reader is relegated to Horváth et al. (2004)

and Fremdt (2014b), where procedures of these types are considered in the special case of

a linear model.

Recall the notation of L1,γ introduced in Corollary 2.8. By (4.2), (4.3) and Corollary 2.7

the necessary critical values for the procedures Ê, Q̂ and P̂ combined with threshold wγ

are given as the (1− α)-quantiles of the distributions L1,γ , L2,γ and L3,γ , respectively and

can easily be obtained by Monte Carlo simulations. The quantiles are listed in Table 1 for

dimensions p = 1 and p = 2 and have been calculated by 10000 runs simulating the cor-

responding distributions where the underlying Brownian motions have been approximated

on a grid of 5000 points. In Sections 4.1 and 4.2 below, we will examine the finite sample

properties of the three statistics for the detection of changes in the mean and in the regres-
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sion coefficients of a linear model, respectively. All subsequent results presented in these

sections are based on 1000 independent simulation runs and a fixed test level of α = 0.05.

L1,γ L2,γ L3,γ

p γ \α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

1
0 2.9762 2.4721 2.2175 2.8262 2.2599 1.9914 2.7912 2.2365 1.9497

0.25 3.1050 2.5975 2.3542 2.9638 2.4296 2.1758 2.9445 2.3860 2.1060
0.45 3.4269 2.9701 2.7398 3.3817 2.9241 2.7002 3.3015 2.7992 2.5437

2
0 3.4022 2.8943 2.6562 3.2272 2.6794 2.4008 3.2461 2.6957 2.4266

0.25 3.5279 3.0948 2.7781 3.3322 2.7981 2.5481 3.3630 2.8433 2.5911
0.45 3.8502 3.3912 3.1509 3.7010 3.2046 2.9543 3.7467 3.2966 3.0620

Table 1: (1-α)-quantiles of the distributions L1,γ, L2,γ and L3,γ for different choices of
γ and different dimensions of the parameter. The cutoff constant was set to ε = 0. The
results for L2,γ and L3,γ for p = 1 are taken from Fremdt (2014b) and Horváth et al. (2004),
respectively.

4.1 Changes in the mean

In this section we will compare the finite sample properties of the procedures based on the

statistics Ê, P̂ and Q̂ for changes in the mean as outlaid in Section 3.1. Here we test the

null hypothesis of no change which is given by

H0 : µ1 = · · · = µm = µm+1 = µm+2 = . . . , (4.4)

while the alternative, that the parameter µt changes beyond the initial data set, is defined

as

H1 : ∃k? ∈ N : µ1 = · · · = µm+k?−1 6= µm+k? = µm+k?+1 = . . . . (4.5)

We will consider two different data generating models, a white noise process and an autore-

gressive process given by

(M1) Xt i.i.d. ∼ N (0, 1) ,

(M2) Xt = 0.1Xt−1 + εt with εt i.i.d. ∼ N (0, 1) .

For the AR(1)-process specified in model (M2), we create a burn-in sample of 100 obser-

vations in the first place. To simulate the alternative hypotheses, changes in the mean are

added to the data, that is

Xδ
t =

Xt if t < m+ k∗ ,

Xt + δ if t ≥ m+ k∗ ,
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where δ = E[Xm+k∗ ]− E[Xm+k∗−1] denotes the desired change amount. For the necessary

covariance estimation we employ the well known quadratic spectral estimator [see (Andrews,

1991)] with its implementation in the R-package ‘sandwich’ [see Zeileis (2004)]. To take

into account the possible appearance of changes only the initial stable segment X1, . . . , Xm

is used for this estimate, which is standard in the literature [see for example Horváth et al.

(2004), Wied and Galeano (2013), or Dette and Gösmann (2018) among many others].

In Table 2 we display the type 1-Error for both time series models and different choices of γ

in the threshold functions. The principle observation is, that all three statistical procedures

offer a reasonable approximation of the desired nominal level of α = 0.05. The results for

the dependent model (M2) are slightly worse than those for the white noise model (M1).

This effect may be caused by a less precise estimation of the long-run variance for small

sample sizes. Accordingly, this effect is weaker for the case m = 100.

In Figures 1, 2, 3 and 4 we illustrate the power of the procedures under the alternative hy-

pothesis for increasing values of the change and different change positions for combinations

of γ = 0, γ = 0.45 and m = 50, m = 100. The basic tendency in all four plots is similar:

While the procedures behave similar for a change close to the initial data set (first row),

the method based on Ê is clearly superior to the others the more the distance to the initial

set grows. To give an example, consider the left plot of the last row in Figure 1. Here the

test based on the statistic Ê already has a power of 32.9% for a change of µ = 1 whereas

the tests based on the statistics P̂ and Q̂ have power of 24.4% and 22.7%, respectively. The

superior performance of Ê can most likely be explained by the more accurate estimate of

the pre-change parameter by θ̂m+j
1 , while the the other statistics only involve the estimator

θ̂m1 [see formulas (2.2) and (4.1)].

For the sake of an appropriate understanding of our findings, the reader should be aware

of the fact, that - although we consider open-end procedures here - simulations have to be

stopped eventually. Here we chose this stopping point as 1000 (m = 50) or 3000 (m = 100)

observations and it is expectable that the testing power of all procedures increases with

a later stopping point. Therefore the observed superiority of Ê refers to the type 2-Error

until the specified stopping point.
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(M1) (M2)

m γ Ê Q̂ P̂ Ê Q̂ P̂

50
0 5.4% 5.2% 5.5% 8.1% 7.1% 8.2%

0.25 5.0% 4.9% 5.4% 8.3% 7.0% 9.5%
0.45 4.5% 3.6% 4.8% 7.6% 5.6% 9.2%

100
0 4.2% 4.3% 4.9% 6.9% 6.5% 6.9%

0.25 5.0% 4.9% 5.9% 7.6% 6.5% 7.0%
0.45 6.0% 4.9% 7.0% 6.5% 4.8% 7.7%

Table 2: Type 1-Error for the open-end procedures based on Ê, Q̂ and P̂ . The size of the
known stable data was set to m = 50 (upper part), m = 100 (lower part).
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(M1) (M2)

m+ k∗ = 51

m+ k∗ = 101

m+ k∗ = 501

m+ k∗ = 801

Figure 1: Power of the monitoring procedures for a change in the mean based on the statis-
tics Ê (solid line), Q̂ (dashed line) and P̂ (dotted line) with γ = 0 and m = 50.
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(M1) (M2)

m+ k∗ = 51

m+ k∗ = 101

m+ k∗ = 501

m+ k∗ = 801

Figure 2: Power of the monitoring procedures for a change in the mean based on the statis-
tics Ê (solid line), Q̂ (dashed line) and P̂ (dotted line) with γ = 0.45 and m = 50.
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(M1) (M2)

m+ k∗ = 101

m+ k∗ = 501

m+ k∗ = 1001

Figure 3: Power of the monitoring procedures for a change in the mean based on the statis-
tics Ê (solid line), Q̂ (dashed line) and P̂ (dotted line) with γ = 0 and m = 100.
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(M1) (M2)

m+ k∗ = 101

m+ k∗ = 501

m+ k∗ = 1001

Figure 4: Power of the monitoring procedures for a change in the mean based on the statis-
tics Ê (solid line), Q̂ (dashed line) and P̂ (dotted line) with γ = 0.45 and m = 100.
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4.2 Changes in linear models

