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Abstract

In applications changes of the properties of a stochastic feature occur often gradually

rather than abruptly, that is: after a constant phase for some time they slowly start to

change. Efficient analysis for change points should address the specific features of such a

smooth change. In this paper we discuss statistical inference for localizing and detecting

gradual changes in the jump characteristic of a discretely observed Itō semimartingale. We

propose a new measure of time variation for the jump behaviour of the process. The statis-

tical uncertainty of a corresponding estimate is analyzed deriving new results on the weak

convergence of a sequential empirical tail integral process and a corresponding multiplier

bootstrap procedure.
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1 Introduction

Stochastic processes in continuous time are widely used in the applied sciences nowadays, as

they allow for a flexible modeling of the evolution of various real-life phenomena over time.

Speaking of mathematical finance, of particular interest is the family of semimartingales, which

is theoretically appealing as it satisfies a certain condition on the absence of arbitrage in financial

markets and yet is rich enough to reproduce stylized facts from empirical finance such as volatility

clustering, leverage effects or jumps. For this reason, the development of statistical tools modeled

by discretely observed Itō semimartingales has been a major topic over the last years, both

regarding the estimation of crucial quantities used for model calibration purposes and with a

view on tests to check whether a certain model fits the data well. For a detailed overview of the
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state of the art we refer to the recent monographs by Jacod and Protter (2012) and Aı̈t-Sahalia

and Jacod (2014).

These statistical tools typically differ highly, depending on the quantities of interest. When the

focus is on the volatility, most concepts are essentially concerned with discrete observations of

the continuous martingale part. In this case one is naturally close to the Gaussian framework,

and so a lot of classical concepts from standard parametric statistics turn out to be powerful

methods. The situation is different with a view on the jump behaviour of the process, mainly

for two reasons: There is much more flexibility in the choice of the jump measure than there is

regarding the diffusive part, and even if one restricts the model to certain parametric families

the standard situation is the one of β-stable processes, 0 < β < 2, which are quite difficult to

deal with, at least in comparison to Brownian motion. To mention recent work besides the afore-

mentioned monographs, see for example Nickl et al. (2016) and Hoffmann and Vetter (2016) on

the estimation of the jump distribution function of a Lévy process or Todorov (2015) on the

estimation of the jump activity index from high-frequency observations.

In the following, we are interested in the evolution of the jump behaviour over time in a com-

pletely non-parametric setting where we assume only stuctural conditions on the characteristic

triplet of the underlying Itō semimartingale. To be precise, let X = (Xt)t≥0 be an Itō semi-

martingale with a decomposition

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs +

∫ t

0

∫
R
u1{|u|≤1}(µ− µ̄)(ds, du)

+

∫ t

0

∫
R
u1{|u|>1}µ(du, dz), (1.1)

where W is a standard Brownian motion, µ is a Poisson random measure on R+ × R, and the

predictable compensator µ̄ satisfies µ̄(ds, du) = ds νs(du). The main quantity of interest is the

kernel νs which controls the number and the size of the jumps around time s.

In Bücher et al. (2016) the authors are interested in the detection of abrupt changes in the jump

measure of X. Based on high-frequency observations Xi∆n , i = 0, . . . , n, with ∆n → 0 they

construct a test for a constant ν against the alternative

ν
(n)
t = 1{t<bnθ0c∆n}ν1 + 1{t≥bnθ0c∆n}ν2.

Here the authors face a similar problem as in the classical situation of changes in the mean of

a time series, namely that the “change point” θ0 can only be defined relative to the length of

the covered time horizon n∆n which needs to tend to infinity. In general, this problem cannot

be avoided as there are only finitely many large jumps on every compact interval, so consistent

estimators for the jump measure have to be constructed over the entire positive half-line.

There are other types of changes in the jump behaviour of a process than just abrupt ones,

though. In the sequel, we will deal with gradual (smooth, continuous) changes of νs and discuss

how and how well they can be detected. A similar problem has recently been addressed in

Todorov (2016) who constructs a test for changes in the activity index. Since this index is
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determined by the infinitely many small jumps around zero, such a test can be constructed over

a day. On the other hand, estimation of an index is obviously a simpler problem than estimation

of an entire measure.

While the problem of detecting abrupt changes has been discussed intensively in a time series

context [see Aue and Horváth (2013) and Jandhyala et al. (2013) for a review of the literature],

detecting gradual changes is a much harder problem and the methodology is not so well devel-

oped. Most authors consider nonparametric location or parametric models with independently

distributed observations and we refer to Bissell (1984), Gan (1991), Siegmund and Zhang (1994),

Hus̆ková (1999), Hus̆ková and Steinebach (2002) and Mallik et al. (2013) among others [see also

Aue and Steinebach (2002) for some results in a time series model]. Recently Vogt and Dette

(2015) developed a nonparametric method to estimate a change point corresponding to a smooth

change of a locally stationary time series, and the present paper is devoted to the development

of nonparametric inference for gradual changes in the jump properties of a discretely observed

Itō semimartingale.

In Section 2 we introduce the formal setup as well as a measure of time variation which is

similar to Vogt and Dette (2015) and used to identify changes in the jump characteristic later

on. Section 3 is concerned with weak convergence of an estimator for this measure, and as a

consequence we also obtain weak convergence of related statistics which can be used for testing

for a gradual change and for localizing the first change point. As the limiting distribution

depends in a complicated way on the unknown jump characteristic, a bootstrap procedure is

discussed as well to quantify the uncertainty of the analysis. Section 4 contains the formal

derivation of an estimator of the change point and a test for gradual changes. Finally, all proofs

are relegated to Section 5.

2 Preliminaries and a measure of gradual changes

In the sequel let X(n) = (X
(n)
t )t≥0 be an Itō semimartingale of the form (1.1) with characteristic

triplet (b
(n)
s , σ

(n)
s , ν

(n)
s ) for each n ∈ N. We are interested in investigating gradual changes in the

evolution of the jump behaviour and assume throughout this paper that there is a driving law

behind this evolution which is common for all n ∈ N. Formally, we introduce a transition kernel

g(y, dz) from ([0, 1],B([0, 1])) into (R,B) such that

ν(n)
s (dz) = g

( s

n∆n
, dz
)

for s ∈ [0, n∆n]. This transition kernel shall be an element of the set G to be defined below.

Throughout the paper B(A) denotes the trace σ-algebra of a set A ⊂ R with respect to the Borel

σ-algebra.

Assumption 2.1. Let G denote the set of all transition kernels g(·, dz) from ([0, 1],B([0, 1]))

into (R,B) such that

(1) For each y ∈ [0, 1] the measure g(y, dz) does not charge {0}.
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(2) The function y 7→
∫

(1 ∧ z2)g(y, dz) is bounded on the interval [0, 1].

(3) If

I(z) :=

[z,∞), if z > 0

(−∞, z], if z < 0

denotes one-sided intervals and

g(y, z) := g(y, I(z)) =

∫
I(z)

g(y, dx); (y, z) ∈ [0, 1]× R \ {0},

then for every z ∈ R \ {0} there exists a finite set M (z) = {t(z)1 , . . . , t
(z)
nz | nz ∈ N} ⊂ [0, 1],

such that the function y 7→ g(y, z) is continuous on [0, 1] \M (z).

(4) For each y ∈ [0, 1] the measure g(y, dz) is absolutely continuous with respect to the Lebesgue

measure with density z 7→ h(y, z), where the measurable function h : ([0, 1] × R,B([0, 1]) ⊗
B) → (R,B) is continuously differentiable with respect to z ∈ R \ {0} for fixed y ∈ [0, 1].

The function h(y, z) and its derivative will be denoted by hy(z) and h′y(z), respectively.

Furthermore, we assume for each ε > 0 that

sup
y∈[0,1]

sup
z∈Mε

(
hy(z) + |h′y(z)|

)
<∞,

where Mε = (−∞,−ε] ∪ [ε,∞).

These assumptions are all rather mild. For each fixed y, the integral
∫

(1 ∧ z2)g(y, dz) needs

to be finite by properties of the jump compensator, so part (2) just serves as a condition on

uniform boundedness over time. Part (3) essentially says that for each z only finitely many

discontinuous changes of the jump measure g(y, ·) are allowed. Finally, note that the existence

of a density as in (4) is a standard condition when estimating a measure in a non-parametric

framework.

In order to investigate gradual changes in the jump behaviour of the underlying process we

follow Vogt and Dette (2015) and consider a measure of time variation for the jump behaviour,

which is defined by

D(ζ, θ, z) :=

ζ∫
0

g(y, z)dy − ζ

θ

θ∫
0

g(y, z)dy, (2.1)

where (ζ, θ, z) ∈ C × R \ {0} and

C := {(ζ, θ) ∈ [0, 1]2 | ζ ≤ θ}. (2.2)

Here and throughout this paper we use the convention 0
0 := 1.
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The time varying measure (2.1) will be the main theoretical tool for our inference of gradual

changes in the jump behaviour of the process (1.1). Our analysis will be based on the following

observation: Due to µ̄(n)(ds, du) = dsν
(n)
s (du) the jump behaviour corresponding to the first

bnθc observations for some θ ∈ (0, 1) does not vary, if and only if the kernel g(·, dz) is Lebesgue

almost everywhere constant on the interval [0, θ]. In this case we have D(ζ, θ, z) ≡ 0 for all

0 ≤ ζ ≤ θ and z ∈ R \ {0}, since ζ−1
∫ ζ

0 g(y, z)dy is constant on [0, θ] for each z ∈ R \ {0}. If on

the other hand D(ζ, θ, z) = 0 for all ζ ∈ [0, θ] and z ∈ R \ {0}, then

ζ∫
0

g(y, z)dy = ζ
(1

θ

θ∫
0

g(y, z)dy
)

=: ζA(z)

for each ζ ∈ [0, θ] and fixed z ∈ R \ {0}. Therefore by the fundamental theorem of calculus and

Assumption 2.1(3) for each fixed z ∈ R \ {0} we have g(y, z) = A(z) for every y ∈ [0, θ] \M (z).

As a consequence

g(y, z) = A(z) (2.3)

holds for every z ∈ Q \ {0} and each y ∈ [0, θ] outside the Lebesgue null set
⋃
z∈Q\{0}M

(z). Due

to Assumption 2.1(2) and Lebesgue’s dominated convergence theorem A(z) is left-continuous

for positive z ∈ R\{0} and right-continuous for negative z ∈ R\{0}. The same holds for g(y, z)

for each fixed y ∈ [0, θ]. Consequently (2.3) holds for every z ∈ R \ {0} and each y ∈ [0, θ]

outside the Lebesgue null set
⋃
z∈Q\{0}M

(z). Thus by the uniqueness theorem for measures the

kernel g(·, dz) is on [0, θ] Lebesgue almost everywhere equal to the Lévy measure defined by A(z).

In practice we restict ourselves to z which are bounded away from zero, as typically g(y, z)→∞
as z → 0, at least if we deviate from the (simple) case of finite activity jumps. Below we discuss

two standard applications of D(ζ, θ, z) we have in mind.

(1) (test for a gradual change) If one defines

D̃(ε)(θ) := sup
|z|≥ε

sup
0≤ζ≤θ

|D(ζ, θ, z)| (2.4)

for some pre-specified constant ε > 0, one can characterize the existence of a change point

as follows: There exists a gradual change in the behaviour of the jumps larger than ε of

the process (1.1) if and only if

sup
θ∈[0,1]

D̃(ε)(θ) > 0.

Moreover for the analysis of gradual changes it is equivalent to consider

D(ε)(θ) := sup
|z|≥ε

sup
0≤ζ≤θ′≤θ

|D(ζ, θ′, z)|, (2.5)

because the first time points where D(ε) and D̃(ε) deviate from zero, if existent, coincide
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Figure 1: The function D(ε) for the transition kernel (2.7), where ε = 1. The “true” change
point is located at θ0 = 1/2.

and this point is characteristic for a gradual change as we have seen previously. In this

paper we consider D(ε) only, since due to its monotonicity it simplifies several steps in

the proofs and our notation. In Section 4.1 we construct a consistent estimator, say D(ε)
n ,

of D(ε). The test for gradual changes in the behaviour of the jumps larger than ε of the

process (1.1) rejects the null hypothesis for large values of D(ε)
n (1). Quantiles for this test

will be derived by a multiplier bootstrap.

(2) (estimating the gradual change point) In Section 4.1 we construct an estimator for the

first point where the behaviour of the jumps larger than ε changes (gradually). For this

purpose we also use the time varying measure (2.1) and define

θ
(ε)
0 := inf

{
θ ∈ [0, 1] | D(ε)(θ) > 0

}
, (2.6)

where we set inf ∅ := 1. We call θ
(ε)
0 the change point of the jumps larger than ε of the

underlying process (1.1).

A typical example is displayed in Figure 1 where we show the function θ 7→ D(ε)(θ) defined in

(2.5) for ε = 1, where the transition kernel is given by

g(y, z) =

{
10e−|z| if y ∈ [0, 1

2 ]

10
(
1 + 3(y − 1

2)2
)
e−|z| if y ∈ [1

2 , 1].
(2.7)

From the right panel it is clearly visible that the function D(ε) is positive for all θ ∈ (1
2 , 1], which

identifies θ0 = 1/2 as the change point. Additionally we illustrate the previously introduced

quantities in two further examples.

Example 2.2. (abrupt changes) The classical change point problem, where the jump behaviour

of the underlying process is constant on two intervals, is contained in our analysis. To be precise,

assume that 0 < θ0 < 1 and that ν1 and ν2 are Lévy measures such that the transition kernel g
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satisfies

g(y, dz) =

ν1(dz), for y ∈ [0, θ0]

ν2(dz), for y ∈ (θ0, 1].
(2.8)

If each νj is absolutely continuous with respect to the Lebesgue measure, and if it has a density

hj which is continuously differentiable at any point z0 6= 0, satisfying

sup
|z|≥ε
{hj(z) + |h′j(z)|} <∞

for every ε > 0, then the kernel g satisfies Assumption 2.1.

For a Lévy measure ν on (R,B) and z ∈ R \ {0} let ν(z) := ν(I(z)). If g ∈ G is of the form (2.8)

and ε > 0 is chosen sufficiently small such that there exists a z̄ ∈ R with |z̄| ≥ ε and

ν1(z̄) 6= ν2(z̄),

then we have D(ζ, θ′, z) = 0 for all (ζ, θ′, z) ∈ Bε := C ×Mε with θ′ ≤ θ0 and consequently

D(ε)(θ) = 0 for each θ ≤ θ0. On the other hand, if θ0 < θ′ < 1 and ζ ≤ θ0 we have

D(ζ, θ′, z) = ζν1(z)− ζ

θ′
(θ0ν1(z) + (θ′ − θ0)ν2(z)) = ζ(ν2(z)− ν1(z))

(θ0

θ′
− 1
)

and we obtain

sup
ζ≤θ0

sup
|z|≥ε
|D(ζ, θ′, z)| = Vεθ0

(
1− θ0

θ′

)
,

where Vε = sup
|z|≥ε
|ν1(z)− ν2(z)| > 0. For θ0 < ζ ≤ θ′ a similar calculation yields

D(ζ, θ′, z) = θ0(ν2(z)− ν1(z))
( ζ
θ′
− 1
)

which gives

sup
θ0<ζ≤θ′

sup
|z|≥ε
|D(ζ, θ′, z)| = Vεθ0

(
1− θ0

θ′

)
.

