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Abstract. We propose a goodness-of-fit test for the distribution of errors from a multivariate

indirect regression model. The test statistic is based on the Khmaladze transformation of the

empirical process of standardized residuals. This goodness-of-fit test is consistent at the root-n

rate of convergence, and the test can maintain power against local alternatives converging to

the null at a root-n rate.
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1. Introduction

A common problem faced in applications is that one can only make indirect observations of

a physical process. Consequently, important quantities of interest cannot be directly observed,

but a suitable image under some transformation is typically available. These problems are

called inverse problems in the literature. Loosely speaking, the goal is to recover a quantity

θ (often a function) from a distorted version of an image Kθ, where K is some operator.

Developing valid statistical inference procedures for these inverse problems is desirable, and in

recent years several authors have worked on the construction of estimators, structural tests, and

(pointwise and uniform) confidence bands for the unknown indirect regression function θ [see

Mair and Ruymgaart (1996), Cavalier and Tsybakov (2002), Johnstone et al. (2004), Bissantz

and Holzmann (2008), Cavalier (2008), Birke et al. (2010), Johnstone and Paul (2014), Marteau

and Mathé (2014), and Proksch et al. (2015) among many others]. In this paper we consider

an indirect regression model of the form

(1.1) Yj =
[
Kθ
]
(Xj) + εj, j = 1, . . . , n,

where Xj is a predictor, εj is a random error and K is a convolution operator, which will be

specified later (along with the covariates Xj). Here θ is an unknown but square-integrable

smooth function. We study a unified approach to testing certain model assumptions regarding

the distribution function of the error εj in the indirect regression model (1.1).
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Apart from specification of the operator K, many statistical techniques used in applications

for the estimation of θ depend on the error distribution. For example, when recovering astro-

nomical images certain defects such as cosmic-ray hits are important to identify and remove

[Section 6 of Adorf (1995)]. Here deviation values between observations from pixels and an

initial reconstruction are calculated and compared with the standard deviation of the noise.

A large deviation indicates the presence of a possible cosmic-ray hit, and observations from

the affected pixels are discarded (or replaced by imputed values) in subsequent iterative recon-

struction procedures that improve the quality of the final reconstructed image. Determining an

unrealistic deviation depends on the structure of the noise distribution. More recently, Bertero

et al. (2009) review maximum likelihood methods for reconstruction of distorted images, and,

in their Section 5.2 on deconvolution using sparse representation, these authors note the pop-

ularity of assuming an additive Gaussian white noise model for transformed data. However, it

is not known in advance whether this transformation is appropriate for a given image. If the

transformation is inappropriate, then we can expect the Gaussian white noise model to also

be inappropriate. The purpose of this paper is to help in answering some of these questions,

which could be considered as goodness-of-fit hypotheses of specified error distributions.

Problems of this type have found considerable interest in direct regression models (this is the

case where K is an identity operator and only θ appears in (1.1)) [see Darling (1955), Sukhatme

(1972) or Durbin (1973) for some early works or del Barrio et al. (2000) and Khmaladze and

Koul (2004) for more recent references]. However, to the best of our knowledge the important

case of testing distributional assumptions regarding the error structure of an indirect regression

model of the form (1.1) has not been considered so far. We address this problem by proposing a

test, which is based on the empirical distribution function of the standardized residuals from an

estimate of the regression function. The method is based on a projection principle introduced

in the seminal papers of Khmaladze (1981, 1988). This projection is also called the Khmaladze

transformation and it has been well-studied in the literature. Exemplarily, we mention the work

of Marzec and Marzec (1997), Stute et al. (1998), Khmaladze and Koul (2004, 2009), Haywood

and Khmaladze (2008), Dette and Hetzler (2009), Koul and Song (2010), Müller et al. (2012),

and Can et al. (2015), who use the Khmaladze transform to construct goodness-fit-tests for

various problems. The work which is most similar in spirit to our work is the paper of Koul et

al. (2018), who consider a similar problem in linear measurement error models.

We prefer the projection approach because there is a common asymptotic distribution de-

scribing the large sample behavior of the test statistics (without unknown parameters to be

estimated) and the procedure can be easily adapted to handle different problems. To obtain a

better understanding of projection principles as they relate to forming model checks, we direct

the reader to consider the rather elaborate work of Bickel et al. (2006), who introduce a general

framework for constructing tests of general semiparametric hypotheses that can be tailored

to focus substantial power on important alternatives. These authors investigate a so-called

score process obtained by a projection principle. Unfortunately, the resulting test statistics

are generally not asymptotically distribution free, i.e. the asymptotic distributions of these test
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statistics generally depend on unknown parameters and inference using them becomes more

complicated. The Khmaladze transform is simpler to specify and easily employed in regression

problems, since test statistics obtained from the transformation are asymptotically distribution

free with (asymptotic) quantiles immediately available.

The article is organized as follows. A brief discussion of Sobolev spaces and their appearance

in statistical deconvolution problems is given in Section 2. In this section we further propose an

estimator of the indirect regression function and study its statistical properties. The proposed

test statistic is introduced in Section 3. Finally, Section 4 concludes the article with a numerical

study of the proposed testing procedure and an application. The technical details and proofs

of our results can be found in Section 5.

2. Estimating smooth indirect regressions

Consider the model (1.1) with the operator K specifying convolution between an unknown

but smooth function θ and a known distortion function ψ that characterizes K, i.e.

(2.1)
[
Kθ
]
(Xj) =

∫
C

θ(u)ψ(Xj − u) du.

Here the covariates Xj are random and have support C = [0, 1]m for some m ≥ 1. The model

errors ε1, . . . , εn are assumed to be independent with mean zero and common distribution

function F admitting a Lebesgue density function, which is denoted by f throughout this

paper. We also assume that ε1, . . . , εn are independent of the i.i.d. covariates X1, . . . , Xn.

Throughout this article we will assume that the indirect regression function θ from (1.1) is

periodic and smooth in the sense that θ belongs to the subspace of periodic, weakly differentiable

functions from the class of square integrable functions L2(C ) with support C ; see Chapter 5

of Evans (2010) for definitions and additional discussion. For d ∈ N let I(d) be the set of

multi-indices i = (i1, . . . , im) satisfying i• = i1 + · · · + im ≤ d. To be precise, we will call

a function q ∈ L2(C ) weakly differentiable in L2(C ) of order d when there is a collection of

functions {q(i) ∈ L2(C )}i∈I(d) such that∫
C

q(u)Diϕ(u) du = (−1)i•
∫

C

q(i)(u)ϕ(u) du, i ∈ I(d),

for every infinitely differentiable function ϕ, with ϕ and Diϕ, i ∈ I(d), vanishing at the bound-

ary of C and writing

Diϕ(x) =
∂i•

∂xi11 . . . ∂x
im
m

ϕ(x), x ∈ C .

