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Abstract. Residual-based analysis is generally considered a cornerstone of statistical method-

ology. For a special case of indirect regression, we investigate the residual-based empirical dis-

tribution function and provide a uniform expansion of this estimator, which is also shown to

be asymptotically most precise. This investigation naturally leads to a completely data-driven

technique for selecting a regularization parameter used in our indirect regression function esti-

mator. The resulting methodology is based on a smooth bootstrap of the model residuals. A

simulation study demonstrates the effectiveness of our approach.
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1. Introduction

In many experiments one is only able to make indirect observations of the physical process

being observed. Hence, important quantities that are of interest to the study are not directly

available for statistical inference, but images of these quantities under some transformation such

as a convolution can be used instead. These so–called inverse problems frequently occur, e.g. in

signal detection or biological and medical imaging. A common example is the reconstruction of

astronomical images, where the connection between the true image and the observable image is

at least approximately given by convolution–type operators (see Adorf, 1995 or Bertero et al.,

2009). Another typical example occurs in reconstruction of medical images like those obtained

from Positron Emission Tomography. Here the connection between the true image and the

observations involves the Radon Transform (see Cavalier, 2000).

In this article we consider an inverse regression model, i.e. observing a signal of interest

from indirect observations

(1.1) Yj = r(xj) + εj =
[
Kθ
]
(xj) + εj, j = −n, . . . , n,
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where K is an operator specifying convolution of the true underlying regression θ with a point

spread function ψ, i.e.

[
Kθ
]
(xj) =

∫ 1/2

−1/2

θ(u)ψ(u− xj) du.

The resulting function r can be viewed as a blurred regression function. We will assume that

ψ is known and behaves like a probability density function on the interval [−1/2, 1/2], i.e. ψ is

positive–valued on the interval [−1/2, 1/2] and integrates to one so that K1 = 1. However, we

will only assume that θ is known to be smooth. The covariates xj in model (1.1) are uniformly

distributed design points in the interval [−1/2, 1/2], i.e. xj = j/2n, j = −n, . . . , n. The errors

εj are assumed to be independent, have mean equal to zero and have the common distribution

function F . Note, the assumptions given above only guarantee that model (1.1) is a well–defined

indirect regression model, where θ is identifiable, and later we will require further assumptions

for our results to hold.

Statistical inverse problems have received a great amount of attention on construction of

estimators for various densities and indirect regression models. Masry (1991) constructs an

estimator of a multivariate density function in an errors-in-variables model. Later, Masry (1993)

investigates an estimator of a multivariate regression function in a similar errors-in-variables

model. Mair and Ruymgaart (1996) consider estimates of the indirect regression function using

a regularized inversion technique and show their constructions satisfy minimax optimality.

Politis and Romano (1999) estimate a multivariate density function by introducing the flat-

top kernel approach, and in a highly constrained model they show their technique is root–n

consistent. Cavalier and Tsybakov (2002) consider estimating the indirect regression function

in a heteroskedastic model and find their approach satisfies minimax optimality. Bissantz and

Holzmann (2008) construct confidence intervals and confidence bands for a variety of statistical

inverse problems. Later, Bissantz and Holzmann (2013) investigate similar problems using

spectral regularization. Birke, Bissantz and Holzmann (2010) construct uniform confidence

bands for the indirect regression function in a univariate regression model, and this technique

is extended to the case multiple covariates by Proksch, Bissantz and Dette (2015).

All of these estimators depend on some kind of regularization parameter. This quantity is

similar to the bandwidth in the usual nonparametric function estimators. Data–driven selection

of this parameter is an important problem that we want to more closely examine in this arti-

cle. Popular approaches for choosing this regularization parameter are based on multiscale and

related methods (see, for example, Bissantz, Mair and Munk, 2006, Bissantz, Mair and Munk,

2008, Davies and Meise, 2008, González-Manteiga, Martinez-Miranda and Pérez-González, 2004

and Hotz et al., 2012). From a different perspective, selection of such a parameter can also be

viewed as a model selection problem, where we select the most feasible regression model from

a sequence of regression function estimates generated from a sequence of regularization param-

eters. In the case of iterative estimation procedures this is the problem of finding a stopping

iteration. In this article, we provide a statistical methodology for selecting a best fitting (most
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feasible) regression estimate from a sequence of function estimates based on observations from

model (1.1) using the resulting model residuals.

Many statistical procedures are residual–based, which requires studying the distribution

function F of the model errors, which is in general unknown and must be estimated. We

estimate F using the empirical distribution function of the model residuals:

F̂(t) =
1

2n+ 1

n∑
j=−n

1
[
ε̂j ≤ t

]
=

1

2n+ 1

n∑
j=−n

1
[
Yj −

[
Kθ̂
]
(xj) ≤ t

]
, t ∈ R,

where θ̂ is a suitable estimate of θ, which depends on a regularization parameter. There are

many results in the literature on signal deconvolution problems that motivate our work on θ̂.

In addition, there are many results in the literature on residual–based empirical distribution

functions in direct regression models; for example, consistency and asymptotic optimality.

To the best of our knowledge, very little attention has been paid to the analysis of residuals

from indirect regression modeling. Our work is new in the sense that we show the empirical

distribution function of the residuals F̂ behaves similarly in the indirect regression model as

it does in the usual nonparametric regression model, which has broad implications for the

construction of residual–based tests for indirect regression models. We then use these results

to develop a valid smooth bootstrap technique, which uses the residuals from the indirect

regression model (1.1), to find an optimal regularization parameter for the estimator θ̂.

The article is organized as follows. Some notation and the estimation method are introduced

in Section 2. We present our main results in Section 3, where we characterize the crucial

technical properties of the indirect regression function estimator θ̂ investigated in this paper

and the resulting uniform expansion of the residual–based empirical distribution function F̂.

In Section 3.1, we consider the problem of finding an optimal regularization parameter for

the estimator θ̂. Here we provide a rule-of-thumb approach that is in the spirit of Silverman

(1986). We also develop a data–driven approach for selecting the regularization parameter for

the estimator θ̂ using a smooth bootstrap of the model residuals in the spirit of Neumeyer

(2009). We conclude the article with a numerical study in Section 4, which indicates good

finite sample performance of the proposed regularization. Many of the technical details used in

the proofs of our results are given in Section 5.

2. Estimation in the indirect regression model

Let us begin with the space of square integrable functions L2([−1/2, 1/2]) with domain

[−1/2, 1/2]. This function space has the well known and countable orthonormal basis{
ei2πkx : x ∈ [−1/2, 1/2]

}
k∈Z

.

In order to construct an estimator for the function θ we will need to restrict θ to a smooth class

of functions from L2([−1/2, 1/2]). This means we only consider functions q that are weakly

differentiable in L2([−1/2, 1/2]).
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For clarity, we will now introduce some notation. Let d ∈ N. We will call q(i), 1 ≤ i ≤ d, a

weak derivative of q in L2([−1/2, 1/2]) of order i, if q(i) ∈ L2([−1/2, 1/2]) and q(i) satisfies∫ 1/2

−1/2

q(x)
di

dxi
φ(x) dx = (−1)i

∫ 1/2

−1/2

q(i)(x)φ(x) dx,

for every infinitely differentiable function φ with support [−1/2, 1/2] that have evaluations of φ,

(di
′
φ)/(dxi

′
), i′ = 1, . . . , i, at 1/2 and −1/2 equal to zero. We can define the space of functions

Rd as

Rd =

{
q ∈ L2([−1/2, 1/2]) : q(1), . . . , q(d) ∈ L2([−1/2, 1/2])

}
,

and a norm for these functions is given by

‖q‖2
d =

d∑
i=0

∫ 1/2

−1/2

∣∣q(i)(x)
∣∣2 dx,

writing q(0) for q. Using the Plancherel identity, this norm has an equivalent representation,

for an appropriate constant C > 0,

‖q‖2
d = C

∞∑
k=−∞

(
1 + k2

)d|ρ(k)|2,

where {ρ(k)}k∈Z are the Fourier coefficients of q, i.e.

ρ(k) =

∫ 1/2

−1/2

q(u)e−i2πkudu, k ∈ Z.

Replacing d with a positive real number motivates considering smoothness orders s > 0, where

Rs now becomes a Sobolev space of smoothness s, i.e.

Rs =

{
q ∈ L2([−1/2, 1/2]) :

∞∑
k=−∞

(
1 + k2

)s|ρ(k)|2 <∞
}
.

Note, whenever θ ∈ Rs we have r = Kθ ∈ Rs, and the characteristic series in the definition

of Rs defines a restriction on the Fourier coefficients {R(k)}k∈Z of the blurred regression r, which

are defined similarly to the Fourier coefficients {ρ(k)}k∈Z above. This has particular advantages.

For example, suppose we wanted to check whether or not a specific function belongs to Rs.

Using this norm, we only need to calculate the Fourier coefficients of our function and check

whether or not the series condition in the definition of Rs holds. This is in contrast to Hölder

spaces, where checking whether or not a function belongs to the space is often more difficult

because it typically involves direct calculation of derivatives and proving statements in the

supremum norm.

Much of the research in the area of deconvolution problems has focused into two important

cases. The first case is that of the so–called ordinarily smooth point spread functions, and the

second case is that of the so–called super smooth point spread functions. The first case means

assuming the Fourier coefficients {Ψ(k)}k∈Z of ψ, which are defined similarly to the Fourier
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coefficients {ρ(k)}k∈Z above, decay at a polynomic rate: there are constants b > 0 and CΨ > 0

such that |k|b|Ψ(k)| → CΨ, as |k| → ∞. Under this assumption, we can construct an estimator

θ̂ for θ whose strong uniform consistency rate is comparable, albeit worse, to the rates expected

in the usual nonparametric regression case, and we can show the estimator F̂ is both root–n

consistent for F , uniformly in t ∈ R, and F̂ is asymptotically most precise. While the second

case means assuming the Fourier coefficients {Ψ(k)}k∈Z of ψ decay at an exponential rate: there

are constants b0 ∈ R, b > 0, C > 0 and CΨ > 0 such that |k|−b0 exp(C|k|b)|Ψ(k)| → CΨ, as

|k| → ∞. Under this assumption, the resulting indirect regression estimator has only a strong

uniform consistency rate that is polynomic in the logarithm of n, which we expect is too slow

for us to maintain the root–n consistency of F̂. Throughout this article, we will therefore focus

on the first case of ordinarily smooth point spread functions ψ.

Recall that we use a uniform fixed design on the interval [−1/2, 1/2]. Writing Q for the

conditional distribution of a response Y given a fixed design point x results in the equivalence

Q(y |x) = Px(Y ≤ y), where Px denotes the distribution of Y depending on x, which is not

random. It follows that we can write

(2.1) R(k) =

∫ 1/2

−1/2

∫ ∞
−∞

ye−i2πkxQ(dy |x) dx, k ∈ Z.

The double integral in the right-hand side of (2.1) is an average, and, therefore, we can estimate

it using the empirical average from our data (xj, Yj), j = −n, . . . , n, to obtain

R̂(k) =
1

2n+ 1

n∑
j=−n

Yje
−i2πkxj , k ∈ Z.