It follows that the quantity defined (2.6) is given by θ
(ε)
0 = θ0, because for θ > θ0 we have

D(ε)(θ) = sup
θ0<θ′≤θ

max
{

sup
ζ≤θ0

sup
|z|≥ε
|D(ζ, θ′, z)|, sup

θ0<ζ≤θ′
sup
|z|≥ε
|D(ζ, θ′, z)|

}
= Vεθ0

(
1− θ0

θ

)
. (2.9)

Example 2.3. (Locally symmetric β-stable jump behaviour) A Lévy process is symmetric β-

stable for some 0 < β < 2 if and only if its Brownian part vanishes and its Lévy measure has a

Lebesgue density of the form h(z) = A/|z|1+β with A ∈ R+ [see, for instance, Chapter 3 in Sato

(1999)]. In this sense we say that an Itō semimartingale with decomposition (1.1) satisfying
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(2.14) has locally symmetric β-stable jump behaviour, if the corresponding transition kernel g

is given by

g(y, I(z)) = g(y, z) and g(y, {0}) = 0, with g(y, z) = A(y)/|z|β(y) (2.10)

for y ∈ [0, 1] and z ∈ R \ {0}. Here the functions β : [0, 1] → (0, 2) and A : [0, 1] → (0,∞) are

continuous outside a finite set, A is bounded and β is bounded away from 2. In the Appendix

we show that a kernel of the form (2.10) satisfies Assumption 2.1 (see Section 5.10).

Now, let θ0 ∈ (0, 1) with

A(y) = A0 and β(y) = β0 (2.11)

for all y ∈ [0, θ0] with A0 ∈ (0,∞), β0 ∈ (0, 2). Assume furthermore that θ0 is contained in an

open interval U on which a real analytic function Ā : U → R with

Ā(y) =
∞∑
k=0

ak(y − θ0)k for y ∈ U with |ak|1/k = O(1/k) as k →∞ (2.12)

and an affine linear function β̄ : U → R with β̄(y) = b0 + b1(y − θ0) exist, such that at least one

of the functions Ā, β̄ is non-constant and

A(y) = Ā(y) and β(y) = β̄(y) (2.13)

for all y ∈ [θ0, 1) ∩ U . Then we also show in the Appendix that the quantity defined in (2.6) is

given by θ
(ε)
0 = θ0 for every ε > 0 (see Section 5.10).

We conclude this section with the main assumption for the characteristics of an Itō semimartin-

gale which will be used throughout this paper.

Assumption 2.4. For each n ∈ N let X(n) denote an Itō semimartingale of the form (1.1) with

characteristics (b
(n)
s , σ

(n)
s , ν

(n)
s ) that satisfy

(a) There exists a g ∈ G such that

ν(n)
s (dz) = g

( s

n∆n
, dz
)

(2.14)

holds for all s ∈ [0, n∆n] and all n ∈ N.

(b) The drift b
(n)
s and the volatility σ

(n)
s are predictable processes and satisfy

sup
n∈N

sup
s∈R+

(
E|b(n)

s |α ∨ E|σ(n)
s |p

)
<∞,

for some p > 2, with α = 3p/(p+ 4) ∈ (1, 3).
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(c) The observation scheme {X(n)
i∆n
| i = 0, . . . , n} satisfies

∆n → 0, n∆n →∞, and n∆1+τ
n → 0,

for τ = (p− 2)/(p+ 1) ∈ (0, 1).

3 Weak convergence

In order to estimate the measure of time variation introduced in (2.1) we use the sequential

empirical tail integral process defined by

Un(θ, z) =
1

kn

bnθc∑
j=1

1{∆n
jX

(n)∈I(z)}, (3.1)

where ∆n
jX

(n) = X
(n)
j∆n
−X(n)

(j−1)∆n
, θ ∈ [0, 1], z ∈ R\{0} and kn := n∆n. The process Un counts

the number of increments that fall into I(z), as these are likely to be caused by a jump with

the corresponding size, and will be the basic tool for estimating the measure of time variation

in (2.1). The estimate is defined by

Dn(ζ, θ, z) := Un(ζ, z)− ζ

θ
Un(θ, z), (ζ, θ, z) ∈ C × R \ {0}, (3.2)

where the set C is defined in (2.2). The statistic Un(1, z) has been considered by Figueroa-

López (2008) for observations of a Lévy process Y , so without a time-varying jump behaviour.

In this case the author shows that this statistic is in fact an L2-consistent estimator for the tail

integral ν(I(z)) = U(z). The following theorem provides a generalization of this statement. In

particular, it provides the weak convergence of the sequential empirical tail integral

Gn(θ, z) :=
√
kn

{
Un(θ, z)−

θ∫
0

g(y, z)dy
}
. (3.3)

Throughout this paper we use the notation

Aε = [0, 1]×Mε

and R14R2 denotes the symmetric difference of two sets R1, R2.

Theorem 3.1. If Assumption 2.4 is satisfied, then we have Gn  G in `∞(Aε) for any ε > 0,

where G is a tight mean zero Gaussian process with covariance function

H(θ1, z1; θ2, z2) = Cov(G(θ1, z1),G(θ2, z2)) =

θ1∧θ2∫
0

g(y, I(z1) ∩ I(z2))dy.
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The sample paths of G are almost surely uniformly continuous with respect to the semimetric

ρ((θ1, z1); (θ2, z2)) :=
{ θ1∫

0

g(y, I(z1)4I(z2))dy +

θ2∫
θ1

g(y, I(z2))dy
} 1

2
,

defined for θ1 ≤ θ2 without loss of generality. Moreover, the space (Aε, ρ) is totally bounded.

Recall the definition of the measure of time variation for the jump behaviour defined in (2.1) and

the definition of the set C in (2.2). ForBε = C×Mε consider the functional Φ: `∞(Aε)→ `∞(Bε)

defined by

Φ(f)(ζ, θ, z) := f(ζ, z)− ζ

θ
f(θ, z). (3.4)

As ‖Φ(f1) − Φ(f2)‖Bε ≤ 2‖f1 − f2‖Aε the mapping Φ is Lipschitz continuous. Consequently,

H := Φ(G) is a tight mean zero Gaussian process in `∞(Bε) with covariance structure

Cov(H(ζ1, θ1,z1),H(ζ2, θ2, z2)) =

=

ζ1∧ζ2∫
0

g(y, I(z1) ∩ I(z2))dy − ζ1

θ1

ζ2∧θ1∫
0

g(y, I(z1) ∩ I(z2))dy

− ζ2

θ2

ζ1∧θ2∫
0

g(y, I(z1) ∩ I(z2))dy +
ζ1ζ2

θ1θ2

θ1∧θ2∫
0

g(y, I(z1) ∩ I(z2))dy. (3.5)

From the continuous mapping theorem we obtain weak convergence of the process

Hn(ζ, θ, z) := Φ(Gn)(ζ, θ, z) =
√
kn(Dn(ζ, θ, z)−D(ζ, θ, z)). (3.6)

Theorem 3.2. If Assumption 2.4 is satisfied, then the process Hn defined in (3.6) satisfies

Hn  H in `∞(Bε) for any ε > 0, where H is a tight mean zero Gaussian process with covariance

function (3.5).

For the statistical change-point inference proposed in the following section we require the quan-

tiles of functionals of the limiting distribution in Theorem 3.2. This distribution depends in a

complicated way on the unknown underlying kernel g ∈ G and, as a consequence, corresponding

quantiles are difficult to estimate.

A typical approach to problems of this type are resampling methods. One option is to use

suitable estimates for drift, volatility and the unknown kernel g to draw independent samples

of an Itō semimartingale. However, such a method is computationally expensive since one

has to generate independent Itō semimartingales for each stage within the bootstrap algorithm.

Therefore we propose an alternative bootstrap method based on multipliers. For this resampling

method one only needs to generate n i.i.d. random variables with mean zero and variance one.

See Inoue (2001) for a similar approach in the context of empirical processes.
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To be precise let X1, . . . , Xn and ξ1, . . . , ξn denote random variables defined on probability spaces

(ΩX ,AX ,PX) and (Ωξ,Aξ,Pξ), respectively, and consider a random element Ŷn = Ŷn(X1, . . . , Xn,

ξ1, . . . , ξn) on the product space (Ω,A,P) := (ΩX ,AX ,PX) ⊗ (Ωξ,Aξ,Pξ) which maps into a

metric space, say D. Moreover, let Y be a tight, Borel measurable D-valued random variable.

Following Kosorok (2008) we call Ŷn weakly convergent to Y conditional on X1, X2, . . . in prob-

ability if the following two conditions are satisfied

(a) sup
f∈BL1(D)

|Eξf(Ŷn)− Ef(Y )| P∗→ 0,

(b) Eξf(Ŷn)∗ − Eξf(Ŷn)∗
P∗→ 0 for all f ∈ BL1(D).

Here, Eξ denotes the conditional expectation with respect to ξ1, . . . , ξn givenX1, . . . , Xn, whereas

BL1(D) is the space of all real-valued Lipschitz continuous functions f on D with sup-norm

‖f‖∞ ≤ 1 and Lipschitz constant 1. Moreover, f(Ŷn)∗ and f(Ŷn)∗ denote a minimal mea-

surable majorant and a maximal measurable minorant with respect to ξ1, . . . , ξn, X1, . . . , Xn,

respectively. Throughout this paper we denote this type of convergence by Ŷn ξ Y .

In the following we will work with a multiplier bootstrap version of the process Gn, that is

Ĝn = Ĝn(θ, z) = Ĝn(X
(n)
∆n
, . . . , X

(n)
n∆n

, ξ1, . . . , ξn; θ, z)

:=
1

n
√
kn

bnθc∑
j=1

n∑
i=1

ξj{1{∆n
jX

(n)∈I(z)} − 1{∆n
i X

(n)∈I(z)}}

=
1√
kn

bnθc∑
j=1

ξj{1{∆n
jX

(n)∈I(z)} − ηn(z)}, (3.7)

where ξ1, . . . , ξn are independent and identically distributed random variables with mean 0 and

variance 1 and ηn(z) = n−1
∑n

i=1 1{∆n
i X

(n)∈I(z)}. The following theorem establishes conditional

weak convergence of this bootstrap approximation for the sequential empirical tail integral pro-

cess Gn.

Theorem 3.3. If Assumption 2.4 is satisfied and (ξj)j∈N is a sequence of independent and

identically distributed random variables with mean 0 and variance 1, defined on a distinct proba-

bility space as described above, then Ĝn ξ G in (`∞(Aε), ‖·‖Aε) for any ε > 0, where G denotes

the limiting process of Theorem 3.1.

Theorem 3.3 suggests to define the following counterparts of the process Hn defined in (3.6)

Ĥn(ζ, θ, z) := Ĥn(X
(n)
∆n
, . . . , X

(n)
n∆n

; ξ1, . . . , ξn; ζ, θ, z) := Ĝn(ζ, z)− ζ

θ
Ĝn(θ, z)

=
1√
n∆n

[ bnζc∑
j=1

ξj{1{∆n
jX

(n)∈I(z)} − ηn(z)}−

− ζ

θ

bnθc∑
j=1

ξj{1{∆n
jX

(n)∈I(z)} − ηn(z)}
]
. (3.8)
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The following result establishes consistency of Ĥn. Its proof is a consequence of Proposition 10.7

in Kosorok (2008), because we have Ĥn = Φ(Ĝn) and H = Φ(G) with the Lipschitz continuous

map Φ defined in (3.4).

Theorem 3.4. If Assumption 2.4 is satisfied, we have Ĥn ξ H in (`∞(Bε), ‖ · ‖Bε) for any

ε > 0, where the process H is defined in Theorem 3.2.

4 Statistical inference for gradual changes

Bücher et al. (2016) proposed test and estimation procedures in the situation of an abrupt

change, that is as in the situation of Example 2.2 when it is known that the kernel ν
(n)
s is

constant before and after the change point. Their test is based on an empirical CUSUM process

Tn(θ, z) =
√
kn

{
Un(θ, z)− bnθc

n
Un(1, z)

}
for (θ, z) ∈ Aε,

where Un is defined in (3.1). It can easily be seen that in Example 2.2 with ν1 = ν2, which is

their null hypothesis, D(ζ, θ, z) ≡ 0 for all (ζ, θ, z) ∈ Bε. This implies for a transition kernel of

the form (2.8)

|Tn(θ, z)−Hn(θ, 1, z)| =
√
knUn(1, z)

∣∣∣bnθc
n
− θ
∣∣∣ = oP(1)

uniformly in (θ, z) ∈ Aε. Consequently, the results of Bücher et al. (2016) follow from the

statements of Section 3.

While the classical CUSUM test has advantages in the detection of abrupt change points it is

less appropriate to detect gradual changes. To be precise, recall from (3.3) that k
−1/2
n Tn(θ, z) is

a consistent estimate of the quantity

τ(θ, z) :=

∫ θ

0
g(y, z)dy − θ

∫ 1

0
g(y, z)dy.

Thus, the statistic argmaxθ∈[0,1]|Tn(θ, z)|, which is the estimator for the change point in Bücher

et al. (2016), estimates argmaxθ∈[0,1]|τ(θ, z)|. However, if the jump behaviour changes gradually

at the point θ0 the function |τ(θ, z)| is not necessarily maximal at the point θ0. An example

is displayed in Figure 2 where we show the function θ 7→ |τ(θ, 1)| for the transition kernel in

(2.7). Here the function τ is maximal for some θ > 1/2. From a practical point of view this

means that the argmax estimator based on the classical CUSUM statistic usually overestimates

the unknown change point, if this change is not abrupt. These problems are also reflected in

the power of the classical CUSUM test.

We see from this example, and especially in Figure 1, that the quantity D(ε)(θ) defined in (2.5)

is better suited to detect gradual changes in the behaviour of the jumps larger than ε. Therefore

we use the estimate Dn(ζ, θ, z) of the measure of time variation D(ζ, θ, z) defined in (3.2) to

construct a test for the existence and an estimator for the location of a gradual change point.
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Figure 2: The function θ 7→ |τ(θ, 1)| for the transition kernel (2.7). The ”true” change point
is located at θ0 = 1/2.

We begin with the problem of estimating the point of a gradual change in the jump behaviour.

The discussion of tests will be referred to Section 4.2.

4.1 Localizing change points

Recall the definition

D(ε)(θ) = sup
|z|≥ε

sup
0≤ζ≤θ′≤θ

|D(ζ, θ′, z)|

and the definition of the change point θ
(ε)
0 in (2.6). By Theorem 3.2 the process Dn(ζ, θ, z) from

(3.2) is a consistent estimator of D(ζ, θ, z). Therefore we set

D(ε)
n (θ) := sup

|z|≥ε
sup

0≤ζ≤θ′≤θ
|Dn(ζ, θ′, z)|,

and an application of the continuous mapping theorem and Theorem 3.2 yields the following

result.

