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ABSTRACT. Assume we have a dataset, Z say, from the joint distribution of
random variables X and Y , and two further, independent datasets, X and Y, from
the marginal distributions of X and Y , respectively. We wish to combine X , Y
and Z, so as to construct an estimator of the joint density. This problem is readily
solved in some parametric circumstances. For example, if the joint distribution
were normal then we would combine data from X and Z to estimate the mean
and variance of X; proceed analogously to estimate the mean and variance of Y ;
but use data from Z alone to estimate E(XY ). However, the problem is more
difficult in a nonparametric setting. There we suggest a copula-based solution,
which has potential benefits even when the marginal datasets X and Y are empty.
For example, if the copula density is sufficiently smooth in the region where we
wish to estimate it, then the effective dimension of the structure that links the
marginal distributions is relatively low, and the joint density of X and Y can be
estimated with a high degree of accuracy. Similar improvements in performance are
available if the marginals are close to being independent. We suggest using wavelet
estimators to approximate the copula density, which in cases of statistical interest
can be unbounded along boundaries. Our techniques are also useful for solving
recently-considered related problems, for example where the marginal distributions
are determined by parametric models. Therefore the methodology has application
beyond the context which motivated it. The methodology is also readily extended
to more general multivariate settings.

KEYWORDS. Copula, Dimension reduction, Independence, Kernel method, Pre-
diction, Threshold, Wavelet.

SHORT TITLE. Estimating a bivariate distribution.

1 Centre for Mathematics and its Applications, Australian National University, Canberra, ACT

0200, Australia
2 Ruhr-Universitaet Bochum, Fakultaet fuer Mathematik, 44780 Bochum, Germany
3 The financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged.



1. INTRODUCTION

Assume we observe data Z = {(X1, Y1), . . . , (Xn, Yn)} from the joint distribution

of the bivariate random variable Z = (X, Y ), and that we have additional data

X = {Xn+1, . . . , Xn+p} on X, and Y = {Yn+1, . . . , Yn+q} on Y . The samples X ,

Y and Z are totally independent, as too are the data within them. We wish to

estimate aspects of the joint distribution of X and Y , for example the joint density

fXY , or the density fY |X of Y given X.

A different but related problem was treated by Spiegelman and Park (2003).

These authors considered the case where only Z was available, but the marginal

distributions of X and Y were known up to parametric models, although estima-

tion of the joint distribution required a nonparametric approach. Spiegelman and

Park’s technique was to use maximum-likelihood estimation in the marginal models

to estimate quantiles of the marginal distributions, and then compute a multivari-

ate estimator of the joint distribution by using the estimated quantiles and their

concomitants, rather than the original multivariate data.

Further related work includes that of Schuster and Yakowitz (1985), Olkin and

Spiegelman (1987) and Jones (1993). The copula-based approach that we shall

suggest, for handling the different problem considered in this paper, can be used to

give alternative solutions to the problems considered there.

The copula method permits convergence-rate improvements, relative to stan-

dard rates for nonparametric bivariate inference, even if the samples X and Y are

empty. In particular, if the marginals of (X, Y ) are approximately independent

then the copula density is close to the constant 1, and can be estimated particularly

accurately. As a result, the bivariate problem of estimating fXY can have a solution

that admits univariate convergence rates. This also holds true if the difference be-

tween the copula density and its counterpart under the assumption of independence

is sufficiently smooth; approximate independence is not necessary.

In both cases the improved convergence rates are attainable using empirical,

adaptive methods. Information about the strength of dependence, or smoothness

of the copula, is evaluated from the data using a threshold-based approach. More

generally, the matter of empirical smoothing-parameter choice is relatively straight-

forward when using the copula method. Estimators of the marginal distributions

can be constructed using standard techniques, employing conventional smoothing-
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parameter selectors.

A related semiparametric estimator was proposed by Liebscher (2005), who

combined parametric estimators for the copula with nonparametric estimators for

the marginal distributions.

Nonparametric estimators of copula densities have been suggested by Gijbels

and Mielniczuk (1990) and Fermanian and Scaillet (2002), who used kernel methods,

and Sancetta (2003) and Sancetta and Satchell (2004), who employed techniques

based on Bernstein polynomials. The wavelet methods that we suggest are quite

different, partly because our aim is different from those of other authors. In sta-

tistically important cases a copula density can be unbounded at boundaries, and

in such instances, wavelet methods perform relatively well, whereas conventional

kernel or orthogonal-series techniques can suffer from edge effects which are quite

difficult to remove.