To estimate θ defined by the equation r(·) = [Kθ](·), we will make use of the Fourier

coefficients {R(k)}k∈Z of r, which are unknown because θ is not specified, and the Fourier

coefficients {Ψ(k)}k∈Z of ψ, which are known because ψ is specified. Throughout this article,

we will assume {Ψ(k)}k∈Z is bounded away from zero in absolute value on any bounded region

Z ⊂ Z. This implies the Fourier inversion operator involving Ψ−1 is well–behaved (see, for

example, the discussion on preconditioning on page 1425 of Mair and Ruymgaart, 1996). Since

the Fourier transformation reduces convolution to multiplication, we can exploit the Fourier

inversion formula by writing

θ(x) =
∞∑

k=−∞

R(k)

Ψ(k)
ei2πkx, x ∈ [−1/2, 1/2].

To plug–in our estimate R̂ for R, we need to control the random fluctuations that occur at

high frequency spectra, i.e. large values of |k|. Politis and Romano (1999) introduce spectral

smoothing to control these fluctuations in higher frequencies. The idea is to utilize lower

frequencies, where R̂ is well–behaved, and taper down the contributions of higher frequencies,

where R̂ is not well–behaved, by using a regularizing sequence to control the length of the

window of acceptable frequencies based on the amount of data available.
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To continue, we will introduce some notation. Let {hn}n≥1 be a regularizing sequence that

satisfies hn → 0, as n → ∞, and M > 0 is a constant chosen to control the amount of high–

frequency smoothing applied. Now we consider smoothing kernel functions similar to those used

in typical nonparametric function estimators by restricting our choice of smoothing kernel based

on its Fourier transform. We will require our smoothing kernel to have a Fourier transform Λ,

which itself does not depend on hn, that satisfies the representation Λ(hnk) = λ(k), k ∈ Z, for

some function λ, which in general does depend on hn. This representation means we only need

to consider the shrinkage hnk of k. As a consequence, we will also consider the shrinkage of

the Fourier frequency domain Z into hnZ, where hnZ denotes the shrinkage of the integers Z
by hn. We will require that Λ additionally satisfies the following general assumption:

Assumption 1. There is an integer M > 0 specifying the region I = {z ∈ Z : |z| ≤ M}
such that Λ(k) = 1, for k ∈ I, |Λ(k)| ≤ 1, for k /∈ I, and Λ satisfies

∑∞
k=−∞ |k|b|Λ(k)| < ∞,

where b > 0 is a constant.

Note, we will require additional assumptions on Λ to obtain specific rates of convergence.

However, our assumptions are less restrictive than those of Politis and Romano (1999). Since

our rates of convergence are impacted by the ill–posedness of the inverse problem, we only

require Λ to be equal to one in a neighborhood containing the zeroth Fourier frequency. The

additional summability requirements are used to obtain our explicit rates of convergence. For

example, we cannot achieve a bias of the order hsn, when θ ∈ Rs, which is achievable in the

direct estimation setting. Instead, we can only obtain a bias of order hs−bn , where b is the degree

of ill–posedness. However, our formulation has the advantage that it is still comparable to the

so–called “superkernels” that give the order hsn (see, for example, the discussion on page 3 of

Politis and Romano, 1999). The idea of restricting the choice of the smoothing kernel function

based on obtaining a suitable rate of convergence in the estimation bias dates all the way back

to Parzen (1962).

We can then estimate θ using a kernel smoother:

(2.2) θ̂(x) =
∞∑

k=−∞

λ(k)

Ψ(k)
R̂(k)ei2πkx =

1

2n+ 1

n∑
j=−n

YjWj,hn(x), x ∈ [−1/2, 1/2],

where the weights Wj,hn are defined by

Wj,hn(x) =
∞∑

k=−∞

λ(k)

Ψ(k)
ei2πk(x−xj) =

∑
ω∈hnZ

Λ(ω)

Ψ(ω/hn)
exp

(
i2πω

x− xj
hn

)
.

The smoothing kernel Wj,hn is sometimes called a deconvolution kernel (see, for example, Birke,

Bissantz and Holzmann, 2010). In the following section we will investigate the asymptotic

properties of the empirical process from the residuals ε̂j = Yj − Kθ̂(xj) obtained from the

estimator θ̂.

3. Main results

Our first result specifies the asymptotic order of the bias of θ̂ and is proved in Section 5.
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Lemma 1. Let θ ∈ Rs, with s ≥ 1. Assume that 0 < b < s and Cψ > 0 are constants such

that |k|b|Ψ(k)| → CΨ, as |k| → ∞, and Assumption 1 is satisfied for this b. Then, for any

regularizing sequence {hn}n≥1 satisfying hn → 0 and nhbn →∞, as n→∞, we have

sup
x∈[−1/2, 1/2]

∣∣∣E[θ̂(x)
]
− θ(x)

∣∣∣ = O
(
hs−bn + (nhbn)−1

)
.

Next we consider the consistency of θ̂. The asymptotic order of the bias of θ̂ is impacted by

the degree of ill-posedness of the inverse problem, and we will see this detrimental effect in the

asymptotic order of consistency as well. In the following result we give the asymptotic order of

the strong uniform consistency of θ̂, which is also proved in Section 5.

Lemma 2. Let θ ∈ Rs, with s ≥ 1, and suppose there exists 0 < b < s such that |k|b|Ψ(k)| →
CΨ, as |k| → ∞, with CΨ > 0 a constant. Let Assumption 1 hold for this b, with Λ additionally

satisfying
∑∞

k=−∞ |k|b+1|Λ(k)| < ∞. Assume the random variables Y−n, . . . , Yn have a finite

absolute moment of order κ > 2. In addition, let the regularizing sequence {hn}n≥1 satisfy

hn → 0 such that (nh2b
n )−1/2 log1/2(n)→ 0, as n→∞. Then

sup
x∈[−1/2, 1/2]

∣∣∣θ̂(x)− E
[
θ̂(x)

]∣∣∣ = O
((
nh2b

n

)−1/2
log1/2(n)

)
, a.s.

Using the results of Lemma 1 and Lemma 2, we can obtain a uniform rate of conver-

gence of the estimator θ̂ for θ by choosing a regularizing sequence {hn}n≥1 that balances

the asymptotic orders of both the bias and consistency: {hn}n≥1 is chosen to satisfy hs−bn =

O((nh2b
n )−1/2 log1/2(n)). This implies choosing

(3.1) hn = O(n−1/(2s) log1/(2s)(n)),

and we have both nh2b
n → ∞ and (nh2b

n )−1/2 log1/2(n) → 0, as n → ∞. In addition, we have

(nhbn)−1 = o(hs−bn ) so the bias has order O(hs−bn ). We can also see that

(n−(s−b)/(2s) log(s−b)/(2s)(n))1+γ = o(n−1/2)

whenever γ > b/(s−b), and we can restrict 0 < γ ≤ 1 by assuming that s > 2b. In the following

result we give the uniform rate of convergence of θ̂ for θ. The proof is complicated and can be

found in Section 5.

Theorem 1. Let θ ∈ Rs, with s ≥ 1, and suppose there exists 0 < b < s such that

|k|b|Ψ(k)| → CΨ, as |k| → ∞, with CΨ > 0 a constant. Let Assumption 1 hold for this b, with

Λ additionally satisfying
∑∞

k=−∞ |k|b+1|Λ(k)| < ∞. Assume the random variables Y−n, . . . , Yn
have a finite absolute moment of order κ > 2. Finally, let the regularizing sequence {hn}n≥1

satisfy (3.1). Then

sup
x∈[−1/2, 1/2]

∣∣∣θ̂(x)− θ(x)
∣∣∣ = O

(
n−(s−b)/(2s) log(s−b)/(2s)(n)

)
, a.s.

If, additionally, s > 2b, then we have, for every b/(s− b) < γ ≤ 1,[
sup

x∈[−1/2, 1/2]

∣∣∣θ̂(x)− θ(x)
∣∣∣]1+γ

= o(n−1/2), a.s.



8 N. BISSANTZ, J. CHOWN AND H. DETTE

Let τ = max{1, b}. If Λ satisfies
∑∞

k=−∞ |k|s+τ |Λ(k)| <∞, then, for large enough n,

θ̂ − θ ∈ Rs,1, a.s.,

where Rs,1 = {q ∈ Rs : ‖q‖∞ ≤ 1} is the unit ball of the metric space (Rs, ‖ · ‖∞).

The results on θ̂ above guarantee our model residuals are well–behaved so that we can

study the limiting behavior of the empirical distribution function F̂. We arrive at our main

result: the uniform expansion of the residual–based empirical distribution function. The proof

of this result requires further technical arguments. Therefore, we have placed this proof and its

supporting results in Section 5. Also note, the uniform expansion of F̂ implies that F̂ satisfies

a functional central limit theorem.

Theorem 2. Suppose there are constants b > 0 and CΨ > 0 such that |k|b|Ψ(k)| → CΨ,

as |k| → ∞, and Assumption 1 is satisfied for this b. Let θ ∈ Rs, with s > max{2b, 1}. In

addition, let τ = max{1, b} and suppose Λ satisfies
∑∞

k=−∞ |k|s+τ |Λ(k)| < ∞. Assume the

distribution function F admits a bounded Lebesgue density function f that is Hölder continuous

with exponent b/(s − b) < γ ≤ 1, and let ε−n, . . . , εn have a finite absolute moment of order

κ > 2. Finally, let the regularizing sequence {hn}n≥1 satisfy (3.1). Then

sup
t∈R

∣∣∣∣ 1

2n+ 1

n∑
j=−n

{
1
[
ε̂j ≤ t

]
− 1
[
εj ≤ t

]
− εjf(t)

}∣∣∣∣ = op(n
−1/2).

Remark 1. In light of the fact that r(·) = [Kθ](·) is nonparametric because θ is nonpara-

metric, we can see that model (1.1) is a type of nonparametric regression. The estimator F̂ has

influence function 1[ε ≤ t] − F (t) − εf(t). Hence, if we additionally assume that F has finite

Fisher information for location, it follows that F̂ is efficient for estimating F , in the sense of

Hájek and Le Cam, from the results of Müller, Schick and Wefelmeyer (2004).

Remark 2. The set {exp(i2πkx) : x ∈ [−1/2, 1/2]}k∈Z is an orthonormal basis for the

class of functions L2([−1/2, 1/2]) and the design space has unit volume. If either the design

space is a compact set of volume d1 > 0 or the corresponding basis vectors have squared length,

in the corresponding L2–norm, d2 > 0, then the estimator F̂ has influence function equal to

1[ε ≤ t]− d1F (t)− d1d2εf(t), which may no longer be efficient for estimating F . To avoid the

possible inefficiency of this approach, it is recommended to use an affine transformation mapping

the design space into the interval [−1/2, 1/2], where the orthonormal basis {exp(i2πkx) : x ∈
[−1/2, 1/2]}k∈Z can be used in the indirect regression estimator θ̂.

