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Abstract

We provide a set of probabilistic laws for estimating quadratic variation of continu-

ous semimartingales with the realized range-based variance; a statistic that replaces every

squared return of realized variance with a normalized squared range. If the entire sample

path of the process is available - and given weak conditions - our statistic is consistent and

has a mixed Gaussian limit with five times the precision of realized variance. In practice,

of course, inference is drawn from discrete data and true ranges are unobserved, leading to

downward bias. We solve this problem to give a consistent, mixed normal estimator, irre-

spective of non-trading. It has varying degrees of efficiency over realized variance, depending

on how many observations that are used to construct the high-low. The methodology is ap-

plied to TAQ data and compared with realized variance. Our findings suggest the empirical

path of quadratic variation is also estimated better with the intraday high-low statistic.
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1 Introduction

The latent security price volatility is an essential measure of unexpected return variation and a

key ingredient in several pillars of financial economics. Some years ago, academia customarily

adopted constant volatility models (e.g., Black & Scholes (1973) and related literature), despite

that the data argued against this assumption (e.g., Mandelbrot (1963)). Today, the gathering

of empirical evidence makes us recognize that the conditional variance is both time-varying and

highly persistent. Such stylized facts were uncovered by the development and application of

strict parametric models, such as ARCH (see, e.g., Bollerslev, Engle & Nelson (1994)), through

stochastic volatility models (e.g., Ghysels, Harvey & Renault (1996)), and more recently non-

parametric methods based on high-frequency data, the most conspicuous idea being realized

variance (RV ), see, e.g., Andersen, Bollerslev, Diebold & Labys (2001) or Barndorff-Nielsen &

Shephard (2002a); henceforth abbreviated as ABDL and BN-S.

RV is the sum of squared returns over non-overlapping intervals within a sampling period.

The theory states that, given weak regularity conditions, RV converges in probability to the

quadratic variation (QV ) of all semimartingales as the sampling frequency tends to infinity

(e.g., Protter (2004)).

In practice, the consistency result of RV breaks down as data limitations prevent the

sampling frequency from rising without bound. Most notably, market microstructure effects

contaminate high-frequency asset prices. This invalidates the asymptotic properties of RV ,

and in the presence of noise it is both biased and inconsistent (e.g., Bandi & Russell (2004,

2005), Aı̈t-Sahalia, Mykland & Zhang (2005), and Hansen & Lunde (2006)). Though current

research seeks to develop methods of making RV robust against microstructure noise, getting

the most accurate estimates of price variations remain unresolved. Set against this backdrop,

we suggest another proxy: realized range-based variance (RRV ).

Range-based estimation of volatility (developed in, e.g., Feller (1951), Garman & Klass

(1980), Parkinson (1980), Rogers & Satchell (1991) and Kunitomo (1992)) is very informative,

since the extremes are formed from the entire curve of the process and therefore reveal more

information than points sampled at fixed intervals. Indeed, the daily squared range is about

five times more efficient at estimating the scale of Brownian motion than the daily squared

return. However, Andersen & Bollerslev (1998, footnote 20) remark that ”...compared to the

measurement errors reported in Table 3, this puts the accuracy of the high-low estimator

around that afforded by the intraday sample variance based on two- or three-hour returns.”

As a consequence of the daily range’s measurement error against RV , the class of range-based

proxies remains neglected.

Nonetheless, one subject - with the potential of markedly reducing this error - remains

uncharted territory: intraday range-based estimation of stochastic volatility. That is, while

the range is recognized as being highly efficient vis-à-vis the return on a daily basis, no one
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has explored the properties of price ranges sampled within the trading day in the context of

estimating QV . With access to high-frequency data, however, low-frequency measures are also

obsolete in the range-based context. For example, with exchange rate data available around

the clock, what can we expect by using, properly transformed, high-frequency ranges? Direct

extrapolation suggests that if daily ranges are as accurate as RV based on two- or three-hour

returns, then hourly ranges, say, achieve the accuracy of RV sampled at five- or ten-minute

intervals.

We propose to sample and sum intraday price ranges to construct more efficient estimates of

QV . Our contribution is four-fold. First, we develop a non-parametric method for measuring

QV with RRV . Second, unlike the existing time-invariant theory for the high-low, we deal

with estimation of time-varying volatility, when the driving terms of the price process are

(possibly) continuously evolving random functions. Such a model is capable of - but arguably

also necessary for - fitting the facts of financial markets data; in particular the second moment

structure of the conditional return distribution. Third, we derive a set of probabilistic laws for

sampling intraday high-lows. Fourth, we remove the problems with downward bias reported in

the previous range-based literature.

The paper is structured as follows. In the next section, we unfold the necessary diffusion

theory, present various ways of measuring volatility and advance our methodological contribu-

tion by suggesting RRV and a version thereof without problems of non-trading effects. Under

mild conditions, we prove consistency for the estimation methods and find mixed Gaussian

central limit theorems. Section 3 illustrates the approach with Monte Carlo analysis to un-

cover the finite sample properties, and we progress in section 4 with some empirical results.

Rounding up, section 5 offers conclusions and sketches several directions for future research.

2 A Semimartingale Framework

In this section, we propose a new method based on the price range for consistently estimating

QV . The theory is developed for the log-price of a univariate asset evolving in continuous

time over some interval, say p = {pt}t∈[0,∞). p is defined on a filtered probability space(
Ω,F , {Ft}t∈[0,∞),P

)
and adapted to the filtration {Ft}t∈[0,∞); i.e. a family of σ-fields with

Fs ⊆ Ft ⊆ F for all s ≤ t < ∞.