Corollary 4.1. If Assumption 2.4 is satisfied, then k
1/2
n D(ε)

n  H(ε) in `∞
(
[0, θ

(ε)
0 ]
)
, where H(ε)

is the tight process in `∞([0, 1]) defined by

H(ε)(θ) := sup
|z|≥ε

sup
0≤ζ≤θ′≤θ

|H(ζ, θ′, z)|, (4.1)

with the centered Gaussian process H defined in Theorem 3.2.

Intuitively, the estimation of θ
(ε)
0 is more difficult, if the curve θ 7→ D(ε)(θ) is ”flat” at θ

(ε)
0 .

Following Vogt and Dette (2015), we describe the curvature of θ 7→ D(ε)(θ) by a local polynomial

behaviour of the function D(ε)(θ) for values θ > θ
(ε)
0 . More precisely, we assume throughout this

section that θ
(ε)
0 < 1 and that there exist constants λ, η,$, c(ε) > 0 such that D(ε) admits an

expansion of the form

D(ε)(θ) = c(ε)
(
θ − θ(ε)

0

)$
+ ℵ(θ) (4.2)
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for all θ ∈ [θ
(ε)
0 , θ

(ε)
0 + λ], where the remainder term satisfies |ℵ(θ)| ≤ K

(
θ − θ

(ε)
0

)$+η
for

some K > 0. The construction of an estimator for θ
(ε)
0 utilizes the fact that, by Theorem 3.2,

k
1/2
n D(ε)

n (θ)→∞ in probability for any θ ∈ (θ
(ε)
0 , 1]. We now consider the statistic

r(ε)
n (θ) := 1{k1/2n D(ε)

n (θ)≤κn}
,

for a deterministic sequence κn →∞. From the previous discussion we expect

r(ε)
n (θ)→

1, if θ ≤ θ(ε)
0

0, if θ > θ
(ε)
0

in probability if the threshold level κn is chosen appropriately. Consequently, we define the

estimator for the change point by

θ̂(ε)
n :=

1∫
0

r(ε)
n (θ)dθ.

Note that the estimate θ̂
(ε)
n depends on the threshold κn and we make this dependence visible

in our notation, i.e. θ̂
(ε)
n = θ̂

(ε)
n (κn), whenever it is necessary.

Theorem 4.2. If Assumption 2.4 is satisfied, θ
(ε)
0 < 1, and (4.2) holds for some $ > 0, then

θ̂(ε)
n − θ

(ε)
0 = OP

(( κn√
kn

)1/$)
,

for any sequence κn →∞ with κn/
√
kn → 0.

Theorem 4.2 makes the heuristic argument of the previous paragraph more precise. A lower

degree of smoothness in θ
(ε)
0 yields a better rate of convergence of the estimator. Moreover, the

slower the threshold level κn converges to infinity the better the rate of convergence. We will

explain below how to choose this sequence to control the probability of over- and underestimation

by using bootstrap methods. Before that we investigate the mean squared error

MSE(ε)(κn) = E
[(
θ̂(ε)
n (κn)− θ(ε)

0

)2]
of the estimator θ̂

(ε)
n . Recall the definition of Hn in (3.6) and define

H(ε)
n (θ) := sup

|z|≥ε
sup

0≤ζ≤θ′≤θ
|Hn(ζ, θ′, z)|, θ ∈ [0, 1], (4.3)

which measures the absolute distance between the estimator D(ε)
n (θ) and the true value D(ε)(θ).

For a sequence αn →∞ with αn = o(κn) we decompose the MSE into

MSE
(ε)
1 (κn, αn) := E

[(
θ̂(ε)
n − θ

(ε)
0

)2
1{

H(ε)
n (1)≤αn

}],
14



MSE
(ε)
2 (κn, αn) := E

[(
θ̂(ε)
n − θ

(ε)
0

)2
1{

H(ε)
n (1)>αn

}] ≤ P
(
H(ε)
n (1) > αn

)
,

which can be considered as the MSE due to small and large estimation error. With these

notations the following theorem gives upper and lower bounds for the mean squared error.

Theorem 4.3. Suppose that θ
(ε)
0 < 1, Assumption 2.4 and (4.2) are satisfied. Then for any

sequence αn →∞ with αn = o(κn) we have

K1

( κn√
kn

)2/$ ≤MSE
(ε)
1 (κn, αn) ≤ K2

( κn√
kn

)2/$
(4.4)

MSE
(ε)
2 (κn, αn) ≤ P

(
H(ε)
n (1) > αn

)
,

for n ∈ N sufficiently large, where the constants K1 and K2 can be chosen as

K1 =

(
1− ϕ
c(ε)

)2/$

and K2 =

(
1 + ϕ

c(ε)

)2/$

(4.5)

for arbitrary 0 < ϕ < 1.

In the remaining part of this section we discuss the choice of the regularizing sequence κn for the

estimator θ̂
(ε)
n . Our main goal here is to control the probability of an over- and underestimation

of the change point 0 < θ
(ε)
0 < 1.

For this purpose let θ̂n be a preliminary consistent estimator of θ
(ε)
0 . For example, if (4.2) holds

for some $ > 0, one can take θ̂n = θ̂
(ε)
n (κn) for a sequence κn →∞ satisfying the assumptions

of Theorem 4.2. In the sequel, let B ∈ N be some large number and let (ξ(b))b=1,...,B denote

independent vectors of i.i.d. random variables, ξ(b) := (ξ(b)j )j=1,...,n, with mean zero and variance

one, which are defined on a probability space distinct to the one generating the data {X(n)
i∆n
|

i = 0, . . . , n}. We denote by Ĝ
n,ξ(b)

or Ĥ(ε)

n,ξ(b)
the particular bootstrap statistics calculated with

respect to the data and the bootstrap multipliers ξ(b)1 , . . . , ξ(b)n from the b-th iteration, where

Ĥ(ε)
n (θ) := sup

|z|≥ε
sup

0≤ζ≤θ′≤θ
|Ĥn(ζ, θ′, z)| (4.6)

for θ ∈ [0, 1]. With these notations and for ε > 0, B,n ∈ N and an 0 < r ≤ 1 we define the

following empirical distribution function

K
(ε,r)
n,B (x) =

1

B

B∑
i=1

1{(Ĥ(ε)

n,ξ(i)
(θ̂n))r≤x},

and denote by

K
(ε,r)−
n,B (y) := inf

{
x ∈ R | K(ε,r)

n,B (x) ≥ y
}
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its pseudoinverse. Given a confidence level 0 < α < 1 we consider the threshold

κ̂(ε,α)
n,B (r) := K

(ε,r)−
n,B (1− α). (4.7)

This choice is optimal in the sense of the following two theorems.

Theorem 4.4. Let ε > 0, 0 < α < 1 and assume that Assumption 2.4 is satisfied for some

g ∈ G with 0 < θ
(ε)
0 < 1. Suppose further that there exists some z̄ ∈Mε with

θ
(ε)
0∫

0

g(y, z̄)dy > 0. (4.8)

Then the probability for underestimation of the change point θ
(ε)
0 can be controlled by

lim sup
B→∞

lim sup
n→∞

P
(
θ̂(ε)
n (κ̂(ε,α)

n,B (1)) < θ
(ε)
0

)
≤ α. (4.9)

Theorem 4.5. Let ε > 0, 0 < r < 1. Assume that Assumption 2.4 is satisfied for some g ∈ G
with 0 < θ

(ε)
0 < 1 and that (4.2) holds for some $, c(ε) > 0. Furthermore suppose that there exist

a constant ρ > 0 with n∆1+ρ
n →∞ and a z̄ ∈Mε satisfying (4.8). Additionally let the bootstrap

multipliers be either bounded in absolute value or distributed according to N (0, 1). Then for

each K >
(
1/c(ε)

)1/$
and all sequences (αn)n∈N ⊂ (0, 1) with αn → 0 and (Bn)n∈N ⊂ N with

Bn →∞ such that

1. α2
nBn →∞,

2. (n∆n)
1−r
2r αn →∞,

we have

lim
n→∞

P
(
θ̂(ε)
n (κ̂(ε,αn)

n,Bn
(r)) > θ

(ε)
0 +Kβn

)
= 0, (4.10)

where βn = (κ̂(ε,αn)
n,Bn

(r)/
√
kn)1/$ P→ 0, while κ̂(ε,αn)

n,Bn
(r)

P→∞.

Obviously, Theorem 4.5 only gives a meaningful result if βn
P→ 0 can be guaranteed. Its proof

shows that a sufficient condition for this property is given by

P
(
Ĥ(ε)
n (θ̂n) > (

√
knx)1/r

)
≤ P

(
Ĥ(ε)
n (1) > (

√
knx)1/r

)
= o(αn) . (4.11)

Moreover, (4.11) follows from (n∆n)
1−r
2r αn →∞ without any further conditions. This explains

why the threshold 0 < r < 1 needs to be introduced, and it seems that the statement of (4.11)

can only be guaranteed under very restrictive assumptions in the case r = 1.

Finally we illustrate that the polynomial behaviour introduced in (4.2) is satisfied in the situa-

tions of Example 2.2 and Example 2.3.
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Example 4.6. (1) Recall the situation of an abrupt change in the jump characteristic consid-

ered in Example 2.2. In this case it follows from (2.9) that

D(ε)(θ) = Vεθ0

(
1− θ0

θ

)
= Vε(θ − θ0)− Vε

θ
(θ − θ0)2 > 0,

whenever θ0 < θ ≤ 1. Therefore assumption (4.2) is satisfied with ℵ(θ) = −Vε
θ (θ − θ0)2.

Moreover, the transition kernel given by (2.8) satisfies also assumption (4.8) if ν1 6= 0 and

ε > 0 is chosen small enough.

(2) In the situation discussed in Example 2.3 let ḡ(y, z) = Ā(y)/|z|β̄(y) for y ∈ U and z ∈ Mε.

Then we have for any ε > 0

k0,ε := min
{
k ∈ N | ∃z ∈Mε : gk(z) 6= 0

}
<∞,

where for k ∈ N0 and z ∈ R \ {0}

gk(z) :=
(∂kḡ
∂yk

)∣∣∣
(θ0,z)

denotes the k-th partial derivative of ḡ with respect to y at (θ0, z), which is a bounded

function on any Mε. Furthermore for every ε > 0 there is a λ > 0 such that

D(ε)(θ) =
( 1

(k0,ε + 1)!
sup
|z|≥ε
|gk0,ε(z)|

)
(θ − θ0)k0,ε+1 + ℵ(θ) (4.12)

on [θ0, θ0 + λ] with |ℵ(θ)| ≤ K
(
θ − θ0

)k0,ε+2
for some K > 0, so (4.2) is satisfied. A proof

for this result can be found in the Appendix as well. Again, (4.8) holds also.

4.2 Testing for a gradual change

Bücher et al. (2016) introduced change point tests for the situation of an abrupt change as in

Example 2.2, where the jump behaviour is assumed to be constant before and after the change

point. Formally, they tested the hypotheses

H
(ab)
0 (ε) : ν1(z) = ν2(z) ∀|z| ≥ ε versus H

(ab)
1 (ε) : ∃ |z| ≥ ε such that ν1(z) 6= ν2(z). (4.13)

In this section we want to derive test procedures for the existence of a gradual change in the

data. In order to formulate suitable hypotheses for a gradual change point recall the definition

of the measure of time variation for the jump behavior in (2.1) and define for ε > 0, z0 ∈ R\{0}
and θ ∈ [0, 1] the quantities

D(ε)(θ) := sup
|z|≥ε

sup
0≤ζ≤θ′≤θ

|D(ζ, θ′, z)|

D(z0)(θ) := sup
0≤ζ≤θ′≤θ

|D(ζ, θ′, z0)|.
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We also assume that Assumption 2.4 is satisfied and we are interested in the following hypotheses

H0(ε) : D(ε)(1) = 0 versus H1(ε) : D(ε)(1) > 0, (4.14)

which refer to the global behaviour of the tail integral. If one is interested in the gradual change

in the tail integral for a fixed z0 ∈ R \ {0} one could consider the hypotheses

H
(z0)
0 : D(z0)(1) = 0 versus H

(z0)
1 : D(z0)(1) > 0. (4.15)

Remark 4.7. Note that the function D in (2.1) is uniformly continuous on every Bε. More

precisely, for any η > 0 there exists a δ > 0 such that

|D(ζ1, θ1, z)−D(ζ2, θ2, z)| < η

holds for each z ∈Mε and all pairs (ζ1, θ1), (ζ2, θ2) ∈ C = {(ζ, θ) ∈ [0, 1]2 | ζ ≤ θ} with maximum

distance ‖(ζ1, θ1) − (ζ2, θ2)‖∞ < δ. Therefore the function D(ε)(ζ, θ) = supz∈Mε
|D(ζ, θ, z)| is

uniformly continuous on C and as a consequence D(ε) is continuous on [0, 1]. Thus the alternative

H1(ε) holds if and only if the point θ
(ε)
0 defined in (2.6) satisfies θ

(ε)
0 < 1.

The null hypothesis in (4.14) and (4.15) will be rejected for large values of the corresponding

estimators

D(ε)
n (1) and sup

(ζ,θ)∈C
|Dn(ζ, θ, z0)|

for D(ε)(1) and D(z0)(1), respectively. To obtain critical values we use the multiplier bootstrap

introduced in the second part of Section 3. For this purpose we denote by ξ
(b)
1 , . . . , ξ

(b)
n , b =

1, . . . , B, i.i.d. random variables with mean zero and variance one. As before, we assume that

these random variables are defined on a probability space distinct to the one generating the

data {X(n)
i∆n
| i = 0, . . . , n}. We denote by Ĝ

n,ξ(b)
and Ĥ

n,ξ(b)
the statistics in (3.7) and (3.8)

calculated from {X(n)
i∆n
| i = 0, . . . , n} and the b-th bootstrap multipliers ξ(b)1 , . . . , ξ(b)n . For given

ε > 0, z0 ∈ R \ {0} and a given level α ∈ (0, 1), we propose to reject H0(ε) in favor of H1(ε), if

k1/2
n D(ε)

n (1) ≥ q̂(B)
1−α

(
H(ε)
n (1)

)
, (4.16)

where q̂
(B)
1−α

(
H(ε)
n (1)

)
denotes the (1−α)-sample quantile of Ĥ(ε)

n,ξ(1)
(1), . . . , Ĥ(ε)

n,ξ(B)(1) with Ĥ(ε)

n,ξ(b)

defined in (4.6). Note that under the null hypothesis it follows from the definition of the process

Hn in (3.6) that k
1/2
n D(ε)

n (1) = H(ε)
n (1), which by Theorem 3.2 and the continuous mapping

theorem converges weakly to H(ε)(1), defined in (4.1). The bootstrap procedure mimics this

behaviour.