3.1. Asymptotically optimal regularization parameter selection. We now consider

the problem of choosing an appropriate sequence of regularization parameters {hn}n≥1 that

is used in the estimator θ̂. Theorem 1 suggests a practical choice of regularization would be

a scheme that minimizes the integrated mean squared error (IMSE) of θ̂. Our formulation

of the deconvolution kernel causes the regularizing sequence to interact only with the Fourier

frequencies considered in the estimator θ̂, which follows from our representation Λ(hnk) =

λ(k). Hence, we will not be able to determine an exact sequence that minimizes the IMSE
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of θ̂. In the following result, we give asymptotic bounds on the integrated variance and the

integrated squared bias of the estimator θ̂ that lead to an appropriate choice of regularization

that approximately minimizes the IMSE of θ̂.

Proposition 1. Let Assumption 1 hold. Assume that θ ∈ Rs, with s > 2b, and E[ε2
−n] =

. . . = E[ε2
n] = σ2. Then, for any regularizing sequence {hn}n≥1 satisfying hn → 0 such that

nhsn →∞, as n→∞, there are constants CΛ > 0 and CR > 0 such that∫ 1/2

−1/2

E
[{
θ̂(x)− E

[
θ̂(x)

]}2
]
dx ≤ CΛσ

2(nh2b
n )−1 + o

(
(nh2b

n )−1
)

and ∫ 1/2

−1/2

{
E
[
θ̂(x)

]
− θ(x)

}2

dx ≤ CRh
2(s−b)
n + o

(
h2(s−b)
n

)
.

Proof. Beginning with the first assertion, we can write {θ̂(x)− E[θ̂(x)]}2 as

∞∑
k=−∞

λ2(k)

Ψ2(k)

{
1

(2n+ 1)2

n∑
j=−n

ε2
j

}
+

∞∑
k=−∞

λ2(k)

Ψ2(k)

{
1

(2n+ 1)2

∑
j 6=l

εjεle
i2πk(xl−xj)

}

+
∑
k 6=ξ

λ(k)

Ψ(k)

λ(ξ)

Ψ(ξ)

{
1

(2n+ 1)2

n∑
j=−n

ε2
j

}
ei2π(k−ξ)x

+
∑
k 6=ξ

λ(k)

Ψ(k)

λ(ξ)

Ψ(ξ)

{
1

(2n+ 1)2

∑
j 6=l

εjεle
i2π{k(x−xj)−ξ(x−xl)}

}
so that ∫ 1/2

−1/2

E
[{
θ̂(x)− E

[
θ̂(x)

]}2
]
dx =

σ2

2n+ 1

∞∑
k=−∞

λ2(k)

Ψ2(k)
.

Repeating the arguments in the proof Lemma 1 in Section 5 shows

∞∑
k=−∞

λ2(k)

Ψ2(k)
≤ O(h−2b

n ),

and, therefore, we can specify CΛ > 0 for the first assertion to hold.

Turning our attention to the second assertion, let Ic(hn) = {z ∈ Z : z > Mh−1
n }. We can

write {E[θ̂(x)]− θ(x)}2 as∑
k∈Ic(hn)

{
λ(k)− 1

}2R2(k)

Ψ2(k)
+ 2

∑
k∈Ic(hn)

λ(k){λ(k)− 1}
Ψ(k)

R(k)

Ψ(k)

{
E
[
R̂(−k)

]
−R(−k)

}
+

∞∑
k=−∞

λ2(k)

Ψ2(k)

{
E
[
R̂(k)

]
−R(k)

}{
E
[
R̂(−k)

]
−R(−k)

}
+

∑
{k,ξ∈Ic(hn) : k 6=ξ}

λ(k)− 1

Ψ(k)

λ(ξ)− 1

Ψ(ξ)
R(k)R(ξ)ei2π(k−ξ)x
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+ 2
∑
k 6=ξ

λ(k)− 1

Ψ(k)

λ(ξ)

Ψ(ξ)
R(k)

{
E
[
R̂(−ξ)

]
−R(−ξ)

}
ei2π(k−ξ)x

+
∑
k 6=ξ

λ(k)

Ψ(k)

λ(ξ)

Ψ(ξ)

{
E
[
R̂(k)

]
−R(k)

}{
E
[
R̂(−ξ)

]
−R(−ξ)

}
ei2π(k−ξ)x

so that∫ 1/2

−1/2

{
E
[
θ̂(x)

]
− θ(x)

}2

dx =
∑

k∈Ic(hn)

{
λ(k)− 1

}2R2(k)

Ψ2(k)

+ 2
∑

k∈Ic(hn)

λ(k){λ(k)− 1}
Ψ(k)

R(k)

Ψ(k)

{
E
[
R̂(−k)

]
−R(−k)

}
+

∞∑
k=−∞

λ2(k)

Ψ2(k)

{
E
[
R̂(k)

]
−R(k)

}{
E
[
R̂(−k)

]
−R(−k)

}
.

The assumptions of Lemma 3 in Section 5 are satisfied. An application of this result shows

both the second term in the display above is bounded in absolute value by

O(n−1hs−2b
n ) = o(h2(s−b)

n )

and the third term in the same display is also bounded in absolute value by

O((nhbn)−2) = o(h2(s−b)
n ).

Again, repeating the arguments in the proof of Lemma 1 in Section 5 shows the first term in

the display above to be bounded by O(h
2(s−b)
n ), and, therefore, we can specify CR > 0 for the

second assertion to hold. �

Remark 3. From the results of Proposition 1, we can obtain an approximately optimal

regularizing sequence, in the sense of minimizing the IMSE of θ̂:

hn,opt ≈
(

b

s− b
CΛ

CR
σ2

)1/(2s)

n−1/(2s).

Using a suitable estimate σ̂2 for σ2 then leads to a rule of thumb in the spirit of Silverman

(1986):

hn,opt ≈
(

b

s− b
CΛ

CR
σ̂2

)1/(2s)

n−1/(2s).

Remark 4. Our recommended optimal regularizing sequence depends on the constants s,

CΛ and CR, which may be unknown. Specifically, the ratio CΛ/CR can be viewed as a measure

of how well the Fourier coefficients of the smoothing kernel function {Λ(k)}k∈Z are controlling

the expansion of the Fourier inversion operator to the amount of the Fourier expansion of θ

that is ignored by the estimate θ̂. In applications, a suitable approximation of the ratio CΛ/CR
may be obtainable. When this is not appropriate, a numerical search routine, via bootstrap or

cross–validation, is then recommended to find a suitable regularizing sequence.
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3.2. Smooth bootstrap of residuals. Computational approaches for automated, or

data–driven, bandwidth selection methods have been well–studied in the literature for many

nonparametric function estimators. The approaches generally focus on estimating the IMSE of

the estimator using either a cross–validation or bootstrap approach, which can then be min-

imized with respect to the choice of bandwidth in an exact or approximate way. Cao (1993)

studies two methods of selecting a bandwidth in a kernel density estimator using a smooth

bootstrap of their univariate data. More recently, Neumeyer (2009) has proven the general

validity of a smooth bootstrap process of the model residuals from a nonparametric regres-

sion. Due to its simplicity, we will introduce a similar smooth bootstrap process that admits

a consistent bootstrap estimate of the IMSE of the estimator θ̂, which requires mirroring the

restrictions given by Theorem 2 on model (1.1) in the bootstrap scheme. This technique allows

some functionals from the original data–generating process to have equivalent representations

in the bootstrap process with similar properties, which motivates our use of it to estimate the

IMSE of θ̂. Throughout this section, we will describe the stochastic properties of our random

quantities using P ∗–outer measure, which, for a single bootstrap response Y ∗, reduces to the

conditional probability function

P ∗x (Y ∗ ≤ t) = Px(Y
∗ ≤ t |D) = Px(ε

∗ ≤ t− [Kθ̂](x) |D)

given the original sample of data D = {(x−n, Y−n), . . . , (xn, Yn)}. Here ε∗ is a smooth bootstrap

model residual, which we construct as follows.

Let us begin with examining the requirements imposed by Theorem 2 on model (1.1).

We need to ensure our smooth bootstrap model residual ε∗ satisfies having a mean equal to

zero, independence, a finite moment of order κ > 2 and a common distribution function F ∗n
that admits a bounded Lebesgue density function f ∗n that is Hölder continuous. The first

requirement is satisfied merely by centering our original model residuals:

ε̃j = ε̂j −
1

2n+ 1

n∑
l=−n

ε̂l, j = −n, . . . , n.

Turning our attention to the next constraint, we can see that conditioning on the original

sample D and selecting from ε̃−n, . . . , ε̃n completely at random and with replacement satisfies

independence, in the sense of P ∗–outer measure. However, the remaining assumptions are not

satisfied because resampling in this way results in the bootstrap model residuals ε̃∗j having a

discrete distribution.

To fulfill the last requirements imposed on model (1.1), we will contaminate the randomly

selected centered model residual ε̃∗j by an independent, centered random variable Uj that has

a finite moment of order κ > 2 and common distribution function characterized by a bounded

Lebesgue density function w. Hence, we construct our smooth bootstrap model residuals ε∗−n =

ε̃∗−n + cnU−n, . . . , ε
∗
n = ε̃∗n + cnUn. Here the sequence {cn}n≥1 is a scaling sequence similar to

a bandwidth for kernel density estimation, and later we will impose requirements on {cn}n≥1

that are appropriate to form a bootstrap version of our indirect regression function estimator

as Neumeyer (2009) does with her nonparametric regression function estimator. Consequently,
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ε∗j has the common distribution function

(3.2) F ∗n(t) = P ∗(ε∗j ≤ t) =
1

(2n+ 1)cn

n∑
j=−n

∫ t

−∞
w

(
u− ε̃j
cn

)
du, t ∈ R,

and density function

f ∗n(t) =
1

(2n+ 1)cn

n∑
j=−n

w

(
t− ε̃j
cn

)
, t ∈ R.

We can see that F ∗n is a smooth estimate of F based on a kernel density estimator f ∗n of

the original error density f . Hence, the remaining requirement imposed by Theorem 2 on F

can be mirrored in the bootstrap process by choice of w, i.e. we can choose w to be Hölder

continuous with the desired exponent. Using model (1.1), we obtain our bootstrap sample

(x−n, Y
∗
−n), . . . , (xn, Y

∗
n ), where

Y ∗j =
[
Kθ̂
]
(xj) + ε∗j , j = −n, . . . , n.

Following the observations of Neumeyer (2009), we need to choose {cn}n≥1 such that our

bootstrap indirect regression estimator θ̂∗ satisfies similar properties as θ̂ given in Theorem 1,

where θ̂∗ by θ̂ is defined in (2.2), where Y ∗j replaces Yj and a regularizing sequence {gn}n≥1

replaces the regularizing sequence {hn}n≥1. When the assumptions of Theorem 1 hold, repeating

the arguments in Section 5, using our bootstrap data, shows that we only need to choose {cn}n≥1

to satisfy cn = O(n−α), for any 0 < α < 1/4− 1/(2κ), for the associated results of Theorem 1

to hold for θ̂∗. Consequently, f ∗n is also uniformly consistent for f with our choice of {cn}n≥1;

see Theorem A in Silverman (1978), which permits a wide variety of density functions w to

be chosen including the standard normal density. For example, if the contaminants Uj satisfy

a finite moment of order larger than 10, then we can simply use cn = O(n−1/5). This implies

that we can use normally distributed contaminates Uj and cn = O(n−1/5). We summarize these

results in the following corollary. For brevity, we omit its proof because it is proven in exactly

the same manner as Theorem 1 and its supporting results (see Section 5).