In this section we present some simulation results for the detection of changes in the linear

model (3.1). We aim to detect changes in the unknown parameter vector βt ∈ Rp by testing

the null hypothesis

H0 : β1 = · · · = βm = βm+1 = βm+2 = . . . , (4.6)

against the alternative that the parameter βt changes beyond the initial data set, that is

H1 : ∃k? ∈ N : β1 = · · · = βm+k?−1 6= βm+k? = βm+k?+1 = . . . . (4.7)

To be precise, we consider the model (3.1) with p = 2 and the following choice of predictors

(LM1) Pt = (1, Zt)
> ,

(LM2) Pt = (1, 1 +Gt)
> with Gt = σ̄tZt and σ̄2

t = 0.5 + 0.2Zt−1 + 0.3σ̄2
t−1 ,

where Zt denotes an i.i.d. sequence of N (0, 0.5) random variables in both models. The

parameter vector is fixed at βt = (1, 1) under the null hypothesis and to examine the

alternative hypothesis, changes are added to its second component, that is

βδt =

(1, 1)> if t < m+ k∗ ,

(1, 1 + δ)> if t ≥ m+ k∗ .

For both scenarios we simulated the residuals εt in model (3.1) as i.i.d. N (0, 0.5) sequences.

Note that the models specified above have been already considered by Fremdt (2014b). As

pointed out in Section 3.2 the asymptotic variance that needs to be estimated within our

procedures is given by

Γ =
∑
t∈Z

Cov
(
P0Y0, PtYt

)
. (4.8)

We estimate this quantity based on the stable segment of observations (Y1, P1), . . . , (Ym, Pm)

using the well known quadratic spectral estimator [see Andrews (1991)] with its implemen-

tation in the R-package ‘sandwich’ [see Zeileis (2004)].

The problem of detecting changes in the parameter of the linear model has also been

addressed using partial sums of the residuals ε̂t = Yt − P>t β̂I in statistics similar to

(4.1), where β̂I is an initial estimate of β computed from the initial stable segment [see

for example Chu et al. (1996), Horváth et al. (2004), Fremdt (2014a) among many others].

Our approach directly compares estimators for the vector βt, which are derived using the

22



general methodology introduced in Section 2 and 3. The resulting statistics are obtained

replacing θ̂ by β̂ in equation (4.1). We also refer to Leisch et al. (2000) for a comparison of

residual based methods with methods using the estimators directly (these authors consider

a statistic similar to Q̂).

In Table 3 we display the approximation of the nominal level for the three statistics with

different values of the parameter γ in the threshold function, where monitoring was stopped

after 1500 observations. We observe a reasonable approximation of the nominal level 5% in

the case γ = 0, while the rejection probabilities for for γ = 0.25 or γ = 0.45 slightly exceed

the desired level of 5%. The fact that larger values of γ ∈ [0, 1/2) can lead to a worse

approximation of the desired type 1-Error has also been observed by other authors [see, for

example, Wied and Galeano (2013)] and can be explained by a more sensitive threshold

function at the monitoring start if γ is chosen close to 1/2. Overall, the approximation is

slightly better for the independent case in model (LM1).

In Figure 5 we compare the power with respect to the change amount for different change

positions, where we restrict ourselves to the case γ = 0 for the sake of brevity. The

results are very similar to those provided for the mean functional in Section 4.1. Again

the monitoring scheme based on Ê outperforms the procedures based on Q̂ and P̂ , and the

superiority is larger for a later change. We omit a detailed discussion and summarize that

the empirical findings have indicated superiority (w.r.t. testing power) of the monitoring

scheme based on the statistic Ê.

(LM1) (LM2)

γ Ê Q̂ P̂ Ê Q̂ P̂

0 6.4% 6.5% 6.7% 7.2% 6.7% 7.2%

0.25 7.6% 8.8% 9.1% 8.5% 9.6% 9.5%

0.45 12.0% 12.2% 12.1% 12.6% 12.2% 12.6%

Table 3: Type 1-Error for the open-end procedures based on Ê, Q̂ and P̂ . The size of the
known stable data was set to m = 100.
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(LM1) (LM2)

m+ k∗ = 51

m+ k∗ = 201

m+ k∗ = 501

Figure 5: Power of the monitoring procedures for a change in the regression parameters
for the open-end procedures based on the statistics Ê (solid line), Q̂ (dashed line) and P̂
(dotted line) with γ = 0 and m = 100.
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5 Closed-end scenarios

It is worthwhile to mention that the theory developed so far also covers the case of closed-

end scenarios [sometimes also called finite time horizon in the literature]. In this section,

we will very briefly discuss this situation and present a small batch of simulation results,

which also indicate the superiority of the statistic Ê for closed-end scenarios. Note that

the null hypothesis in this setup is given by

H0 : θ1 = · · · = θm = θm+1 = θm+2 = . . . = θTm , (5.1)

which is tested against the alternative that the parameters changes (once) at some time

m+ 1 ≤ m+ k? ≤ Tm, that is

H1 : ∃k? ∈ N : θ1 = · · · = θm+k?−1 6= θm+k? = θm+k?+1 = . . . = θTm . (5.2)

Here the factor T ∈ N controls the length of the monitoring period compared to the size of

the initial data set. Under the assumptions stated in Section 2, we can prove a corresponding

statement of Theorem 2.6 and Corollary 2.8.

Theorem 5.1 Assume that the null hypothesis (5.1) and Assumptions 2.2 - 2.4 hold. If

further Σ̂m is a consistent and non-singular estimator of the long-run variance matrix Σ it

holds that

Tm
sup
k=1

Êm(k)

wγ(k/m)

D
=⇒ max

0≤t<T
max
0≤s≤t

1

wγ(t)

∣∣∣ 1 + t

1 + s
W (1 + s)−W (1 + t)

∣∣∣
D
= max

0<t<T/(T+1)
max
0≤s≤t

1

max{tγ , ε}

∣∣∣W (t)−W (s)
∣∣∣ =: L1,γ(T ) ,

(5.3)

where W is a p-dimensional Brownian motion with independent components.

The proof of Theorem 5.1 follows by a straightforward adaption of the proofs of Theorem

2.6 and Corollary 2.8 given in Appndix A. The corresponding results for the tests based on

statistics Q̂ and P̂ defined in (4.1) read as follows

Tm
max
k=1

Q̂m(k)

wγ(k/m)

D
=⇒ max

0<t<T/(T+1)

|W (t)|
max{tγ , ε}

=: L2,γ(T ) (5.4)

and

Tm
max
k=1

P̂m(k)

wγ(k/m)

D
=⇒ max

0<t<T/(T+1)
max
0≤s≤t

1

max{tγ , ε}

∣∣∣W (t)− 1− t
1− s

W (s)
∣∣∣ =: L3,γ(T ) . (5.5)
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To complete the discussion on closed-end scenarios we will display a small batch of sim-

ulation results for the detection of changes in the mean as described in Section 3.1. For

the sake of brevity, only the choice T = 4 is examined here [unpublished simulation results

show similar outcomes for other choices of T ]. The remaining simulation settings are the

same as used for the simulation study presented in Section 4.1 and in Table 4 we display

the necessary critical values defining the rejection regions for the different procedures.