The class of weakly differentiable functions from L2(C ) of order d forms the Sobolev space

Wd,2(C ) =

{
q ∈ L2(C ) : q(i) ∈ L2(C ), i ∈ I(d)

}
.

The periodic Sobolev space Wd,2
per are those functions from Wd,2 that are periodic on C and

whose weak derivatives are also periodic on C . An orthonormal basis for the space L2(C )

of square integrable functions is given by the Fourier basis {ei2πk·x : x ∈ C }k∈Zm . Here
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k·x = k1x1+· · ·+kmxm is the common inner product between the vectors k = (k1, . . . , km) ∈ Zm

and x = (x1, . . . , xm) ∈ C . It follows that Wd,2
per can be equivalently represented by

Wd,2
per =

{
q ∈ Wd,2(C ) :

∑
k∈Zm

(
1 + ‖k‖2

)d|%(k)|2 <∞
}
,

where ‖ · ‖ denotes the Euclidean norm and

%(k) =

∫
C

q(x)e−i2πk·x dx, k ∈ Zm

are the Fourier coefficients of q [see Kühn et al. (2014) for further discussion]. The series in

the equivalent representation of Wd,2
per motivates replacing the degree of weak differentiability

d by a real-valued smoothness index s > 0. Throughout this article we work with the general

indirect regression model space M(s) defined as

(2.2) M(s) =

{
q ∈ Ws,2

per :
∑
k∈Zm

‖k‖s||%(k)| <∞
}
.

We will assume that θ ∈ M(s0), for some s0 specified below, and that ψ ∈ L2(C ) such that

ψ is positive-valued and integrates to 1 so that K is a convolution operator from L2(C ) into

L2(C ). In this case we can represent Kθ in terms of a Fourier series

(2.3) Kθ(x) =
∑
k∈Zm

R(k) exp
(
i2πk · x

)
=
∑
k∈Zm

Ψ(k)Θ(k) exp
(
i2πk · x

)
, x ∈ C ,

where {R(k)}k∈Zm and {Θ(k)}k∈Zm are the Fourier coefficients of Kθ and θ, respectively. In

particular we have

(2.4) Θ(k) =
R(k)

Ψ(k)
for all k ∈ Zm.

Studying the indirect regression model (1.1) requires that we consider the ill-posedness of

the inverse problem. This phenomenon occurs because the ratio |R(k)|/|Ψ(k)| needs to be

summable when θ ∈M(s). However, when estimated Fourier coefficients {R̂(k)}k∈Zm are used

|R̂(k)| does not asymptotically vanish (with increasing ‖k‖) due to the stochastic noise from the

errors εj in model (1.1). Consequently, the ratio |R̂(k)|/|Ψ(k)| is not necessarily summable,

and this problem is therefore called ill-posed. We can see that the coefficients {Ψ(k)}k∈Zm

determine the rate at which the ratio |R̂(k)|/|Ψ(k)| expands, and, therefore, the ill–posedness

of the inverse problem here is given by the rate of decay in the coefficients {Ψ(k)}k∈Zm of the

distortion function ψ. We will assume that the inverse problem is mildly to moderately ill-posed

in the sense of Fan (1991):

Assumption 1. There are finite constants b ≥ 0, γ > 0 and 0 ≤ CΨ < C∗Ψ such that,

for every ‖k‖ > γ, the Fourier coefficients {Ψ(k)}k∈Zm of the function ψ in (2.1) satisfy

CΨ ≤ ‖k‖b|Ψ(k)| < C∗Ψ.
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Under Assumption 1, whenever θ ∈M(s0), for some s0 > 0, it follows that Kθ ∈M(s0 + b)

from the celebrated convolution theorem for the Fourier transformation. This means that

convolution of the indirect regression θ with the distortion function ψ adds smoothness, and

the resulting distorted regression function Kθ is now smoother than θ by exactly the degree

of ill-posedness b of the inverse problem. Note that Assumption 1 is milder than that of Fan

(1991) in the sense that we allow the degree of ill-posedness b = 0 and that the scaled Fourier

coefficients can vanish. This covers the case of direct regression models where K is the identity

operator, that is Kθ = θ. Further note that we do not have to invert the operator K in order

to investigate properties of the error distribution in the indirect regression model (1.1).

Several techniques have been developed in the literature to derive series-type estimators

(see, for example, Cavalier, 2008). A popular regularization method to employ is the so-called

spectral cut-off method, where an indicator function is introduced in (2.3). For example, the

indicator function 1[‖cnk‖ ≤ 1] (for some sequence {cn}n≥1 converging to 0) results in a biased

version of Kθ:

(Kθ)n(x) =
∑

k∈Zm : ‖k‖≤c−1
n

R(k) exp
(
i2πk · x), x ∈ C .

The proposed estimator is obtained by replacing the coefficients {R(k)}k∈Zm with consistent

estimators {R̂(k)}k∈Zm , which gives∑
k∈Zm : ‖k‖≤c−1

n

R̂(k) exp
(
i2πk · x

)
, x ∈ C ,

as an estimator of (Kθ)n. The sequence of smoothing parameters {cn}n≥1 is chosen such that

Kθ is consistently estimated. We can generalize this approach as follows.

Following Politis and Romano (1999) we consider a Fourier smoothing kernel Λ, where Λ

is defined to be the Fourier transformation of some smoothing kernel function, say LΛ. The

resulting estimate is then defined by

(2.5) K̂θ(x) =
∑
k∈Zm

Λ(cnk)R̂(k) exp
(
i2πk · x

)
, x ∈ C .

Another useful observation that Politis and Romano (1999) make is the function x 7→ c−mn LΛ(c−1
n x)

has Fourier coefficients {Λ(cnk)}k∈Zm . Throughout this paper we will choose Λ as follows:

Assumption 2. The Fourier smoothing kernel Λ satisfies Λ(k) = 1, for ‖k‖ ≤ 1, |Λ(k)| ≤ 1,

for ‖k‖ > 1, and
∫
Rm ‖u‖|Λ(u)| du <∞.

The random covariates X1, . . . , Xn from model (1.1) are assumed to be independent with

distribution function G. For simplicity we will assume that G satisfies the following properties.

Assumption 3. Let the covariate distribution function G admit a positive Lebesgue density

function g ∈ L2(C ) satisfying infx∈C g(x) > 0, supx∈C g(x) < ∞ and that g ∈ M(s) for some

s > 0.
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The boundedness assumptions taken for g are common in nonparametric regression because

these conditions guarantee good performance of nonparametric function estimators. The last

condition ensures that the density function g satisfies similar smoothness properties as the

indirect regression function θ, which allows us to use a Fourier series technique to specify a

good estimator of g (see, for example, Politis and Romano, 1999).