Corollary 1. Let the assumptions of Theorem 1 be satisfied. Choose the regularizing

sequence {gn}n≥1 to satisfy gn = O(n−1/(2s) log1/(2s)(n)) and the scaling sequence {cn}n≥1 to

satisfy cn = O(n−α), for any 0 < α < 1/4− 1/(2κ). Then, P ∗–outer almost surely, we have

sup
x∈[−1/2, 1/2]

∣∣∣θ̂∗(x)− θ̂(x)
∣∣∣ = O

(
n−(s−b)/(2s) log(s−b)/(2s)(n)

)
,

[
sup

x∈[−1/2, 1/2]

∣∣∣θ̂∗(x)− θ̂(x)
∣∣∣]1+γ

= o(n−1/2),

for every b/(s− b) < γ ≤ 1, and, for large enough n,

θ̂∗ − θ̂ ∈ Rs,1.
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Remark 5. Following the discussion on pages 207-209 in Neumeyer (2009), validity of the

proposed smooth bootstrap of the model residuals is obtained as follows. Define

Rn(t) = (2n+ 1)−1/2

n∑
j=−n

{
1
[
ε̂j ≤ t

]
− F (t)

}
and its smooth bootstrap analogue

R∗n(t) = (2n+ 1)−1/2

n∑
j=−n

{
1
[
ε̂∗j ≤ t

]
− F ∗n(t)

}
,

where ε̂∗j = Y ∗j −[Kθ̂∗](xj) is a residual obtained in the smooth bootstrap sample. The analogous

results of Theorem 2 for F̂∗(t) = (2n+1)−1
∑n

j=1 1[ε̂∗j ≤ t] can then be obtained using Corollary

1. This result combined with the uniform consistency of f ∗n for f then implies the limiting

distributions of Rn(t) and R∗n(t) are given by the same Gaussian process, which has continuous

sample paths.

It then follows for statistics Tn = µ(Rn) and their smooth bootstrap version T ∗n = µ(R∗n)

obtained from continuous functionals µ satisfy the following consistency property. Define c∗n,α
by P ∗(T ∗n ≤ c∗n,α) = α. Combining the continuity of the functional µ and the continuous sample

paths of the resulting Gaussian process with the continuous mapping theorem we obtain

P
(
Tn ≤ c∗n,α

)
= α + o(1),

which characterizes the validity of the proposed smooth bootstrap of the model residuals.

Now we turn our attention to choosing the regularizing sequence {gn,opt}n≥1 that minimizes

the IMSE between θ̂∗ and θ̂, conditionally on the observed data D. The IMSE of θ̂, which we

want to minimize with respect to the regularizing sequence, is given by

(3.3) IMSE
(
θ̂
)

=

∫ 1/2

−1/2

E
[{
θ̂(x)− θ(x)

}2
]
dx = E

[ ∫ 1/2

−1/2

{
θ̂(x)− θ(x)

}2
dx

]
.

Following Cao (1993), we will arbitrarily choose the original regularizing sequence {hn}n≥1

according to Theorem 1 as a pilot sequence to form an initial and consistent estimate θ̂hn ,

which we can plug–in for the unknown function θ in (3.3) (also a reasonable approximation

to the rule-of-thumb in Remark 3 can be used). This leads to an analogous form of (3.3) in

P ∗–outer measure, which is given by

(3.4) IMSE∗
(
θ̂∗
)

=

∫ 1/2

−1/2

E∗
[{
θ̂∗(x)− θ̂hn(x)}2

]
dx = E∗

[ ∫ 1/2

−1/2

{
θ̂∗(x)− θ̂hn(x)

}2
dx

]
.

Since θ̂hn satisfies (2.2) and θ̂∗ also satisfies (2.2), with Y ∗j in place of Yj, the expected values on

the far right–hand sides of (3.3) and (3.4) are averages taken with respect to the distribution

functions F and F ∗n from (3.2), respectively. We can then use standard arguments to show

E∗
[ ∫ 1/2

−1/2

{
θ̂∗(x)− θ̂hn(x)

}2
dx

]
= E

[ ∫ 1/2

−1/2

{
θ̂(x)− θ(x)

}2
dx

]
+ op(1).
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Hence, we obtain IMSE∗(θ̂∗) = IMSE(θ̂) + op(1). This implies our bootstrap analogue of

IMSE is an effective predictor of the true IMSE.

It follows that we can choose {gn,opt}n≥1 such that

(3.5) gn,opt = arg min
gn∈(0, ~]

E∗
[ ∫ 1/2

−1/2

{
θ̂∗(x)− θ̂hn(x)

}2
dx

]
,

where ~ > 0 is an appropriate constant such that hn,opt ∈ (0, ~). The outer expectation E∗

can be approximated using the usual Monte Carlo approach and we can minimize this criterion

using a standard grid search.

Consider the Fourier coefficients {Λ(k)}k∈Z used in the estimators θ̂ and θ̂∗. Working only

with the Fourier coefficients {Λ(k)}k∈Z means viewing Λ as a mapping from Z to [−1, 1]. How-

ever, we can also view Λ as a mapping from R to [−1, 1] because we plug–in hnk for k to form

the estimator θ̂ (also we plug–in gnk for k to form the estimator θ̂∗). It is then easy to see

that imposing standard smoothness assumptions on Λ, viewed as a mapping from R to [−1, 1],

leads to the desired consistency property between the smooth bootstrap selected optimal reg-

ularizing sequence {gn,opt}n≥1 defined by (3.5), which minimizes (3.4), and the desired optimal

regularizing sequence {hn,opt}n≥1, which minimizes (3.3). We summarize these observations in

the following remark.

Remark 6. From the discussion above, we expect hn,opt = Coptn
−1/(2s), where Copt > 0 is

an appropriate constant. We can restrict our choice of smoothing kernel such that its Fourier

transform Λ allows for {hn,opt}n≥1 to be the unique minimizer of (3.3). Let {gn,opt}n≥1 satisfy

(3.5). Since IMSE∗(θ̂∗) is consistent for IMSE(θ̂), we have the desired gn,opt = hn,opt + op(1).

4. Finite sample properties

We conclude this article with a small numerical study of the previous results, and we

investigate the effectiveness of our smooth bootstrap methodology for selecting a regularization

parameter. In our simulations, we chose the regression function

θ(x) = 3e−20x2 , x ∈ [−1/2, 1/2],

and the point spread function ψ is taken as the Laplace density restricted to the interval

[−1/2, 1/2] with a mean of zero and a scale of 1/10, which satisfies the ordinary smoothness

assumption with b = 2. The fixed covariates are taken as xj = j/(2n+ 1), which is asymptoti-

cally equivalent to j/(2n). This choice allows us to use the fast Fourier transform algorithm in

estimation of the function θ. Finally, the model errors are randomly generated from a normal

distribution with mean zero and scale 2/3. Our simulations consider samples of sizes 51, 101,

201 and 501, i.e. n is taken as 25, 50, 100 and 250.
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Figure 1. From left to right: A scatter plot of the data overlaid with the fitted

blurred regression (solid), estimated regression (dashed), true blurred regression

function (dotted) and the true regression function (dot-dashed); A scatter plot

of the model residuals overlaid with a line at zero; A plot of the residual-based

empirical distribution function (solid) overlaid with the true error distribution

function (dashed).

We work with the smoothing kernel that has Fourier coefficients satisfying

Λ(k) =


1, if |k| ≤ 7

|k|−8, if 7 < |k| ≤ n

0, otherwise.

In order to select an appropriate regularization parameter for the function estimator θ̂, we work

with the pilot sequence hn = 5n−1/9 log1/9(n). We have used standard normally distributed

contaminates Uj and, following Silverman’s rule for selecting a bandwidth in kernel density

estimation, we work with the scaling sequence cn = 1.06σ̂(2n+1)−1/5, where σ̂ is the estimated

standard deviation of the model residuals obtained by using the pilot sequence hn to estimate θ.

Using 200 smooth bootstrap replications to construct a suitable approximation of the IMSE of θ̂

for each of 500 equally spaced candidate regularization parameters in (0, 8], we then choose the

optimal regularization parameter gn,opt as the grid point that minimizes this approximate IMSE,

which we then use to construct the function estimate θ̂ (see our discussion on the proposed

smooth bootstrap approximation of IMSE(θ̂) in subsection 3.2).

The assumptions of Theorem 2, and Corollary 1, are satisfied for the choices made above.

Figure 1 displays the results of our indirect regression estimator for a typical data set based

on a sample size of 201. The scatter plot of the data shows the function estimators θ̂ and Kθ̂

work well in respectively estimating each of θ and r. Turning our attention to the scatter plot

of the residuals, we can see the indirect regression estimator θ̂ constructed with the proposed

data-driven regularization methodology is explaining the data very well, which follows from the

appearance of completely random scatter in the residuals. Finally, the remaining plot of the
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n

t
-2 -1 0 1 2

51 0.0152 (0.0034) 0.1723 (0.0502) 0.0129 (0.0842) -0.1693 (0.0434) -0.0159 (0.0036)

101 0.0154 (0.0028) 0.2078 (0.0704) 0.0220 (0.0826) -0.2312 (0.0749) -0.0195 (0.0032)

201 -0.0019 (0.0013) -0.0400 (0.0418) -0.0001 (0.0886) 0.0365 (0.0427) 0.0027 (0.0012)

501 -0.0026 (0.0012) -0.0149 (0.0461) 0.0000 (0.0957) 0.0244 (0.0477) 0.0019 (0.0014)

Table 1. Simulated asymptotic bias and variance (in parentheses) of (2n +

1)1/2{F̂(t)− F (t)} at the points −2, −1, 0, 1 and 2.

t

n
51 101 201 501 ∞

-2 0.0036 0.0030 0.0013 0.0013 0.0014

-1 0.0799 0.1136 0.0434 0.0463 0.0460

0 0.0844 0.0831 0.0886 0.0957 0.0908

1 0.0721 0.1284 0.0441 0.0483 0.0460

2 0.0039 0.0036 0.0012 0.0014 0.0014

Table 2. Asymptotic mean squared error of (2n+1)1/2{F̂(t)−F (t)} at the points

−2, −1, 0, 1 and 2.

51 101 201 501 ∞
0.2614 0.3595 0.1926 0.1858 0.1889

Table 3. Asymptotic integrated mean squared error of (2n + 1)1/2{F̂ − F} by

sample size.

distribution functions shows the empirical distribution function of the residuals F̂ matches very

closely to the true error distribution function F .