Our methods and results extend straightforwardly to multivariate cases, where

one might have data on a k-vector Z and have additional samples from the distribu-

tions of its individual components. However, notation in that setting is cumbersome,

and that awkwardness obscures the simplicity of our approach.

2. METHODOLOGY

Define X ′ = {X1, . . . , Xn+p} and Y ′ = {Y1, . . . , Yn+q}, and let W = (X ,Y,Z)

denote the pooled dataset. We shall consider three specific problems: estimation of

(a) fXY , (b) fY |X and (c) µX , where µX(x) = E(Y |X = x).

Our approach is founded on a representation of a bivariate distribution in terms

of its marginals:

FXY (x, y) = Γ{FX(x), FY (y)} ,

where FX , FY and FXY denote the distribution functions of X, Y and (X, Y ),

respectively, and Γ, the copula, is simply the joint distribution function of W =

(U, V ) = (FX(X), FY (Y )). In this notation,

fXY (x, y) = fX(x) fY (y) γ{FX(x), FY (y)} , µX(x) =
∫

F−1
Y (v) γ{FX(x), v} dv ,

where γ(u, v) = (∂2/∂u ∂v) Γ(u, v) is the copula density, i.e. the density of W .

Taking f̂X , f̂Y , F̂X and F̂Y to be conventional estimators of fX , fY , FX and FY ,

based on the respective datasets X ′ and Y ′; and γ̂ to be an estimator of γ, computed
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from W; we let

f̂XY (x, y) = f̂X(x) f̂Y (y) γ̂
{
F̂X(x), F̂Y (y)

}
, f̂Y |X = f̂XY /f̂X , (2.1)

µ̂X(x) =
∫

F̂−1
Y (v) γ̂

{
F̂X(x), v

}
dv =

1
n + q

n+q∑

i=1

Yi γ̂
{
F̂X(x), F̂Y (Yi)

}

=
1

n + q

n+q∑

i=1

Y(i) γ̂
{
F̂X(x), i/(n + q)

}
(2.2)

be our estimators of fXY , fY |X and µX . In (2.2), Y(i) denotes the ith largest value

in the dataset Y ′.

The estimators f̂X , f̂Y , F̂X and F̂Y can be standard; for example,

F̂X(x) =
1

n + p

n+p∑

i=1

I(Xi ≤ x) , f̂X(x) =
1

(n + p) hX

n+p∑

i=1

K

(
x−Xi

hX

)
,

where I(Xi ≤ x) = 1 if Xi ≤ x and equals zero otherwise, and hX > 0 is a

bandwidth. Alternatively, F̂X could be taken to be the distribution function corre-

sponding to f̂X , although that approach can introduce unwanted biases, depending

on bandwidth choice for the marginal density estimators.

The copula density, γ, is supported on only the unit square, S0 say, and may

have jump discontinuities along the boundary. In particular, this is the case if X and

Y are independent, and also in a range of other instances. The setting where (X, Y )

has a bivariate normal distribution, but X and Y are not independent, illustrates

relatively extreme behaviour. There, γ is unbounded along sections of the boundary

of S0. Standard kernel and orthogonal-series techniques have difficulty coping with

either discontinuities or places where the target density is unbounded. Wavelet

methods, however, suffer less from aberrations in such cases.

A wavelet expansion of γ is given by

γ(u, v) =
∑

k

∑

!

aj0!k Φj0!k(u, v) +
3∑

i=1

∞∑

j=j0

∑

k

∑

!

bij!k Ψij!k(u, v) ,

where aj0!k = E{Φj0!k(U, V )}, bij!k = E{Ψij!k(U, V )},

Φj0!k(u, v) = 2j0 ρ φ
(
2j0ρu− %

)
φ
(
2j0ρv − k

)
,

Ψ1j!k(u, v) = 2j ρ φ
(
2jρu− %

)
ψ

(
2jρv − k

)
,

Ψ2j!k(u, v) = 2j ρ ψ
(
2jρu− %

)
φ
(
2jρv − k

)
,

Ψ3j!k(u, v) = 2j ρ ψ
(
2jρu− %

)
ψ

(
2jρv − k

)
,
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φ and ψ are “father” and “mother” wavelet functions respectively, j0 ≥ 0, ρ > 0

plays a role similar to the inverse of bandwidth, and the summations involving k

and % are over −∞ < k, % < ∞.