The basic building block is that p constitutes a continuous sample path semimartingale.1

Hence, we write the time t log-price in the generic form:

pt = p0 +
∫ t

0
µsds +

∫ t

0
σs−dWs, for 0 ≤ t < ∞, (2.1)

where µ = {µt}t∈[0,∞) (the instantaneous mean) is a locally bounded predictable process, σ =

1We adopt the continuity assumption as a starting point only. In concurrent work, we are analyzing the

properties of our estimators, when p exhibits jumps.
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{σt}t∈[0,∞) (the spot volatility) is a càdlàg process, W = {Wt}t∈[0,∞) is a standard Brownian

motion, and σs− = limt→s,t<s σt.

Much work in both theoretical and empirical finance or time series econometrics is cast

within this setting (see, e.g., Andersen, Bollerslev & Diebold (2002) or BN-S (2005c) for ex-

cellent reviews and several references). Except for the continuity of the local martingale, we

impose little structure on the model. In fact, for semimartingales with continuous martingale

component as above, the form
{∫ t

0 µsds
}

t∈[0,∞)
is implicit, when the drift term is predictable

(in the absence of arbitrage).2 Note in passing that, without loss of generality, we can restrict

the functions µ and σ to be bounded (e.g., Barndorff-Nielsen, Graversen, Jacod, Podolskij &

Shephard (2005)).

The objective is to estimate a suitable measure of the return variation over a subinterval

[a, b] ⊆ [0,∞), termed the sampling period or measurement horizon. We assume [a, b] = [0, 1];

this will be thought of as representing a trading day, but the choice is arbitrary and can serve

as a normalization. At any two distinct sampling times ti−1 and ti, with 0 ≤ ti−1 < ti ≤ 1, the

intraday return over [ti−1, ti] is denoted by:

rti,∆i = pti − pti−1 , (2.2)

where ∆i = ti − ti−1. As a convention, we call the return stretching [0, 1] for the interday or

daily return (i.e., taking ti = ∆i = 1).

From the theory of stochastic integration, it is well-known that QV is a natural measure of

sample path variability for the class of semimartingales. Specifically, for every semimartingale,

X = {Xt}t∈[0,∞), there exists a unique increasing QV process, [X] = {[X]t}t∈[0,∞), given by:

[X]t = X2
t − 2

∫ t

0
Xs−dXs, (2.3)

with Xs− = limt→s,t<s Xt.

In the absence of jumps in p, QV is entirely induced by innovations to the local martingale.

Moreover, in our framework QV coincides with the integrated variance (IV ) that is central

to financial economics, whether in asset and derivatives pricing, portfolio selection or risk

management (e.g., Andersen, Bollerslev & Diebold (2002)). IV is the object of interest here,

and we recollect its definition:

IV =
∫ 1

0
σ2

sds. (2.4)

The econometrical problem is that IV is latent, which renders empirical estimation of this

quantity a crucial issue in practice. We shall briefly review the literature on existing methods

for measuring IV , before carrying on to suggest a new approach.
2Moreover, all local martingales, whose QV (to be defined in a moment) is absolutely continuous, has the

martingale representation of the second term in Equation (2.1), e.g., Doob (1953). We refer to BN-S (2004,

footnote 6) for the details of this aspect.
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2.1 Return-Based Estimation of Integrated Variance

Not long ago, the daily squared return was employed as a non-parametric ex-post measure

of IV . Although the estimator is (conditionally) unbiased under some auxiliary conditions,

the interday return is a noisy indicator of volatility. With the advent of high-frequency data,

more recent work computes RV , being the sum of squared intraday returns sampled over

non-overlapping intervals (see, e.g., ABDL (2001) or BN-S (2002a)).3

More formally, consider a deterministic partition 0 = t0 < t1 < · · · < tn = 1. Then,

adopting the notation of Hansen & Lunde (2005), we define RV at sampling times Ξ = {ti |
i = 0, 1, . . . , n}, or sampling frequency n, by setting:

RV Ξ =
n∑

i=1

r2
ti,∆i

. (2.5)

The daily squared return is the least efficient member of this class of estimators, and the

justification for the RV procedure builds directly on the theory of QV . An equivalent definition

of QV is the probability limit of RV Ξ, as the diameter of Ξ tends to zero (e.g., Protter (2004)).

That is, in our model:

RV Ξ p→ IV, (2.6)

provided max1≤i≤n{∆i} → 0 as n →∞.4 The convergence is locally uniform in time. Thus, by

definition RV Ξ is consistent and given a complete record of p, IV is estimated with arbitrary

accuracy, effectively making it observed.

Of course, we are forced to work with discretely sampled data in applications, but the the-

ory encourages using high-frequency proxies to reduce the measurement error. And though an

irregular partition of the sampling period suffices for consistency, an equidistant time series of

intraday returns is often computed in practice by various approaches, such as linear interpola-

tion (see, e.g., Andersen & Bollerslev (1997a, 1997b, 1998), and Andersen, Bollerslev, Diebold &

Ebens (2001)) or the previous-tick method suggested in Wasserfallen & Zimmermann (1985).5

Oomen (2005) gives a characterization of RV under alternative sampling schemes.

The equidistant RV based on n high-frequency returns sampled over non-overlapping in-

tervals of length ∆ = 1/n is defined as:

RV ∆ =
n∑

i=1

r2
i∆,∆. (2.7)

3The stimulating work of Rosenberg (1972) was an early pioneer in the empirical construction of a volatility

proxy that exploited data sampled at a higher frequency than the measurement horizon.
4In general, the non-normed qth order realized power variation is defined as

Pn
i=1 |rti,∆i |q, with q > 0, see

BN-S (2004). For Brownian semimartingales, only q = 2 leads to a nontrivial limit (IV ).
5A side-effect of the linear interpolation method is that - with a fixed number of data - RV Ξ p→ 0 as n →∞,

because the limit of the interpolated process is of continuous bounded variation, see Hansen & Lunde (2006).