The approximation of the nominal level under the null hypothesis is displayed in Table 5

and in Figures 6 and 7 the power of the different procedures with respect to change amount

and change position for γ = 0 and γ = 0.45 is illustrated. The results are very similar to

the open-end scenario discussed in Section 4 and confirm the superiority of tests based on

the statistic Ê.

L1,γ(4) L2,γ(4) L3,γ(4)

γ \α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

0 2.7080 2.1995 1.9811 2.5145 1.9826 1.7380 2.5572 2.0435 1.8019

0.25 2.9558 2.4345 2.2220 2.7602 2.2223 1.9799 2.8210 2.2986 2.0750

0.45 3.3850 2.9371 2.6994 3.2238 2.7398 2.4952 3.3156 2.8626 2.6274

Table 4: (1-α)-quantiles of the distributions L1,γ(4), L2,γ(4) and L3,γ(4) for different choices
of γ. The cutoff constant was set to ε = 0 and the dimension is p = 1.

(M1) (M2)

γ Ê Q̂ P̂ Ê Q̂ P̂

0 5.2% 5.3% 5.3% 8.0% 7.3% 7.4%

0.25 5.4% 6.0% 5.8% 8.6% 7.5% 8.1%

0.45 4.9% 5.4% 4.5% 6.1% 6.4% 5.9%

Table 5: Type 1-Error for the closed-end procedures for a change in the mean based on the
statistics Ê, Q̂ and P̂ with a training data set of size m = 200 and a monitoring window of
T = 4.
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(M1) (M2)

m+ k∗ = 201

m+ k∗ = 501

m+ k∗ = 801

Figure 6: Power of the (closed-end) monitoring procedures for a change in the mean based
on the statistics Ê (solid line), Q̂ (dashed line) and P̂ (dotted line) with γ = 0, m = 200
and T = 4.

27



(M1) (M2)

m+ k∗ = 201

m+ k∗ = 501

m+ k∗ = 801

Figure 7: Power of the (closed-end) monitoring procedures for a change in the mean based
on the statistics Ê (solid line), Q̂ (dashed line) and P̂ (dotted line) with γ = 0.45, m = 200
and T = 4.
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6 Two applications

In this section, we discuss some practical issues that arise when our methodology is applied

to monitor for changes in linear models. As a summary of our recommendations, we provide

Algorithm 1 and two elaborated examples related to the United Kingdom European Union

membership referendum 2016. We consider the linear model

Yt = β1P1,t + β2P2,t + εt , (6.1)

where Yt is a real-valued response and (P1,t, P2,t) is a two-dimensional predictor, which is

a special case of the linear model considered in Section 3.2.

As most monitoring procedures, our approach requires a stable segment of m obser-

vations in which no changes have yet happened. To ensure that a candidate for a stable

segment is suitable, we suggest to make use of well known retrospective change point test

methodology. A comprehensive introduction and summary for this topic can, for example,

be found in Csörgö and Horváth (1997). For the sake of completeness details of the ret-

rospective test that is employed as part of our analysis are provided in Section B of the

appendix.

In light of our asymptotic arguments in Section 2, we require that m will not be chosen

smaller than a minimum segment size, say mmin, to be specified by the user. In practice,

the observations of times t = 1, . . . ,m are then used as (a first candidate for) a stable

segment and monitoring starts not earlier than at time m+ 1; see line 2 of Algorithm 1.

Before monitoring begins, we apply the retrospective test to the candidate for a stable

segment and use it as such only if the test does not reject the null hypothesis of no change.

Otherwise, if there is evidence of a change, we record the change point as ‘found during

setup’, and continue in this manner with the next mmin observations onwards from the

change that we identified until a segment is found where the retrospective test does not

reject. Obtaining the stable segment for monitoring is described in lines 4–10 of Algorithm 1.

Once a stable segment is available monitoring starts: The detector is updated for every

incoming observation, namely (Yt, P1,t, P2,t), and a decision is made whether to reject the

null hypothesis and stop the procedure or to continue monitoring with the subsequent

observation. This is described in lines 11–13 of Algorithm 1.

After a change has been detected, the monitoring phase ends and an estimate for the

time of the change is obtained via the formula

ˆ̀= m+ arg
k−1
max
j=0

m−3/2j(k − j)
∥∥∥ 1

m+ j

s+m+j−1∑
t=s

YtPt −
1

k − j

s+m+k−1∑
t=s+m+j

YtPt

∥∥∥
Γ̂−1

, (6.2)

where Pt = (P1,t, P2,t)
>. The objective function in (6.2) resembles the one in the detector
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defined in (3.7), but we use the weights of the retrospective tests defined in (B.1). Note

that - once monitoring has stopped - the problem of estimating the change time is of retro-

spective nature with the constraint that the first m observations are known as stable. The

estimated time of change ˆ̀ is then labeled as ‘found during monitoring’ and recorded.

For the next monitoring phase the observations from the change point that was just iden-

tified to the last observation previously monitored are considered as a candidate for the

next stable segment. In the case where this set would have fewer than mmin elements it

is enlarged by adding incoming observations until mmin observations are available. This is

described in lines 14–16 of Algorithm 1. The procedure then goes back to line 4 where the

retrospective test is applied to assess the suitability of the candidate to be the next stable

segment. Note that, if a change is identified in the candidate for the next stable segment, a

new candidate is chosen to be the observations starting with that identified change point to

the time where monitoring has last stopped or mmin observations onwards from the identi-

fied change in case that the candidate would otherwise have fewer than mmin observations;

see line 8 of Algorithm 1.

In the remaining part of this section, we present the outcomes of the statistical analysis

by Algorithm 1 for two data sets related to the United Kingdom (UK) European Union

(EU) membership referendum, which took place on 23 June 2016. For our analysis we chose

the significance levels to be α = 0.1 and the threshold function w0, as defined in (2.13). All

data used was obtained from https://www.ariva.de on 6 April 2019.

As our first example, we consider the relation of UK’s currency, Pound Sterling (GBP),

to the Eurozone’s currency, the Euro (EUR), and Switzerland’s currency, the Swiss franc

(CHF). More precisely, we consider daily log returns of the exchange rate of GBP to the

United States dollar (USD) as a response Yt of a linear model as described in (6.1). As

predictors we now consider the log returns of EUR to USD (P1,t) and CHF to USD (P2,t).

A graphical representation of the exchange rates and associated log returns for the period

from Januar 2016 to March 2019 can be seen in Figure 8. The outcomes of Algorithm 1

are presented visually in the graphs. We chose mmin := 30, which corresponds to six weeks

of data. No evidence was found for the set of the first 30 observation (6 Jan 2016 to 16

Feb 2016) to contain a change and so it was used as the stable segment for monitoring.