As a prelude to constructing a wavelet estimator of γ, convert the dataset Z to

a set of pairs Ŵi = (Ûi, V̂i), for 1 ≤ i ≤ n, where Ûi = F̂X(Xi) and V̂i = F̂Y (Yi). In

particular, Ûi is constructed by applying the transformation F̂X , computed using

the pooled marginal dataset X ′, to the ith value in the unpooled marginal dataset

{X1, . . . , Xn}. Then, respective estimators of aj0!k and bij!k are given by

âj0!k =
1
n

n∑

r=1

Φj0!k(Ûr, V̂r) , b̂ij!k =
1
n

n∑

r=1

Ψij!k(Ûr, V̂r) ,

and an estimator of γ is

γ̂(u, v) =
∑

k

∑

!

âj0!k Φj0!k(u, v)

+
3∑

i=1

m∑

j=j0

∑

k

∑

!

b̂ij!k I(|b̂ij!k| > 2 δ) Ψij!k(u, v) ,
(2.3)

where

δ = C1 (n−1 log n)1/2 , (2.4)

denotes a threshold, m is a constant which should not exceed C2 log n as n diverges,

and C1, C2 > 0 are constants. This is a standard construction for a wavelet estima-

tor; see, for example, Donoho et al. (1995). Practical implementation of γ̂ will be

discussed in section 4.

If a method such as that above were employed to treat the quasi-parametric

problem of Spiegelman and Park (2003), where models are available for the marginal

distributions of X and Y but not for the joint distribution, then a technique such as

maximum likelihood would be used to estimate the marginal distribution functions.

The resulting estimators of FX and FY would be substituted for the empirical

distribution functions when computing Ûi = F̂X(Xi) and V̂i = F̂Y (Yi).

3. THEORETICAL PROPERTIES

3.1. General issues. We begin by outlining some of the factors that influence

performance. Since the additional data in X and Y relate only to marginal distri-

butions, then, if the problem we are treating is intrinsically multivariate, first-order

asymptotic properties, such as convergence rates and asymptotic variances, cannot
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be improved by incorporating the data in X and Y, regardless of how large those

samples might be. This result is readily proved using standard arguments.

On the other hand, if X and Y are independent then the problem of estimating

fXY is intrinsically univariate. In such cases the convergence rate of an estimator of

fXY can be improved from the two-dimensional rate to that for a single dimension.

This can also occur if the copula density is so smooth that the problem of estimating

it is of relatively low dimension.

Between the extremes of (a) approximate independence or substantial smooth-

ness, where the copula-based method improves rates; and (b) non-independence or

a non-smooth copula, where rate improvements are not obtained; there are many

opportunities for enhancing performance in finite samples. The numerical work in

section 4 will illustrate this point.

Arguably the most transparent way of capturing theoretically the potential

for improved performance is to pass to the extreme case where both X and Y are

infinite. There, the estimator at (2.1) has, in effect, the form

f̂XY (x, y) = fX(x) fY (y) γ̂{FX(x), FY (y)} . (3.1)

We shall show in section 3.2 that in this setting the copula method leads to con-

vergence-rate improvements in two classes of problems, where either (i) the copula

density, γ, is close to its counterpart in the case of independence, i.e. to γ ≡ 1; or

(ii) γ is particularly smooth.

We shall consider two “models” for γ, representing (i) and (ii) respectively. Let

0 ≤ ε < 1
2 and define Sε to be the square [ε, 1 − ε]2. In model (i), γ varies with n

and converges to the uniform density, in the sense that for δ defined in (2.4),

γ = 1 + gn, where the absolute values of the function gn and its first
derivatives are bounded in S0 by a constant multiple of δ, if ε = 0, or in
Sε′ for some ε′ ∈ (0, ε), if ε > 0.