What remains is to define the estimates {R̂(k)}k∈Zm of the Fourier coefficients {R(k)}k∈Zm

required in the definition (2.5). Observing the representation

R(k) =

∫
C

[
Kθ
]
(x)e−i2πk·x dx = E

[
Y

g(X)
e−i2πk·X

]
, k ∈ Zm,

the covariate density function g must be estimated. For this purpose we the expand the

density function g into its Fourier series using the coefficients {φg(k)}k∈Zm , with φg(k) =

E[exp(−i2πk ·X)]. Estimators of these coefficients are given by

φ̂g(k) =
1

n

n∑
j=1

e−i2πk·Xj , k ∈ Zm.

From these estimators we then obtain an estimator ĝ of the unknown covariate density function

g, that is

(2.6) ĝ(x) =
1

n

n∑
j=1

Wcn

(
x−Xj

)
, x ∈ C ,

with smoothing weights

(2.7) Wcn

(
x−Xj

)
=
∑
k∈Zm

Λ(cnk) exp
{
i2πk ·

(
x−Xj

)}
.

Here (as before) the choice of Λ defines the form of the smoothing weights Wcn . The sequence

{cn}n≥1 of smoothing parameters is specified later.

We now propose to estimate the Fourier coefficients {R(k)}k∈Zm of the distorted regression

function Kθ by

R̂(k) =
1

n

n∑
j=1

Yj
ĝ(Xj)

e−i2πk·Xj , k ∈ Zm,

where the density estimator ĝ is specified in (2.6). This gives for the nonparametric Fourier

series estimator in (2.5) the representation

(2.8) K̂θ(x) =
∑
k∈Zm

Λ(cnk)R̂(k)ei2πk·x =
1

n

n∑
j=1

Yj
ĝ(Xj)

Wcn

(
x−Xj

)
, x ∈ C ,

where the smoothing weights Wcn are defined in (2.7).

The results of Lemma 2 in Section 5 show that the consistency of the estimated Fourier coef-

ficients {R̂(k)}k∈Zm is heavily dependent on the consistency of the covariate density estimator

ĝ. This fact motivates our choice of smoothing parameters as

(2.9) cn = O
(
n−1/(2s0+2b+3m) log1/(2s0+2b+3m)(n)

)
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and requiring that the covariate density function g has a smoothness index s = s0 + b + m in

Assumption 3, where s0 is the smoothness index of the function classM(s0) to which θ belongs,

b is the degree of ill-posedness of the inverse problem and m is the dimension of the covariates.

Our first result result establishes the uniform consistency of the estimator K̂θ in (2.5) and a

further technical metric space inclusion property that is useful for working with residual-based

empirical processes.

Theorem 1. Let θ ∈ M(s0) for some s0 > 0 and let Assumption 1 hold for some degree of

ill-posedness b ≥ 0. Let Assumption 2 hold for a Fourier smoothing kernel Λ that satisfies∫
Rm ‖u‖max{s0+b,1}|Λ(u)| du <∞. Further let Assumption 3 hold for s = s0 +b+m and assume

that the errors ε1, . . . , εn have a finite absolute moment of order κ > 2. Choose the smoothing

parameter cn as in (2.9). Then

sup
x∈C

∣∣∣K̂θ(x)−Kθ(x)
∣∣∣ = O

(
n−(s0+b)/(2s0+2b+3m) log(s0+b)/(2s0+2b+3m)(n)

)
, a.s.,

and

K̂θ −Kθ ∈M1(s0 + b), a.s.,

where M1(s0 + b) is the unit ball of the metric space (M(s0 + b), ‖ · ‖∞).

3. Goodness-of-fit testing the error distribution

In this section we consider the problem of goodness-of-fit testing of a location-scale distribu-

tion of the errors in the indirect regression model (1.1) with convolution operator (2.1). Here

the location parameter is the mean of the errors and equal to zero, but the scale parameter is

unknown. The null hypothesis is given by

(3.1) H0 : ∃σ > 0 : f(t) =
1

σ
f∗

(
t

σ

)
, t ∈ R,

where f∗ is a specified density function of the standardized error distribution and σ is the

unknown scale parameter. To simplify notation we write fσ for the density function of the

standardized errors Zj = εj/σ (j = 1, . . . , n) and Fσ(t) =
∫ t
−∞ fσ(y) dy (t ∈ R) for the cor-

responding distribution function. With this notation the null hypothesis in (3.1) becomes

H0 : fσ = f∗ for some σ > 0. Equivalently, we can write H0 : Fσ = F∗ for some σ > 0 by

writing F∗(t) =
∫ t
−∞ f∗(y) dy (t ∈ R) for the error distribution function specified by the null

hypothesis.

Following Müller et al. (2012), who consider a similar problem in the direct case, we propose

to use the standardized residuals

Ẑj =
ε̂j
σ̂
, j = 1, . . . , n,
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to form a suitable test statistic, where ε̂j = Yj − K̂θ(Xj) (j = 1, . . . , n) are the residuals in the

indirect regression model (1.1) obtained for the estimate (2.8) and

σ̂ =

{
1

n

n∑
j=1

ε̂2
j

}1/2

is a consistent estimator of the scale parameter σ. A nonparametric estimator of F∗ is given by

the empirical distribution function of these standardized residuals,

F̂(t) =
1

n

n∑
j=1

1
[
Ẑj ≤ t

]
, t ∈ R.

The null hypothesis H0 is then rejected if a given metric between the estimated standardized

distribution function F̂ and F∗ is large enough. A popular metric in the literature is the

supremum metric, and this leads to the Kolmogorov-Smirnov test statistic:

sup
t∈R

∣∣∣F̂(t)− F∗(t)
∣∣∣.

Critical values for the Kolmogorov-Smirnov test statistic are then determined from asymptotic

theory, but these can be difficult to work with in practice because they depend on F∗. To avoid

this problem, we will work with a different test statistic.

Our proposed test statistic will crucially depend on the estimator F̂ satisfying an asymptotic

expansion, which is given in the following result.

Theorem 2. Let the assumptions of Theorem 1 hold, with s0 + b > 3m/2 and assume that

the Fourier smoothing kernel Λ is radially symmetric. Let F∗ have a finite absolute moment of

order 4 or larger and a bounded Lebesgue density f∗ that is (uniformly) Hölder continuous with

exponent 3m/(2s0 + 2b) < γ ≤ 1. Finally, the function t 7→ tf∗(t) is assumed to be uniformly

continuous and bounded. Then under the null hypothesis (3.1)

F̂(t)− F∗(t) =
1

n

n∑
j=1

{
1[Zj ≤ t]− F∗(t) + f∗(t)

(
Zj + t

Z2
j − 1

2

)}
+Dn(t), t ∈ R,

with supt∈R |Dn(t)| = oP (n−1/2).