The monitoring went on until 30 Jun 2016 and 9 Jun 2016 was obtained as an estimate

for the time of change. In the next step a retrospective test is performed to verify whether

the observations from 9 Jun 2016 to 20 Jul 2016 contain any changes. No evidence for a

change was found. The monitoring procedure is restarted with these 30 observations as

the stable segment and monitoring continues until it is stopped on 21 Nov 2016 and the

15 Aug 2016 is identified as a time for a possible change. The period from 15 Aug to 21

Nov 2016 is considered as a candidate for a stable segment and no evidence against this is

found. The 71 observation in this segment are used for the third iteration of monitoring,
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Data: Univariate responses Yt and bivariate predictors (P1,t, P2,t);
Input: Minimum size mmin for the stable segment, γ to be used for the threshold

function wγ , significance level α;
Output: A sequence of change points c1, c2, . . . and labels T1, T2, . . . that indicate

whether the changes were identified by the retrospective test during
setup (R) or by the sequential procedure during monitoring (S);

1 begin
2 m := mmin, i := 1, s := 1;
3 repeat

// Find stable segment

4 while retrospective test does reject do
5 Apply test from Section B to (Yt, P1,t, P2,t), t = s, . . . , s+m− 1;
6 if test rejected then
7 Record the change point: ci := s+ j∗ − 1, Ti := R, i+ +;
8 Prepare the next test: s := j∗, m := max{j∗ − s,mmin};
9 end

10 end
// Monitor for changes

11 repeat

12 Compute detector Êm(k) from (Yt, P1,t, P2,t), t = s, . . . , s+m+ k;

13 until Êm(k) exceeds the critical curve cαwγ(k/m);
// Estimate time of change

14 Compute ˆ̀ defined in (6.2);

15 Record the change point: ci := s+ ˆ̀, Ti := S, i+ +;
16 Prepare the restart: m := max{s+m+ k − ci + 1,mmin}, s := ci;

17 until terminated by user ;

18 end
Algorithm 1: Procedure for repeated monitoring.
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Figure 8: Results of Algorithm 1 applied to log returns of three foreign exchange rates. Re-
sponse: GBP/USD (top), predictors: EUR/USD (middle) and CHF/USD (bottom). Set-
tings for Algorithm 1 were mmin := 30, α = 0.1, γ = 0. Shaded areas indicate observations
that were used as the stable segment (light gray) or monitored for changes (dark gray). Ver-
tical lines indicate times the sequential procedure rejected (blue box) or the estimate time
of change (red circle). The estimated times of the change points (times the sequential pro-
cedure stopped in brackets) were: 2016-06-09 (2016-06-30), 2016-08-15 (2016-11-21), and
2017-05-17 (2017-12-08).

which continues until 8 Dec 2017, when 17 May 2017 is identified as a possible time of a

change. Finally, a retrospective test is applied to the observations from 17 May 2017 to 8

Dec 2017 and as no evidence of a change is found monitoring commences with those 148

observations as a stable set without stopping until the end of the available data.

As our second example, we consider the relation of the UK’s market to that of the United

States (US) and the EU. More precisely, we consider daily log returns of the FTSE 100, a

share index of the 100 companies listed on the London Stock Exchange with the highest

market capitalization, as a response Yt of the linear model described in (6.1). As predictors

we consider the log returns of two similarly constructed indices that are related to the US

and EU markets, namely the S&P 500 (P1,t) and the EuroStoxx 50 (P2,t). A graphical

representation of the prices and log returns for the period from January 2016 to March
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Figure 9: Results of Algorithm 1 applied to log returns of three market indices. Response:
FTSE 100 (top), predictors: S&P 500 (middle) and EuroStoxx 50 (bottom). Settings for
Algorithm 1 were mmin := 30, α = 0.1, γ = 0. Shaded areas indicate observations that were
used as the stable segment (light gray) or monitored for changes (dark gray). Vertical lines
indicate times the sequential procedure rejected (blue box) or the estimate time of change (red
circle). The estimated times of the change points (times the sequential procedure stopped in
brackets) were: 2016-03-10 (2016-05-20), and 2016-06-21 (2016-06-23).

2019 can be seen in Figure 9. The outcomes of Algorithm 1 are presented visually in the

graphs. We chose mmin := 30. As the retrospective test affirms that the first 30 observation

(5 Jan 2016 to 12 Feb 2016) are stable, they are employed as the stable segment for the first

iteration of monitoring. The monitoring went on until 20 May 2016, when the sequential

procedure stopped and returned 10 Mar 2016 as the estimated time of the change. The

retrospective test identified no changes for the 55 days from 10 Mar 2016 to 20 May 2016

and the second iteration of monitoring then went on until 23 Jun 2016, the day of the UK’s

EU referendum. The estimated time for a change point was 21 Jun 2016. The retrospective

test found no evidence for the period from the 21 Jun 2016 to the 28 Jul 2016, so these

30 days of observations are used as the stable segment with which monitoring continues

without stopping until 29 March 2019 (the end of the available data).
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7 Summary and outlook

In this paper we developed a new monitoring scheme for change point detection in a parame-

ter of multivariate time series which is applicable in an open-end scenario. Compared to the

commonly used methods we replace the estimator of the parameter from the initial sample

X1, . . . , Xm by an estimator from the sample X1, . . . , Xm+j . We then compare this estima-

tor with the estimator from the sample Xm+j+1, . . . , Xm+k for every j = 0, . . . , k − 1, For

the new statistic the asymptotic distribution under the null hypothesis and the consistency

of a corresponding test, which controls the type-1 error, are established. By considering a

common class of thresholds wγ defined in (2.13) the limit reduces to an elementary distri-

bution, for which quantiles can be obtained by straightforward Monte Carlo simulations.

Finally, we demonstrate by a comprehensive simulation study that the new monitoring

scheme is superior (in terms of testing power) to a benchmark consisting of common meth-

ods proposed in the literature. The new statistic can also be used in closed-end scenarios,

for which the same superiority in power is observed.

A very challenging subject for future research is the characterization of the asymptotic

distribution for the stopping times based on the statistic Ê defined in (2.2). Correspond-

ing results are already known for the methods based on Q̂ and P̂ , see Aue and Horváth

(2004) and Fremdt (2014a), respectively. Moreover, as the finite sample properties depend

sensitively on the efficient estimation of the long-run variance it is of interest to develop

a concept of self-normalization [see Shao and Zhang (2010)], which is applicable in an

open-end scenario.
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A Proofs of the results in Section 2

Proof of Theorem 2.6: In the proof we use the following extra notation. Define the

statistic

Em(k) = m−1/2 k−1
max
j=0

(k − j)
∥∥∥θ̂m+j

1 − θ̂m+k
m+j+1

∥∥∥
Σ−1

, (A.1)

where we have replaced the long-run variance estimator Σ̂ by the (unknown) true long-run

variance Σ in definition (2.2). Further define

Ẽm(k) = m−1/2 k−1
max
j=0

(k − j)
∥∥∥∥ 1

m+ j

m+j∑
t=1

IF t −
1

k − j

m+k∑
t=m+j+1

IF t
∥∥∥∥

Σ−1

, (A.2)

where we have replaced the estimator θ̂ji by corresponding averages of the influence function

in (A.1). Finally, the triple (Ω,A,P) will denote the underlying probability space.

The proof itself is now split into several Lemmas A.1 - A.5. The first Lemma shows that

Ẽm(k) and Em(k) are (asymptotically) equivalent. Lemma A.2 will approximate Em(k) by

Brownian motions, while Lemma A.3 then yields a limit for this approximation. Lemma A.4

finishes the proof by plugging in the covariance estimator, meaning that Êm(k) and Em(k)

are asymptotically equivalent. Finally, Lemma A.5 will establish the other representation

of the limit distribution in (2.11). In each Lemma, we suppose that the assumptions of

Theorem 2.6 are valid.