Similarly, H
(z0)
0 is rejected in favor of H

(z0)
1 if

W (z0)
n := k1/2

n sup
(ζ,θ)∈C

|Dn(ζ, θ, z0)| ≥ q̂(B)
1−α(W (z0)

n ), (4.17)
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where q̂
(B)
1−α(W

(z0)
n ) denotes the (1− α)-sample quantile of Ŵ

(z0)

n,ξ(1)
, . . . , Ŵ

(z0)

n,ξ(B) , and

Ŵ
(z0)

n,ξ(b)
:= sup

(ζ,θ)∈C
|Ĥn,ξ(b)(ζ, θ, z0)|.

Remark 4.8. Since ε > 0 has to be chosen for an application of the test (4.16), one can only

detect changes in the jumps larger than ε. From a practical point of view this is not a severe

restriction as in most applications only the larger jumps are of interest. If one is interested in

the entire jump measure, however, its estimation is rather difficult, at least in the presence of

a diffusion component, as ∆
1/2
n provides a natural bound to disentangle jumps from volatility.

See Nickl et al. (2016) and Hoffmann and Vetter (2016) for details in case of a Lévy process.

The following two results show that the tests (4.16) and (4.17) are consistent asymptotic level

α tests.

Proposition 4.9. Under H0(ε) and H
(z0)
0 , respectively, the tests (4.16) and (4.17) have asymp-

totic level α. More precisely,

lim
B→∞

lim
n→∞

P
(
k1/2
n D(ε)

n (1) ≥ q̂(B)
1−α(H(ε)

n (1))
)

= α,

if there exist |z̄| ≥ ε, ζ̄ ∈ (0, 1) with
∫ ζ̄

0 g(y, z̄)dy > 0, and

lim
B→∞

lim
n→∞

P
(
W (z0)
n ≥ q̂(B)

1−α(W (z0)
n )

)
= α,

if there exists a ζ̄ ∈ (0, 1) with
∫ ζ̄

0 g(y, z0)dy > 0.

Proposition 4.10. The tests (4.16) and (4.17) are consistent in the following sense. Under

H1(ε) we have for all B ∈ N

lim
n→∞

P
(
k1/2
n D(ε)

n (1) ≥ q̂(B)
1−α(H(ε)

n (1))
)

= 1. (4.18)

Under H
(z0)

1 , we have for all B ∈ N

lim
n→∞

P
(
W (z0)
n ≥ q̂(B)

1−α(W (z0)
n )

)
= 1.

Remark 4.11. As illustrated in Example 2.2 the testing procedures (4.16) and (4.17) can be

applied to test the hypotheses (4.13) of Bücher et al. (2016) as well (see the representation of

the transition kernel in (2.8)).
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5 Proofs and technical details

The following assumptions will be used frequently in the sequel.

Assumption 5.1. For each n ∈ N let X(n) be an Itō semimartingale of the form (1.1) with

characteristics (b
(n)
s , σ

(n)
s , ν

(n)
s ) and the following properties:

(a) There exists a g ∈ G such that

ν(n)
s (dz) = g

( s

n∆n
, dz
)

holds for all s ∈ [0, n∆n] and all n ∈ N as measures on (R,B).

(b) The drift b
(n)
s and the volatility σ

(n)
s are deterministic and Borel measurable functions on

R+. Moreover, these functions are uniformly bounded in s ∈ R+ and n ∈ N.

(c) The observation scheme {X(n)
i∆n
| i = 0, . . . , n} satisfies ∆n → 0 and n∆n →∞.

We begin with an auxiliary result which is a generalization of Lemma 2 in Rüschendorf and

Woerner (2002). Throughout this section K denotes a generic constant which typically changes

from line to line and may depend on certain bounds and parameters, but not on n.

Lemma 5.2. Let T > 0 and let Y be an Itō semimartingale with Y0 = 0 having a representation

as in (1.1) with characteristics (bs, σs, νs), where bs and σs are uniformly bounded in ω ∈ Ω and

s ≤ T and νs is deterministic. Suppose that there are constants 0 < A, t0 ≤ 1 such that the

support of the measure
t0∫
0

νs(dz)ds is contained in the set {z | |z| ≤ A}. Furthermore assume

that there is a g ∈ G with g(y, dz) = νyT (dz) for all y ∈ [0, 1]. Then for each z ∈ R \ {0} and

ζ > 0 there are K > 0 and 0 < t1 ≤ t0 ∧ T , which depend only on A, z, ζ, the bound on g in

Assumption 2.1(2) and the bound on bs and σs, such that the transition probability is bounded

by

P(Yt ∈ I(z)) ≤ Kt
|z|
2A
−ζ

for all 0 ≤ t ≤ t1.

Proof. We will only show the inequality for z > 0 fixed, because otherwise we can consider the

process −Y which has the same properties.

The Hölder inequality and the upper Burkholder-Davis-Gundy inequality yield for 0 < t ≤ t0∧T
and m ∈ N:

E
∣∣ t∫

0

bsds
∣∣m ≤ tmE(1

t

t∫
0

|bs|mds
)
≤ Ktm
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and

E
∣∣ t∫

0

σsdWs

∣∣m ≤ Ktm/2E(1

t

t∫
0

|σs|2ds
)m/2

≤ Ktm/2.

Therefore by Markov’s inequality the claim follows if we can show the lemma for each Itō

semimartingale with bs = σs ≡ 0.

Let Y be such an Itō semimartingale and let 0 < t ≤ t0 ∧ T . Then by Theorem II.4.15 in Jacod

and Shiryaev (2002) Y is a process with independent increments with characteristic function

E
[

exp {iuYt}
]

= exp
{ t∫

0

∫
(eiuz − 1− iuz)νs(dz)ds

}
= exp{Ψt(iu)},

since t ≤ t0 and A ≤ 1 with

Ψt(u) :=

t∫
0

∫
(euz − 1− uz)νs(dz)ds,

which exists for all such t and all u ∈ R by a Taylor expansion of the integrand and the

assumption on the support of
∫ t

0 νs(dz)ds as well as item (2) in Assumption 2.1. Furthermore

the first two derivatives of Ψt are given by

Ψ′t(u) =

t∫
0

∫
(euz − 1)zνs(dz)ds; Ψ′′t (u) =

t∫
0

∫
z2euzνs(dz)ds

where we have exchanged differentiation and integration by the differentiation lemma of measure

theory and the assumption on the support of
∫ t

0 νs(dz)ds. W.l.o.g. we may assume that the

measure
∫ t

0 νs(dz)ds is not zero, because otherwise Yt = 0 a.s. and the assertion of the lemma

is obvious. Therefore Ψ′′t (u) > 0 for all u ∈ R and Ψ′t is a strictly increasing function with

Ψ′t(0) = 0 and limu→∞Ψ′t(u) = B ∈ (0,∞]. Thus there is a strictly increasing differentiable

inverse function τt : [0, B)→ R+ with τt(0) = 0. Moreover, it is sufficient to show the claim for

all 0 < z 6= B, because for B and ζ > 0 we can find z̃ < B and ζ̃ < ζ with

B

2A
− ζ =

z̃

2A
− ζ̃

and P(Yt ≥ B) ≤ P(Yt ≥ z̃). Furthermore by Markov’s inequality, the identity theorem of

complex analysis and Corollary 1.50 in Hoffmann (2016) we have for arbitrary s ≥ 0:

P(Yt ≥ z) ≤ E {exp{sYt − sz}} = exp{Ψt(s)− sz}. (6.1)
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First suppose that z > B. Then we obtain

P(Yt ≥ z) ≤ lim sup
s→∞

exp
{ s∫

0

(
Ψ′t(y)− z

)
dy
}
≤ lim

s→∞
exp{(B − z)s} = 0

and the claim obviously follows. Therefore for the rest of the proof we may assume z < B. In

this case (6.1) yields (recall that τt is the inverse function of Ψ′t)

P(Yt ≥ z) ≤ exp
{ τt(z)∫

0

Ψ′t(y)dy − zτt(z)
}

= exp
{ z∫

0

wτ ′t(w)dw − zτt(z)
}

= exp
{
−

z∫
0

τt(w)dw
}
. (6.2)

By a Taylor expansion we have

(eDy − 1)y ≤ eDADy2 (6.3)

for D > 0 and |y| ≤ A. Therefore if we set D = τt(w) in (6.3) we obtain

w = Ψ′t(τt(w)) =

t∫
0

∫
(eτt(w)y − 1)yνs(dy)ds ≤ eAτt(w)τt(w)

t∫
0

∫
y2νs(dy)ds

≤ eAτt(w)τt(w)Kt, (6.4)

for arbitrary 0 ≤ w < B and 0 < t ≤ t0 ∧ T , where the constant K > 0 depends only on the

bound on g in Assumption 2.1(2). By a series expansion of the exponential function we have

log(τt(w)) ≤ Aτt(w) (6.5)

if τt(w) ≥ 2
A2 and this is the case if

Ψ′t

( 2

A2

)
=

t∫
0

∫
(exp

{
2

A2
y

}
− 1)yνs(dy)ds

≤ 2

A2
e

2
A

t∫
0

∫
y2νs(dy)ds ≤ 2

A2
e

2
AKt =: K0(t) ≤ w, (6.6)

where we used (6.3) again. Combining (6.4), (6.5) and (6.6) gives

log

(
w

t

)
≤ log(K) + 2Aτt(w)⇐⇒ 1

2A
log

(
w

Kt

)
≤ τt(w) (6.7)

for K0(t) ≤ w < B. Let 0 < t̄1 ≤ t0 ∧ T be small enough such that K0(t) ≤ z < B for each
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0 ≤ t ≤ t̄1. Then (6.7) together with (6.2) yield the estimate

P(Yt ≥ z) ≤ exp
{
−

z∫
0

τt(w)dw
}
≤ exp

{
− 1

2A

z∫
K0(t)

log

(
w

Kt

)
dw
}

= exp
{
− Kt

2A

z/Kt∫
K0(t)/Kt

log(u)du
}

= exp
{
− Kt

2A

[
− u+ u log(u)

]z/Kt
K0(t)/Kt

}

= exp
{
− 1

2A

[
− z + z log

( z

Kt

)
+K0(t)−K0(t) log

(K0(t)

Kt

)]}
= exp

{
− 1

2A

[
− z + z log

( z
K

)
+K0(t)−K0(t) log

(K0(t)

K

)]}
×

× exp
{ z

2A
log(t)− K0(t)

2A
log(t)

}
≤ exp

{ 1

2A

[
z − z log

( z
K

)
+ 1
]}
t
z
2A
−ζ = Kt

z
2A
−ζ

for each 0 < t ≤ t1 ≤ t1 ≤ t0 ∧ T with a 0 < t1 ≤ t1 small enough such that∣∣∣K0(t)−K0(t) log
(K0(t)

K

)∣∣∣ ≤ 1

and K0(t)
2A < ζ for every 0 < t ≤ t1. �

The preceding result is helpful to deduce the following claim which is the main tool to establish

consistency of Dn(ζ, θ, z) as an estimator for D(ζ, θ, z), when it is applied to the Itō semimartin-

gale Y
(j,n)
s = X

(n)
s+(j−1)∆n

−X(n)
(j−1)∆n

.

Lemma 5.3. Suppose that Assumption 5.1 is satisfied and let δ > 0. If X
(n)
0 = 0 for all n ∈ N,

then there exist constants K = K(δ) > 0 and 0 < t0 = t0(δ) ≤ 1 such that

∣∣∣P(X
(n)
t ∈ I(z))−

t∫
0

ν(n)
s (I(z))ds

∣∣∣ ≤ Kt2
holds for all |z| ≥ δ, 0 ≤ t < t0 and n ∈ N with n∆n ≥ 1.

Proof of Lemma 5.3. As n∆n → ∞ we may assume t ≤ 1 ≤ n∆n throughout this proof.

Furthermore, let ε < (δ/6 ∧ 1) and pick a smooth cut-off function cε : R→ R satisfying

1[−ε/2,ε/2](u) ≤ cε(u) ≤ 1[−ε,ε](u).

We also define the function c̄ε via c̄ε(u) = 1 − cε(u). For n ∈ N and t ∈ R+ let M
(n,ε)
t be the

measure defined by

M
(n,ε)
t (A) =

t∫
0

∫
A

c̄ε(u)ν(n)
s (du)ds,
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for A ∈ B which has total mass

λ
(n,ε)
t := M

(n,ε)
t (R) =

t∫
0

∫
R
c̄ε(u)ν(n)

s (du)ds =

t∫
0

∫
R
c̄ε(u)g

( s

n∆n
, du
)
ds ≤ Kt, (6.8)

where K depends only on the bound on g in Assumption 2.1(2) and on ε and therefore on δ.

Furthermore, let

d(n,ε)
s :=

∫
u1{|u|≤1}c̄ε(u)ν(n)

s (du).

By Theorem II.4.15 in Jacod and Shiryaev (2002) for each n ∈ N and t ∈ R+ with t ≤ n∆n we

can decompose X
(n)
t in law by

X
(n)
t =d X

(n,ε)
t + X̃

(n,ε)
t , (6.9)

where X(n,ε) and X̃(n,ε) are independent Itō semimartingales starting in zero, with characteristics

(b
(n,ε)
s , σ

(n)
s , cε(u)ν

(n)
s (du)) , b

(n,ε)
s := b

(n)
s − d(n,ε)

s , and (d
(n,ε)
s , 0, c̄ε(u)ν

(n)
s (du)), respectively.

X̃(n,ε) can be seen as a generalized compound Poisson process. To be precise, let µ̂(n,ε) be a

Poisson random measure independent of X(n,ε) with predictable compensator ν̂(n,ε)(ds, du) =

c̄ε(u)ν
(n)
s (du)ds and consider the process

N
(n,ε)
t := µ̂(n,ε)([0, t]× R).

By Theorem II.4.8 in Jacod and Shiryaev (2002) N
(n,ε)
t is a process with independent increments

and distribution

N
(n,ε)
t −N (n,ε)

s =d Poiss
(
λ

(n,ε)
t − λ(n,ε)

s

)
, (0 ≤ s ≤ t)

(here we use the convention that Poiss(0) is the Dirac measure with mass in zero). Moreover,

for each n ∈ N let ((Z
(n,ε)
j (t))t∈[0,n∆n])j∈N be a sequence of independent processes, which is also

independent of the Poisson random measure µ̂(n,ε) and of the process X(n,ε), such that for each

j ∈ N and t ∈ [0, n∆n] its distribution is given by

Z
(n,ε)
j (t) =d

M
(n,ε)
t /λ

(n,ε)
t , if λ

(n,ε)
t > 0

Dirac(0), if λ
(n,ε)
t = 0.

Then we have for any n ∈ N and 0 ≤ t ≤ n∆n

X̃
(n,ε)
t =d

∞∑
j=1

Z
(n,ε)
j (t)1{

j≤N(n,ε)
t

}, (6.10)

because by using independence of the involved quantities we calculate the characteristic function
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for w ∈ R and λ
(n,ε)
t > 0 as follows:

E exp
{
iw

∞∑
j=1

Z
(n,ε)
j (t)1{

j≤N(n,ε)
t

}} =
∞∑
j=0

E
(

exp
{
iw

j∑
k=1

Z
(n,ε)
k (t)

}
1{

N
(n,ε)
t =j

})
= exp

{
−λ(n,ε)

t

} ∞∑
j=0

1

j!