Intuitively, a straight line is the minimum variance path between two points.
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BN-S (2002a) found a distribution theory for RV ∆ in relation to IV . The law of the scaled

difference between RV ∆ and IV has a mixed Gaussian limit,

√
n

(
RV ∆ − IV

) d→ MN (0, 2IQ) , (2.8)

where

IQ =
∫ 1

0
σ4

sds, (2.9)

is the integrated quarticity. Thus, the size of the error bounds for RV ∆ is positively related

to the level of σ, so it is more difficult for RV to estimate IV , when σ is high. BN-S (2002a)

also derived a feasible central limit theorem (CLT), where all quantities except IV can be

computed directly from the data. This was done by simply replacing the latent IQ by a

consistent estimator, like realized quarticity (RQ):

RQ∆ =
n

3

n∑

i=1

r4
i∆,∆, (2.10)

making it possible to construct approximate confidence bands for RV ∆ to measure the size of

the estimation error involved with finite sampling.

2.2 Range-Based Estimation of Integrated Variance

In practice, the choice of volatility proxy is less obvious, as financial markets are not frictionless

and microstructure bias sneaks into RV , when n is too large. With noisy prices, for instance,

RV is biased and inconsistent, see, e.g., Zhou (1996), Bandi & Russell (2004, 2005), Aı̈t-Sahalia

et al. (2005), and Hansen & Lunde (2006).6 Academia has recognized this by developing bias

reducing techniques (e.g., prewhitening of the high-frequency return series with moving average

or autoregressive filters as in Andersen, Bollerslev, Diebold & Ebens (2001) and Bollen &

Inder (2002), or kernel-based estimation as in Zhou (1996) and Hansen & Lunde (2006)). In

empirical work, the benefits of more frequent sampling is traded off against the damage caused

by cumulating noise, and - using various criteria for picking the optimal sampling frequency -

the result is often moderate sampling (e.g., at the 5-, 10-, or 30-minute frequency), whereby

data are discarded.

The pitfalls of RV motivate our choice of another proxy with a long history in finance: the

price range or high-low. Using a terminology similar to the above, we define the intraday range

at sampling times ti−1 and ti as:

spti,∆i
= sup {pt − ps}

ti−1≤s,t≤ti

. (2.11)

Compared to the return over [ti−1, ti], rti,∆i , the extra subscript p indicates that we are taking

supremum of the price process. Below, we also need the range of a standard Brownian motion

6Technically, with IID noise, RV diverges to infinity almost surely, i.e. RV Ξ a.s.→ ∞ as n →∞.

5



Christensen, K. and M. Podolskij: Realized Range-Based Estimation of Integrated Variance

over [ti−1, ti], which is denoted by:

sWti,∆i
= sup {Wt −Ws}

ti−1≤s,t≤ti

. (2.12)

We use the shorthand notation sp and sW for the interday, or daily, ranges (again by taking

ti = ∆i = 1).

2.2.1 The Interday Range

The logic of the range is appealing: suppose the asset price fluctuates wildly within the sampling

period, but happens to end near the starting point; then an interday high-low, unlike the return,

correctly reports the level of volatility as high.

Its attractiveness is not based on just intuitive grounds, however. The theoretical under-

pinnings go a long way back.7 Feller (1951) found the distribution of the range by using the

theory of Brownian motion. According to his work, the density of sWti,∆i
is given by:

Pr
[
sWti,∆i

= r
]

= 8
∞∑

x=1

(−1)x−1 x2

√
∆i

φ

(
xr√
∆i

)
, (2.13)

with φ (y) = exp
(−y2/2

)
/
√

2π. The infinite series is evaluated by a suitable truncation. In

Figure 1, we plot the probability function of sW .

[INSERT FIGURE 1 ABOUT HERE]

In a historical context, a major reason for selecting the daily high-low to estimate IV related

to its sampling stability. Viewed separatively, the density function does not reveal this feature.

Therefore, the figure also displays the distribution of the daily absolute return. By comparing

these proxies, the efficiency of the daily range, or in other words its lower variance vis-à-vis the

daily return, is more evident.

Parkinson (1980) advanced Feller’s insights by deriving the moment generating function of

the range of a scaled Brownian motion, pt = σWt.8 For the rth moment:

E
[
sr
pti,∆i

]
= λr∆

r/2
i σr, for r ≥ 1, (2.14)

with λr = E [sr
W ]. In particular, λ2 = 4 ln (2) and λ4 = 9ζ (3) are needed below.9 Noting that

IV = σ2 in this model, we thus get an unbiased estimate for daily sampling by scaling s2
p down

with λ2, which is the classic high-low estimator.
7There are basically two branches in the context of range-based volatility: i) relies purely on the high-low,

while ii) adds the open-close, e.g., Garman & Klass (1980) or Rogers & Satchell (1991). Brown (1990) and

Alizadeh, Brandt & Diebold (2002) argue against inclusion of the latter on the grounds that they are highly

contaminated by microstructure effects. Thus, throughout we only report on the high-low estimator.
8Note, σ does double-duty; representing either the process σ = {σt}t∈[0,∞) or a constant diffusion parameter

σt = σ. The meaning is clear from the context.
9The explicit formula for λr is: λr = 4√

π
(1− 4

2r )2r/2Γ( r+1
2

)ζ (r − 1), for r ≥ 1; where Γ (x) and ζ (x) denote

the Gamma and Riemann’s zeta function, respectively.
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If µ 6= 0, the daily range cannot distinguish drift from volatility and is biased. A few

methods were suggested to allow nonzero - but constant - µ. Rogers & Satchell (1991) used

the exponential distribution and Wiener-Hopf factorization of a Lévy process, while Kunit-

omo (1992) suggested the range of a Brownian bridge; both to produce estimators that are

independent of µ.