Lemma A.1 (Remove Remainders) It holds that

∞
sup
k=1

1

w(k/m)

∣∣∣Em(k)− Ẽm(k)
∣∣∣ = oP(1)

as m→∞.

Proof. By the (reverse) triangle inequality and the linearization in (2.7) we obtain∣∣∣Em(k)− Ẽm(k)
∣∣∣

≤ m−1/2 k−1
max
j=0

(k − j)
∥∥∥θ̂m+j

1 − θ̂m+k
m+j+1 −

1

m+ j

m+j∑
t=1

IF t +
1

k − j

m+k∑
t=m+j+1

IF t
∥∥∥

Σ−1

= m−1/2 k−1
max
j=0

(k − j)
∥∥∥R1,m+j −Rm+j+1,m+k

∥∥∥
Σ−1

,
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where we used that θt is constant for the last equality. Next, we obtain that

∞
sup
k=1

1

m1/2w(k/m)

k−1
max
j=0

(k − j)
∥∥∥Rm+j+1,m+k

∥∥∥
Σ−1

=
∞

sup
k=1

(m+ k)1/2

m1/2w(k/m)

k−1
max
j=0

k − j
(m+ k)1/2

∥∥∥Rm+j+1,m+k

∥∥∥
Σ−1

≤ ∞
sup
k=1

(m+ k)1/2

m1/2w(k/m)

∞
sup
k=1

max
1≤i<j≤m+k

j − i+ 1

(m+ k)1/2

∥∥∥Ri,j∥∥∥
Σ−1

.

(A.3)

Similar as in (A.3) it holds

∞
sup
k=1

1

m1/2w(k/m)

k−1
max
j=0

(k − j)
∥∥∥R1,m+j

∥∥∥
Σ−1

≤ ∞
sup
k=1

m+ k

mw(k/m)

√
m
∞

sup
k=1

k−1
max
j=0

∥∥∥R1,m+j

∥∥∥
Σ−1

=
∞

sup
k=1

m+ k

mw(k/m)

∞
sup
k=0

√
m
∥∥∥R1,m+k

∥∥∥
Σ−1

(A.4)

Using Assumption 2.3 for the threshold w we obtain

∞
sup
k=1

m+ k

mw(k/m)
=
∞

sup
k=1

1 +
k

m
w(k/m)

≤ sup
t>0

1 + t

w(t)
<∞ . (A.5)

and by similar arguments it holds that

∞
sup
k=1

(m+ k)1/2

√
mw(k/m)

<∞ . (A.6)

Further note that due to Assumption 2.4 with probability one

∞
sup
k=1

√
m
∣∣∣R1,m+k

∣∣∣ ≤ ∞
sup
k=1

√
m+ k

∣∣∣R1,m+k

∣∣∣ =
∞

sup
k=m

√
k
∣∣∣R1,k

∣∣∣
j=k,i=1
≤ ∞

sup
k=m

max
1≤i<j≤k

j − i+ 1√
k

∣∣∣Ri,j∣∣∣ = o(1) .

(A.7)

Now combining (A.5), (A.6) and (A.7) the bounds derived in (A.3) and (A.4) are of order

oP(1), which finishes the proof of Lemma A.1.

For the proof of the next Lemma we can proceed (roughly) similar to the proof of Lemma

5.2 in Fremdt (2014b).

Lemma A.2 (Approximation with Brownian motions) Define

Pm(k) =
1√
m

k−1
max
j=0

∣∣∣Wm,1(k)− m+ k

m+ j
Wm,1(j) +

k − j
m+ j

Wm,2(m)
∣∣∣ ,
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then

∞
sup
k=1

1

w(k/m)

∣∣∣Ẽm(k)− Pm(k)
∣∣∣ = oP(1)

as m→∞.

Proof. For the remainder of the proof let WΣ
m,i :=

√
ΣWm,i for i = 1, 2 and note that this

implies

Pm(k) =
1√
m

k−1
max
j=0

∥∥∥WΣ
m,1(k)− m+ k

m+ j
WΣ
m,1(j) +

k − j
m+ j

WΣ
m,2(m)

∥∥∥
Σ−1

.

The last display and the (reverse) triangle inequality then yield∣∣∣Ẽm(k)− Pm(k)
∣∣∣

≤ 1√
m

k−1
max
j=0

∥∥∥ k − j
m+ j

m+j∑
t=1

IF t −
m+k∑

t=m+j+1

IF t

+WΣ
m,1(k)− m+ k

m+ j
WΣ
m,1(j) +

k − j
m+ j

WΣ
m,2(m)

∥∥∥
Σ−1

≤ 1√
m

∥∥∥ m+k∑
t=m+1

IF t −WΣ
m,1(k)

∥∥∥
Σ−1

+
1√
m

k−1
max
j=0

m+ k

m+ j

∥∥∥ m+j∑
t=m+1

IF t −WΣ
m,1(j)

∥∥∥
Σ−1

+
1√
m

k−1
max
j=0

k − j
m+ j

∥∥∥ m∑
t=1

IF t −WΣ
m,2(m)

∥∥∥
Σ−1

.

(A.8)

We will treat the three summands of the last display separately. Using the definition of the

operator norm, we derive the following bound for the first summand

∞
sup
k=1

1

w(k/m)
√
m

∥∥∥ m+k∑
t=m+1

IF t −WΣ
m,1(k)

∥∥∥
Σ−1

≤ ∞
sup
k=1

kξ

w(k/m)
√
m

∞
sup
k=1

1

kξ

∥∥∥ m+k∑
t=m+1

IF t −WΣ
m,1(k)

∥∥∥
Σ−1

By Assumption 2.2 and the estimate ‖x‖Σ−1 ≤ ‖Σ−1‖1/2op |x| for all x ∈ Rp, the second factor

is of order OP(1). Since w has a lower bound `w we obtain for the first factor, that

m
sup
k=1

kξ

w(k/m)
√
m
≤ m

sup
k=1

kξ

`w
√
m

=
mξ−1/2

`w
= o(1) ,

∞
sup

k=m+1

kξ

w(k/m)
√
m
≤ ∞

sup
k=m+1

1

k1/2−ξ
∞

sup
k=1

k1/2

w(k/m)
√
m
≤ 1

m1/2−ξ sup
t>0

√
t

w(t)
= o(1) .
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Next, we can bound the second summand of the right-hand side in (A.8) by

∞
sup
k=1

1

w(k/m)
√
m

k−1
max
j=0

m+ k

m+ j

∥∥∥ m+j∑
t=m+1

IF t −WΣ
m,1(j)

∥∥∥
Σ−1

≤ ∞
sup
k=1

m+ k

w(k/m)
√
m

k−1
max
j=0

1

jξm1−ξ

∥∥∥ m+j∑
t=m+1

IF t −WΣ
m,1(j)

∥∥∥
Σ−1

≤ ∞
sup
k=1

(m+ k)mξ−1

w(k/m)
√
m

∞
sup
k=1

1

kξ

∥∥∥ m+k∑
t=m+1

IF t −WΣ
m,1(k)