Turning our attention to the numerical summaries of the estimator F̂, we can plainly see

this estimator is performing well. In Table 1, we have calculated the simulated asymptotic

biases and variances of F̂ at the points −2, −1, 0, 1 and 2. The simulated asymptotic biases are

calculated by computing the simulated biases of F̂ and multiplying these by the square–root

of the corresponding sample size, and the simulated asymptotic variance is similarly calculated

but now we multiply by the corresponding sample size. Inspecting Table 1, we find the squared

asymptotic bias of F̂ becomes negligible to the asymptotic variance of F̂ at larger sample sizes,

which is expected. In Table 2, we give the asymptotic mean squared error (AMSE) of F̂, which

is calculated by multiplying the simulated mean squared error of F̂ by the corresponding sample

size. The figures corresponding to the sample size∞ are calculated using the results of Theorem

2. Comparing the results in Table 2, we find the theoretical prediction made in Theorem 2

concerning the asymptotic pointwise precision of F̂ corresponds well with the simulated results.
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Figure 2. Boxplots of log-transformed ratios of regularization parameters by log-

transformed sample size.

Regularization 51 101 201 501

Bootstrap 0.3208 0.2812 0.0540 0.0295

Best 0.1593 0.0933 0.0536 0.0276

Table 4. Integrated mean squared error of θ̂ by sample size. Figures correspond-

ing to ‘Bootstrap’ are the IMSE estimates based on the proposed smooth bootstrap

methodology for selecting the regularization parameter and the figures correspond-

ing to ‘Best’ are the IMSE estimates corresponding to selecting the regularization

parameter by minimizing the ISE.

Finally, turning our attention to Table 3, we give the asymptotic integrated mean squared error

(AIMSE) of F̂, which is calculated similarly to the AMSE of F̂ but now integrating with respect

to t. These results also confirm that F̂ performs well in estimating F even at the smaller sample

sizes 51 and 101. A possible explanation for this observation is the use of the smooth bootstrap

methodology for choosing the regularization parameter in the estimate θ̂.

The results concerning our indirect regression estimator are interesting. From Remark 6,

we can see that our optimal regularization parameter depends on both the sample size and

the smoothness index s of the function class used to approximate θ. In addition to finding an

optimal regularization parameter using the proposed bootstrap methodology, we also conducted

a similar grid search procedure choosing an optimal regularization parameter that minimizes

the integrated squared error (ISE) between the estimate θ̂ and the function θ. In general, this
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methodology is not available in applications, but we expect it to produce the best resulting

estimator of θ with respect to the IMSE.

In Figure 2 we give boxplots of the log-transformed ratios of the optimal regularization

parameter selected from the proposed bootstrap methodology to the regularization parameter

chosen from the ISE methodology at each log-transformed sample size. At the larger sample

sizes, we can plainly see the boxes are beginning to include 0, which we expect to continue as

the sample size increases. This confirms the consistency between the two regularization tech-

niques mentioned in Remark 6. It appears that with increasing sample size both the bootstrap

selection methodology and the ISE selection methodology choose regularizations that result in

maintaining the smaller Fourier frequencies used in the estimator θ̂ until enough data is avail-

able to incorporate larger frequencies, i.e. the smoothness index s appears to be automatically

selected. This is particularly convenient because the smoothness index s is in general unknown

and very important for building an optimal indirect regression function estimator.

We have also numerically measured the performance of the estimator θ̂ by simulating the

IMSE using both regularization techniques. The results are given in Table 4. We can see the

estimator θ̂ using each regularization parameter has IMSE decaying to zero as the sample size

increases, and both IMSE values appear to be very close at the larger sample sizes 201 and 501,

which also confirms the conjecture of consistency between the two regularization techniques

given in Remark 6. In summary, we find the residual–based empirical distribution function is

performing well in estimating the distribution function of the errors, and the proposed smooth

bootstrap methodology for selecting the regularization parameter used in the indirect regression

estimate provides a useful and convenient tool for precise indirect regression function estimation.

Acknowledgements This work has been supported in part by the Collaborative Research

Center ”Statistical modeling of nonlinear dynamic processes” (SFB 823, Projects C1 and C4)

of the German Research Foundation (DFG).

5. Technical details

The estimator R̂ is biased only in the design points, which asymptotically exhaust the

interval [−1/2, 1/2] at the rate n−1. We arrive at the following result concerning the bias of R̂:

Lemma 3. Let r ∈ Rs, with s ≥ 1. Then

max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣ = O
(
n−1
)
.

Proof. For any s1 ≤ s2, we have the inclusion Rs2 ⊂ Rs1 , and, therefore, we only need to

prove the result for s = 1. Without any loss of generality, we can assume that |r(0)| <∞. We

can write

E
[
R̂(k)

]
=

1

2n+ 1

n∑
j=−n

{∫ ∞
−∞

y Q(dy |xj)
}
e−i2πkxj =

1

2n+ 1

n∑
j=−n

r(xj)e
−i2πkxj(5.1)
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=
1

2n+ 1

n∑
j=1

r(xj)e
−i2πkxj +

r(0)

2n+ 1
+

1

2n+ 1

−1∑
j=−n

r(xj)e
−i2πkxj .

The second equality in (5.1) shows that R̂ is on the average estimating the discrete Fourier

transform of r calculated on the design points, which is expected.

We can relate the discrete Fourier transform of r to its Fourier coefficients {R(k)}k∈Z as

follows. Partition the interval [−1/2, 1/2] into(
−1⋃

j=−n

[
2j − 1

4n+ 2
,

2j + 1

4n+ 2

))⋃[
− 1

4n+ 2
,

1

4n+ 2

]⋃(
n⋃
j=1

(
2j − 1

4n+ 2
,

2j + 1

4n+ 2

])
so that R(k) is equal to

n∑
j=1

∫ (2j+1)/(4n+2)

(2j−1)/(4n+2)

r(x)e−i2πkx dx+

∫ 1/(4n+2)

−1/(4n+2)

r(x)e−i2πkx dx+
−1∑

j=−n

∫ (2j+1)/(4n+2)

(2j−1)/(4n+2)

r(x)e−i2πkx dx

(5.2)

=
1

2n+ 1

n∑
j=1

∫ 1/2

−1/2

{
r

(
v

2n+ 1
+

j

2n+ 1

)
exp

(
− i2πk

(
v

2n+ 1
+

j

2n+ 1

))}
dv

+
1

2n+ 1

∫ 1/2

−1/2

r

(
v

2n+ 1

)
exp

(
− i2πk v

2n+ 1

)
dv

+
1

2n+ 1

−1∑
j=−n

∫ 1/2

−1/2

{
r

(
v

2n+ 1
+

j

2n+ 1

)
exp

(
− i2πk

(
v

2n+ 1
+

j

2n+ 1

))}
dv.

Since xj = j/(2n), we have v/(2n+ 1) + j/(2n+ 1) = xj + (v− xj)/(2n+ 1). Using the far

right–hand sides of (5.1) and (5.2), we find that E[R̂(k)]−R(k) is equal to

1

2n+ 1

n∑
j=1

{∫ 1/2

−1/2

{
r(xj)− r

(
xj +

v − xj
2n+ 1

)}
dv

}
exp(−i2πkxj)

+
1

2n+ 1

n∑
j=1

∫ 1/2

−1/2

r

(
xj +

v − xj
2n+ 1

){
exp(−i2πkxj)− exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))}
dv

+
1

2n+ 1

∫ 1/2

−1/2

{
r(0)− r

(
v

2n+ 1

)}
exp

(
− i2πk v

2n+ 1

)
dv

+
r(0)

2n+ 1

∫ 1/2

−1/2

{
1− exp

(
− i2πk v

2n+ 1

)}
dv

+
1

2n+ 1

−1∑
j=−n

{∫ 1/2

−1/2

{
r(xj)− r

(
xj +

v − xj
2n+ 1

)}
dv

}
exp(−i2πkxj)

+
1

2n+ 1

−1∑
j=−n

∫ 1/2

−1/2

r

(
xj +

v − xj
2n+ 1

){
exp(−i2πkxj)− exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))}
dv.
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We can see that |E[R̂(k)]−R(k)| is bounded by

R1(k) +R2(k) +R3(k) +R4(k) +R5(k) +O(n−1),

where the error term O(n−1) does not depend on k and

R1(k) =
1

2n+ 1

n∑
j=1

∫ 1/2

−1/2

∣∣∣∣r(xj)− r(xj +
v − xj
2n+ 1

)∣∣∣∣ dv,
R2(k) is equal to

1

2n+ 1

n∑
j=1

∣∣∣∣ ∫ 1/2

−1/2

r

(
xj +

v − xj
2n+ 1

){
exp

(
− i2πkxj

)
− exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))}
dv

∣∣∣∣,
R3(k) =

1

2n+ 1

∫ 1/2

−1/2

∣∣∣∣r(0)− r
(

v

2n+ 1

)∣∣∣∣ dv,
R4(k) =

1

2n+ 1

−1∑
j=−n

∫ 1/2

−1/2

∣∣∣∣r(xj)− r(xj +
v − xj
2n+ 1

)∣∣∣∣ dv,
and R5(k) is equal to

1

2n+ 1

−1∑
j=−n

∣∣∣∣ ∫ 1/2

−1/2

r

(
xj +

v − xj
2n+ 1

){
exp

(
− i2πkxj

)
− exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))}
dv

∣∣∣∣.
Hence, the result follows, if we can show maxk∈ZRi(k) = O(n−1), for each i = 1, . . . , 5.

Beginning with R1(k), it follows from r ∈ R1 that we can find an appropriate constant

C > 0 such that∫ 1/2

−1/2

∣∣∣∣r(xj)− r(xj +
v − xj
2n+ 1

)∣∣∣∣ dv ≤ Cn−1

{∫ 1/2

−1/2

(v − xj)2 dv

}1/2

.

Therefore, we can bound R1(k) by

Cn−2

n∑
j=1

{∫ 1/2

−1/2

(v − xj)2 dv

}1/2

,

which both does not depend on k and is easily seen to be O(n−1). This implies maxk∈ZR1(k) =

O(n−1).

Turning our attention to R2(k), we can assume without loss of generality that |k| > 0 as

this term is equal to zero whenever k = 0. The integral in R2(k) is equal to the sum of∫ 1/2

−1/2

{
r

(
xj +

v − xj
2n+ 1

)
− r(xj)

}
dv exp

(
− i2πkxj

)
and ∫ 1/2

−1/2

{
r(xj) exp

(
− i2πkxj

)
− r
(
xj +

v − xj
2n+ 1

)
exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))}
dv.
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Therefore, we can see that R2(k) is bounded by the sum of maxk∈ZR1(k), which we have already

shown maxk∈ZR1 = O(n−1), and the quantity

1

2n+ 1

n∑
j=1

∣∣∣∣ ∫ 1/2

−1/2

{
r(xj) exp

(
− i2πkxj

)
(5.3)

− r
(
xj +

v − xj
2n+ 1

)
exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))}
dv

∣∣∣∣.
We can use the Fourier inversion formula to write

r(xj) exp
(
− i2πkxj

)
− r
(
xj +

v − xj
2n+ 1

)
exp

(
− i2πk

(
xj +

v − xj
2n+ 1

))
(5.4)

=
∞∑

ξ=−∞

R(ξ)

{
exp

(
i2π(ξ − k)xj

)
− exp

(
i2π(ξ − k)

(
xj +

v − xj
2n+ 1

))}
,

and we can choose wj(v) ∈ (min{xj, xj + (v − xj)/(2n+ 1)}, max{xj, xj + (v − xj)/(2n+ 1)})
for the right–hand side of (5.4) to be equal to

i2π(v − xj)
2n+ 1

∑
|ξ−k|>0

R(ξ)(ξ − k) exp
(
i2π(ξ − k)wj(v)

)
.