Arguably, a process with constant µ and σ is irrelevant from an empirical point of view.

The most critical aspect of range-based theory is perhaps the homoscedasticity constraint

forced upon σ. An overwhelming amount of research indicates that the conditional variance is

time-varying, see, e.g., Ghysels et al. (1996). Nonetheless, to our knowledge there exists little

theory about range-based estimation of IV in the presence of a continually evolving diffusion

parameter.10 Previous work achieve (randomly) changing volatility by holding σt fixed within

the trading day, while allowing for (stochastic) shifts between them (e.g., Alizadeh et al. (2002),

Brunetti & Lildholdt (2002)).11 Still, there are strong intraday movements in σt (e.g., Andersen

& Bollerslev (1997b)).

A major objective of this paper is therefore to extend the theoretical domain of the extreme

value method to a more general class of stochastic processes. Contrary to the extant research,

we develop a statistical framework for the Brownian semimartingale in Equation (2.1), featuring

less restrictive dynamics for µ and σ.

2.2.2 A Realized Range-Based Estimator

As stated earlier, the (transformed) daily price range is less efficient than RV for moderate

values of n; two- or three-hour returns suffices. But with tick-by-tick data at hand, we can

exploit the insights of RV to construct more precise range-based estimates of IV by sampling

high-lows within the trading day. Curiously, a rigorous analysis of intraday ranges is missing

in the volatility literature.

Accordingly, consider again the partition 0 = t0 < t1 < · · · < tn = 1. We then propose an

RRV estimator of IV at sampling times Ξ, or sampling frequency n:

RRV Ξ =
1
λ2

n∑

i=1

s2
pti,∆i

. (2.15)

This procedure has two advantages over the previous return- and range-based methods sug-

gested in the extant research on volatility measurement. First, the approach inspects all data

points (regardless of the sampling frequency), whereby we avoid neglecting information about
10A notable exception is Gallant, Hsu & Tauchen (1999), who estimate two-factor stochastic volatility models

in a general continuous time framework. They derive the density function of the range in this setting, but do

not otherwise explore its theoretical properties.
11Brunetti & Lildholdt (2002) consider a model with GARCH dynamics and show that the scaled squared

range is unbiased for the unconditional variance.
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IV . Second, the efficiency of RRV Ξ is several times that of RV Ξ, leading to narrower confidence

intervals for IV (see below).

We denote the equidistant version of the intraday high-low statistic by RRV ∆.

2.2.3 Properties of Realized Range-Based Variance

At a minimum, the estimator should be consistent for IV . With the time-invariant scaled

Brownian motion, proving this property of RRV ∆ is trivial.12 As the infill asymptotics start

operating by letting n → ∞, we achieve an increasing sequence of IID random variables,{
spi∆,∆

}
i=1,...,n

. Suitably transformed to unbiased measures of σ2 using (2.14), the consistency

follows from a standard law of large numbers by averaging. To see this, note that E
(
RRV ∆

)
=

σ2 and var
(
RRV ∆

)
= Λn−1σ4, with:

Λ =
λ4 − λ2

2

λ2
2

. (2.16)

Hence, MSE → 0 as n →∞, which is sufficient. Also, for this process a CLT is easily found as:

√
n

(
RRV ∆ − IV

) d→ N
(
0, Λσ4

)
. (2.17)

If µ and σ are stochastic, establishing the large sample properties of RRV ∆ is more involved,

but nonetheless possible. Overall, the basic idea extends to general Brownian semimartingales,

given some regularity on µ and σ. To justify our approach, we therefore progress by deriving

limit theorems for RRV ∆. Its probability limit is stated first.13

Theorem 1 Let µ and σ fulfil the conditions following Equation (2.1). As n →∞

RRV ∆ p→ IV. (2.18)

This mirrors the consistency of RV that by definition converges, in probability, to the limit

process IV . Theorem 1 allows for general specifications of µ as a consequence of the fact

that for continuous time arbitrage-free price processes, the expected move in p is an order

of magnitude lower than variation induced by the local martingale; here comprised by the

stochastic volatility component
{∫ t

0 σs−dWs

}
t∈[0,∞)

. Thus, while the daily range is sensitive

to drift, the mean component vanishes (sufficiently fast) as n → ∞. But our analysis extends

the theory of the range much further from the perspective of volatility measurement. Except

for weak technical conditions on σ, no knowledge about its dynamics is needed. Hence, we

allow for very general continuous time processes, including, but not limited to, models for σ

with leverage, long-memory, jumps or diurnal effects. This is certainly not true in the previous

range-based literature.
12Henceforth, we use equidistant estimation, as this simplifies the notational burden in the proofs. All results

generalize to irregular subdivisions of the sampling period, so long as max {∆i}1≤i≤n → 0. We just need a slight

modification of the conditional variance in the CLT, as spelled out below.
13Throughout the paper, proofs of the theorems are reserved for the Appendix.
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2.2.4 Asymptotic Distribution Theory

In empirical work, the consistency result of RRV ∆ becomes unreliable due to microstructure

frictions, when n is too large. Theorem 1 hides the precision IV is estimated with by fixing n at

a moderate level, and econometricians often compute confidence bands as a guide to the error

made from estimation based on finite sampling. To strengthen the convergence in probability,

we now develop a distribution theory for RRV ∆.