(
Φ(M

(n,ε)
t )(w)

)j
= exp

{
Φ(M

(n,ε)
t )(w)− λ(n,ε)

t

}

= exp
{
iw

t∫
0

d(n,ε)
s ds+

t∫
0

∫ (
eiwu − 1− iwu1{|u|≤1}

)
c̄ε(u)ν(n)

s (du)ds
}

= E[exp(iwX̃
(n,ε)
t )]. (6.11)

In the above display Φ(M) denotes the characteristic function of a finite Borel measure M . The

last equality in (6.11) follows from Theorem II.4.15 in Jacod and Shiryaev (2002). Furthermore

note that in the case λ
(n,ε)
t = 0 the distributions in (6.10) are obviously equal.

Let z ∈ R \ {0} with |z| ≥ δ, define f(x) = 1{x∈I(z)} and recall the decomposition in (6.9) and

the representation (6.10) for t ≤ n∆n. As the processes X(n,ε) and X̃(n,ε) are independent, we

can calculate

E
[
f
(
X

(n)
t

)]
=

∞∑
j=0

exp
{
− λ(n,ε)

t

}(
λ

(n,ε)
t

)j 1

j!
E
[
f
(
X

(n)
t

)∣∣∣N (n,ε)
t = j

]
= exp

{
− λ(n,ε)

t

}
E
[
f
(
X

(n,ε)
t

)]
+ exp

{
− λ(n,ε)

t

}
λ

(n,ε)
t E

[
f
(
X

(n,ε)
t + Z

(n,ε)
1 (t)

)]
+
∞∑
j=2

exp
{
− λ(n,ε)

t

}(
λ

(n,ε)
t

)j 1

j!
E
[
f
(
X

(n,ε)
t +

j∑
`=1

Z
(n,ε)
` (t)

)]
. (6.12)

For the first summand on the right-hand side of the last display we use Lemma 5.2 with t0 =

1, A = ε, T = n∆n and ζ = 1 and obtain

exp
{
− λ(n,ε)

t

}
E
[
f
(
X

(n,ε)
t

)]
≤ P

(∣∣∣X(n,ε)
t

∣∣∣ ≥ δ) ≤ 2Ktδ/2ε−ζ ≤ Kt2 (6.13)

for 0 ≤ t ≤ t̂1, where K and t̂1 depend only on δ, the bound for the transition kernel g in

Assumption 2.1(2) and the bounds on bs and σs. Note therefore that d
(n,ε)
s is bounded for

s ≤ n∆n by a bound which depends on ε and thus on δ and the previously mentioned bound on

g. Also, for the third term on the right-hand side of (6.12), we have

∞∑
j=2

exp
{
− λ(n,ε)

t

}(
λ

(n,ε)
t

)j 1

j!
E
[
f
(
X

(n,ε)
t +

j∑
`=1

Z
(n,ε)
` (t)

)]
≤
(
λ

(n,ε)
t

)2
≤ Kt2 (6.14)

by (6.8) since f is bounded by 1. Now if λ
(n,ε)
t = 0, the second term in (6.12) and

t∫
0

ν
(n)
s (I(z))ds

vanish. Hence the lemma follows from (6.13) and (6.14). Thus in the following we assume

25



λ
(n,ε)
t > 0 and consider the term E

[
f
(
X

(n,ε)
t + Z

(n,ε)
1 (t)

)]
. For t ≤ n∆n the distribution of

Z
(n,ε)
1 (t) has the Lebesgue density

u 7→ h̄
(n,ε)
t (u) :=

t∫
0

c̄ε(u)h
( s

n∆n
, u
)
ds/λ

(n,ε)
t .

As a consequence (for t ≤ n∆n), the function

ρ
(n,ε)
t (x) := E

[
f
(
x+ Z

(n,ε)
1 (t)

)]
= P

(
x+ Z

(n,ε)
1 (t) ∈ I(z)

)
is twice continuously differentiable and it follows

sup
x∈R

{∣∣∣∣(ρ(n,ε)
t

)′
(x)

∣∣∣∣+

∣∣∣∣(ρ(n,ε)
t

)′′
(x)

∣∣∣∣} ≤ Kt

λ
(n,ε)
t

, (6.15)

where the constant K > 0 depends only on the bound in Assumption 2.1(4) for some ε′ > 0

with ε′ ≤ ε/2 but not on n or t. Using the independence of X(n,ε) and Z
(n,ε)
1 it is sufficient to

discuss E[ρ
(n,ε)
t (X

(n,ε)
t )]. Itô’s formula (Theorem I.4.57 in Jacod and Shiryaev (2002)) gives

ρ
(n,ε)
t (X(n,ε)

r ) = ρ
(n,ε)
t (X

(n,ε)
0 ) +

∫ r

0

(
ρ

(n,ε)
t

)′
(X

(n,ε)
s− )dX(n,ε)

s

+
1

2

∫ r

0

(
ρ

(n,ε)
t

)′′
(X

(n,ε)
s− )d〈X(n,ε),c, X(n,ε),c〉s

+
∑

0<s≤r

((
ρ

(n,ε)
t

)
(X(n,ε)

s )−
(
ρ

(n,ε)
t

)
(X

(n,ε)
s− )−

(
ρ

(n,ε)
t

)′
(X

(n,ε)
s− )∆X(n,ε)

s )
)
,

(6.16)

where t ≤ n∆n, r ≥ 0, 〈X(n,ε),c, X(n,ε),c〉s denotes the predictable quadratic variation of the

continuous local martingale part ofX(n,ε), and ∆X
(n,ε)
s is the jump size at time s. We now discuss

each of the four summands in (6.16) separately for r = t: first, u ∈ I(z) implies c̄ε(u) = 1 by

definition of ε. Thus, with X
(n,ε)
0 = 0

ρ
(n,ε)
t

(
X

(n,ε)
0

)
= P

(
Z

(n,ε)
1 (t) ∈ I(z)

)
=

1

λ
(n,ε)
t

∫
1{u∈I(z)}c̄ε(u)

t∫
0

h
( s

n∆n
, u
)
dsdu

=
1

λ
(n,ε)
t

∫
1{u∈I(z)}

t∫
0

g
( s

n∆n
, du
)
ds =

1

λ
(n,ε)
t

t∫
0

ν(n)
s (I(z))ds.

By the canonical representation of semimartingales (Theorem II.2.34 in Jacod and Shiryaev

(2002)) we get the decomposition

X
(n,ε)
t =

t∫
0

b(n,ε)s ds+ Y
(n,ε)
t ,
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where Y (n,ε) is a local martingale with characteristics (0, σ
(n)
s , cε(u)ν

(n)
s (du)) which starts at zero

and has bounded jumps. Consequently Y (n,ε) is a locally square integrable martingale and by

Proposition I.4.50 b), Theorem I.4.52 and Theorem II.1.8 in the previously mentioned reference

its predictable quadratic variation is given by

〈Y (n,ε), Y (n,ε)〉t =

t∫
0

(
σ(n)
s

)2
ds+

t∫
0

∫
u2cε(u)ν(n)

s (du)ds.

Thus for t ≤ n∆n and because of the boundedness of
(
ρ

(n,ε)
t

)′
and the construction of the

stochastic integral the integral process
((
ρ

(n,ε)
t

)′
(X

(n,ε)
s− ) · Y (n,ε)

)t
stopped at time t is in fact a

square integrable martingale because

E
t∫

0

((
ρ

(n,ε)
t

)′
(X

(n,ε)
s− )

)2
d〈Y (n,ε), Y (n,ε)〉s <∞.

Therefore we obtain

E
t∫

0

(
ρ

(n,ε)
t

)′
(X

(n,ε)
s− )dY (n,ε)

s = 0

and according to (6.15) we get a bound for the second term in (6.16):

∣∣∣E[ t∫
0

(ρ
(n,ε)
t )′(X

(n,ε)
s− )dX(n,ε)

s

]∣∣∣ ≤ t∫
0

∣∣∣E[(ρ(n,ε)
t )′(X

(n,ε)
s− )

]
b(n,ε)s

∣∣∣ds ≤ Kt2

λ
(n,ε)
t

, (6.17)

where K > 0 depends only on δ, the bounds on the characteristics and the bounds of Assumption

2.1(2) and (4) for an appropriate ε′ > 0. For the third term in (6.16) it is immediate to get

an estimate as in (6.17). Finally, let µ(n,ε)(ds, du) denote the random measure associated with

the jumps of X(n,ε) which has the predictable compensator ν(n,ε)(ds, du) = dsν
(n)
s (du)cε(u).

Therefore Theorem II.1.8 in Jacod and Shiryaev (2002) yields for the expectation of the last

term in (6.16)

E
{ ∑

0<s≤t

(
ρ

(n,ε)
t (X(n,ε)

s )− ρ(n,ε)
t (X

(n,ε)
s− )− (ρ

(n,ε)
t )′(X

(n,ε)
s− )∆X(n,ε)

s

)}

= E
{ t∫

0

∫ (
ρ

(n,ε)
t (X

(n,ε)
s− + u)− ρ(n,ε)

t (X
(n,ε)
s− )− (ρ

(n,ε)
t )′(X

(n,ε)
s− )u

)
µ(n,ε)(ds, du)

}

= E
{ t∫

0

∫ (
ρ

(n,ε)
t (X

(n,ε)
s− + u)− ρ(n,ε)

t (X
(n,ε)
s− )− (ρ

(n,ε)
t )′(X

(n,ε)
s− )u

)
cε(u)ν(n)

s (du)ds

}

≤ Kt

λ
(n,ε)
t

t∫
0

∫
u2cε(u)g

( s

n∆n
, du
)
ds ≤ Kt2

λ
(n,ε)
t

. (6.18)
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Note that the integrand in the second line in (6.18) is a concatenation of a Borel measurable

function on R2 and the obviously predictable function (ω, r, u) 7→ (X
(n,ε)
r− (ω), u) from Ω×R+×R

into R2. Consequently, this integrand is in fact a predictable function and Theorem II.1.8 in

the last named reference can be applied. The first inequality in (6.18) follows with (6.15) and

a Taylor expansion of the integrand. Accordingly the constant K after the last inequality in

(6.18) depends only on the quantities as claimed in the assertion of this lemma. Thus we have

∣∣∣∣E[ρ(n,ε)
t

(
X

(n,ε)
t

)]
− 1

λ
(n,ε)
t

t∫
0

ν(n)
s (I(z))

∣∣∣∣ ≤ Kt2

λ
(n,ε)
t

,

which together with |1− exp(−λ(n,ε)
t )| ≤ Kt for small t as well as (6.12), (6.13) and (6.14) yields

the lemma. �

5.1 Proof of Theorem 3.1.

Let X(n) denote a semimartingale of the form (1.1) and consider the decomposition X
(n)
t =

Y
(n)
t + Z

(n)
t , where

Y
(n)
t = X

(n)
0 +

t∫
0

b(n)
s ds+

t∫
0

σ(n)
s dWs

and Z
(n)
t is a pure jump Itō semimartingale with characteristics (0, 0, ν

(n)
s ). Furthermore we

consider the process

G◦n(θ, z) =
1√
kn

bnθc∑
j=1

{1{∆n
j Z

(n)∈I(z)} − P(∆n
jZ

(n) ∈ I(z))}

in `∞(Aε). The proof can be devided into two steps:

G◦n  G (6.19)

‖Gn −G◦n‖Aε
P∗→ 0. (6.20)

The assertion of Theorem 3.1 then follows from Lemma 1.10.2(i) in Van der Vaart and Wellner

(1996).

(6.19) can be obtained with similar steps as in the first part of the proof of Theorem 2.3 in

Bücher et al. (2016) using Theorem 11.16 in Kosorok (2008) which is a central limit theorem

for triangular arrays of row-wise i.i.d. data. The main difference regards the use of Lemma 5.3

which is needed as we work in general with a time-varying kernel ν
(n)
s .
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Concerning (6.20) we have for (θ, z) ∈ Aε

|Gn(θ, z)−G◦n(θ, z)| ≤
√
kn

∣∣∣Un(θ, z)− U◦n(θ, z)
∣∣∣+
√
kn

∣∣∣EU◦n(θ, z)−
θ∫

0

g(y, z)dy
∣∣∣, (6.21)

where U◦n denotes the statistic Un based on the scheme {Z(n)
i∆n
| i = 0, . . . , n}. For the first term

in (6.21) we obtain √
kn

∣∣∣Un(θ, z)− U◦n(θ, z)
∣∣∣ = oP(1),

uniformly on Aε, with the same arguments as in the second part of the proof of Theorem 2.3 in

Bücher et al. (2016). Furthermore, along the lines of the proof of Corollary 2.5 in Bücher et al.

(2016), but using Lemma 5.3 instead, one can show that the second term in (6.21) is a uniform

o(1) on Aε. �

5.2 Proof of Theorem 3.3.

Recall the decomposition X
(n)
t = Y

(n)
t +Z

(n)
t in the proof of Theorem 3.1. The idea of the proof

is to show the claim of Theorem 3.3 for Ĝ◦n, the process being defined exactly as Ĝn in (3.7) but

based on the increments ∆n
jZ

(n). This can be done with Theorem 3 in Kosorok (2003), because

we have i.i.d. increments of the processes Z(n). Furthermore, by Lemma A.1 in Bücher (2011)

it is then enough to prove ‖Ĝn − Ĝ◦n‖Aε = oP(1) in order to show Theorem 3.3. For a detailed

proof we refer the reader to the proof of Theorem 3.3 in Bücher et al. (2016), which follows

similar lines. �

5.3 Proof of Corollary 4.1.

As the process H is tight, H(ε) is also tight and Theorem 3.2 together with the continuous

mapping theorem yield H(ε)
n  H(ε) in `∞([0, 1]). The assertion now follows observing the

definition of Hn in (3.6) and the fact that D(ζ, θ, z) vanishes whenever θ ≤ θ(ε)
0 . �

5.4 Proof of Theorem 4.2.

The claim follows if we can prove the existence of a constant K > 0 such that

P
(
θ̂(ε)
n < θ

(ε)
0

)
= o(1), (6.22)

P
(
θ̂(ε)
n > θ

(ε)
0 +Kβn

)
= o(1), (6.23)

where βn = (κn/
√
kn)1/$. In order to verify (6.22) we calculate as follows

P
(
θ̂(ε)
n < θ

(ε)
0

)
≤ P

(
k1/2
n D(ε)

n (θ) > κn for some θ < θ
(ε)
0

)
(6.24)

≤ P
(
k1/2
n D(ε)(θ) + H(ε)

n (θ) > κn for some θ < θ
(ε)
0

)
≤ P

(
H(ε)
n (1) > κn

)
= o(1),
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where H(ε)
n (1) is defined in (4.3). The third estimate is a consequence of the fact that D(ε)(θ) = 0

whenever θ < θ
(ε)
0 and the final convergence follows because a weakly converging sequence in

(R,B) is asymptotically tight.