Since r ∈ R1, we have, for ζ = ξ − k, max|k|>0

∑
|ζ|>0 |ζ||R(k + ζ)| <∞. Hence, we can find an

appropriate constant C > 0 for (5.3) to be further bounded by

Cn−2

n∑
j=1

∫ 1/2

−1/2

|v − xj| dv,

which both does not depend on k and is easily seen to be of order O(n−1). Combining this fact

with the result that maxk∈ZR1(k) = O(n−1) implies maxk∈ZR2(k) = O(n−1).

Using arguments similar to that for showing maxk∈ZR1(k) = O(n−1) above, we can also

show maxk∈ZR3(k) = O(n−1) and maxk∈ZR4(k) = O(n−1). Finally, a similar argument for

showing maxk∈ZR2(k) = O(n−1) can be used to show maxk∈ZR5(k) = O(n−1). This concludes

the proof of Lemma 3. �

With the result of Lemma 3, we can give the proof of Lemma 1 from Section 3:

Proof of Lemma 1. We begin with the decomposition

E
[
θ̂(x)

]
= E

[
1

2n+ 1

n∑
j=−n

YjWj,hn(x)

]

=
1

2n+ 1

n∑
j=−n

r(xj)

{ ∞∑
k=−∞

λ(k)

Ψ(k)
exp

(
i2πk(x− xj)

)}

=
∞∑

k=−∞

λ(k)

Ψ(k)
R(k) exp(i2πkx) +

∞∑
k=−∞

λ(k)

Ψ(k)

{
E
[
R̂(k)

]
−R(k)

}
exp(i2πkx)
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so that

E
[
θ̂(x)

]
− θ(x) =

∞∑
k=−∞

λ(k)− 1

Ψ(k)
R(k) exp(i2πkx) +

∞∑
k=−∞

λ(k)

Ψ(k)

{
E
[
R̂(k)

]
−R(k)

}
exp(i2πkx).

We can see that supx∈[−1, 1] |E[θ̂(x)]− θ(x)| is bounded by

(5.5)
∞∑

k=−∞

|λ(k)− 1|
|Ψ(k)|

|R(k)|+ max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣ ∞∑
k=−∞

|λ(k)|
|Ψ(k)|

.

Following the representation Λ(hnk) = λ(k), we can partition Z into I(hn) ∪ Ic(hn), where

I(hn) = {z ∈ Z : hn|z| ≤ M} = {z ∈ Z : |z| ≤ Mh−1
n }. For every k ∈ Ic(hn), we have

|Λ(hnk)| ≤ 1, which implies |Λ(hnk)− 1| ≤ 2, and the first term in the right–hand side of (5.5)

is bounded by

(5.6) 2
∑

k∈Ic(hn)

|R(k)|
|Ψ(k)|

≤ 2hs−bn

M s−b

∞∑
k=−∞

|k|s|R(k)|
|k|b|Ψ(k)|

.

To continue, let ε > 0 be arbitrary. Since we have |k|b|Ψ(k)| → CΨ, as |k| → ∞, it follows

that we can find a constant Γ > 0 such that |k|b|Ψ(k)| > CΨ/2, for every |k| > Γ. Hence, the

fraction in the series in (5.6) is bounded by{
|k|s−b|R(k)|

/[
mink∈{z∈Z : |z|≤Γ} |Ψ(k)|

]
, if |k| ≤ Γ,

2|k|s|R(k)|/CΨ, if |k| > Γ.

Therefore, for any ε > 0, the series in (5.6) is bounded by[
min

k∈{z∈Z : |z|≤Γ}
|Ψ(k)|

]−1 ∞∑
k=−∞

|k|s−b|R(k)|+ 2

CΨ

∞∑
k=−∞

|k|s|R(k)|,

which is finite. This implies the first term in (5.5) is of order O(hs−bn ), uniformly in x ∈
[−1/2, 1/2].

We now turn to the second term in (5.5). It follows along the same lines as the arguments

in the previous paragraph for the series in this term to be bounded by[
min

k∈{z∈Z : |z|≤Γ}
|Ψ(k)|

]−1 ∑
ω∈hnZ

|Λ(ω)|+ 2h−bn
CΨ

∑
ω∈hnZ

|ω|b|Λ(ω)|,

where Γ is given above. The factor h−bn appears in the bound above because we have used the

representation Λ(hnk) = λ(k), which leads to shrinking |k| by hn. Now we only need to consider

the term maxk∈Z |R̂(k) − R(k)|. The assumptions of Lemma 3 are satisfied. It then follows

for maxk∈Z |R̂(k) − R(k)| = O(n−1). Hence, the second term in (5.5) is of order O((nhbn)−1),

uniformly in x ∈ [−1/2, 1/2]. Combining the results above, we have that (5.5) is of order

O(hs−bn + (nhbn)−1), uniformly in x ∈ [−1/2, 1/2], and the assertion of Lemma 1 follows. �
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Proof of Lemma 2. Without loss of generality we can assume that n ≥ 3. Our ar-

gument is similar to the arguments found in Masry (1993), who gives related results for

an errors-in-variables model. We will employ truncation as follows. Let the stabilizing se-

quence {ηn}n≥3 satisfy ηn = O((nh2b
n )−1/2 log1/2(n)) and the truncation sequence {tn}n≥3 satisfy

tn = O((n log(n)(log log(n))1+δ))1/κ), with δ > 0. Write Kj = E1/κ[|Yj|κ]. We can decom-

pose θ̂(x) − E[θ̂(x)] into the sum of D1(x) = θ̂(x) − θ̂t(x), D2(x) = E[θ̂t(x)] − E[θ̂(x)] and

D3(x) = θ̂t(x)− E[θ̂t(x)], where

θ̂t(x) =
1

2n+ 1

n∑
j=−n

Yj1
[
|Yj| ≤ Kjtn

]
Wj,hn(x), x ∈ [−1/2, 1/2].

Beginning with D1(x), we can write this term as

1

2n+ 1

n∑
j=−n

Yj1
[
|Yj| > Kjtn

]
Wj,hn(x)

so that supx∈[−1/2, 1/2] |D1(x)| is bounded by

(5.7) max
j∈{−n,...,n}

sup
x∈[−1/2, 1/2]

|Wj,hn(x)| 1

2n+ 1

n∑
j=−n

|Yj|1
[
|Yj| > Kjtn

]
.

We have that maxj∈{−n,...,n} supx∈[−1/2, 1/2] |Wj,hn(x)| is bounded by
∑∞

k=−∞{|λ(k)|/|Ψ(k)|}, and

in the proof of Lemma 1 we have already shown this series is of order O(h−bn ). Turning our

attention to the indicator function in (5.7), we can use Markov’s inequality to obtain P (|Yj| >
Kjtn) ≤ t−κn . Since δ > 0, we have

∞∑
n=3

t−κn =
∞∑
n=3

1

n log(n)(log log(n))1+δ
<∞.

It then follows by the Borel-Cantelli lemma for the event {|Yj| ≤ Kjtn} to occur infinitely often.

Since {tn}n≥3 is increasing, we have, for large enough n, |Yj| ≤ Kjtn, almost surely. Finally,

since h−bn <∞, for all n finite, we can conclude that (5.7) is equal to zero, for large enough n,

almost surely. It then follows for supx∈[−1/2, 1/2] |D1(x)| = o(ηn), almost surely.

We now turn our attention to D2(x). We have already shown that supx∈[−1/2, 1/2] |Wj,hn(x)| =
O(h−bn ), and it follows that we can find an appropriate constant C > 0 such that we can bound

supx∈[−1/2, 1/2] |D2(x)| by

Ch−bn
1

2n+ 1

n∑
j=−n

E
[
|Yj|1

[
|Yj| > Kjtn

]]
.

Since κ > 1, writing MK = maxj=−n,...,nKj, we have

max
j=−n,...,n

E[|Yj|1[|Yj| > Kjtn]] = max
j=−n,...,n

∫ ∞
Kjtn

P
(
|Yj| > s

)
ds ≤ MK

κ− 1
t1−κn .

This implies that we can enlarge C such that supx∈[−1/2, 1/2] |D2(x)| ≤ Ch−bn t
1−κ
n = o(ηn).
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To continue, we will require an additional result. For any u, v ∈ [−1/2, 1/2], we can find

wj ∈ (min{u− xj, v − xj}, max{u− xj, v − xj}) such that

Wj,hn(u)−Wj,hn(v) = iπ(u− v)
∞∑

k=−∞

kλ(k)

Ψ(k)
exp

(
iπkwj

)
.

Following the arguments in the proof of Lemma 1, we can bound |Wj,hn(u)−Wj,hn(v)| by the

product of |u− v| and

π

[
min

k∈{z∈Z : |z|≤Γ}
|Ψ(k)|

]−1

h−1
n

∑
ω∈hnZ

|ω||Λ(ω)|+ 2π

CΨ

h−b−1
n

∑
ω∈hnZ

|ω|b+1|Λ(ω)|,

where ε > 0 is arbitrarily chosen and Γ > 0 is a constant that satisfies the condition that, for

all |k| > Γ, |k|b|Ψ(k)| > (CΨ/2). This shows that we can find an appropriate constant C > 0

such that

(5.8)
∣∣Wj,hn(u)−Wj,hn(v)

∣∣ ≤ Ch−b−1
n |u− v|, u, v ∈ [−1/2, 1/2].

Now we consider D3(x). Let {sn}n≥3 be a sequence satisfying sn = O(hb+1
n ηnt

−1
n ) = o(1) such

that, when we shatter the interval [−1/2, 1/2] into s−1
n many fragments of the form [xi, xi+1],

our fragments satisfy maxi=1,...,s−1
n
|xi+1 − xi| ≤ sn. For any x ∈ [−1/2, 1/2], there is exactly

one fragment [xi′ , xi′+1] that contains x, and on this interval we can write

D3(x) = D4(x)−D5(x) +D6(xi′),

where D4(x) = θ̂t(x)− θ̂t(xi′), D5(x) = E[θ̂t(x)]− E[θ̂t(xi′)] and D6(xi′) = θ̂t(xi′)− E[θ̂t(xi′)].

Then we have

sup
x∈[−1/2, 1/2]

|D3(x)| = max
i=1,...,s−1

n

sup
x∈[xi, xi+1]

|D3(x)|

≤ max
i=1,...,s−1

n

sup
x∈[xi, xi+1]

∣∣D4(x)
∣∣+ max

i=1,...,s−1
n

sup
x∈[xi, xi+1]

∣∣D5(x)
∣∣+ max

i=1,...,s−1
n

∣∣D6(xi)
∣∣.