Remark 1. A direct consequence of Theorem 2 is that, under the null hypothesis (3.1), the

stochastic process {
√
n(F̂(t) − F∗(t))}t∈R weakly converges in the space `∞([−∞, ∞]) to a

Gaussian process, which is also the weak limit of the stochastic process{
1√
n

n∑
j=1

{
1[Zj ≤ t]− F∗(t) + f∗(t)

(
Zj + t

Z2
j − 1

2

)}}
t∈R
.

This limit distribution can be easily simulated. However, it is clearly not distribution free

because it depends on F∗ and f∗ specified in the null hypothesis.
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In order to obtain a test statistic whose critical values are independent from the distribution

specified in the null hypothesis, we use a particular projection of the residual-based empirical

process by viewing this quantity as an (approximate) semimartingale with respect to its natural

filtration. The projection is given by the Doob-Meyer decomposition of this semimartingale

(see page 1012 of Khmaladze and Koul, 2004). For this purpose we will assume that F∗ has

finite Fisher information for location and scale, i.e.

(3.2)

∫ ∞
−∞

(
1 + t2

)(f ′∗(t)
f∗(t)

)2

F∗(dt) <∞,

writing f ′∗ for the derivative of the Lebesgue density f∗.

The Khmaladze transformation produces a standard limiting distribution: a standard Brow-

nian motion on [0, 1], and as a consequence we can construct test statistics which are asymp-

totically distribution free, i.e. the corresponding critical values do not depend on F∗ specified

by the null hypothesis.

To be precise, note that F∗ characteristically has mean zero and variance equal to one. In

order to introduce our test statistic we define the augmented score function

h(t) = (1,−f ′∗(t)/f∗(t),−(tf∗(t))
′/f∗(t))

T

and the incomplete information matrix

(3.3) Γ(t) =

∫ ∞
t

h(u)h(u)T F∗(du), t ∈ R.

Following Khmaladze and Koul (2009) the transformed empirical process of standardized resid-

uals is given by

ξ̂0(t) = n1/2

{
F̂(t)−

∫ t

−∞
hT (y)Γ−1(y)

∫ ∞
y

h(z)F̂(dz)F∗(dy)

}
, −∞ < t ≤ t0,

for some t0 <∞. We can rewrite ξ̂0 in a more computationally friendly form, i.e.

ξ̂0(t) = n1/2

{
F̂(t)− 1

n

n∑
j=1

G0

(
t ∧ Ẑj

)
h
(
Ẑj
)}
, −∞ < t ≤ t0,

where

G0(t) =

∫ t

−∞
hT (y)Γ−1(y)F∗(dy), −∞ < t ≤ t0.

Under the null hypothesis (3.1) ξ̂0 weakly converges in the space `∞([−∞, t0]) to B(F∗), writing

B for the standard Brownian motion.

In general, the incomplete information matrix Γ does not have a simple form, and Γ(t0)

degenerates as t0 → ∞. To avoid this degeneracy issue we proceed as in Stute et al. (1998),

who recommend using the 99% quantile from the empirical distribution function F̂ for t0, i.e.

t0 = F̂−1(0.99) writing F̂−1 for the sample quantile function associated with F̂. We propose to
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base a goodness-of-fit test for the hypothesis (3.1) on the supremum metric between ξ̂0/(F̂(t0))1/2

and the constant 0:

(3.4) T0 = sup
−∞<t≤t0

∣∣∣∣ ξ̂0(t)

(F̂(t0))1/2

∣∣∣∣ = sup
−∞<t≤t0

∣∣∣∣ ξ̂0(t)

0.995

∣∣∣∣.
The test statistic T0 has an asymptotic distribution given by sup0≤s≤1 |B(s)| under the null

hypothesis (3.1).

Our proposed goodness-of-fit test for the null hypothesis (3.1) is then defined by

(3.5) Reject H0 when T0 > qα,

where qα is the upper α-quantile of the distribution of sup0≤s≤1 |B(s)|. The value of qα may be

obtained from formula (7) on page 34 of Shorack and Wellner (1986), i.e.

P

(
sup

0≤s≤1

∣∣B(s)
∣∣ > qα

)
= 1− 4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
− (2k + 1)2π2

8q2
α

)
, α < 1.

For a 5%-level test, α = 0.05 and q0.05 is approximately 2.2414.

4. Finite sample properties

We conclude the article with a numerical study of the previous results with two examples

and an application of the proposed test. Throughout this section we consider a goodness-of-fit

test for normally distributed errors in the indirect regression model (1.1), i.e.

H0 : Fσ = Φ for some σ > 0.

Note that in this case a straightforward calculation shows that the augmented score function

h and the incomplete information matrix Γ from (3.3) become particularly simple, that is

h(t) = (1, t, t2 − 1)T and

Γ(t) =

1− Φ(t) φ(t) tφ(t)

φ(t) 1− Φ(t) + tφ(t) (t2 + 1)φ(t)

tφ(t) (t2 + 1)φ(t) 2(1− Φ(t)) + (t3 + t)φ(t)

 , t ∈ R,

writing Φ and φ for the respective distribution and density functions of the standard normal

distribution.

4.1. Simulation study. In the first example we generate independent bivariate covariates

Xj = (X1,j, X2,j)
T with independent and identically distributed components X1,j and X2,j

(j = 1, . . . , n) as follows. The common distribution of X1,j and X2,j is characterized by the

density function g(x1, x2) = g1(x1)g1(x2) ((x1, x2)T ∈ [0, 1]2), which is depicted in the left

panel of Figure 1, where

g1(x) = 1−
√

2

4
cos(2πx)−

√
2

8
cos(4πx), x ∈ [0, 1].

One can easily verify that g is a probability density function and satisfies the requirements of

Assumption 3 for any s > 0. The random sample of covariatesX1, . . . , Xn is then generated from
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X1

X
2

g

(a)

X1

X
2

theta

(b)

X1

X
2

K
_theta

(c)

Figure 1. Perspective plots of (a) the density function g, (b) the indirect regres-

sion function θ and (c) the distorted regression function Kθ.

the distribution characterized by the non-trivial density function g using a standard probability

integral transform approach. In the second example we use independently, uniformly distributed

covariates in the unit square [0, 1]2.

The distortion function ψ is taken as the product of two (normalized) Laplace density func-

tions restricted to the interval [0, 1], each with mean 1/2 and scale 1/10. For greater trans-

parency, the Fourier coefficients of the distortion function ψ are

Ψ(k) =

(
(−1)|k1| − exp(−5)

)(
(−1)|k2| − exp(−5)

)
(1 + 4π2k2

1/102)(1 + 4π2k2
2/102)(1− exp(−5))2

, k = (k1, k2)T ∈ Z2.