∥∥∥
Σ−1

,

where we used that (m+ j) = (m+ j)ξ(m+ j)1−ξ ≥ jξm1−ξ. Using again Assumption 2.2,

the second factor in the last display is of order OP(1). Moreover, following the idea of the

proof of Lemma 3 in Aue et al. (2006) it holds that

m
sup
k=1

(m+ k)mξ−1

w(k/m)
√
m
≤ m

sup
k=1

(m+ k)mξ−3/2

`w
=

2mξ−1/2

`w
= o(1) ,

∞
sup

k=m+1

(m+ k)mξ−1

w(k/m)
√
m

= mξ−1/2 ∞
sup

k=m+1

1 + k/m

w(k/m)
≤ mξ−1/2 sup

t>1

1 + t

w(t)
= o(1)

(A.9)

and it remains to treat the third summand of the right-hand side in (A.8), which can be

bounded by

∞
sup
k=1

1

w(k/m)
√
m

k−1
max
j=0

k − j
m+ j

∥∥∥ m∑
t=1

IF t −WΣ
m,2(m)

∥∥∥
Σ−1

≤ ∞
sup
k=1

1

w(k/m)
√
m

k

m

∥∥∥ m∑
t=1

IF t −WΣ
m,2(m)

∥∥∥
Σ−1

≤ ∞
sup
k=1

kmξ−1

w(k/m)
√
m

1

mξ

∥∥∥ m∑
t=1

IF t −WΣ
m,2(m)

∥∥∥
Σ−1

.

Using Assumption 2.2 and the arguments in (A.9) this term is of order oP(1), which finishes

the proof of Lemma A.2.

Lemma A.3 (Obtain limit process) The following weak convergence holds

∞
sup
k=1

Pm(k)

w(k/m)

D
=⇒ sup

0≤t<∞
max
0≤s≤t

1

w(t)

∣∣∣∣W1(t)− 1 + t

1 + s
W1(s) +

t− s
1 + s

W2(1)

∣∣∣∣
as m → ∞, where W1 and W2 denote independent, p-dimensional standard Brownian

motions.

Proof. First note that due to the scaling properties of the Brownian motion [see for example
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Chapter 2 of Shorack and Wellner (1986)], it holds in distribution that

Pm(k)
D
=

k−1
max
j=0

∣∣∣W1(k/m)− 1 + k/m

1 + j/m
W1(j/m) +

k/m− j/m
1 + j/m

W2(1)
∣∣∣ := P̃m(k) (A.10)

and so within the proof we will - without loss of generality - only consider P̃m(k). Addi-

tionally, we define the processes

L(1)(s, t) :=
1

w(t)

∣∣∣ t+ 1

s+ 1
W1(s)−W1(t)

∣∣∣ ,
L(2)(s, t) :=

1

w(t)

t− s
s+ 1

|W2(1)| .

We will show that L(i)(s, t) for i = 1, 2 are uniformly continuous on R+
∆ = {(s, t) ∈ R2 | 0 ≤

s ≤ t} with probability one.

Case L(1): In the following let ε > 0 be fixed but arbitrary. For almost every ω ∈ Ω the

law of iterated logarithm implies that we can choose a C = C(ε, ω) > 0 sufficiently large

such that

sup
t≥C

|W1(t)|
t

<
ε

8B
, (A.11)

with B defined by

B := sup
t>0

t+ 2

w(t)
<∞ .

Depending on C, we can split R+
∆ into the (overlapping) sets

R+
∆ =M1(C) ∪M2(C) ∪M3(C) , (A.12)

where we use the definitions

M1(C) = R+
∆ ∩ [0, C + 1]2 ,

M2(C) = R+
∆ ∩ [0, C + 1]× [C,∞) ,

M3(C) = R+
∆ ∩ [C,∞)2 .

Further let d denote the maximum distance that is

d
(
(s1, t1), (s2, t2)

)
= max

{
|s1 − s2|, |t1 − t2|

}
.

Note that by construction of the decomposition in (A.12), whenever d((s1, t1), (s2, t2)) < δ

for sufficiently small δ > 0, then there’s j ∈ 1, 2, 3, such that both pairs are in the same
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subset Mj(C). Thus the a.s. uniform continuity of L(1) follows if we can choose δ > 0

sufficiently small, such that

sup
d((s1,t1),(s2,t2))<δ

(s1,t1),(s2,t2)∈Mj(C)

∣∣∣L(1)(s1, t1)− L(1)(s2, t2)
∣∣∣ < ε (A.13)

for j = 1, 2, 3. In the following, we will treat each subset separately.

Set M1(C): As this set is compact, the (ordinary) almost sure continuity of L(1) already

implies that (A.13) holds for j = 1 and δ > 0 sufficiently small.

Set M2(C): We have the following bound

sup
d((s1,t1),(s2,t2))<δ

(s1,t1),(s2,t2)∈M2(C)

∣∣∣L(1)(s1, t1)− L(1)(s2, t2)
∣∣∣

≤ sup
|t1−t2|<δ

0≤s≤C+1, t1,t2>C

∣∣∣L(1)(s, t1)− L(1)(s, t2)
∣∣∣+ sup

|s1−s2|<δ
0≤s1,s2≤C+1, t>C

∣∣∣L(1)(s1, t)− L(1)(s2, t)
∣∣∣ .

(A.14)

We will treat both summands of the last display individually. The first one can be bounded

again as follows

sup
|t1−t2|<δ

0≤s≤C+1, t1,t2>C

∣∣∣L(1)(s, t1)− L(1)(s, t2)
∣∣∣

≤ sup
|t1−t2|<δ

0≤s≤C+1, t1,t2>C

∣∣∣ 1

w(t1)
− 1

w(t2)

∣∣∣∣∣∣ t1 + 1

s+ 1
W1(s)−W1(t1)

∣∣∣
+

1

w(t2)

∣∣∣ t1 − t2
s+ 1

W1(s)−W1(t1) +W1(t2)
∣∣∣

(A.15)

and again we will treat both terms separately. For the first term note that

sup
|t1−t2|<δ

0≤s≤C+1, t1,t2>C

|w(t2)− w(t1)|
`w

t1 + 1

w(t1)

∣∣∣W1(s)

s+ 1
− W1(t1)

t1 + 1

∣∣∣
≤ 2 sup

|t1−t2|<δ

|w(t2)− w(t1)|
`w

sup
t≥C

t+ 1

w(t)
sup
t≥0

|W1(t)|
t+ 1

,

and since w is uniformly continuous this expression is smaller than ε/3 for sufficiently small

42



δ. For the second term of the right-hand side of (A.15), note that we have the bound

sup
|t1−t2|<δ

0≤s≤C+1, t1,t2>C

1

w(t2)

∣∣∣ t1 − t2
s+ 1

W1(s)−W1(t1) +W1(t2)
∣∣∣

≤ sup
|t1−t2|<δ

0≤s≤C+1, t1,t2>C

|t1 − t2|
w(t2)

|W1(s)|
s+ 1

+
t1 + 1

w(t2)

|W1(t1)|
t1 + 1

+
t2 + 1

w(t2)

|W1(t2)|
t2 + 1

≤ δ

`w
sup
s≥0

|W1(s)|
s+ 1

+ 2 sup
t>0

t+ 2

w(t)
sup
t>C

|W1(t)|
t+ 1

,

and by the choice of C in (A.11) and for sufficiently small δ this is bounded by ε/3. To

complete the treatment of M2(C) it only remains to examine the second term on the

right-hand side of (A.14). We obtain that

sup
|s1−s2|<δ

0≤s1,s2≤C+1, t>C

∣∣∣L(1)(s1, t)− L(1)(s2, t)
∣∣∣

≤ sup
t>0

t+ 1

w(t)
sup

|s1−s2|<δ
0≤s1,s2≤C+1

∣∣∣W1(s1)

s1 + 1
− W1(s2)

s2 + 1

∣∣∣ ,
which can be bounded by ε/3 for sufficently small δ since the first factor is a constant and

the function f(s) = W (s+ 1)/(s+ 1) is uniformly continuous on the compact set [0, C + 1]

with probability one.