(3.2)

Of course, (3.2) implies that the marginals of the joint distribution of (X, Y ) are

asymptotically independent. In model (ii), γ is fixed and we ask that, for an integer

ν ≥ 1,

the function γ has ν bounded derivatives in S0, if ε = 0, or in Sε′ for some
ε′ ∈ (0, ε), if ε > 0. (3.3)
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3.2. Theory for wavelet estimators of γ. We outline properties of γ̂ in the case

where X and Y are of infinite size. Specifically, for ν ≥ 1 we assume that:

either (3.2) or (3.3) holds; p = q = ∞; j0 is fixed and ρ = 1; φ and
ψ satisfy the usual standardisation conditions for wavelets of “order”
ν; the constant C1, in the definition of the threshold at (2.4), satisfies
C1 > (2 supSε

γ)1/2; and m = m(n), in (2.3), satisfies 2mδ → 0 and
2(2ν+1)mδ →∞.

(3.4)

The choice j0 = 0, ρ = 1 is common in practice; it avoids the need to select ρ

empirically, and results in only a logarithmic convergence-rate penalty.

When (3.2) holds, supSε
γ in (3.4) may be interpreted as limn→∞ supSε

γ. In

principle, supSε
γ may be estimated from data, but simpler procedures are generally

adequate; see section 4. The “usual standardisation conditions” referred to in (3.4)

include, in particular, the assumption that
∫

uj ψ(u) du = 0 for 0 ≤ j ≤ ν − 1,

analogous to the condition defining the order of a conventional kernel function to

be ν. They also include the condition that φ and ψ are bounded and compactly

supported, and the wavelet expansion is orthonormal.

Assumption (3.4) implies the following performance bounds for γ̂. A proof of

the theorem is similar to that of Proposition 2.1 of Hall and Patil (1995); an outline

is given in the Appendix.

Theorem. If (3.4) holds then

∫

Sε

E(γ̂ − γ)2 =
{

O(δ2) under (3.2)
O

(
δ2ν/(ν+1)

)
under (3.3). (3.5)

It follows that mean-square convergence rates arbitrarily close to n−1, in a

polynomial sense, can be achieved. To appreciate why, note that (3.5) implies that

for any given ξ > 0, if gn converges to zero sufficiently fast, assuming (3.2); or if ν is

sufficiently large, assuming (3.3); then γ̂ converges to γ at mean-square rate nξ−1.

If ε were equal to 0, these results could not have been achieved using conven-

tional kernel or orthogonal-series methods, since the performance of those techniques

is hindered by discontinuities along the boundary, ∂S0, of S0. We would take ε > 0

in (3.4) and (3.5) only when γ was unbounded at points of ∂S0; then, the left-hand

side of (3.5) would not necessarily be finite unless ε > 0.

By using wavelet functions φ and ψ that have sufficiently many derivatives,

a Taylor-expansion argument may be used to extend the theorem to the general
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case where p and q increase at polynomial rates. In particular, it is not necessary

to assume that either p or q is infinite. However, the numerical work reported

in section 4 suggests that the assumption of sufficiently smooth φ and ψ is not

necessary.

4. NUMERICAL PROPERTIES

4.1. Simulation study. In this section we describe a simulation study comparing

the copula-based estimator f̂XY with a standard bivariate kernel density estimator

f̃XY which ignores the extra data.

All simulations were done with R (R Development Core Team, 2005). For im-

plementation of the copula-based estimator we used the least asymmetric compactly

supported wavelet function, or symmlet, s8, such that the mother wavelet ψ has

four vanishing moments (see Daubechies, 1992). Then, φ has support [0, S] = [0, 7]

and the support of ψ is [A,B] = [−3, 4]. For computational efficiency of the wavelet

coefficient estimators âj,!,k it is important to utilise the property that for each j and

each data point Ûr there are at most S consecutive values of % such that 2j Ûr − %

falls into the support of φ (see Herrick, Nason and Silverman, 2001). Analogous

considerations are valid for b̂i,j,!,k. Using this fact, the estimated wavelet coeffi-

cients can be calculated directly from their definition. Alternatively, the pyramid

algorithm can be implemented (see Vidakovic, 1999, p. 157).

In the simulations we used the empirical distribution functions F̂X and F̂Y .

Hence, the wavelet functions φ and ψ have only to be evaluated at points 2j i
n+p −

%, where i = 0, . . . , n + p, j = j0, . . . ,m, % = (2j i
n+p − S), . . . , *2j i

n+p+ or % =

(2j i
n+p−B), . . . , *2j i

n+p−A+, respectively, and at the corresponding points 2j i
n+q−

%. Here, (x) and *x+ denote the largest integer ≤ x, and the smallest integer ≥ x,

respectively.