This choice indeed satisfies Assumption 1 with b = 2. When nonparametric smoothing is

performed we work with the radially symmetric spectral cutting kernel characterized by the

Fourier coefficient function Λ(cnk) = 1[‖cnk‖ ≤ 1], k ∈ Z2, with smoothing parameter cn chosen

by minimizing the leave-one-out cross-validated estimate of the mean squared prediction error

(see, for example, Härdle and Marron, 1985). This choice is practical, simple to implement and

performed well in our study.

The indirect regression function is given by

θ(x1, x2) = 5 + cos(2πx1) +
3

2
cos(2πx2) +

3

2
cos(4πx1)

− 2 cos(4πx2)− 2 cos
(
2π(x1 + x2)

)
− 1

2
cos
(
2π(x1 − x2)

)
for (x1, x2)T ∈ [0, 1]2. This is easily seen to belong to M(s0) for any s0 > 0. Following the

previous discussion, the distorted regression Kθ belongs to M(s0 + 2) for any s0 > 0. In

the middle and right panels of Figure 1 we display the indirect regression function θ and the

distorted regression function Kθ.

We considered four scenarios: normally distributed errors with standard deviation σ = 1/2;

Laplace distributed errors with scale parameter σ = 1/2; centered, skew-normal errors with

scale parameter σ = 1 and skew parameter α = 3 (standard deviation is 0.2265); Student’s
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F

n
100 200 300 500

Normal 0.048 0.098 0.072 0.052

Laplace 0.209 0.488 0.713 0.914

Skew-normal 0.136 0.388 0.577 0.828

Student’s t 0.211 0.401 0.586 0.786

Table 1. Simulated power of the goodness-of-fit test (3.5) for normally dis-

tributed errors at the 5% level with sample sizes 100, 200, 300 and 500 and with

covariates having non-trivial distribution characterized by the density function

g. The first row corresponds to N(0, (1/2)2) distributed errors. The remaining

rows display the powers of the test under the fixed alternative error distributions:

Laplace with scale parameter σ = 1/2; centered, skew-normal with scale parame-

ter σ = 1 and skew parameter α = 3; Student’s t with ν = 6 degrees of freedom.

F

n
100 200 300 500

Normal 0.039 0.033 0.032 0.048

Laplace 0.318 0.679 0.872 0.979

Skew-normal 0.226 0.558 0.740 0.943

Student’s t 0.270 0.469 0.640 0.815

Table 2. Simulated power of the goodness-of-fit test (3.5) for normally dis-

tributed errors at the 5% level with sample sizes 100, 200, 300 and 500 and with

covariates independently, uniformly distributed in [0, 1]2. The first row corre-

sponds to N(0, (1/2)2) distributed errors. The remaining rows display the powers

of the test under the fixed alternative error distributions: Laplace with scale pa-

rameter σ = 1/2; centered, skew-normal with scale parameter σ = 1 and skew

parameter α = 3; Student’s t with ν = 6 degrees of freedom.

t distributed errors with ν = 6 degrees of freedom (standard deviation is 1.2247). The first

scenario allows us to check the level of the proposed test statistic T0, and the other three

scenarios allow for observing the simulated powers of the proposed test. Here we work with a

5%-level test, and the quantile q0.05 is then 2.2414.

We perform 1000 simulation runs of samples of sizes 100, 200, 300 and 500. Table 1 displays

the results for the first example (when the covariates have the non-trivial distribution charac-

terized by the density function g) and Table 2 displays the results for the second example (when

the covariates are independently, uniformly distributed in the unit square [0, 1]2). Beginning

with the first example, at the sample size 100 the test rejected the null hypothesis in 4.8% of the
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cases (near the desired 5%) but at the sample sizes 200 and 300 the test respectively rejected

the null hypothesis in 9.8% and in 7.2% of the cases, which are both above the desired 5%

nominal level. However, at the sample size 500 the test rejected the null hypothesis in 5.2% of

the cases, which is (again) near the desired nominal level of 5%. We expect that this behavior

is due to the data-driven smoothing parameter selection. Interestingly, in the second example

the test is slightly conservative at all of the simulated sample sizes (e.g. rejecting 3.2% of the

cases at sample size 300), but with sample size 500 the test rejected the null hypothesis in 4.8%

of the cases (near the nominal level of 5%), which coincides with the first example.

Turning our attention now to the power of the test, in the first example, we can see that

the test performs well for moderate and larger sample sizes. At the sample size 100 the test

respectively rejected the alternative error distributions Laplace, skew-normal and Student’s t

in only 20.9%, 13.6% and 21.1% of the cases, but at the sample size 500 the test respectively

rejected the alternative distributions in 91.4%, 82.8% and 78.6% of the cases. In the second

example, we can see that the power of test dramatically improves with smaller sample sizes

(rejecting the alternative distributions in 31.8%, 22.6% and 27% of the cases at sample size

100) with less improvement at larger sample sizes (rejecting the alternative distributions in

97.9%, 94.3% and 81.5% of the cases at the sample size 500). In conclusion it appears that the

proposed test statistic T0 is an effective tool for testing the goodness-of-fit of a desired error

distribution in indirect regression models.

4.2. An application to image reconstruction. Here we illustrate an application of the

previous results using the HeLa dataset investigated in Bissantz et al. (2009) and more recently

by Bissantz et al. (2016). This data composes an image of living HeLa cells obtained using a

standard confocal laser scanning microscope and consists of intensity measurements (numbered

values 0, . . . , 255) on 512 × 512 pixels giving a total of 262144 observations, see Figure 2.

As noted on page 41 of Bissantz et al. (2009), these image data are (approximately) Poisson

distributed. We therefore apply the Anscombe transformation Y 7→ 2(Y + 3/8)1/2 to obtain

approximately normally distributed data, and then apply the test (3.5) to check the assumption

of normally distributed errors (at the 5% level) from a reconstruction of this image using the

previously studied results. We use the computing language R with the package OpenImageR,

which allows for reading the image data and conducting our analysis.

Since the total number of observations is quite large, we rather illustrate the test for normal

errors using two smaller sections of the original HeLa image. To display the reconstructions of

the smaller images (for visual comparison with the original data) we apply the inverse of the

Anscombe transformation to the fitted values of each regression. In both examples, the pixels

are mapped to midpoints of appropriate grids of the unit square [0, 1]2. The first image we

consider is 32×32 pixels composing 1024 observations and is displayed in Figure 3 alongside its

reconstructed version and a normal QQ-plot of the resulting standardized regression residuals

(see Section 3). The second image we consider is 64 × 64 pixels composing 4096 observations

and is displayed in Figure 4 alongside its reconstructed version and a normal QQ-plot of the



14 J. CHOWN, N. BISSANTZ AND H. DETTE

Figure 2. HeLa image data rendered in grayscale.
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Figure 3. From left to right: 32 × 32 pixel section of the HeLa image data

rendered in grayscale, its reconstructed version (grayscale), a normal QQ-plot of

the resulting standardized regression residuals.

resulting standardized regression residuals. In both cases, as in Section 4.1, when nonparametric

smoothing is applied the smoothing parameter is chosen by minimizing the leave-one-out cross-

validated estimate of the mean squared prediction error.