For a proof of (6.23) we note that k
1/2
n D(ε)(θ)−H(ε)

n (θ) ≤ k1/2
n D(ε)

n (θ) and we obtain

P
(
θ̂(ε)
n > θ

(ε)
0 +Kβn

)
≤ P

(
k1/2
n D(ε)

n (θ) ≤ κn for some θ > θ
(ε)
0 +Kβn

)
≤ P

(
k1/2
n D(ε)(θ)−H(ε)

n (θ) ≤ κn for some θ > θ
(ε)
0 +Kβn

)
. (6.25)

Now it follows from (4.2) that for sufficiently large n ∈ N

inf
θ∈[θ

(ε)
0 +Kβn,1]

D(ε)(θ) = D(ε)(θ
(ε)
0 +Kβn) ≥ 1

2
c(ε)(Kβn)$. (6.26)

Therefore with (6.25) and by the definition of βn we get for large n ∈ N and K > 0 large enough

P
(
θ̂(ε)
n > θ

(ε)
0 +Kβn

)
≤ P

(1

2

√
knc

(ε)(Kβn)$ −H(ε)
n (1) ≤ κn

)
≤ P

(1

2

√
knc

(ε)(Kβn)$ −H(ε)
n (1) ≤ κn,H(ε)

n (1) ≤ αn
)

+ P
(
H(ε)
n (1) > αn

)
= o(1),

where αn →∞ is a sequence with αn/κn → 0, using asymptotic tightness again. �

5.5 Proof of Theorem 4.3.

For a proof of (4.4) note that

(
θ̂(ε)
n − θ

(ε)
0

)2
=
{ 1∫
θ
(ε)
0

1{
k
1/2
n D(ε)

n (θ)≤κn
}dθ −

θ
(ε)
0∫

0

(
1− 1{

k
1/2
n D(ε)

n (θ)≤κn
})dθ}2

and furthermore we have for any θ ∈ [0, 1]

k1/2
n D(ε)(θ)−H(ε)

n (1) ≤ k1/2
n D(ε)

n (θ) ≤ k1/2
n D(ε)(θ) + H(ε)

n (1). (6.27)

Thus, if H(ε)
n (1) ≤ αn, we get for sufficiently large n ∈ N

0 ≤
θ
(ε)
0∫

0

(
1− 1{

k
1/2
n D(ε)

n (θ)≤κn
})dθ ≤ θ

(ε)
0∫

0

(
1− 1{

k
1/2
n D(ε)(θ)+αn≤κn

})dθ
=

θ
(ε)
0∫

0

(
1− 1{αn≤κn}

)
dθ = 0,
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because D(ε)(θ) = 0 for θ ≤ θ(ε)
0 . Hence, for n sufficiently large,

MSE
(ε)
1 (κn, αn) = E

[{ 1∫
θ
(ε)
0

1{
k
1/2
n D(ε)

n (θ)≤κn
}dθ}2

1{
H(ε)
n (1)≤αn

}]. (6.28)

In the following let 0 < ϕ < 1 be arbitrary, let K1,K2 be as in (4.5) and define

K∗1 :=
(1− ϕ/2

c(ε)

)1/$
and K∗2 :=

(1 + ϕ

c(ε)

)1/$
. (6.29)

As in (6.26) we obtain from (4.2)

max
θ∈[θ

(ε)
0 ,θ

(ε)
0 +K∗1βn]

D(ε)(θ) = D(ε)(θ
(ε)
0 +K∗1βn) ≤ 1

1− ϕ/3
c(ε)(K∗1βn)$ (6.30)

and

inf
θ∈[θ

(ε)
0 +K∗2βn,1]

D(ε)(θ) = D(ε)(θ
(ε)
0 +K∗2βn) ≥ 1

1 + ϕ/2
c(ε)(K∗2βn)$ (6.31)

for n ∈ N large enough. Now (6.27) and (6.28) yield

MSE
(ε)
1 (κn, αn) ≤

[ 1∫
θ
(ε)
0

1{√knD(ε)(θ)≤κn+αn}dθ
]2

=

[ θ
(ε)
0 +K∗2βn∫
θ
(ε)
0

1{√knD(ε)(θ)≤κn+αn}dθ
]2

≤ (K∗2 )2β2
n = K2β

2
n (6.32)

for a sufficiently large n ∈ N which is the desired bound. Note that the first equation in the

second line of (6.32) follows from (6.31), because for θ ∈ [θ
(ε)
0 +K∗2βn, 1] we have

√
knD(ε)(θ) ≤ κn + αn =⇒ 1

1 + ϕ/2
c(ε)(K∗2 )$κn ≤ κn + αn

which cannot hold for large n ∈ N due to (6.29).

In order to get a lower bound recall (6.28) and use (6.27) to obtain for n ∈ N sufficiently large

MSE
(ε)
1 (κn, αn) ≥ P

(
H(ε)
n (1) ≤ αn

)( θ
(ε)
0 +K∗1βn∫
θ
(ε)
0

1{√knD(ε)(θ)≤κn−αn}dθ
)2

= P
(
H(ε)
n (1) ≤ αn

)
(K∗1 )2β2

n, (6.33)
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where the equality follows from the implication (see (6.30))

1

1− ϕ/3
c(ε)(K∗1 )$κn ≤ κn − αn =⇒

√
knD(ε)(θ) ≤ κn − αn for all θ ∈ [θ

(ε)
0 , θ

(ε)
0 +K∗1βn].

The left-hand side in the previous display always holds for large n ∈ N by the choice of K∗1 in

(6.29). Using asymptotical tightness we also have

P
(
H(ε)
n (1) ≤ αn

)
≥
( 1− ϕ

1− ϕ/2

)2/$
= K1/(K

∗
1 )2

for a large n, which together with (6.33) yields MSE
(ε)
1 (κn, αn) ≥ K1β

2
n. �

5.6 Proof of Theorem 4.4.

Similarly to (6.24) we get

P
(
θ̂(ε)
n (κ̂(ε,α)

n,B (1)) < θ
(ε)
0

)
≤ P

(
H(ε)
n (θ

(ε)
0 ) ≥ κ̂(ε,α)

n,B (1)
)
. (6.34)

Recall H(ε)(θ) from (4.1). It holds that H(ε)(θ
(ε)
0 ) ≥ |H(θ

(ε)
0 /2, θ

(ε)
0 , z̄)|, with z̄ from (4.8), and

by (3.5) we have

Var(H(θ
(ε)
0 /2, θ

(ε)
0 , z̄)) =

1

4

θ
(ε)
0∫

0

g(y, z̄)dy > 0. (6.35)

Thus H(ε)(θ
(ε)
0 ) is a supremum of a non-vanishing Gaussian process with mean zero. Due to

Corollary 1.3 and Remark 4.1 in Gaenssler et al. (2007) H(ε)(θ
(ε)
0 ) then has a continuous distribu-

tion function. As a consequence (4.9) follows from (6.34) and Proposition F.1 in the supplement

to Bücher and Kojadinovic (2016) as soon as we can show(
H(ε)
n (θ

(ε)
0 ), Ĥ(ε)

n,ξ(1)
(θ̂n), . . . , Ĥ(ε)

n,ξ(B)(θ̂n)
)
 
(
H(ε)(θ

(ε)
0 ),H(ε)

(1)(θ
(ε)
0 ), . . . ,H(ε)

(B)(θ
(ε)
0 )
)

(6.36)

for any fixed B ∈ N, where H(ε)
(1)(θ

(ε)
0 ), . . . ,H(ε)

(B)(θ
(ε)
0 ) are independent copies of H(ε)(θ

(ε)
0 ).

In order to establish (6.36) we first show that the sample paths of H(ε) are uniformly continuous

on [0, 1] with respect to the Euclidean distance. By Theorem 3.1 and Assumption 2.1 the sample

paths of the process G in `∞(Aε) satisfy G(0, z) = 0 for all z ∈ Mε and they are uniformly

continuous with respect to the Euclidean distance on Aε. Thus the uniform continuity of the

sample paths of H(ε) holds if we can show that for a bounded and uniformly continuous function

f : Aε → R with f(0, z) = 0 for all z ∈Mε the function H : [0, 1]→ R defined via

H(θ) := sup
θ′∈[0,θ]

sup
ζ∈[0,θ′]

sup
z∈Mε

|f(ζ, z)− ζ

θ′
f(θ′, z)|

is uniformly continuous on [0, 1]. But since a continuous function on a compact metric space is
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uniformly continuous it suffices to show continuity of the function

F (θ) := sup
ζ∈[0,θ]

sup
z∈Mε

|f(ζ, z)− ζ

θ
f(θ, z)|

in every θ0 ∈ [0, 1]. The continuity of F in θ0 = 0 is obvious by the property f(0, z) = 0 for

all z ∈ Mε of the function f and therefore only the case 0 < θ0 ≤ 1 remains. Let U be a

neighbourhood of θ0 in [0, 1] which is bounded away from 0. Then it is immediate to see that

the function h : Bε → R defined by

h(ζ, θ, z) := f(ζ, z)− ζ

θ
f(θ, z)

is uniformly continuous on Bε ∩ ([0, 1]× U ×Mε).

Let η > 0 be arbitrary and choose δ > 0 such that |h(ζ1, θ1, z1) − h(ζ2, θ2, z2)| < η/2 for all

(ζ1, θ1, z1), (ζ2, θ2, z2) ∈ Bε with maximum distance ‖(ζ1, θ1, z1)T − (ζ2, θ2, z2)T ‖∞ ≤ δ. Further-

more, let θ ∈ [0, 1] with |θ − θ0| < δ. Then there exists (ζ1, θ0, z1) ∈ Bε with F (θ0) − η <

|h(ζ1, θ0, z1)|−η/2 and we can choose a ζ2 ≤ θ such that ‖(ζ1, θ0, z1)T − (ζ2, θ, z1)T ‖∞ ≤ δ which

gives F (θ0)−η < |h(ζ2, θ, z1)| ≤ F (θ). In an analogous manner we see that also F (θ)−η < F (θ0)

for each θ ∈ [0, 1] with |θ − θ0| < δ and therefore F is continuous in θ0.

For arbitrary η > 0 we first want to show

P
(∥∥∥(H(ε)

n (θ
(ε)
0 ), Ĥ(ε)

n,ξ(1)
(θ̂n), . . . , Ĥ(ε)

n,ξ(B)(θ̂n)
)T
−

−
(
H(ε)
n (θ

(ε)
0 ), Ĥ(ε)

n,ξ(1)
(θ

(ε)
0 ), . . . , Ĥ(ε)

n,ξ(B)(θ
(ε)
0 )
)T∥∥∥

∞
> η

)
→ 0. (6.37)

By Proposition 10.7 in Kosorok (2008) and Theorem 3.4 we have Ĥ(ε)

n,ξ(i)
 ξ H(ε) in `∞([0, 1]) for

all i = 1, . . . , B, which yields Ĥ(ε)

n,ξ(i)
 H(ε) for all i = 1, . . . , B with the same reasoning as in the

proof of Theorem 2.9.6 in Van der Vaart and Wellner (1996). Theorem 1.5.7 and its addendum

therein show that Ĥ(ε)

n,ξ(i)
is asymptotically uniformly ρ-equicontinuous in probability for each i,

where ρ denotes the Euclidean metric on [0, 1] because the sample paths of H(ε) are uniformly

continuous with respect to ρ and ([0, 1], ρ) is totally bounded.

Therefore, for any γ > 0 we can choose a δ > 0 such that

max
i=1,...,B

lim sup
n→∞

P
(

sup
ρ(θ1,θ2)<δ

∣∣∣Ĥ(ε)

n,ξ(i)
(θ1)− Ĥ(ε)

n,ξ(i)
(θ2)

∣∣∣ > η
)
< γ/(2B),

which yields

P
(∥∥∥(H(ε)

n (θ
(ε)
0 ), Ĥ(ε)

n,ξ(1)
(θ̂n), . . . , Ĥ(ε)

n,ξ(B)(θ̂n)
)T
−

−
(
H(ε)
n (θ

(ε)
0 ), Ĥ(ε)

n,ξ(1)
(θ

(ε)
0 ), . . . , Ĥ(ε)

n,ξ(B)(θ
(ε)
0 )
)T∥∥∥

∞
> η

)
≤ P

(∣∣∣Ĥ(ε)

n,ξ(i)
(θ̂n)− Ĥ(ε)

n,ξ(i)
(θ

(ε)
0 )
∣∣∣ > η for at least one i = 1, . . . , B and |θ̂n − θ(ε)

0 | < δ
)

+
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+ P
(
|θ̂n − θ(ε)

0 | ≥ δ
)

≤ P
(
|θ̂n − θ(ε)

0 | ≥ δ
)

+
B∑
i=1

P
(

sup
ρ(θ1,θ2)<δ

∣∣∣Ĥ(ε)

n,ξ(i)
(θ1)− Ĥ(ε)

n,ξ(i)
(θ2)

∣∣∣ > η
)
< γ

for n ∈ N large enough, using consistency of the preliminary estimator.

Thus, now that we have established (6.37), by Lemma 1.10.2(i) in Van der Vaart and Wellner

(1996) we obtain (6.36) if we can show(
H(ε)
n (θ

(ε)
0 ), Ĥ(ε)

n,ξ(1)
(θ

(ε)
0 ), . . . , Ĥ(ε)

n,ξ(B)(θ
(ε)
0 )
)
 
(
H(ε)(θ

(ε)
0 ),H(ε)

(1)(θ
(ε)
0 ), . . . ,H(ε)

(B)(θ
(ε)
0 )
)
.

But this is an immediate consequence of the continuous mapping theorem and

(Gn, Ĝn,ξ(1) , . . . , Ĝn,ξ(B)) (G,G(1), . . . ,G(B)) (6.38)

in (`∞(Aε))
B+1 for all B ∈ N, where G(1), . . . ,G(B) are independent copies of G, since H(ε)

n (θ
(ε)
0 ),

Ĥ(ε)

n,ξ(i)
(θ

(ε)
0 ) and H(ε)(θ

(ε)
0 ) are the images of the same continuous functional applied to Gn, Ĝ

n,ξ(i)

and G, respectively. (6.38) follows as in Proposition 6.2 in Bücher et al. (2016). �

5.7 Proof of Theorem 4.5.

We start with a proof of βn
P→ 0 which is equivalent to κ̂(ε,αn)

n,Bn
(r)/
√
kn

P→ 0. Therefore we have

to show

P(κ̂(ε,αn)
n,Bn

(r)/
√
kn ≤ x) = P

( 1

Bn

Bn∑
i=1

1{Ĥ(ε)

n,ξ(i)
(θ̂n)≤(

√
knx)1/r} ≥ 1− αn

)
→ 1, (6.39)

for arbitrary x > 0, by the definition of κ̂(ε,αn)
n,Bn

(r) in (4.7). Since the

1{Ĥ(ε)

n,ξ(i)
(θ̂n)≤(

√
knx)1/r} − Pξ

(
Ĥ(ε)
n (θ̂n) ≤ (

√
knx)1/r

)
, i = 1, . . . , Bn,

are pairwise uncorrelated with mean zero and bounded by 1, we have

P
(∣∣∣ 1

Bn

Bn∑
i=1

1{Ĥ(ε)

n,ξ(i)
(θ̂n)≤(

√
knx)1/r} − Pξ

(
Ĥ(ε)
n (θ̂n) ≤ (

√
knx)1/r

)∣∣∣ > αn/2
)
≤ 4α−2

n B−1
n → 0.