The above weak assumptions on µ and σ are too general to prove a CLT, and we need

slightly stronger conditions, collectively referred to as Assumption (M) and (V):

(M) µ is continuous.

(V) σ is everywhere invertible (V1) and satisfies:

σt = σ0 +
∫ t

0
µ′sds +

∫ t

0
σ′sdWs +

∫ t

0
vsdB′

s, for 0 ≤ t < ∞, (V2)

where µ′ = {µ′t}t∈[0,∞) is locally bounded, σ′ = {σ′t}t∈[0,∞) and v = {vt}t∈[0,∞) are càdlàg, and

B′ = {B′
t}t∈[0,∞) is a Brownian motion independent of W .

We also need a special mode of convergence, namely stable convergence in law. It is standard

in the RV literature. But to avoid any confusion about our terminology, we present the

definition here, as it is probably not widely familiar to people in econometrics and finance.

Definition 1 A sequence of random variables, {Xn}n∈N, converges stably in law with limit

X, defined on an appropriate extension of
(
Ω,F , {F}t∈[0,∞),P

)
, if and only if for every F-

measurable, bounded random variable Y and any bounded, continuous function g, the conver-

gence limn→∞ E [Y g (Xn)] = E [Y g (X)] holds.

Throughout the paper, the symbol Xn
ds→ X is used to denote stable convergence in law (see,

e.g., Rényi (1963) or Aldous & Eagleson (1978) for more details). Note that it implies weak

convergence, which may equivalently be defined by taking Y = 1. We need this stronger

version to prove a standard CLT, as the conditional variance of the limit processes below is not

deterministic.

We now state the main result, which is a (nonstandard) CLT.

Theorem 2 If (M) and (V) are satisfied, then we have:

√
n

(
RRV ∆ − IV

) ds→
√

Λ
∫ 1

0
σ2

sdBs, (2.19)

where B = {Bt}t∈[0,1] is a standard Brownian motion, independent of F (written B |= F).

A critical feature of this theorem is that the left-hand side converges stably to a stochastic

integral with respect to B, which in turn is unrelated to the driving terms µ, σ and W .
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This means
√

n
(
RRV ∆ − IV

)
has a mixed normal limit, with σ governing the mixture.14

In general, this gives the unconditional distribution a higher peak and heavier tails than for

Gaussian random variables. To summarize, conditional on σ:

√
n

(
RRV ∆ − IV

) d→ MN (0,ΛIQ) . (2.20)

Remark 1 The Λ scalar in front of IQ in Equation (2.20) is roughly 0.4. In contrast, the

number appearing in the CLT for RV ∆ is 2.

Hence, measurement errors of RRV ∆ are about one-fifth of those extracted with RV ∆. This

is not surprising: RRV ∆ uses all the data, whereas RV ∆ is based on high-frequency returns

sampled at fixed points in time. As, for the moment, p is assumed fully observed, RV ∆ is

neglecting a lot of information.

IQ on the right-hand side in (2.20) is statistically infeasible, i.e. it cannot be computed

from the data. We estimate it with realized range-based quarticity (RRQ):

RRQ∆ =
n

λ4

n∑

i=1

s4
pi∆,∆

. (2.21)

With techniques similar to the proof of Theorem 1, we have that RRQ∆ p→ IQ. Thus, by the

properties of stable convergence (e.g., Jacod (1997)), we get the next corollary.

Corollary 1 Given (M) and (V), it holds that:
√

n
(
RRV ∆ − IV

)
√

ΛRRQ∆

d→ N(0, 1). (2.22)

Remark 2 With irregular sampling schemes, the distributional result in (2.20) - and those in

the next sections - changes slightly (the stochastic limit is unchanged). Set,

HΞ
n,s = n

j:tj≤s∑

i=1

(ti − ti−1)
2 , (2.23)

and assume that a pointwise limit HΞ
s of HΞ

n,s exists and is continuously differentiable. Then,

as n →∞ such that max1≤i≤n {∆i} → 0:

√
n

(
RRV Ξ − IV

) d→ MN

(
0, Λ

∫ 1

0

∂HΞ
s

∂s
σ4

sds

)
. (2.24)

The derivative ∂HΞ
s /∂s is small, when sampling runs quickly. Hence, there are potential gains

in having more frequent observations, when σ is high. Obviously, for equidistant subdivisions
14Earlier drafts of this paper had a non-mixed Gaussian CLT and the stronger conditions, A: µ = 0 and B: σ

is Hölder continuous of order γ > 1/2, i.e. σt − σs = Op (| t− s |γ) for t → s. We have substantially weakened

these restrictions and also proved the mixed Gaussian CLT. Svend E. Graversen was helpful in pointing our

attention to a result that enabled us to remove A and B (Lemma 1 in the Appendix).

10
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HΞ
s = s, so the extra term drops out. The theory is made feasible with

RRQΞ =
n

λ4

n∑

i=1

s4
pti,∆i

p→
∫ 1

0

∂HΞ
s

∂s
σ4

sds. (2.25)

2.2.5 Discrete High-Frequency Data

In practice, we draw inference about IV from discretely sampled data. As p is not continuously

monitored, we cannot extract the true supremum of the increments to the semimartingale. If

unaccounted for, the intraday high-low statistic becomes downward biased, and with a fixed

number of data the error will be progressively more severe as n gets larger.