Hence, to show the result supx∈[−1/2, 1/2] |D3(x)| = O(ηn), almost surely, we will instead show

that each of the following statements hold:

(5.9) max
j=1,...,s−1

n

sup
x∈[xj , xj+1]

|D4(x)| = O(ηn), a.s.,

(5.10) max
j=1,...,s−1

n

sup
x∈[xj , xj+1]

|D5(x)| = O(ηn)

and

(5.11) max
j=1,...,s−1

n

|D6(xj)| = O(ηn), a.s..

Beginning with (5.9), fix an arbitrary interval [xi, xi+1]. On this interval D4(x) is equal to

1

2n+ 1

n∑
j=−n

Yj1
[
|Yj| ≤ Kjtn

]{
Wj,hn(x)−Wj,hn(xi)

}
, x ∈ [xi, xi+1].
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It follows from (5.8) that we can find an appropriate constant C > 0 for the inequality

supx∈[xi, xi+1] |D4(x)| ≤ Ctnh
−b−1
n sn to hold, almost surely, independent of i. Therefore, by

construction of {sn}n≥3, we find that (5.9) holds. Observing that D5(x) = E[D4(x)], we have

that (5.10) holds as well.

To see the final statement (5.11) holds, define the random variables Uj(xi) = {Yj1[|Yj| ≤
Kjtn] − E[Yj1[|Yj| ≤ Kjtn]]}Wj,hn(xi), j = −n, . . . , n. It then follows that U−n, . . . , Un are

independent, and each have mean equal to zero, variance bounded by C1h
−2b
n and bounded in

absolute value by C2tnh
−b
n , where C1 > 0 and C2 > 0 are appropriately chosen constants and

both bounds are independent of j. Applying Bernstein’s Inequality (see, for example, Lemma

2.2.11 in van der Vaart and Wellner, 1996), we can find an appropriate constant C > 0 and

obtain

(5.12) P

(
max

i=1,...,s−1
n

∣∣D6(xi)
∣∣ > ηn

)
≤ 2s−1

n exp

(
− C nη2

n

h−2b
n + tnh−bn ηn

)
.

In light of the fact that tnh
−b
n ηn = o(h−2b

n ), we can enlarge C for the right–hand side of (5.12)

to be further bounded by a positive constant multiplied by

h−1
n n(1/2)+(1/κ)−C log−(1/2−1/κ)(n)

(
log log(n)

)(1+δ)/κ
,

which is summable provided we take C > (3κ + 2)/(2κ) + 1/(2b), where 1/(2b) accounts for

the expansion of h−1
n ; i.e. (n1/(2b)hn)−1 → 0, as n → ∞. It then follows by the Borel–Cantelli

lemma that (5.11) holds, which also concludes the proof of Lemma 2. �

We can now state the proof of Theorem 1 from Section 3:

Proof of Theorem 1. The first two assertions follow immediately from the results of

Lemma 1 and Lemma 2 in combination with our choice of regularizing sequence as discussed

in Section 3. This means we only need to show the last assertion. Let us begin by calculating

the Fourier coefficients {Θ̂(ξ)}ξ∈Z of θ̂:

Θ̂(ξ) =

∫ 1/2

−1/2

θ̂(x)e−i2πξx dx =
∞∑

k=−∞

λ(k)

Ψ(k)
R̂(k)

∫ 1/2

−1/2

ei2π(k−ξ)x dx

=
λ(ξ)

Ψ(ξ)
R(ξ) +

λ(ξ)

Ψ(ξ)

{
E
[
R̂(ξ)

]
−R(ξ)

}
+
λ(ξ)

Ψ(ξ)

{
1

2n+ 1

n∑
j=−n

εje
−i2πξxj

}
,

where we have used the orthonormality of the basis {exp(i2πkx) : x ∈ [−1/2, 1/2]}k∈Z in the

final equality. The definition of Rs requires that we show the series condition

(5.13)
∞∑

ξ=−∞

(
1 + ξ2

)s
Θ̂2(ξ) <∞
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is satisfied. For any real numbers a, b and c ≥ 0, we have the inequality |a+ b|1+c ≤ 2c(|a|1+c +

|b|1+c). Applying this inequality twice, we can see that Θ̂2(ξ) is bounded by

(5.14) 2
R2(ξ)

Ψ2(ξ)
+ 4

[
max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣]2
λ2(ξ)

Ψ2(ξ)
+ 4

λ2(ξ)

Ψ2(ξ)

{
1

2n+ 1

n∑
j=−n

εje
i2πξxj

}2

.

Observing that θ ∈ Rs, we have
∑∞

ξ=−∞(1 + ξ2)s{R2(ξ)/Ψ2(ξ)} <∞. Hence, we only need to

verify the series condition (5.13) stated for the last two terms in (5.14) holds.

Similar lines of arguments for showing the result
∑∞

k=−∞{|λ(k)|/|Ψ(k)|} = O(h−bn ) in the

proof of Lemma 1 give
∑∞

ξ=−∞(1 + ξ2)s{λ2(ξ)/Ψ2(ξ)} = O(h−2b
n ). Since the assumptions of

Lemma 1 are satisfied, we have maxk∈Z |E[R̂(k)]−R(k)| = O(n−1). This implies

4

[
max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣]2 ∞∑
ξ=−∞

(
1 + ξ2

)s λ2(ξ)

Ψ2(ξ)
= O

(
(nhbn)−2

)
= o(1).

Hence, the series condition (5.13) stated for the second term in (5.14) holds.

Since exp(−i2πkx) is confined to the unit circle in the complex plane, a standard argument

gives

max
k∈Z

∣∣∣∣ 1

2n+ 1

n∑
j=−n

εje
−i2πkxj

∣∣∣∣ = O
(
n−1/2 log1/2(n)

)
, a.s.

Turning our attention to the third term of (5.14), we have

4

[
max
k∈Z

∣∣∣∣ 1

2n+ 1

n∑
j=−n

εje
−i2πkxj

∣∣∣∣]2 ∞∑
ξ=−∞

(
1 + ξ2

)s λ2(ξ)

Ψ2(ξ)
= O

(
n−1 log(n)h−2b

n

)
, a.s.

Since n−1 log(n)h−2b
n = O(n−(s−b)/s log(s−b)/s(n)) = o(1), we can see the series condition (5.13)

stated for the third term of (5.14) is satisfied, almost surely, for large enough n. Combining

these results shows that (5.13) holds, i.e.

∞∑
ξ=−∞

(
1 + ξ2

)s
Θ̂2(ξ) <∞,

almost surely, for large enough n. It follows that θ̂− θ ∈ Rs, almost surely, for large enough n.

Combining this statement with the first assertion proves the third assertion. �

Nickl and Pötscher (2007) study classes of functions of Besov- and Sobolev-type. These

authors derive results concerning the bracketing metric entropy, and the related central limit

theorems, of these spaces in weighted norms. Since our space Rs is a collection of functions

with compact support on the interval [−1/2, 1/2], we can see the results of their Corollary 4

on bracketing numbers for weighted Sobolev spaces immediately apply to our case by repeating

the steps in the proof of their Corollary 2 for Besov-type functions of bounded support, i.e. our

function space Rs,1 is the unit ball of the metric space (Rs, ‖ · ‖∞) and Rs,1 can be viewed as

a restriction of a larger weighted Sobolev space of similar type, where the weighting function is
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now defined to be equal to 1 on the interval [−1/2, 1/2]. We can summarize this result in the

following corollary:

Corollary 2 (Corollary 4 of Nickl and Pötscher, 2007). For the function space Rs,1, with

s > 1/2, there is a constant C > 0 such that

logN[ ]

(
ε, Rs,1, ‖ · ‖∞

)
≤ Cε−1/s, ε > 0,

where N[ ](ε, Rs,1, ‖ ·‖∞) is the number of brackets of length ε required to cover the metric space

(Rs,1, ‖ · ‖∞).

In light of the results on the estimator θ̂, we can now state a result on the modulus of conti-

nuity relating F̂(t) to (2n+ 1)−1
∑n

j=−n 1[εj ≤ t]. Using results on Donsker classes of functions,

we can show this modulus of continuity holds up to a negligible term of order oP (n−1/2).

Lemma 4. Let the assumptions of Theorem 1 be satisfied with s > 1. In addition, assume

that F admits a bounded Lebesgue density function f . Then supt∈R |Mn(t)| = op(n
−1/2), where

Mn(t) =
1

2n+ 1

n∑
j=−n

1
[
εj ≤ t+

[
K
(
θ̂ − θ

)]
(xj)

]
−
∫ 1/2

−1/2

F
(
t+
[
K
(
θ̂ − θ

)]
(x)
)
dx

− 1

2n+ 1

n∑
j=−n

1[εj ≤ t] + F (t).

Proof. This argument is similar to the proof of Lemma A.1 of Van Keilegom and Akritas

(1999), who prove a similar result for a direct regression model. We will begin by showing the

class of functions

F =

{
(x, ε) 7→ 1

[
ε ≤ t+ [Kq](x)

]
−
∫ 1/2

−1/2

F
(
t+ [Kq](x)

)
dx : t ∈ R, q ∈ Rs,1

}
is µ× F–Donsker, where µ is the Lebesgue measure on the interval [−1/2, 1/2]. We will then

use this property to prove the assertion. To show F is µ×F–Donsker, we need to show Dudley’s

entropy integral condition, ∫ ∞
0

√
logN[ ]

(
ε, F, L2(µ× F )

)
dε <∞,

is satisfied (see, for example, Theorem 2.5.6 in van der Vaart and Wellner, 1996), where we

write N[ ](ε, F, L2(µ×F )) for the number of brackets of length ε required to cover (F, L2(µ×F ))

and we write L2(µ × F ) for the L2–norm with respect to the product measure µ × F . Since

F is composed of a sum of elements, we only need to show the result for the simpler class

F1 = {(x, ε) 7→ 1[ε ≤ t + [Kq](x)], : t ∈ R, q ∈ Rs,1} because the proof for the second class is

almost the same and, therefore, omitted.

The assumptions of Corollary 2 are satisfied. Hence, it follows for there to be a constant

C > 0 such that nq = N[ ](ε
2/(2‖f‖∞), Rs,1, ‖ · ‖∞) ≤ exp(Cε−2/s). Let %l,1 ≤ %u,1, . . . , %l,nq ≤

%u,nq be the nq brackets that cover (Rs,1, ‖ · ‖∞). Now write Fl,i(t) = F (t + [K%l,i](x)) and

Fu,i(t) = F (t + [K%u,i](x)), for each i = 1, . . . , nq. Observing that Fl,i and Fu,i are probability



28 N. BISSANTZ, J. CHOWN AND H. DETTE

measures, we can shatter R∪{−∞,∞} into O(ε−2) many fragments of the form [tl,i,j1 , tl,i,j1+1]

such that maxj1=1,...,O(ε−2) |Fl,i(tl,i,j1+1)−Fl,i(tl,i,j1)| ≤ ε2/4, and, separately, we can construct a

similar shattering of R ∪ {−∞,∞} using Fu,i obtaining fragments of the form [tu,i,j2 , tu,i,j2+1],

j2 = 1, . . . , O(ε−2). It then follows that t ∈ R is bracketed by t−l,i,j1 ≤ t+u,i,j2 , where t−l,i,j1 is the

largest tl,i,j1 that is less than or equal to t and t+u,i,j2 is the smallest tu,i,j2 that is greater than

or equal to t.