Beginning with the first and smaller image, the martingale transform test statistic T0 that

assesses the goodness-of-fit of a normal distribution has value 1.5141, which is smaller than

2.2414, and the null hypothesis of normally distributed errors is not rejected. Inspecting the QQ-

plot of these standardized residuals it appears that the assumption of normally distributed errors

is appropriate, which confirms our previous finding. In this case, we can see the reconstruction

very closely mirrors the original.

Turning now to the second and larger image, the value of the test statistic is 39.8324, which

is much larger than 2.2414, and we reject the null hypothesis of normally distributed errors.

The QQ-plot of the standardized residuals now appears to contain systematic deviation from
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Figure 4. From left to right: 64 × 64 pixel section of the HeLa image data

rendered in grayscale, its reconstructed version (grayscale), a normal QQ-plot of

the resulting standardized regression residuals.

normality, which confirms that the hypothesis of the normally distributed errors is inappro-

priate. Here we can see the reconstruction is now not as accurate as it was for the previous

case. In conclusion, we can see the approach of using the proposed test statistic T0 for assessing

convenient forms of the error distribution is useful.
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5. Appendix

In this section we give the technical details supporting our results. We have the following

uniform convergence property for the density estimator ĝ.

Lemma 1. Let the Fourier smoothing kernel Λ be as in Assumption 2, and let Assump-

tion 3 hold with s > 0. Then, for any smoothing parameter sequence {cn}n≥1 satisfying

(ncmn )−1 log(n)→ 0 as cn → 0 with n→∞,

(5.1) sup
x∈C

∣∣∣ĝ(x)− g(x)
∣∣∣ = O

(
csn + (ncmn )−1/2 log1/2(n)

)
, a.s.

Proof. Write

E
[
ĝ(x)

]
− g(x) =

∑
k∈Zm

{
Λ(cnk)− 1

}
φg(k)ei2πk·x, x ∈ C ,

(and note that |Λ(cnk)− 1| = 0 whenever ‖k‖ ≤ c−1
n ) to see that

sup
x∈C

∣∣∣E[ĝ(x)
]
− g(x)

∣∣∣ ≤ 2csn
∑
k∈Zm

‖k‖s|φg(k)| = O
(
csn
)
.
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Using the representation LΛ(x) =
∑

k∈Zm Λ(k)ei2πk·x and the fact that {Λ(cnk)}k∈Zm are the

Fourier coefficients of the function LΛ(·/cn)/cmn we obtain

ĝ(x)− E
[
ĝ(x)

]
=

1

ncmn

n∑
j=1

{
LΛ

(
x−Xj

cn

)
− E

[
LΛ

(
x−X
cn

)]}
, x ∈ C .

One calculates directly that

(5.2) Var

[
c−mn LΛ

(
x−X
cn

)]
= O

(
c−mn

)
, x ∈ C .

In addition, LΛ is bounded and therefore

(5.3) c−mn sup
x∈C

∣∣∣∣LΛ

(
x−Xj

cn

)
− E

[
LΛ

(
x−X
cn

)]∣∣∣∣ = O
(
c−mn

)
, j = 1, . . . , n.

To continue, let {sn}n≥1 be a sequence of positive real numbers satisfying sn = O(c
m/2+1
n ) =

o(1) and partition C into parts Ci with associated centers xi (i = 1, . . . , O(s−mn )) such that

maxi=1,...,O(s−m
n ) supx∈Ci

‖x − xi‖ ≤ sn. The assertion (5.1) follows from the arguments above

and by additionally showing that maxi=1,...,O(s−m
n ) |ĝ(xi) − E[ĝ(xi)]| = O((ncmn )−1/2 log1/2(n))

and maxi=1,...,O(s−m
n ) supx∈Ci

|ĝ(x)−E[ĝ(x)]− ĝ(xi)+E[ĝ(xi)]| = O((ncmn )−1/2 log1/2(n)), almost

surely.

Combining (5.2) and (5.3) with Bernstein’s inequality (see, for example, Section 2.2.2 of van

der Vaart and Wellner, 1996), one chooses a large enough positive constant C (through the

choice of the quantity O((ncmn )−1/2 log1/2(n))) such that

P

(
max

i=1,...,O(s−m
n )

∣∣ĝ(xi)− E
[
ĝ(xi)

]∣∣ > O
(
(ncmn )−1/2 log1/2(n)

))
≤ O

(
s−mn n−C

)
is summable in n. Since O(s−mn n−C) = O((nCc

m2/2+m
n )−1), this occurs when C > m/2 + 2 and

we have

(5.4) max
i=1,...,O(s−m

n )

∣∣∣ĝ(xi)− E
[
ĝ(xi)

]∣∣∣ = O
(
(ncmn )−1/2 log1/2(n)

)
, a.s.

We will now demonstrate that maxk∈Zm |φ̂g(k)− φg(k)| = O(n−1/2 log1/2(n)), almost surely.

Let k ∈ Zm be arbitrary and write

φ̂g(k)− φg(k) =
1

n

n∑
j=1

{
exp(i2πk ·Xj)− E

[
exp(i2πk ·X)

]}
,

where X is a generic random variable with distribution characterized by the density function g.

The complex exponential functions are bounded in absolute value by 1, and it is easy to verify

that Var[exp(i2πk · X)] ≤ 1. As above, use Bernstein’s inequality choosing a large enough

positive constant C (through the choice of the quantity O(n−1/2 log1/2(n))) to find that

P

(∣∣∣∣ 1n
n∑
j=1

{
exp(i2πk ·Xj)− E

[
exp(i2πk ·X)

]}∣∣∣∣ > O
(
n−1/2 log1/2(n)

))
≤ O

(
n−C

)
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is summable in n. This occurs when C > 1, independent of k. It follows that maxk∈Zm |φ̂g(k)−
φg(k)| = O(n−1/2 log1/2(n)), almost surely.

Further, let Ci be arbitrary. For any x ∈ Ci it follows that

(5.5) ĝ(x)− E
[
ĝ(x)

]
− ĝ(xi) + E

[
ĝ(xi)

]
=
∑
k∈Zm

Λ(cnk)
{
φ̂g(k)− φg(k)

}{
ei2πk·x − ei2πk·xi

}
.