Building on the earlier work and simulation evidence of Garman & Klass (1980), Rogers

& Satchell (1991) proposed a technique for bias correcting the range; a method that largely

removed the error from a numerical perspective.

Nonetheless, it turns out to be misleading thinking about ranges as downward biased. The

source of the problem is λ2, which is constructed on the grounds that p is fully observed.

Therefore, we now develop an estimator that accounts for the number of high-frequency data

used in forming the high-low, in order to scale properly. To formalize this idea, a bit more

notation is required. Assume, without loss of generality, that mn+1 equidistant price data are

available, giving mn increments. They are split into n intervals with m innovations each and

we denote the observed maximum over the ith interval by:

ompi∆,∆ = max
0≤s,t≤m

{
p(i−1)/n+t/mn − p(i−1)/n+s/mn

}
. (2.26)

Also, let:

omW = max
0≤s,t≤m

{
Wt/m −Ws/m

}
. (2.27)

Then, we define the new intraday high-low statistic by setting:

RRV ∆
m =

1
λ2,m

n∑

i=1

om2
pi∆,∆

, (2.28)

where λr,m = E [omr
W ]. The constant appearing in this expression is nothing more than (the

reciprocal of) the rth moment of the range of a standard Brownian motion over a unit interval,

when we only observe m increments to the underlying continuous time process.

To the best of our knowledge, there is no explicit formula for λr,m, but it is easily computed

to any degree of accuracy from simple simulations. Figure 2 details this for the example r = 2

and all values m that integer divides 23,400.

[INSERT FIGURE 2 ABOUT HERE]

Of course, λ2,m → λ2 as m → ∞, but note also that λ2,1 = 1, which defines RV ∆. The

downward bias reported from previous simulation studies on the range is a consequence of

11



Christensen, K. and M. Podolskij: Realized Range-Based Estimation of Integrated Variance

the fact that 1/λ2 was incorrectly applied in place of 1/λ2,m, as the bias is in one-to-one

correspondence with the difference.

Having completed these preliminaries, we prove consistency and asymptotic normality for

the estimator in equation (2.28) by letting n →∞. Note, m is not required to approach infinity;

convergence to any natural number is sufficient.

Theorem 3 Assume n →∞ and m → c ∈ N ∪ {∞}. Then,

RRV ∆
m

p→ IV. (2.29)

Moreover, if (M) and (V) are satisfied:

√
n

(
RRV ∆

m − IV
) ds→

√
Λc

∫ 1

0
σ2

sdBs, (2.30)

where Λc =
(
λ4,c − λ2

2,c

)
/λ2

2,c and B |= F . Finally,

√
n

(
RRV ∆

m − IV
)

√
ΛmRRQ∆

m

d→ N(0, 1), (2.31)

with Λm =
(
λ4,m − λ2

2,m

)
/λ2

2,m and

RRQ∆
m =

n

λ4,m

n∑

i=1

om4
pi∆,∆

. (2.32)

Remark 3 The distribution theory in Theorem 3 nests RV , in the sense that for the special

case m = 1, it provides a CLT for RV ∆, as discussed in, e.g., BN-S (2002a) or Barndorff-

Nielsen et al. (2005).

[INSERT FIGURE 3 ABOUT HERE]

To provide an impression of the efficiency of RRV ∆
m , Figure 3 depicts Λm on the y-axis, as

a function of the number of intraday returns m along the x-axis. Several hundred recordings

are needed for a good fit to the asymptotic value of 0.4, but the steep initial decline renders the

advantage of RRV ∆
m large compared to RV ∆ even for moderate m. For m = 10, say, the scalar

appearing in front of IQ in the CLT for the realized range-based estimator equals roughly 0.7,

making the confidence intervals for IV much smaller. In our experience, m = 10 or higher

values are usually obtained for moderately liquid assets at empirically relevant frequencies, like

5-minute sampling.

3 Monte Carlo Exploration

In this section, we illustrate the workings of our theory by using repeated samples from a sto-

chastic volatility model to further study the finite sample performance of RRV ∆
m and document

12
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its asymptotic properties. The following bivariate system of stochastic differential equations is

simulated:
dpt = σtdWt

d ln σ2
t = θ(ω − ln σ2

t )dt + ηdBt,
(3.1)

where W and B are independent Brownian motions, while (θ, ω, η) are parameters.15 Thus,

spot log-variance evolves as a mean reverting Ornstein-Uhlenbeck process with mean ω, mean

reversion parameter θ and volatility η (see, e.g., Gallant et al. (1999), Alizadeh et al. (2002),

and Andersen, Benzoni & Lund (2002)). The vector (θ, ω, η) = (0.032,−0.631, 0.115) is from

Andersen, Benzoni & Lund (2002), who apply Efficient Method of Moments (EMM) to calibrate

numerous continuous time models.

The initial conditions are set to p0 = 0 and lnσ2
0 = ω, and our simulation design is completed

by generating T = 1, 000, 000 daily replications from this model with mn price increments each,

where mn depends on the setting (see below). Throughout, we ignore the irregular spacing of

empirical high-frequency data and work with equidistant data.

3.1 Simulation Results

The distributional result for RRV ∆
m is detailed by selecting m = 10. Reported results are not

that sensitive to specific choices of m, but in general higher values make the size properties of

the asymptotic confidence bands better. We simulate n = 10, 50, 100 for a total of mn = 100,

500, 1000 increments each day, allowing us to show the gradual convergence in distribution to

the standard normal for daily high-frequency sample sizes that resemble those of moderately

liquid assets. With a total of T = 1, 000, 000 replications generated, we get very accurate

estimates of the actual finite sample density.