We will now show our brackets for F1 are given by

1
[
ε ≤ t−l,i,j1 +

[
K%l,i

]
(x)
]
≤ 1

[
ε ≤ t+ [Kq](x)

]
≤ 1

[
ε ≤ t+u,i,j2 +

[
K%u,i

]
(x)
]
.

The squared length of our proposed brackets is∫ 1/2

−1/2

{
Fu,i
(
t+u,i,j2

)
− Fl,i

(
t−l,i,j1

)}
dx,

which is bounded by

(5.15)

∫ 1/2

−1/2

{
Fu,i(t)− Fl,i(t)

}
dx+

ε2

2
.

Observing that F has a bounded Lebesgue density f , the integral in (5.15) is bounded by

‖f‖∞
∫ 1/2

−1/2

[
K
(
%u,i − %l,i

)]
(x) dx ≤ ‖f‖∞‖%u,i − %l,i‖∞ ≤

ε2

2
,

where we have used that K1 = 1 and our construction of the bracket %l,i ≤ %u,i. This implies

(5.15) is bounded by ε2, and, therefore, our proposed brackets for (F1, L2(µ×F )) have L2(µ×
F )–length no greater than ε as required.

When 0 < ε < 1, it then follows that we need at most O(ε−2 exp(Cε−2/s)) many brackets to

cover (F1, L2(µ×F )), and, when ε ≥ 1, only one bracket is required. This implies that we can

find appropriate constants C1 and C2 such that∫ ∞
0

√
logN[ ]

(
ε, F1, L2(µ× F )

)
dε =

∫ 1

0

√
logN[ ]

(
ε, F1, L2(µ× F )

)
dε ≤ C1 + C2

s

s− 1
.

Since s > 1, the bound above is finite and so Dudley’s entropy integral condition is satisfied.

This shows the class F1 is µ× F–Donsker, and, therefore, F is also µ× F–Donsker.

By Corollary 2.3.12 of van der Vaart and Wellner (1996), F is Donsker implies empirical

processes indexed by F are asymptotically equicontinuous in the sense that, for every η > 0,

(5.16) lim
α↓0

lim sup
n→∞

P

(
sup

{f1,f2∈F : Var[f1−f2]<α}
(2n+ 1)−1/2

∣∣∣∣ n∑
j=−n

{
f1(xj, εj)− f2(xj, εj)

}∣∣∣∣ > η

)
= 0.

Since the assumptions of Theorem 1 are satisfied, we have that θ̂ − θ ∈ Rs,1, almost surely,

for large enough n. Respectively using θ̂ − θ and the zero function in place of q, the difference

f1(xj, εj)−f2(xj, εj) now becomes 1[εj ≤ t+[K(θ̂−θ)](xj)]−
∫ 1/2

−1/2
F (t+[K(θ̂−θ)](x)) dx−1[εj ≤

t] + F (t), which, for large enough n, belongs to F almost surely. Therefore, we only need to

check the variance condition under the supremum in (5.16) to finish proving the assertion.
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To fix the function θ̂, we condition on the observed data (xj, Yj), j = −n, . . . , n, and the

variance condition becomes∫ 1/2

−1/2

∫ ∞
−∞

{
1
[
v ≤ t+

[
K
(
θ̂ − θ

)]
(x)
]
−
∫ 1/2

−1/2

F
(
t+
[
K
(
θ̂ − θ

)]
(x)
)
dx

− 1[v ≤ t] + F (t)

}2

F (dv) dx

=

∫ 1/2

−1/2

{
F

(
max

{
t, t+

[
K
(
θ̂ − θ

)]
(x)
})
− F

(
min

{
t, t+

[
K
(
θ̂ − θ

)]
(x)
})}

dx

−
{∫ 1/2

−1/2

{
F

(
max

{
t, t+

[
K
(
θ̂ − θ

)]
(x)
})
− F

(
min

{
t, t+

[
K
(
θ̂ − θ

)]
(x)
})}

dx

}2

,

which is bounded by

sup
x∈[−1/2, 1/2]

sup
t∈R

∣∣∣∣F(max
{
t, t+

[
K
(
θ̂ − θ

)]
(x)
})
− F

(
min

{
t, t+

[
K
(
θ̂ − θ

)]
(x)
})∣∣∣∣

≤ ‖f‖∞
∥∥θ̂ − θ∥∥∞.

Also by Theorem 1, we have that ‖θ̂ − θ‖∞ = o(1), almost surely, and so it follows for the

bound above to be o(1), almost surely. Hence, the variance condition in (5.16) is satisfied. The

assertion is then implied by the equicontinuity of empirical processes indexed by the restriction

of F to those elements in F corresponding to θ̂ − θ and the zero function. �

Direct regression estimators typically allow for appropriate expansions into averages of the

model errors up to some negligible remainder term. This representation motivates the term

εf(t) in the expansion of the empirical distribution function of the these model residuals. In

the following result, we provide a similar expansion for the indirect regression estimator θ̂,

and we show this expansion holds up to a negligible term of order op(n
−1/2). Hence, we can

immediately see that our indirect regression function estimator θ̂ and typical direct regression

function estimators share this property. This combined with the modulus of continuity result

above implies that our residual-based empirical distribution function behaves similarly to that

in the usual direct estimation setting (see, for example, Müller, Schick and Wefelmeyer, 2007,

who construct expansions for many residual-based empirical distribution functions based on

direct regression function estimators).

Proposition 2. Let the assumptions of Lemma 1 be satisfied, and assume that E[ε2
j ] <∞,

j = −n, . . . , n. In addition, let the regularizing sequence {hn}n≥1 satisfy hs+1
n = o(n−1/2). Then∣∣∣∣ ∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x) dx− 1

2n+ 1

n∑
j=−n

εj

∣∣∣∣ = op(n
−1/2).

Proof. Note that R̂(k)−E[R̂(k)] = (2n+ 1)−1
∑n

j=−n εj exp(−i2πkxj). We can write 1 =∫ 1/2

−1/2

∑∞
k=−∞ e

i2πkx dx so that we can bound the left–hand side of the assertion by S1 +S2 +S3,
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where

S1 =

∣∣∣∣ 1

2n+ 1

n∑
j=−n

εj

∫ 1/2

−1/2

{ ∞∑
k=−∞

{
λ(k)− 1

}
ei2πk(x−xj)

}
dx

∣∣∣∣,
S2 =

[
max
k∈Z

∣∣∣E[R̂(k)
]
−R(k)

∣∣∣] ∞∑
k=−∞

|λ(k)|

and

S3 =
∞∑

k=−∞

|λ(k)− 1||R(k)|
∣∣∣∣ ∫ 1/2

−1/2

ei2πkx dx

∣∣∣∣.
The assertion then follows, if we show S1 = op(n

−1/2), S2 = o(n−1/2) and S3 = o(n−1/2).

We can see that it follows for S1 = op(n
−1/2), if we can show

(5.17)
1

2n+ 1

n∑
j=−n

{∫ 1/2

−1/2

{ ∞∑
k=−∞

{
λ(k)− 1

}
ei2πk(x−xj)

}
dx

}2

= o(1).

Since |λ(k)− 1| ≤ 2, it follows that∣∣∣∣ ∫ 1/2

−1/2

{ ∞∑
k=−∞

{
λ(k)− 1

}
e−i2πk(x−xj)

}
dx

∣∣∣∣ ≤ 2,

and we have λ(k) − 1 = 0 when k ∈ I(hn) = {z ∈ Z : z ≤ Mh−1
n }. Hence, the sum is only

indexed by k ∈ Ic(hn) = {z ∈ Z : z > Mh−1
n }, which is asymptotically empty. This implies

(5.17) holds.

Now we consider the remainder term S2. The assumptions of Lemma 3 are satisfied and

so the first term of S2 is of order O(n−1). This and the absolute summability of λ yield that

S2 = o(n−1/2).

Finally, for the term S3, we can assume that k ∈ Ic(hn) for R3, which does not include

k = 0, and the integral term in this quantity is bounded by (2/π)|k|−1. Since θ ∈ Rs, it follows

that we can find an appropriate constant C > 0 for the inequality |R(k)| ≤ C|k|−s to hold, and

we can enlarge C such that R3 is bounded by

Chs+1
n

∑
ω∈hnZ

|ω|−(s+1).

This shows that R3 = O(hs+1
n ) = o(n−1/2). �

Combining the results above, we can now state the proof of Theorem 2.

Proof of Theorem 2. Recall Mn(t) from Lemma 4. A straightforward calculation shows

that
1

2n+ 1

n∑
j=−n

{
1
[
ε̂j ≤ t

]
− 1
[
εj ≤ t

]
− εjf(t)

}
= Mn(t) +Hn(t) + Ln(t),

where

Hn(t) =

∫ 1/2

−1/2

F
(
t+
[
K
(
θ̂ − θ

)]
(x)
)
dx− F (t)− f(t)

∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x) dx
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and

Ln(t) = f(t)

{∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x) dx− 1

2n+ 1

n∑
j=−n

εj

}
.

The assumptions of Lemma 4 in Section 5 are satisfied, which implies supt∈R |Mn(t)| = op(n
−1/2).

Hence, the assertion follows from showing supt∈R |Hn(t)| = op(n
−1/2) and supt∈R |Ln(t)| =

op(n
−1/2).

Beginning with Hn(t), writing Cf,γ for the Hölder constant of f with exponent γ, we have

Hn(t) =

∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x)

∫ 1

0

{
f
(
t+ s

[
K
(
θ̂ − θ

)]
(x)
)
− f(t)

}
ds dx

so that supt∈R |Hn(t)| is bounded by

Cf,γ
1 + γ

[
sup

x∈[−1/2, 1/2]

∣∣∣θ̂(x)− θ(x)
∣∣∣]1+γ

.

The assumptions of Theorem 1 are satisfied, which implies the second term in the bound above

is o(n−1/2), almost surely. It then follows that supt∈R |Hn(t)| = op(n
−1/2).

Now we will consider Ln(t). Since f is bounded, we have that supt∈R |Ln(t)| is bounded by

sup
t∈R
|f(t)|

∣∣∣∣ ∫ 1/2

−1/2

[
K
(
θ̂ − θ

)]
(x) dx− 1

2n+ 1

n∑
j=−n

εj

∣∣∣∣.
It follows that hs+1

n = O(n−(1/2)−1/(2s) log(s+1)/(2s)(n)) = o(n−1/2), and, hence, the assumptions

of Proposition 2 in Section 5 are satisfied, which implies the second term in the bound above

is op(n
−1/2). This shows that supt∈R |Ln(t)| = op(n

−1/2). The assertion of Theorem 2 then

follows. �
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