Set M3(C): Note that

sup
d((s1,t1),(s2,t2))<δ

(s1,t1),(s2,t2)∈M3(C)

∣∣∣L(1)(s1, t1)− L(1)(s2, t2)
∣∣∣

≤ 2 sup
s,t>C

|L(1)(s, t)| ≤ 2 sup
t>0

t+ 1

w(t)
sup
s,t>C

∣∣∣W1(s)

s+ 1
− W1(t)

t+ 1

∣∣∣ ≤ 4 sup
t>0

t+ 1

w(t)
sup
t≥C

|W1(t)|
t

< ε ,

where we used the choice of C in (A.11) for the last estimate.

This completes the third case and so the almost sure uniform continuity of L(1) on the set

R+
∆ is established.

Case L(2): Again let ε > 0 and suppose that d
(
(s1, t1), (s2, t2)

)
< δ. It holds that

∣∣L(2)(s1, t1)− L(2)(s2, t2)
∣∣ ≤ ∣∣L(2)(s1, t1)− L(2)(s2, t1)

∣∣+
∣∣L(2)(s2, t1)− L(2)(s2, t2)

∣∣
(A.16)
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and note for the first summand of the last display that

∣∣L(2)(s1, t1)− L(2)(s2, t1)
∣∣ =
|W2(1)|
w(t1)

∣∣∣∣ t1 − s1

s1 + 1
− t1 − s2

s2 + 1

∣∣∣∣ =
|W2(1)|(t1 + 1)

w(t1)

∣∣∣∣ s2 − s1

(s1 + 1)(s2 + 1)

∣∣∣∣
≤ |W2(1)|(t1 + 1)

w(t1)
|s2 − s1|

and by Assumption 2.3 the last term is smaller than ε/2 uniformly for all t1 > 0 if δ > 0

is chosen sufficiently small. It remains to examine the second summand of the right-hand

side of (A.16). It holds that

|L(2)(s2, t1)− L(2)(s2, t2)
∣∣ ≤ ∣∣∣∣ 1

w(t1)
− 1

w(t2)

∣∣∣∣ |t1 − s2|
s2 + 1

|W2(1)|+ |W2(1)|
w(t2)

|t2 − t1|
s2 + 1

≤ |w(t1)− w(t2)|
w(t1)w(t2)

t1 + δ

s2 + 1
|W2(1)|+ |W2(1)|

`w
|t2 − t1|

≤ |w(t1)− w(t2)|
`w

t1 + δ

w(t1)
|W2(1)|+ |W2(1)|

`w
|t2 − t1| ,

where we used that s2 ≤ t2 ≤ t1 + δ whenever d
(
(s1, t1), (s2, t2)) < δ. By Assumption 2.3

the last display is smaller than ε/2 whenever δ > 0 is sufficiently small and so the almost

sure continuity of L(2) is shown.

Finally, we can combine our observations to finish the proof. Note that by the results above,

also the process L(s, t) := L(1)(s, t)+L(2)(s, t) is uniformly continuous with probability one

and further we have the identity

sup
1≤t<∞

sup
0≤s≤t

L
(
bsc/m, btc/m

)
=
∞

sup
k=1

P̃m(k)

and so the Lemma’s claim now follows if we derive that (with probability one)

sup
1≤t<∞

sup
0≤s≤t

L
(
bsc/m, btc/m

)
=⇒
m→∞

sup
0≤t<∞

sup
0≤s≤t

L
(
s, t
)
.

First, observe that almost surely

sup
1≤t<∞

sup
0≤s≤t

L
(
bsc/m, btc/m

)
= sup

0≤t<∞
sup

0≤s≤t
L
(
bsc/m, btc/m

)
+ o(1)

as m → ∞. Next, we can use the almost sure uniform continuity of L since for arbitrary
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ε > 0 and almost every ω ∈ Ω we can choose sufficiently large m = m(ε, ω) such that∣∣∣∣ sup
0≤t<∞

sup
0≤s≤t

L
(
bsc/m, btc/m

)
− sup

0≤t<∞
sup

0≤s≤t
L
(
s, t
)∣∣∣∣

≤ sup
0≤t<∞

sup
0≤s≤t

∣∣∣∣L(bsc/m, btc/m)− L(s/m, t/m)∣∣∣∣
≤ sup

d((s1,t1),(s2,t2))<1/m

(s1,t1),(s2,t2)∈R+
∆

∣∣∣∣L(s1, t1
)
− L

(
s2, t2

)∣∣∣∣ < ε .

Combining Lemma A.1, A.2 and A.3 we have already proven that

∞
sup
k=1

Em(k)

w(k/m)

D
=⇒ max

0≤t<∞
max
0≤s≤t

1

w(t)

∣∣∣W1(t)− 1 + t

1 + s
W1(s) +

t− s
1 + s

W2(1)
∣∣∣ , (A.17)

and it only remains to investigate the impact of the covariance estimator. Therefore the

following Lemma finishes the proof of Theorem 2.6.

Lemma A.4 (Plug in of covariance estimator) We have that

∞
sup
k=1

Em(k)

w(k/m)
− ∞

sup
k=1

Êm(k)

w(k/m)
= oP(1) .

Proof. Observe the bound∣∣∣∣ ∞sup
k=1

Em(k)

w(k/m)
− ∞

sup
k=1

Êm(k)

w(k/m)

∣∣∣∣
≤ ∞

sup
k=1

1

w(k/m)
√
m

k−1
max
j=0

(k − j)
∣∣∣∣(θ̂m+j

1 − θ̂m+k
m+j+1)>(Σ̂−1

m − Σ−1)(θ̂m+j
1 − θ̂m+k

m+j+1)

∣∣∣∣1/2 .
(A.18)

Next note that for a symmetric matrix A and an arbitrary vector v the Cauchy-Schwarz

inequality implies

|v>Av|2 ≤ |Av||v| ≤ ‖A‖op|v|2 ,

and we can bound (A.18) by∥∥∥Σ̂−1
m − Σ−1

∥∥∥1/2

op

∞
sup
k=1

1

w(k/m)
√
m

k−1
max
j=0

(k − j)
∣∣∣θ̂m+j

1 − θ̂m+k
m+j+1

∣∣∣ . (A.19)

Since Σ̂ is a consistent estimator of Σ, an application of the continuous mapping theorem

45



yields ∥∥∥Σ̂−1
m − Σ−1

∥∥∥
op

= oP(1) . (A.20)

Next, the definition of the operator norm yields

∞
sup
k=1

1

w(k/m)
√
m

k−1
max
j=0

(k − j)
∣∣θ̂m+j

1 − θ̂m+k
m+j+1

∣∣
≤ ‖Σ1/2‖op

∞
sup
k=1

1

w(k/m)
√
m

k−1
max
j=0

(k − j)
∥∥θ̂m+j

1 − θ̂m+k
m+j+1

∥∥
Σ−1

= ‖Σ1/2‖op
∞

sup
k=1

Em(k)

w(k/m)
= OP(1) .