[INSERT FIGURE 4 ABOUT HERE]

Figure 4, upper panel, graphs kernel densities for the standardized errors of RRV ∆
m ; cf.

the ratio in Equation (2.31). It details that for n = 10, the distribution is left-skewed with a

poor behavior in both the center and tail areas compared to the superimposed N(0,1) reference

density. The size distortions diminish by progressively increasing the sample and with n = 100

the tails are tracked quite closely.

BN-S (2005a) showed that log-based inference via standard linearization methods improved

the raw distribution theory for RV ∆. They found a better finite sample behavior for the errors

of the log-transform than those extracted with the feasible version of the CLT outlined in

Equation (2.8). The shape of the actual densities for RRV ∆
m suggests this also applies in our

15A discrete time version of the continuous time model in (3.1) is obtained with a standard Euler approximation

scheme, i.e., pt+∆ = pt + σt

√
∆φt and ln σ2

t+∆ = θω∆ + ln σ2
t (1− θ∆) + η

√
∆εt, where φt and εt are orthogonal

N(0,1) variates.
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setting. By the delta method, the log-version of the CLT for RRV ∆
m takes the form:

√
n

(
lnRRV ∆

m − ln IV
) d→ MN

(
0,

ΛcIQ

IV 2

)
. (3.2)

In the lower panel of Figure 4, we plot the density functions of the feasible log-based t-statistics.

Apparently, the coverage probabilities of Equation (3.2) are a much better guide for small values

of n; with n = 100 providing a near perfect fit to the N(0,1). Hence, the results for RRV ∆
m are

consistent with the findings for RV ∆.

This technique is also applicable to study other (differentiable) functions of RRV ∆
m . For

convenience, we will state the CLT of a particularly useful transformation, namely standard

deviations/volatilities obtained by taking square roots:

√
n

(√
RRV ∆

m −
√

IV

)
d→ MN

(
0,

ΛcIQ

4IV

)
. (3.3)

4 Empirical Application: Alcoa Aluminium

We investigate the empirical properties of intraday ranges by analyzing an equity from the

Dow Jones Industrial Average as of the reconfiguration April 8, 2004. Out of the thirty stocks

composing the index, Alcoa, a relatively illiquid security trading under the ticker symbol AA,

was selected at random.

High-frequency data were extracted from the TAQ database, which is a recording of trades

and quotes from the securities listed on the New York Stock Exchange (NYSE), American Stock

Exchange (AMEX), and the National Association of Securities Dealers Automated Quotation

(NASDAQ). The sample period covers January 2, 2001 through December 31, 2004; a total

of 1,004 trading days. We restrict attention to NYSE updates and only report the results

of the quotation data, for which the midquote is used. The analysis of transaction data is

available upon request. All raw data were filtered for irregularities (e.g., a price of zero, entries

posted outside the official NYSE opening hours, or quotes with negative spreads), and a second

algorithm handled a few clusters of outliers found afterwards by visual inspection of the time

series. Dividend payments were adjusted and no stock splits took place.

[ INSERT TABLE 1 ABOUT HERE ]

Summary statistics for the average number of data points remaining after filtering is given

in Table 1. The column #∆pτi 6= 0, where ∆pτi = pτi − pτi−1 and τi is the arrival time of

the ith tick, counts the number of price changes relative to the previous posting. #∆2pτi 6= 0

does the same on second differences, but after having removed updates with ∆pτi = 0. These

numbers are of special importance to the realized range-based estimator for the purpose of

calculating the λ2,m scalars, but also to construct confidence intervals. Initially, we found m on

the basis of all nonzero increments; i.e. the #∆pτi 6= 0 numbers within each intraday sampling
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interval. This clearly meant m was too high, because of instantaneous reversals (e.g., bid-ask

bounce behavior). We judged that a fair method of determining m was to only count repeated

reversals once. Thus, to compute the normalizing constants and confidence bands, we took the

#∆2pτi 6= 0 numbers.

The estimation of RV ∆ and RRV ∆
m proceeds with 5-minute sampling through the trading

session starting 9:30a.m. EST until 4:00p.m. EST.; i.e. by setting n = 78 or ∆ = 300 seconds.16

We use previous-tick method to compute returns for RV ∆. This is not required for the intraday

high-low statistic, where maximum is taken over all increments in the sampling interval. Notice

that as the empirical high-frequency data are irregularly distributed, this means there are, in

general, different values of m in the 5-minute intervals. This does not cause any problems,

however, for the theory extends directly to this setting, provided we use the individual values

of m in the estimation, which - after all - is the most natural thing to do.

[ INSERT TABLE 2 ABOUT HERE ]

Summary statistics of the resulting time series are printed in Table 2. RV ∆ achieves a

lower minimum and higher maximum than RRV ∆
m , while its overall mean is higher. Kurtosis

figures are consistent with the mixed Gaussian limit theory, and the variance is lower for

RRV ∆
m , though somewhat less than predicted by the distribution theory. We expected this,

as the data from the empirical price process are, in all likelihood, not drawn from a Brownian

semimartingale (e.g., there are jumps and microstructure frictions). Our intraday high-low

statistic, in turn, behaves differently for other specifications, which we will address elsewhere.