(6.40)

Therefore, in order to prove (6.39), it suffices to verify

P
(
Pξ
(
Ĥ(ε)
n (θ̂n) ≤ (

√
knx)1/r

)
< 1− αn/2

)
≤ 2

αn
P
(
Ĥ(ε)
n (θ̂n) > (

√
knx)1/r

)
≤ 2

αn
P
(

2 sup
θ∈[0,1]

sup
|z|≥ε
|Ĝn(θ, z)| > (

√
knx)1/r

)
→ 0, (6.41)
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where the first inequality in the above display follows with the Markov inequality and the last

inequality in (6.41) is a consequence of the fact that Ĥ(ε)
n (θ̂n) ≤ Ĥ(ε)

n (1) ≤ 2 sup
θ∈[0,1]

sup
|z|≥ε
|Ĝn(θ, z)|.

Furthermore, by the definition of Ĝn in (3.7) we have

E
{

sup
θ∈[0,1]

sup
|z|≥ε
|Ĝn(θ, z)|

}
≤ 1

n
√
kn

n∑
j=1

n∑
i=1

(P(|∆n
jX

(n)| ≥ ε) + P(|∆n
i X

(n)| ≥ ε)), (6.42)

because of E|ξj | ≤ 1 for every j = 1, . . . , n. Recall the decomposition X(n) = Y (n) + Z(n) in the

proof of Theorem 3.1 and let vn = ∆
τ/2
n → 0 with τ from Assumption 2.4. Then we have for

i = 1, . . . , n and n ∈ N large enough

P(|∆n
i X

(n)| ≥ ε) ≤ P(|∆n
i Y

(n)| ≥ vn) + P(|∆n
i Z

(n)| ≥ ε/2) ≤ P(|∆n
i Y

(n)| ≥ vn) +K∆n, (6.43)

where the last inequality follows using Lemma 5.3. By Hölder’s inequality, the Burkholder-

Davis-Gundy inequalities (see for instance page 39 in Jacod and Protter, 2012) and Fubini’s

theorem we have with p > 2, 1 < α < 3 from Assumption 2.4, for each 1 ≤ j ≤ n,

E
∣∣∣ ∫ j∆n

(j−1)∆n

b(n)
s ds

∣∣∣α ≤ ∆α
nE
( 1

∆n

∫ j∆n

(j−1)∆n

|b(n)
s |αds

)
≤ K∆α

n (6.44)

and

E
∣∣∣ ∫ j∆n

(j−1)∆n

σ(n)
s dWs

∣∣∣p ≤ K∆p/2
n E

( 1

∆n

∫ j∆n

(j−1)∆n

|σ(n)
s |2ds

)p/2
≤ K∆p/2

n E
( 1

∆n

∫ j∆n

(j−1)∆n

|σ(n)
s |pds

)
≤ K∆p/2

n . (6.45)

Together with (6.43) and the Markov inequality these estimates yield

P(|∆n
i X

(n)| ≥ ε) ≤ K∆p/2−pτ/2
n +K∆α−ατ/2

n +K∆n = K∆
2p+p
2p+2
n +K∆n ≤ K∆n. (6.46)

Therefore due to (6.41), (6.42), (6.46) and the Markov inequality we obtain

P
(
Pξ
(
Ĥ(ε)
n (θ̂n) ≤ (

√
knx)1/r

)
< 1− αn/2

)
≤ K n2∆n

αnn
√
kn(
√
kn)1/r

= K
(

(n∆n)
1−r
2r αn

)−1
→ 0,

by the assumptions on the involved sequences. Thus we conclude βn
P→ 0.

Next we show κ̂(ε,αn)
n,Bn

(r)
P→∞, which is equivalent to

P(κ̂(ε,αn)
n,Bn

(r) ≤ x) = P
( 1

Bn

Bn∑
i=1

1{Ĥ(ε)

n,ξ(i)
(θ̂n)≤x1/r} ≥ 1− αn

)
→ 0,
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for each x > 0. With the same considerations as for (6.40) it is sufficient to show

P
(
Pξ
(
Ĥ(ε)
n (θ̂n) > x1/r

)
≤ 2αn

)
→ 0.

By continuity of the function ζ 7→
∫ ζ

0 g(y, z̄)dy for z̄ from (4.8) we can find ζ̄ < θ̄ < θ
(ε)
0 with

ζ̄∫
0

g(y, z̄)dy > 0 (6.47)

and because of

Ĥn(ζ̄, θ̄, z̄) ≤ Ĥ(ε)
n (θ̂n) =⇒ Pξ

(
Ĥn(ζ̄, θ̄, z̄) > x1/r

)
≤ Pξ

(
Ĥ(ε)
n (θ̂n) > x1/r

)
on the set {θ̄ < θ̂n} and the consistency of the preliminary estimate it further suffices to prove

P
(
Pξ
(
Ĥ(ε)
n (θ̂n) > x1/r

)
≤ 2αn and θ̄ < θ̂n

)
≤ P

(
Pξ
(
Ĥn(ζ̄, θ̄, z̄) > x1/r

)
≤ 2αn

)
→ 0. (6.48)

In order to show (6.48) we want to use a Berry-Esseen type result. Recall

Ĥn(ζ̄, θ̄, z̄) =
1√
n∆n

n∑
j=1

Bjξj

from (3.8) with Bj =
(
1{j≤bnζ̄c} −

ζ̄
θ̄
1{j≤bnθ̄c}

)
Aj , where

Aj = 1{∆n
jX

(n)∈I(z̄)} −
1

n

n∑
i=1

1{∆n
i X

(n)∈I(z̄)}.

By the assumptions on the multiplier sequence it is immediate to see that

W̄ 2
n := Eξ(Ĥn(ζ̄, θ̄, z̄))2 =

1

n∆n

n∑
j=1

B2
j .

Thus Theorem 2.1 in Chen and Shao (2001) yields

sup
x∈R

∣∣∣Pξ(Ĥn(ζ̄, θ̄, z̄) > x
)
− (1− Φ(x/W̄n))

∣∣∣ ≤ K{ n∑
i=1

EξU2
i 1{|Ui|>1} +

n∑
i=1

Eξ|Ui|31{|Ui|≤1}

}
,

(6.49)

with Ui = Biξi√
n∆nW̄n

and where Φ denotes the standard normal distribution function. Before we

proceed further in the proof of (6.48), we first show

1

W̄ 2
n

=
n∆n
n∑
j=1

B2
j

= OP(1), (6.50)
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which is

lim
M→∞

lim sup
n→∞

P
(
n∆n > M

n∑
j=1

B2
j

)
= 0.

Let M > 0. Then a straightforward calculation gives

P
(
n∆n > M

n∑
j=1

B2
j

)
≤ P

(
n∆n > M ′

bnζ̄c∑
j=1

A2
j

)

= P
(
n∆n > M ′

1

n2

bnζ̄c∑
j=1

n∑
i=1

n∑
k=1

(
1{∆n

jX
(n)∈I(z̄)} + 1{∆n

i X
(n)∈I(z̄)}1{∆n

kX
(n)∈I(z̄)}

− 1{∆n
i X

(n)∈I(z̄)}1{∆n
jX

(n)∈I(z̄)} − 1{∆n
jX

(n)∈I(z̄)}1{∆n
kX

(n)∈I(z̄)}

))
,

(6.51)

with M ′ = M(1 − ζ̄/θ̄)2. Now consider again the decomposition X(n) = Y (n) + Z(n) of the

underlying Itō semimartingale as in the proof of Theorem 3.1 and the sequence vn = ∆
τ/2
n → 0

with τ from Assumption 2.4. With (6.44), (6.45) and Lemma 5.3 it is immediate to see that for

1 ≤ i, k ≤ n

E
∣∣∣1{∆n

i X
(n)∈I(z̄)}1{∆n

kX
(n)∈I(z̄)} − 1{∆n

i Z
(n)∈I(z̄)}1{∆n

kZ
(n)∈I(z̄)}

∣∣∣ = o(∆n).

Setting

Dn :=
1

n3∆n

bnζ̄c∑
j=1

n∑
i=1

n∑
k=1

(
1{∆n

i X
(n)∈I(z̄)}1{∆n

kX
(n)∈I(z̄)} − 1{∆n

i X
(n)∈I(z̄)}1{∆n

jX
(n)∈I(z̄)}−

− 1{∆n
jX

(n)∈I(z̄)}1{∆n
kX

(n)∈I(z̄)}

)
it is easy to deduce E|Dn| = o(1), using Lemma 5.3 again as well as independence of the

increments of Z(n). Combining this result with (6.51) we have

P
(
n∆n > M

n∑
j=1

B2
j

)
≤

≤ P(|Dn| > 1/M ′) + P
(

1/M ′ > Dn +
1

n∆n

bnζ̄c∑
j=1

1{∆n
jX

(n)∈I(z̄)} and |Dn| ≤ 1/M ′
)

≤ P(|Dn| > 1/M ′) + P
(

2/M ′ >
1

n∆n

bnζ̄c∑
j=1

1{∆n
jX

(n)∈I(z̄)}

)
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for M > 0. Thus with (6.47) we obtain (6.50), because by Theorem 3.1 we have

1

n∆n

bnζ̄c∑
j=1

1{∆n
jX

(n)∈I(z̄)} =

ζ̄∫
0

g(y, z̄)dy + oP(1).

Recall that our main objective is to show (6.48) and thus we consider the Berry-Esseen bound

on the right-hand side of (6.49). For the first summand we distinguish two cases according to

the assumptions on the multiplier sequence.

Let us discuss the case of bounded multipliers first. For M > 0 we have

|Ui| ≤
√
MK√
n∆n

for all i = 1, . . . , n on the set {1/W̄ 2
n ≤M}, since |Bi| is bounded by 1. As a consequence

n∑
i=1

EξU2
i 1{|Ui|>1} = 0 (6.52)

for large n ∈ N on the set {1/W̄ 2
n ≤M}.

In the situation of normal multipliers, recall that there exist constants K1,K2 > 0 such that for

ξ ∼ N (0, 1) and y > 0 large enough we have

Eξξ21{|ξ|>y} =
2√
2π

∞∫
y

z2e−z
2/2dz ≤ KP(N (0, 2) > y) ≤ K1 exp(−K2y

2). (6.53)

Thus we can calculate for n ∈ N large enough on the set {1/W̄ 2
n ≤M}

n∑
i=1

EξU2
i 1{|Ui|>1} =

n∑
i=1

( n∑
j=1

B2
j

)−1
B2
i Eξξ2

i 1{|ξi|>(
n∑
j=1

B2
j )1/2/|Bi|}

≤
n∑
i=1

( n∑
j=1

B2
j

)−1
Eξξ2

i 1{|ξi|>(
n∑
j=1

B2
j )1/2}

≤ M

n∆n

n∑
i=1

Eξξ2
i 1{|ξi|>(n∆n/M)1/2} ≤

K1

∆n
exp(−K2n∆n),

where K1 and K2 depend on M . The first inequality in the above display uses |Bi| ≤ 1 again

and the last one follows with (6.53). Now let ρ > 0 with n∆1+ρ
n →∞ and define p̄ := 1/ρ. Then,

for n ≥ N(M) ∈ N on the set {1/W̄ 2
n ≤M}, using exp(−K2n∆n) ≤ (n∆n)−p̄, we conclude

n∑
i=1

EξU2
i 1{|Ui|>1} ≤ K1∆−1

n (n∆n)−p̄ = K1(n∆1+ρ
n )−p̄. (6.54)
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We now consider the second term on the right-hand side of (6.49), for which

n∑
i=1

Eξ|Ui|31{|Ui|≤1} ≤
n∑
i=1

( n∑
j=1

B2
j

)−3/2
|Bi|3Eξ|ξi|3 ≤

K

(n∆n)3/2

n∑
i=1

|Bi|

holds on {1/W̄ 2
n ≤M}, using |Bi| ≤ 1 again. With (6.46) we see that

E
( n∑
i=1

|Bi|
)
≤ E

( n∑
i=1

|Ai|
)
≤ 2n max

i=1,...,n
P(|∆n

i X
(n)| ≥ ε) ≤ Kn∆n.

Consequently,

P
(

1/W̄ 2
n ≤M and K

n∑
i=1

Eξ|Ui|31{|Ui|≤1} > (n∆n)−1/4
)
≤ P

( K

(n∆n)3/2

n∑
i=1

|Bi| > (n∆n)−1/4
)

≤ K(n∆n)−1/4 (6.55)

follows. Thus from (6.52), (6.54) and (6.55) we see that with K > 0 from (6.49) for each M > 0

there exists a K3 > 0 such that

P
(

1/W̄ 2
n ≤M and K

{ n∑
i=1

EξU2
i 1{|Ui|>1} +

n∑
i=1

Eξ|Ui|31{|Ui|≤1}

}
> K3((n∆n)−1/4 + (n∆1+ρ

n )−p̄)
)
→ 0. (6.56)

Now we can show (6.48). Let η > 0 and according to (6.50) choose an M > 0 with P(1/W̄ 2
n >

M) < η/2 for all n ∈ N. For this M > 0 choose a K3 > 0 such that the probability in (6.56) is

smaller than η/2 for large n. Then for n ∈ N large enough we have

P
(
Pξ
(
Ĥn(ζ̄, θ̄, z̄) > x1/r

)
≤ 2αn

)
<

P
(

(1− Φ(x1/r/W̄n)) ≤ 2αn +K3((n∆n)−1/4 + (n∆1+ρ
n )−p̄) and 1/W̄ 2

n ≤M
)

+ η = η,

using (6.49) and the fact, that if 1/W̄ 2
n ≤M there exists a c > 0 with (1− Φ(x1/r/W̄n)) > c.

Thus we have shown κ̂(ε,αn)
n,Bn

(r)
P→∞ and we are only left with proving (4.10). Let

K =
(

(1 + ϕ)/c(ε)
)1/$

>
(

1/c(ε)
)1/$

for some ϕ > 0. Then

P
(
θ̂(ε)
n (κ̂(ε,αn)

n,Bn
(r)) > θ

(ε)
0 +Kβn

)
≤ P

(√
n∆nD(ε)

n (θ) ≤ κ̂(ε,αn)
n,Bn

(r) for some θ > θ
(ε)
0 +Kβn

)
≤ P

(√
n∆nD(ε)(θ)−H(ε)

n (1) ≤ κ̂(ε,αn)
n,Bn

(r) for some θ > θ
(ε)
0 +Kβn

)
.
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By (4.2) there exists a y0 > 0 with

inf
θ∈[θ

(ε)
0 +Ky1,1]

D(ε)(θ) = D(ε)(θ
(ε)
0 +Ky1) ≥ (c(ε)/(1 + ϕ/2))(Ky1)$

for all 0 ≤ y1 ≤ y0. Distinguishing the cases {βn > y0} and {βn ≤ y0} we get due to βn
P→ 0

P
(
θ̂(ε)
n (κ̂(ε,αn)

n,Bn
(r)) > θ

(ε)
0 +Kβn

)
≤P
(√

n∆n(c(ε)/(1 + ϕ/2))(Kβn)$ −H(ε)
n (1) ≤ κ̂(ε,αn)

n,Bn
(r)
)

+ o(1) ≤ P (1)
n + P (2)

n + o(1)

with

P (1)
n = P

(√
n∆n(c(ε)/(1 + ϕ/2))(Kβn)$ −H(ε)

n (1) ≤ κ̂(ε,αn)
n,Bn

(r) and H(ε)
n (1) ≤ bn

)
,

P (2)
n = P

(
H(ε)
n (1) > bn

)
,

where bn :=

√
κ̂(ε,αn)
n,Bn

(r). Due to the choice K =
(

(1 + ϕ)/c(ε)
)1/$

and the definition of βn it

is clear that P
(1)
n = o(1), because κ̂(ε,αn)

n,Bn
(r)

P→∞.