Calculations were carried out using the Daubechies-Lagarias (1991, 1992) al-

gorithm, via the implementation by Vidakovic. For real-data analysis it is rec-

ommended that continuous versions of F̂X and F̂Y be used, for example linear

interpolations or the primitives of marginal density estimators, to obtain smoother

distribution estimators. However, in simulations with many iterations this approach

would be much more computationally demanding.

In each of 500 iterations the mean integrated squared error, or MISE, was

approximated using 10,000 grid points on the square [−4, 4]2. We set ρ = 1, j0 = 0
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and m = ( 1
2 log n) in the definition of the copula density estimator γ̂. No threshold

was used when j = 0; we took δ = 2 (n−1 log n)1/2 for j ≥ 1. Throughout we used

C1 = 2.

In Figure 1 results are displayed for different marginal distributions combined

through a Gaussian copula with unit variances and correlation + ∈ {0, 0.2, 0.4, 0.6}.
The sample size for the paired observations is n = 20; we have no additional obser-

vations in the X sample, i.e. p = 0; and the number of extra Y observations varies,

with q ∈ {20, 50, 100}. For Student’s t marginals with 3 degrees of freedom, or

Cauchy marginals, the copula-based estimator f̂XY clearly outperforms the kernel

estimator f̃XY , even for q = 20 and even for high correlations. Indeed, this feature

extends to + = 0.8, although that value is not shown in the figure. When X is t3 and

Y standard normally distributed, the new estimator yields better results as long as

the correlation is not too large, specifically + ∈ {0, 0.2, 0.4}; for + ∈ {0.6, 0.8} the

kernel estimator gives better results.

For the bivariate normal distribution, and when + = 0, the new estimator

outperforms the kernel density estimator even when q = 20. In the respective

cases + = 0.2 and + = 0.4, q = 50 and q = 100 extra observations are needed

to obtain better results for the new estimator. On the other hand, when + = 0.6

the kernel estimator gives better results, even for very large q. Note, however,

that we use the Gaussian reference bandwidth for the kernel estimator, so that for

the Gaussian distribution, near-optimal results for the kernel estimator are to be

expected. Nevertheless, when additional observations are also available in the X

sample, the new copula-based estimator yields smaller MISE values than the kernel

estimator; see the left-hand panel in Figure 3.

Figure 2 displays results for the same marginal distributions as Figure 1, but for

the bounded Farlie-Gumbel-Morgenstern copula with density γ(u, v) = 1 + a (2u−
1) (2v− 1). See Devroye (1986, p. 580) for generation of data from this copula. We

took a ∈ {0, 0.2, 0.4, 0.6, 0.8}, where a = 0 corresponds to the independent case,

and used n = 20 and p = 0. Except in the case of standard normal marginals

and q = 20 extra observations, the new estimator clearly outperforms its kernel

competitor. The right-hand panel of Figure 3 addresses the case of additional

observations in the X sample.

In Figure 4 we consider two examples for sample size n = 50 and p = q ∈
{20, 50, 100, 150} extra observations in both samples. In both panels the marginal
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distributions are t3 and the copula is Gaussian in the left panel and Farlie-Gumbel-

Morgenstern in the right.

To investigate how sensitive the method is with respect to choice of C1, we

considered C1 ∈ {1.6, 2, 3, 4} for the following cases: (i) Farlie-Gumbel-Morgenstern

copula with parameter a = 0.2, standard normal marginals, n = p = q = 20;

(ii) independent standard normal marginals, n = 20, p = q = 50; (iii) bivariate

normal distribution with variances 1 and correlation + = 0.4, n = 20, p = q =

50; and (iv) normal copula with correlation + = 0.4 and t3–distributed marginals,

n = p = q = 50. In case (i) the smallest MISE, i.e. 2.327 × 10−4, is obtained

for C1 ∈ {3, 4}; the values for C1 = 1.6 and 2 are 2.36 × 10−4 and 2.33 × 10−4,

respectively. For cases (ii)–(iv) the MISE values hardly change for C1 ∈ {2, 3, 4},
whereas for C1 = 1.6, slightly larger values are observed; they are 2.12 × 10−4

compared to 2.04× 10−4 in case (ii), 2.36× 10−4 compared to 2.24× 10−4 in case

(iii), and 9.08 × 10−5 compared to 8.86 × 10−5 in case (iv). It can be concluded

that the simulation results are not sensitive to the choice of C1, provided it is not

chosen too small.