Now a combination of (A.17) and (A.20) implies that the expression in (A.19) is of order

oP(1), which completes the proof of Lemma A.4 and thus also the proof of Theorem 2.6.

Combining Lemmas A.1, A.2, A.3 and A.4 we have now established that

∞
sup
k=1

Êm(k)

w(k/m)

D
=⇒ sup

0≤t<∞
max
0≤s≤t

1

w(t)

∣∣∣∣W1(t)− 1 + t

1 + s
W1(s) +

t− s
1 + s

W2(1)

∣∣∣∣
and it remains to show the equality in distribution stated in (2.11).

Lemma A.5 (Simplify limit distribution) It holds that

sup
0≤t<∞

max
0≤s≤t

1

w(t)

∣∣∣∣W1(t)− 1 + t

1 + s
W1(s) +

t− s
1 + s

W2(1)

∣∣∣∣
D
= sup

0≤t<∞
max
0≤s≤t

t+ 1

w(t)

∣∣∣W( t

t+ 1

)
−W

( s

s+ 1

)∣∣∣ ,
where W is a standard p-dimensional Brownian motion.

Proof. In the following let Z denote a standard Gaussian random variable, that is indepen-

dent of W1. Observe that

1

w(t)

∣∣∣∣W1(t)− 1 + t

1 + s
W1(s) +

t− s
1 + s

W2(1)

∣∣∣∣
=

1

w(t)(s+ 1)

∣∣∣(s+ 1)W1(t)− (t+ 1)W1(s) + (t− s)W2(1)
∣∣∣

D
=

1

w(t)(s+ 1)

∣∣∣(s+ 1)W (t)− (t+ 1)W (s)− (t− s)Z
∣∣∣

=
1

w(t)(s+ 1)

∣∣∣(s+ 1)W (t)− (t+ 1)W (s)− (t− s)Z + stZ − stZ
∣∣∣

=
1

w(t)(s+ 1)

∣∣∣(s+ 1)
{
W (t)− tZ

}
− (t+ 1)

{
W (s)− sZ

}∣∣∣ . (A.21)
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Following Horváth et al. (2004), Fremdt (2014b), computing the covariance function implies

the following identity (in distribution){
W (t)− tZ

}
t≥0

D
=
{

(1 + t)W
( t

t+ 1

)}
t≥0

.

Applying this to (A.21) yields

1

w(t)(s+ 1)

∣∣∣(t+ 1)
{
W (s)− sZ

}
− (s+ 1)

{
W (t)− tZ

}∣∣∣
D
=

1

w(t)(s+ 1)

∣∣∣(t+ 1)(s+ 1)W
( s

s+ 1

)
− (t+ 1)(s+ 1)W

( t

t+ 1

)∣∣∣
=

1

w(t)

∣∣∣(t+ 1)W
( s

s+ 1

)
− (t+ 1)W

( t

t+ 1

)∣∣∣ .
This completes the proof of Lemma A.5 and also of Theorem 2.6.

Proof of Lemma 2.8: Using the definition w(t) = (1 + t) max
{( t

1 + t

)γ
, ε
}

, we obtain

that

sup
0≤t<∞

max
0≤s≤t

1

w(t)

∣∣∣(t+ 1)W
( s

s+ 1

)
− (t+ 1)W

( t

t+ 1

)∣∣∣
= sup

0≤t<∞
max
0≤s≤t

1

max
{( t

1 + t

)γ
, ε
}∣∣∣W( s

s+ 1

)
−W

( t

t+ 1

)∣∣∣
= sup

0≤t<∞
max
0≤s≤t

1

max
{( t

1 + t

)γ
, ε
}∣∣∣W( s

s+ 1

)
−W

( t

t+ 1

)∣∣∣
= sup

0≤t<1
max
0≤s≤t

1

max{tγ , ε}

∣∣∣W (s)−W (t)
∣∣∣ ,

where we used that the mapping x 7→ x/(1 + x) is bijective and increasing on the domain

[0,∞) with co-domain [0, 1) .

Proof of Theorem 2.11: For m sufficiently large we have k∗ < m. Then observe the

lower bound

∞
sup
k=1

Êm(k)

w(k/m)
=
∞

sup
k=1

1

w(k/m)m1/2

k−1
max
j=0

(k − j)
∥∥∥θ̂m+j

1 − θ̂m+k
m+j+1

∥∥∥
Σ̂−1

j=k∗

≥ sup
k∗≤k<∞

1

w(k/m)m1/2
(k − k∗)

∥∥∥θ̂m+k∗

1 − θ̂m+k
m+k∗+1

∥∥∥
Σ̂−1

k=m
≥ m− k∗

m1/2w(1)

∥∥∥θ̂m+k∗

1 − θ̂2m
m+k∗+1

∥∥∥
Σ̂−1

.
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The last display is bounded from below by

m− k∗

m1/2w(1)

∥∥∥θ(1) − θ(2)
∥∥∥

Σ̂−1
− m− k∗

m1/2w(1)

∥∥∥θ̂m+k∗

1 − θ(1)
∥∥∥

Σ̂−1

− m− k∗

m1/2w(1)

∥∥∥θ̂2m
m+k∗+1 − θ(2)

∥∥∥
Σ̂−1

.

Using that Σ̂ is (weakly) convergent with non-singular limit, the first summand above

diverges to infinity and so it suffices to proof that the remaining two summands are of

order OP(1). This follows from the linearization in equation (2.7) since this gives

m− k∗

m1/2w(1)

(
θ̂m+k∗

1 − θ(1)
)

=
m− k∗

m1/2(m+ k∗)w(1)

m+k∗∑
t=1

IF t +
m− k∗

m1/2w(1)
R1,m+k∗ = OP(1)

and

m− k∗

m1/2w(1)

(
θ̂2m
m+k∗+1 − θ(2)

)
=

1

m1/2w(1)

2m∑
t=m+k∗+1

IF t +
(m− k∗)
m1/2w(1)

Rm+k∗+1,2m = OP(1) ,

where we also applied Assumption 2.9. Now the claim follows.

B Retrospective test for changes in linear models

Consider the setting outlined in Section 3.2. In this situation we would like to test for

stability of the regression vectors in the initial sample, that is

H0 : β1 = · · · = βm .

Following the ideas stated in chapter 1 of Csörgö and Horváth (1997) it is sensible to employ

the statistic

Tm =
1

m3/2

m
max
j=1

j(m− j)‖β̂j1 − β̂
m
j+1‖Σ̂ , (B.1)

where β̂ was defined in (3.3). A sensible estimate for the time of the change is given by

j∗ := arg
m

max
j=1

j(m− j)‖β̂j1 − β̂
m
j+1‖Σ̂ (B.2)
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Given the assumptions of Section 3.2 and using the theory of the reference one can verify

that under the null hypothesis above

Tn
D

=⇒ max
t∈[0,1]

|B(t)| ,

where B denotes a p-dimensional Brownian bridge (with independent components). Thus

rejecting the null whenever

Tn > b1−α

with b1−α denoting the (1−α) quantile of the limit distribution yields an appropriate testing

procedure for the retrospective problem.
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