Now use Euler’s formula to write

exp
(
− i2πk · x

)
= cos

(
2πk · x

)
− i sin

(
2πk · x

)
,

and (using that sine and cosine are Lipschitz functions with constant equal to one) derive the

bound

(5.6)
∣∣∣ exp

(
− i2πk · x

)
− exp

(
− i2πk · xi

)∣∣∣ ≤ 23/2π‖k‖‖x− xi‖, x ∈ Ci.

Combining (5.6) with (5.5) there is a positive constant C > 0 such that

max
i=1,...,O(s−m

n )
sup
x∈Ci

∣∣∣ĝ(x)− E[ĝ(x)]− ĝ(xi) + E[ĝ(xi)]
∣∣∣(5.7)

≤ C(cm+1
n )−1 max

k∈Zm

∣∣∣φ̂g(k)− φg(k)
∣∣∣ max
i=1,...,O(s−m

n )
sup
x∈Ci

‖x− xi‖
{
cmn
∑
k∈Zm

‖cnk‖
∣∣Λ(cnk)

∣∣}(5.8)

= O
(
(cm+1
n )−1snn

−1/2 log1/2(n)
)

= O
(
(ncmn )−1/2 log1/2(n)

)
,

almost surely, since cmn
∑

k∈Zm ‖cnk‖|Λ(cnk)| →
∫
Rm ‖u‖|Λ(u)| du <∞ by Assumption 2. �

With the results of Lemma 1 we can state a result on the asymptotic order of the estimated

coefficients {R̂(k)}k∈Zm , which now depend on the density estimator ĝ.

Lemma 2. Let θ ∈M(s0) for some s0 > 0, and assume that the errors ε1, . . . , εn have a finite

absolute moment of order κ > 2. Let the Fourier smoothing kernel Λ be as in Assumption 2, and

let Assumption 3 hold for some s > 0. Choose the sequence of smoothing parameters {cn}n≥1

such that (ncmn )−1 log(n)→ 0 and n−1/2 log1/2(n) = o(csn) with cn → 0 as n→∞. Then

max
k∈Zm

∣∣∣R̂(k)−R(k)
∣∣∣ = O

(
csn + (ncmn )−1/2 log1/2(n)

)
, a.s.

Proof. Let k ∈ Zm be arbitrary and write

R̂(k)−R(k) = T1(k) + T2(k) + T3(k) + T4(k),

with

T1(k) =
1

n

n∑
j=1

{
[Kθ](Xj)

g(Xj)
e−i2πk·Xj − E

[
[Kθ](X)

g(X)
e−i2πk·X

]}
,

T2(k) =
1

n

n∑
j=1

εj
g(Xj)

e−i2πk·Xj ,

T3(k) =
1

n

n∑
j=1

[
Kθ
]
(Xj)

{
ĝ−1(Xj)− g−1(Xj)

}
e−i2πk·Xj
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and

T4(k) =
1

n

n∑
j=1

εj

{
ĝ−1(Xj)− g−1(Xj)

}
e−i2πk·Xj .

Since θ ∈ M(s0) for some s0 > 0, it follows that Kθ is bounded, and a standard argument

shows that maxk∈Zm |T1(k)| is of the order O(n−1/2 log1/2(n)) = o(csn + (ncmn )−1/2 log1/2(n)),

almost surely. Analogously, maxk∈Zm |T2(k)| is of the order o(csn + (ncmn )−1/2 log1/2(n)), al-

most surely. From the result of Lemma 1 we can see that maxk∈Zm |T3(k)| is of the order

O(csn + (ncmn )−1/2 log1/2(n)), almost surely. Finally, with some technical effort one shows that

maxk∈Zm |T4(k)| is of the order o(csn + (ncmn )−1/2 log1/2(n)), almost surely. �

We are now ready to state the proof of Theorem 1.

Proof of Theorem 1. Write

K̂θ(x)−Kθ(x) =
∑
k∈Zm

Λ(cnk)
{
R̂(k)−R(k)

}
ei2πk·x +

∑
k∈Zm

{
Λ(cnk)− 1

}
R(k)ei2πk·x, x ∈ C .

From Lemma 2 and that csn = O((ncmn )−1/2 log1/2(n)) it follows for the first term in the display

above to have the order O(cs−mn ) = O(cs0+b
n ), almost surely, since s = s0 + b + m. The second

term in the same display is not random and easily shown to be of the order O(cs0+b
n ).

The second assertion follows from showing that K̂θ ∈ M(s0 + b) and combining this fact

with the first assertion. The Fourier coefficients of K̂θ are given by

Λ(cnk)R̂(k) = Λ(cnk)R(k) + Λ(cnk)
{
R̂(k)−R(k)

}
, k ∈ Zm,

and we can see that |Λ(cnk)R̂(k)| is bounded by

(5.9) |R(k)|+ max
ξ∈Zm

∣∣∣R̂(ξ)−R(ξ)
∣∣∣|Λ(cnk)|.

Since θ ∈ M(s0) it follows that
∑

k∈Zm ‖k‖s0+b|R(k)| =
∑

k∈Zm ‖k‖b|Ψ(k)|‖k‖s0|Θ(k)| < ∞
and Kθ ∈ M(s0 + b). This means that we only need to show that the series condition in the

definition ofM(s0 + b) is satisfied for the second term in (5.9). This series condition results in

the quantity

max
ξ∈Zm

∣∣∣R̂(ξ)−R(ξ)
∣∣∣ ∑
k∈Zm

‖k‖s0+b|Λ(cnk)|.

We have already used that maxξ∈Zm |R̂(ξ) − R(ξ)| is of the order O(csn), and by choice of

Λ the series in the display above is of the order O(c−s0−b−mn ) as in the proof of Lemma 1.

Combining these findings we can see that the quantity in the display above is of the order

O(cs−s0−b−mn ) = O(1). �

The proof of Theorem 2 follows from the above results with an additional property of the

distorted regression estimator K̂θ and an approximation result for the difference σ̂2 − σ2.
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Proposition 1. Choose the Fourier smoothing kernel Λ to be radially symmetric. Then the

estimator K̂θ enjoys the property that∣∣∣∣ 1n
n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}
− 1

n

n∑
j=1

εj

∣∣∣∣ = 0.

If the assumptions of Theorem 1 are satisfied with s0 + b > 3m/2, then the estimator σ̂ enjoys

the property that ∣∣∣∣σ̂2 − σ2 − 1

n

n∑
j=1

{
ε2
j − σ2

}∣∣∣∣ = o
(
n−1/2

)
, a.s.

Proof. Write

1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}
− 1

n

n∑
j=1

εj =
1

n

n∑
j=1

Yj

{∑n
k=1Wcn(Xk −Xj)∑n
k=1 Wcn(Xj −Xk)

− 1

}
.