4.2. Real-data example. Depending on seasonal demand, United Airlines operates

two non-stop Los Angeles–Sydney flights, UA827 and UA839, both scheduled to

arrive in the morning. Flight 827 operates only on Mondays, Wednesdays and

Saturdays. On the other hand, 839 operates daily; it is scheduled to arrive at

the same time each day, and about two hours after 827 when the latter operates.

Occasionally, however, 827 is so late that it arrives after 839.

Below are two-vectors indicating the numbers of minutes late for flights 827 and

839 respectively, recorded on a sequence of Mondays, Wednesdays and Saturdays.

A negative value indicates that that flight, on that day, arrived early, and a zero

value indicates that the flight was right on time, to the nearest minute:

(30, 4), (865, 116), (−1, 0), (−5, 7), (12, 13), (10, 0), (−5, 20), (0, 15), (32, 58),

(15, 85), (30, 45), (26, 30), (6, 23), (40, 55), (3, 40), (0,−8), (11, 12), (7, 13),

(−5, 9), (−11, 6), (−10,−20).

The numbers of minutes by which flight 839 was late, on Sundays, Tuesdays, Thurs-

days and Fridays during the same period, were:

20, 4, 5, 48, −30, −10, −22, −3, 80, −23, 0, 26, 10, 90, 90, 24, 30, 45, 17, 35,

−10,−1, 30, 5, 18, 0, 40, 16, 6.
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The data were recorded during part of the first quarter of 2005, and are in chrono-

logical order. However, owing to missing values, they are not always consecutive.

The upper panel of Figure 5 displays the copula-based estimator based on

n = 20 paired observations (X, Y ) and q = 29 extra Y observations, after deleting

the outlier (865, 116) and dividing the values by 60 to display fractions of hours.

Here, we use linear interpolation to obtain continuous versions of the empirical

distribution functions F̂X and F̂Y . The lower panel of Figure 5 shows the kernel

estimator using a bandwidth of 0.5 in each component.

The latter bandwidth is slightly smaller than either of the bandwidths recom-

mended by the Gaussian reference method, but it is clear that the kernel estimator

still produces a density which is too broadly supported, relative to the data. On

the other hand, using a bandwidth for the kernel method which adequately reflects

the spread of the data produces an estimator which is far too irregular. Resampling

experiments show that, with high probability, the copula-based estimator based on

the real dataset has smaller MISE than its kernel competitor. For these reasons,

the copula-based method gives a more satisfactory estimator of the joint density of

arrival times than does the standard kernel approach.

APPENDIX: Outline proof of theorem

To simplify notation, assume the supports of φ and ψ are both contained within

the interval [A,B], and define Ij = {2jε − B, . . . , 2j(1 − ε) − A}. Let
∑′ denote

summation over integers i ∈ [1, 3], j ∈ [j0,m] and k, % ∈ Ij , and let
∑′′ indicate

summation over j, k, % in the same ranges, with i held fixed at 1. Recall that

p = q = ∞, and so F̂X = FX and F̂Y = FY . Then it may be proved that the

left-hand side of (3.5) is dominated by s1 + s2 + 2 (s3 + . . . + s6), where

s1 =
∑

k∈Ij0

∑

!∈Ij0

E(âj0!k − aj0!k)2 , s2 =
3∑

i=1

∑

j>m

∑

k∈Ij

∑

!∈Ij

b2
ijk! ,

s3 =
∑′

E
(
b̂ijk! − bijk!

)2
I(|bijk!| > δ) ,

s4 =
∑′

E
{(

b̂ijk! − bijk!

)2
I
(∣∣b̂ijk! − bijk!

∣∣ > δ
)}

,

s5 =
∑′

b2
ijk! I(|bijk!| ≤ 4δ) , s6 =

∑′
b2
ijk! P

(∣∣b̂ijk! − bijk!

∣∣ > 2δ
)
.