Concerning P
(2)
n let Hn be the distribution function of H(ε)

n (1) and let H be the distribution

function of H(ε)(1). Then as we have seen in (6.35) in the proof of Theorem 4.4 the function H

is continuous and by Theorem 3.2 and the continuous mapping theorem Hn converges pointwise

to H. Thus for η > 0 choose an x > 0 with 1−H(x) < η/2 and conclude

P (2)
n ≤ P(bn ≤ x) + 1−Hn(x) ≤ P(bn ≤ x) + 1−H(x) + |Hn(x)−H(x)| < η,

for n ∈ N large enough, because of κ̂(ε,αn)
n,Bn

(r)
P→∞. �

5.8 Proof of Proposition 4.9.

Under the null hypothesis H0(ε) we have k
1/2
n D(ε)

n (1) = H(ε)
n (1). Furthermore,

Var(H(ζ̄, 1, z̄)) =

ζ̄∫
0

g(y, z̄)dy − 2ζ̄

ζ̄∫
0

g(y, z̄)dy + ζ̄2

1∫
0

g(y, z̄)dy

= (1− ζ̄)2

ζ̄∫
0

g(y, z̄)dy + ζ̄2

1∫
ζ̄

g(y, z̄)dy > 0.

Therefore, as in the proof of Theorem 4.4, H(ε)(1) has a continuous cdf and(
H(ε)
n (1), Ĥ(ε)

n,ξ(1)
(1), . . . , Ĥ(ε)

n,ξ(B)(1)
)
 
(
H(ε)(1),H(ε)

(1)(1), . . . ,H(ε)
(B)(1)

)
.
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holds in (RB+1,BB+1) for every B ∈ N, where H(ε)
(1)(1), . . . ,H(ε)

(B)(1) are independent copies of

H(ε)(1). As a consequnce the assertion follows with Proposition F.1 in the supplement to Bücher

and Kojadinovic (2016). The result for the test (4.17) follows in the same way. �

5.9 Proof of Proposition 4.10.

If H1(ε) holds, then (4.18) is a simple consequence of lim
n→∞

P(k
1/2
n D(ε)

n (1) ≥ K) = 1 for all K > 0

and lim
K→∞

lim sup
n→∞

P
(
Ĥ(ε)

n,ξ(b)
(1) > K

)
= 0 which follow from Theorem 3.2 and Theorem 3.4 by

similar arguments as in previous proofs. The second claim can be shown in the same way. �

5.10 Proof of the results in Example 2.3 and Example 4.6(2).

(1) First we show that a kernel as in (2.10) belongs to the set G. Using the uniqueness the-

orem for measures we see that g(y, dz) is the measure with Lebesgue density hy(z) =

A(y)β(y)/|z|1+β(y) for each y ∈ [0, 1] and z 6= 0. This function is continuously differen-

tiable with derivative h′y(z) = −sgn(z)A(y)β(y)(1 + β(y))/|z|2+β(y), and we obtain

sup
y∈[0,1]

sup
|z|≥ε

(
hy(z) + |h′y(z)|

)
<∞

for any ε > 0 such that Assumption 2.1(4) is satisfied. Assumption 2.1(3) is obvious, and

by definition it is also clear that g(y, dz) does not charge {0} for any y ∈ [0, 1], Finally, a

simple calculation using symmetry of the integrand yields

sup
y∈[0,1]

(∫
(1 ∧ z2)g(y, dz)

)
= sup

y∈[0,1]

(
2A(y)β(y)

{ 1∫
0

z1−β(y)dz +

∞∫
1

z−1−β(y)dz
})

= sup
y∈[0,1]

(
2A(y)β(y)

{ 1

2− β(y)
+

1

β(y)

})
<∞,

by the assumptions on A and β. Thus also Assumption 2.1(2) is valid.

(2) Now we show that if additionally (2.11), (2.12) and (2.13) are satisfied, k0,ε < ∞ holds

for every ε > 0 and gk(z) is a bounded function on Mε as stated in Example 4.6(2). By

shrinking the interval U if necessary we may assume without loss of generality that the

functions Ā, β̄ are bounded away from 0 on U . But then it is well known from complex

analysis that there is a domain U ⊂ U∗ ⊂ C with holomorphic functions A∗, β∗ : U∗ →
C+ := {u ∈ C | Re(u) > 0} such that Ā, β̄ are the restrictions of A∗ and β∗ to U . Therefore

for any z ∈ R \ {0} the function g∗(y, z) = A∗(y) exp{−β∗(y) log(|z|)} is holomorphic in

y ∈ U∗ as a concatenation of holomorphic functions and thus its restriction ḡ(y, z) to y ∈ U
is real analytic. Consequently, by shrinking U again if necessary, we have the power series
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expansion

ḡ(y, z) =

∞∑
k=0

gk(z)

k!
(y − θ0)k, (6.57)

for every y ∈ U and z ∈ R \ {0}. If k0,ε =∞ for some ε > 0, then for any k ∈ N and z ∈Mε

we have gk(z) = 0 and for every z ∈Mε there is a C(z) ∈ (0,∞) with

ḡ(y, z) = C(z)⇐⇒ log(Ā(y)) = log(C(z)) + β̄(y) log(|z|)

for every y ∈ U . Taking the derivative with respect to y for a fixed z yields (log(Ā(y)))′ =

log(|z|)β̄′(y) for each y ∈ U and z ∈ Mε. But since it is assumed that at least one of the

functions Ā and β̄ is non-constant, there is a y0 ∈ U such that one derivative (and therefore

both) are different from zero. Varying z for this y0 ∈ U yields a contradiction.

In order to show that for each k ∈ N0 the function gk(z) is bounded in z ∈Mε, we use

∂`

∂y`

( 1

|z|β̄(y)

)
(θ0) =

∂`

∂y`
(exp(−β̄(y) log(|z|)))(θ0) = (−1)`

log`(|z|)
|z|β0

b`1,

for ` ∈ N. Using the generalization of the product formula for higher derivatives

sup
z∈Mε

|gk(z)| = sup
z∈Mε

∣∣∣ k∑
`=0

(
k

`

)
Ā(`)(θ0)

∂(k−`)

∂y(k−`)

( 1

|z|β̄(y)

)
(θ0)

∣∣∣
≤ (K(k + 1))k+1

k∑
`=0

(
k

`

)
|a`|`!|b1|k−` ≤ (K(k + 1))k+1

k∑
`=0

(
k

`

)
M `|b1|k−`

= (K(k + 1))k+1(M + |b1|)k ≤ (K(k + 1))k+1 (6.58)

follows. The first inequality in (6.58) holds because for ` ∈ N the continuously differentiable

function f`(z) = log`(z)/zβ0 on (ε,∞) satisfies limz→∞ f`(z) = 0 and its derivative can

change the sign only in z = 1 and z = exp{`/β0}. Therefore we obtain

sup
z∈Mε

| log`(|z|)|
|z|β0

= max
{ | log`(ε)|

εβ0
,
( `
β0

)`
e−`
}
≤ (K(`+ 1))`+1,

for some suitable K > 0 which does not depend on `. The second inequality in (6.58) is a

consequence of (2.12).

(3) Finally, we show the expansion (4.12), and it is immediate to see that it suffices to verify it

for D̃(ε) from (2.4).

A power series can be integrated term by term within its radius of convergence. Therefore,
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(6.57) gives for θ0 ≤ θ ∈ U

θ∫
θ0

g(y, z)dy =
∞∑
k=0

gk(z)

(k + 1)!
(θ − θ0)k+1,

which yields

D(ζ, θ, z) =


− ζ
θ

∞∑
k=1

gk(z)
(k+1)!(θ − θ0)k+1, if ζ ≤ θ0

1
θ

∞∑
k=1

gk(z)
(k+1)! [θ(ζ − θ0)k+1 − ζ(θ − θ0)k+1], if θ0 < ζ ≤ θ.

(6.59)

For any set T and functions g, h : T → R we have | sup
t∈T
|g(t)| − sup

t∈T
|h(t)|| ≤ sup

t∈T
|g(t)− h(t)|.

Together with (6.59) this yields for θ0 < θ ∈ U

sup
ζ∈[0,θ0]

sup
z∈Mε

|D(ζ, θ, z)| = sup
ζ∈[0,θ0]

sup
z∈Mε

∣∣∣ζ
θ

gk0,ε(z)

(k0,ε + 1)!
(θ − θ0)k0,ε+1

∣∣∣+O((θ − θ0)k0,ε+2),

(6.60)

and

sup
ζ∈(θ0,θ]

sup
z∈Mε

|D(ζ, θ, z)| = sup
ζ∈(θ0,θ]

sup
z∈Mε

∣∣∣1
θ

gk0,ε(z)

(k0,ε + 1)!
[θ(ζ − θ0)k0,ε+1 − ζ(θ − θ0)k0,ε+1]

∣∣∣+
+O((θ − θ0)k0,ε+2), (6.61)

for θ ↓ θ0, as soon as we can show

sup
ζ∈(θ0,θ]

sup
z∈Mε

∣∣∣1
θ

∞∑
k=k0,ε+1

gk(z)

(k + 1)!
[θ(ζ − θ0)k+1 − ζ(θ − θ0)k+1]

∣∣∣ = O((θ − θ0)k0,ε+2) (6.62)

and

sup
ζ∈[0,θ0]

sup
z∈Mε

∣∣∣ζ
θ

∞∑
k=k0,ε+1

gk(z)

(k + 1)!
(θ − θ0)k+1

∣∣∣ = O((θ − θ0)k0,ε+2). (6.63)

To prove (6.62) note that for k ∈ N and θ0 < ζ ≤ θ

|θ(ζ − θ0)k+1 − ζ(θ − θ0)k+1| ≤ θ|[(ζ − θ0)k+1 − (θ − θ0)k+1]|+ (θ − ζ)(θ − θ0)k+1

=θ
∣∣∣ k∑
j=0

(θ − θ0)k−j(ζ − θ)(ζ − θ0)j
∣∣∣+ (θ − ζ)(θ − θ0)k+1 ≤ 2θ(k + 1)(θ − θ0)k+1

43



holds, and by (6.58) we have lim sup
k→∞

(ḡk/k!)1/k <∞ for ḡk = sup
z∈Mε

|gk(z)|. Consequently,

sup
ζ∈(θ0,θ]

sup
z∈Mε

∣∣∣1
θ

∞∑
k=k0,ε+1

gk(z)

(k + 1)!
[θ(ζ − θ0)k+1 − ζ(θ − θ0)k+1]

∣∣∣ ≤ ∞∑
k=k0,ε+1

2ḡk
k!

(θ − θ0)k+1

= (θ − θ0)k0,ε+2
∞∑
k=0

2ḡk+k0,ε+1

(k + k0,ε + 1)!
(θ − θ0)k = O((θ − θ0)k0,ε+2)

for θ ↓ θ0, because the latter power series has a positive radius of convergence around θ0.

For the same reason, in order to prove (6.63) we use

sup
ζ∈[0,θ0]

sup
z∈Mε

∣∣∣ζ
θ

∞∑
k=k0,ε+1

gk(z)

(k + 1)!
(θ − θ0)k+1

∣∣∣ ≤ θ0

θ
(θ − θ0)k0,ε+2

∞∑
k=0

ḡk+k0,ε+1

(k + k0,ε + 2)!
(θ − θ0)k

= O((θ − θ0)k0,ε+2)

as θ ↓ θ0. Now, because of

D̃(ε)(θ) = max
{

sup
ζ∈[0,θ0]

sup
z∈Mε

|D(ζ, θ, z)|, sup
ζ∈(θ0,θ]

sup
z∈Mε

|D(ζ, θ, z)|
}

(6.60) and (6.61) yield the desired expansion (4.12) for D̃(ε), if we can show for θ ↓ θ0

sup
ζ∈[0,θ0]

sup
z∈Mε

∣∣∣ζ
θ

gk0,ε(z)

(k0,ε + 1)!
(θ − θ0)k0,ε+1

∣∣∣ =
ḡk0,ε

(k0,ε + 1)!
(θ − θ0)k0,ε+1 +O((θ − θ0)k0,ε+2),

sup
ζ∈(θ0,θ]

sup
z∈Mε

∣∣∣1
θ

gk0,ε(z)

(k0,ε + 1)!
[θ(ζ − θ0)k0,ε+1 − ζ(θ − θ0)k0,ε+1]

∣∣∣
=

ḡk0,ε
(k0,ε + 1)!

(θ − θ0)k0,ε+1 +O((θ − θ0)k0,ε+2).

The first assertion is obvious, since |θ0/θ−1| ≤ K(θ−θ0) by 0 < θ0 < θ. In order to prove the

latter claim, consider for 0 < θ0 < θ < 1 and k ∈ N the function fk : [θ0, θ]→ R with fk(ζ) =

θ(ζ − θ0)k+1− ζ(θ− θ0)k+1. Its derivative is given by f ′k(ζ) = θ(k+ 1)(ζ − θ0)k− (θ− θ0)k+1

and it has a unique root at ζ0 with

θ0 < ζ0 = θ0 +
(θ − θ0)1+1/k

(θ(k + 1))1/k
< θ.

Thus because of fk(θ0) < 0, fk(θ) = 0, f ′k(ζ) < 0 for ζ < ζ0 and f ′k(ζ) > 0 for ζ > ζ0 we

obtain the result, since for θ ↓ θ0

1

θ
sup

ζ∈(θ0,θ]
|fk0,ε(ζ)| = 1

θ
|fk0,ε(ζ0)|

=
∣∣∣θ0

θ
+

(θ − θ0)1+1/k0,ε

θ1+1/k0,ε(k0,ε + 1)1/k0,ε
− (θ − θ0)1+1/k0,ε

θ1+1/k0,ε(k0,ε + 1)1+1/k0,ε

∣∣∣(θ − θ0)k0,ε+1
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=
θ0

θ
(θ − θ0)k0,ε+1 +O((θ − θ0)k0,ε+2+1/k0,ε) = (θ − θ0)k0,ε+1 +O((θ − θ0)k0,ε+2).
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Figueroa-López, J. (2008). Small-time moment asymptotics for Lévy processes. Statistics and Probability
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