Since Λ is radially symmetric, we have thatWcn(Xj−Xk) = Wcn(Xk−Xj) for every 1 ≤ j, k ≤ n.

One combines this fact with the additional fact that |Yj| is finite with probability 1 for each

1 ≤ j ≤ n to finish the proof of the first assertion.

To show the second assertion we need to use the results of Theorem 1 as follows. Write

σ̂2 − σ2 − 1

n

n∑
j=1

{
ε2
j − σ2

}
= R1,n − 2R2,n,

with

R1,n =
1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}2

and

R2,n =
1

n

n∑
j=1

εj

{
K̂θ(Xj)−Kθ(Xj)

}
.

Now combine the first result of Theorem 1 with s0 + b > 3m/2 to find that |Rn,1| = o(n−1/2),

almost surely.

To continue, write

R2,n =
∑
k∈Zm

{
Λ(cnk)− 1

}
R(k)

{
1

n

n∑
j=1

εje
i2πk·Xj

}

+
∑
k∈Zm

{
R̂(k)−R(k)

}
Λ(cnk)

{
1

n

n∑
j=1

εje
i2πk·Xj

}
to see that |R2,n| is bounded by

max
k∈Zm

∣∣∣∣ 1n
n∑
j=1

εje
i2πk·Xj

∣∣∣∣
[

max
k∈Zm

∣∣∣R̂(k)−R(k)
∣∣∣ ∑
k∈Zm

∣∣Λ(cnk)
∣∣+

∑
k∈Zm

∣∣Λ(cnk)− 1
∣∣|R(k)|

]
.
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Analogously to the proof of Lemma 2, one treats maxk∈Zm |n−1
∑n

j=1 εj exp(i2πk · Xj)| using

a standard argument and finds this quantity is of the order O(n−1/2 log1/2(n)), almost surely.

For the quantities inside the large brackets, one uses Lemma 2 and handles the series term

as in the proof of Lemma 1 to show that the first term is of the order O(cs−mn ) = O(cs0+b
n )

(since s = s0 + b+m) and the second term is easily shown to be of the order O(cs0+b
n ) (see the

proof of Lemma 1). Therefore, |R2,n| is of the order O(cs0+b
n n−1/2 log1/2(n)) = o(n−1/2), almost

surely. �

Neumeyer and Van Keilegom (2010) consider estimation of the distribution function of the

standardized errors using a residual-based empirical distribution function based on nonpara-

metric regression residuals obtained by local polynomial smoothing. These authors obtain

asymptotic negligibility of a modulus of continuity relating their residual-based empirical dis-

tribution function to the empirical distribution function of their regression model errors (see

Lemma A.3 in that article). We obtain a similar result for the estimator F̂ (stated as a proposi-

tion below) using analogous arguments to those of Neumeyer and Van Keilegom (2010). These

arguments have been omitted for brevity.

Proposition 2. Let the assumptions of Theorem 1 be satisfied with s0 + b > m. Additionally,

assume that F∗ admits a bounded Lebesgue density f∗ that satisfies supt∈R |tf∗(t)| < ∞. Then

under the null hypothesis H0 in (3.1)

sup
t∈R

∣∣∣∣F̂(t)− 1

n

n∑
j=1

F∗

(
t+

σ̂ − σ
σ

t+
K̂θ(Xj)−Kθ(Xj)

σ

)
− 1

n

n∑
j=1

1[Zj ≤ t] +F∗(t)

∣∣∣∣ = oP (n−1/2).

We are now prepared the state the proof of Theorem 2.

Proof of Theorem 2. We introduce the notation

En(t) =
1

n

n∑
j=1

{
1[Zj ≤ t]− F∗(t) + f∗(t)

(
Zj + t

Z2
j − 1

2

)}
, t ∈ R,

and write

F̂(t)− F∗(t)− En(t) = Mn(t) +Hn(t) + Ln(t) = Dn(t), t ∈ R,

where the remainder term Dn(t) is equal to the sum of

Mn(t) = F̂(t)− 1

n

n∑
j=1

F∗

(
t+

σ̂ − σ
σ

t+
K̂θ(Xj)−Kθ(Xj)

σ

)
− 1

n

n∑
j=1

1[Zj ≤ t] + F∗(t),

Hn(t) =
1

n

n∑
j=1

F∗

(
t+

σ̂ − σ
σ

t+
K̂θ(Xj)−Kθ(Xj)

σ

)
− F∗(t)

− f∗(t)
σ−1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}
− tf∗(t)

σ̂ − σ
σ

,
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and

Ln(t) = f∗(t)

{
σ−1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}
− 1

n

n∑
j=1

Zj

}
+ tf∗(t)

{
σ̂ − σ
σ
− 1

n

n∑
j=1

Z2
j − 1

2

}
.

From Proposition 2 it follows that supt∈R |Mn(t)| = oP (n−1/2). Proposition 1 in combination

with the bounding conditions on f∗ imply that supt∈R |Ln(t)| = oP (n−1/2) (note that Zj = εj/σ,

j = 1, . . . , n).

To show that supt∈R |Hn(t)| = oP (n−1/2) and finish the proof we need to rewrite Hn(t) =

H1,n(t) +H2,n(t) +H3,n(t), with H1,n(t) equal to

σ−1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}∫ 1

0

{
f∗

(
t+
σ̂ − σ
σ

t+
K̂θ(Xj)−Kθ(Xj)

σ
s

)
−f∗

(
t+
σ̂ − σ
σ

t

)}
ds,

H2,n(t) =

{
f∗

(
t+

σ̂ − σ
σ

t

)
− f∗(t)

}
σ−1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}
and

H3,n(t) =
σ̂ − σ
σ

t

∫ 1

0

{
f∗

(
t+

σ̂ − σ
σ

ts

)
− f∗(t)

}
ds.

The Hölder continuity of f∗ guarantees that

sup
t∈R

∣∣H1,n(t)
∣∣ ≤ Cf∗

(1 + γ)σ1+γ
sup
x∈C

∣∣∣K̂θ(x)−Kθ(x)
∣∣∣1+γ

= o
(
n−1/2

)
, a.s.,

from Theorem 1 and that 3m/(2s0 + 2b) < γ ≤ 1, which is oP (n−1/2) and writing Cf∗ for the

Hölder constant associated to f∗. Proposition 1 and the uniform continuity of f∗ imply that

supt∈R |H2,n(t)| = oP (n−1/2). Finally, Proposition 1 and the finite fourth moment assumption

guarantees that σ̂ is a root-n consistent estimator of σ, and combining this fact with the

uniform continuity and boundedness of the function t 7→ tf∗(t) implies that supt∈R |H3,n(t)| =
oP (n−1/2). �
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