To derive the theorem it suffices to show that each of s1, . . . , s6 admits the bound

on the right-hand side of (3.5).
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It is relatively straightforward to prove that s1 = O(n−1). Employing a Taylor

expansion of γ up to terms of νth order, and utilising the fact that the first ν − 1

moments of the mother wavelet vanish, it can be proved that |bijk!| is bounded by

a constant multiple of 2−(1+ν)j if (3.3) holds, and of δ 2−2j under (3.2), uniformly

in (k, %) ∈ Ij × Ij ; call this property (P). Now, (P) leads to the bounds, s2 =

O(2−2νm) = O(δ2ν/(ν+1)) under (3.3), and s2 = O(δ2) if (3.2) holds. Also, (P) and

the fact that E(b̂ijk! − bijk!)2 ≤ n−1 supSε
γ imply that s3 = O(m/n) = O(δ2)

under (3.2), and s3 = O(mn−1 δ−2/(1+ν)) = O(δ2ν/(ν+1)) if (3.3) is valid.

For r = 4, 5, 6, let sri denote the version of sr obtained if we fix i, and in

particular do not sum over i in the definition of sri. We shall derive bounds for sr

in the case of sr1. Other components sri can be handled similarly.

Let u ≥ 2 be an integer, and put v−1 = 1− u−1. Then, E{(b̂ijk! − bijk!)2u} =

O(n−u), uniformly in j, k, %. Therefore, by Hölder’s and Bernstein’s inequalities,

s41 = O

[
1
n

∑′′ {
P

(∣∣b̂1jk! − b1jk!

∣∣ > δ
)}1/v

]

= O

(
1
n

∑′′
exp

[
− (nδ)2

2v

{
n sup

Sε

γ +
(
2j

/
3
)
nδ sup |φ| sup |ψ|

}−1
])

= O

(
1
n

∑′′
exp

[
− log n

2v

{
C−2

1 sup
Sε

γ + O
(
2mδ

)}−1
])

= O
(
4m n−1−(κ/v)

)
,

(A.1)

where C1 denotes the constant in the threshold at (2.4), and κ > 1 does not depend

on v. If v > 1 is sufficiently close to 1, or equivalently, if u ≥ 2 is sufficiently large,

then 4m n−1−(κ/v) = O(δ2) under (3.2), and equals O(δ2ν/(ν+1)) if (3.3) holds.

Result (A.1) implies that the same bounds apply to s41. A similar argument,

although starting from the bound s61 = O{
∑′′ w2

j P (|b̂1jk! − b1jk!| > 2δ)} where,

using property (P), wj = 2−(1+ν)j if (3.2) holds and equals δ 2−2j under (3.3), shows

that s61 also enjoys the bound on the right-hand side of (3.5).

Using (P) again we deduce that if (3.3) holds, b2
1jk! I(|b1jk!| ≤ 4δ) is bounded

above by a constant multiple of min(δ, 2−(1+ν)j)2. Adding this quantity over the

indices j, k, %, in the respective ranges indicated by
∑′′, we deduce that s51 is

bounded above by a constant multiple of δ2ν/(ν+1). A similar argument in the case

where (3.2) holds produces the bound s51 ≤ const. δ2. This completes the proof.
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Figure 1: MISE as a function of !, in the case of the Gaussian copula. MISE and ! are

represented on the vertical and horizontal axes, respectively. In each panel the dashed curve,

curve 1, corresponds to the bivariate kernel density estimator, and curves 2, 3 and 4 are for

the copula based estimator with, respectively, q = 20, 50 and 100 extra observations in the

Y sample. Throughout, p = 0 and and n = 20. In the first row of panels, both marginals

are standard normal in the left panel and both are t3 in the right. In the second row, both

marginals are Cauchy in the left panel; in the right panel, X is t3 and Y standard normal.
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Figure 2: MISE as a function of a, in the case of the Farlie-Gumbel-Morgenstern copula. With

the exception that a here replaces !, all details are as for Figure 1.
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exception of copula type, and the fact that p = q for the present figure, all details are as for

Figure 1.
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Figure 4: MISE as a function of ! or a, in the case of the Gaussian or Farlie-Gumbel-

Morgenstern copula, in the left and right panels, respectively. Curve 1 corresponds to the

bivariate kernel density estimator, and curves 2, 3, 4 and 5 are for the copula based estimator

with p = q = 20, 50, 100 and 150 extra observations in the both samples, respectively. Both

marginal distributions are t3, and n = 50.
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