Still, the variance of RRV ∆
m is only 65% that of RV ∆. The correlation between RV ∆ and RRV ∆

m

is 0.973, pointing towards little gain - at relevant frequencies - in taking linear combinations of

the estimators to reduce sampling variation. In fact, from the joint distribution of RV ∆ and

RRV ∆
m , the conditional covariance matrix at time s is given by:

Σs = σ4
s




2

1
λ2,m

cov
(
W 2

1 , om2
W

)
Λm


 . (4.1)

The covariance term appearing in Σs is hard to tackle analytically. We used some simulations

to inspect the structure of the correlation matrix around a grid of values for m that roughly

matches our sample (unreported results). Based on this, we found that the empirical correlation

corresponds closely with the theoretical level.

[ INSERT FIGURE 5 ABOUT HERE ]
16This choice was guided by signature plots, i.e. averages of the estimators across different sampling frequencies

n. We found increasing signs of microstructure noise by moving beyond the 5-minute frequency.
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In Figure 5, IV estimates are drawn for the two methods: RV ∆ and RRV ∆
m . The time

series agree on the size and direction-of-change for IV . The key point is that the sample path

of the high-low statistic is less volatile compared to RV ∆ (but still quite erratic). Again, this

suggests that the measurement errors of RV ∆ are larger compared to RRV ∆
m , and that the

theoretical gains of the realized range-based estimator also hold for the empirical identification

of σ; at least for the 5-minute frequency.

[ INSERT FIGURE 6 ABOUT HERE ]

To underscore these insights, we extracted quote data for the subsample period January 2,

2002 - December 31, 2002 to plot in Figure 6 the IV estimates together with 95% confidence

intervals, constructed from the log-based theory.17 We see the widening of the confidence

bands, when σ goes up. Nevertheless, the stability of the realized range-based estimator feeds

into much smaller intervals, consistent with the theoretical relationship between the m and

Λm scalars from Figure 3 that implies very few increments are required for RRV ∆
m to gain a

significant advantage in efficiency over RV ∆.18

[ INSERT FIGURE 7 ABOUT HERE ]

These empirical findings transfer into more persistent time series behavior for the realized

range-based estimator, as shown by the autocorrelation functions in Figure 7. We included

the first 75 lags and report Bartlett’s two standard error bands for testing a white noise null

hypothesis (that is immensely rejected by the data). All autocorrelations are positive, starting

at about 0.70 - 0.80 and ending around 0.10 - 0.15. The decay pattern of the series is nearly

identical but evolves more smoothly and at higher levels for RRV ∆
m . Combined, these obser-

vations might be put to work in a forecasting exercise, although we do not pursue this idea

here.

All told, realized range-based estimation of IV offers several advantages compared to RV ;

both from a theoretical and practical viewpoint. But, as a final remark, we acknowledge that

the probabilistic aspects delivered in this paper needs further refinement at higher frequencies,

because microstructure frictions contaminate the data. It is central with statistical tools for

controlling the impact of the noise and getting consistent estimates of IV . These techniques

are already being developed for RV , see, e.g., Barndorff-Nielsen, Hansen, Lunde & Shephard

(2004) or Aı̈t-Sahalia et al. (2005). It presents a topic for future research to verify if our method

extends along these lines, and we are currently devoting a separate paper for a formal analysis

of the realized range-based estimator and market microstructure noise.
17This procedure is recommended by BN-S (2002b), who argue for using the intervals of the log-based theory

- converted back to levels - on empirical data. In the process of exponentiation, these confidence bands become

asymmetric and assign more probability of ending in the upper regions.
18With #∆2pτi 6= 0 equal to 1,002 on average for the quote data, we have roughly m = 13 price increments

within each of the 78 5-minute intervals during the trading day.
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5 Conclusions and Directions for Future Research

The RRV estimator is an approach based on intraday price ranges for non-parametric measure-

ment of QV of continuous semimartingales. Under weak regularity conditions, we have shown

it extracts the latent volatility more accurately than previous methods. Another contribution

of this paper, particularly useful for empirical analysis, is the solution to the problems with

downward bias that has haunted the range-based literature for decades.

The finite sample distributions of the estimator were inspected with Monte Carlo analysis.

For moderate samples, the coverage probabilities of the confidence bands for the t-statistics

correspond with the limit theory, in particular for log-based inference.

We highlighted the empirical potential of realized range-based vis-à-vis return-based vari-

ances by applying our method to a set of 5-minute high-frequency data for Alcoa. Consistent

with theory, the intraday range-based statistic has smaller confidence bands than RV . Al-

though empirical price processes are very different from diffusion models and that real data

are noisy objects, we feel the results support our theory quite well and opens up alternative

practical routes for estimating QV .

In future projects, we envision several extensions of the current framework. First, there

is plenty of evidence against the continuous sample path diffusion. We are convinced that an

intraday high-low statistic can estimate QV , when the price exhibits jumps. This theory is

being developed in another paper, along with realized range-based bipower variation. Second,

with microstructure noise in observed asset prices, further comparisons of the high-low and

RV are needed. Finally, we can handle the bivariate case with the polarization identities, so

multivariate range-based analysis constitutes a promising future application.
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A Appendix of Proofs

A.1 Proof of Theorem 1

First, we define:

ξn
i =

1
λ2

σ2
i−1
n

s2
Wi∆,∆

,

Un =
n∑

i=1

ξn
i .

Note that:

E
[
ξn
i | F i−1

n

]
=

1
n

σ2
i−1
n

,

so,
n∑

i=1

E
[
ξn
i | F i−1

n

]
p→ IV. (A.1)

Now, by setting

ηn
i = ξn

i − E
[
ξn
i | F i−1

n

]
,

we get:

E
[
(ηn

i )2 | F i−1
n

]
= Λ

1
n2

σ4
i−1
n

.

Therefore,
n∑

i=1

E
[
(ηn

i )2 | F i−1
n

]
p→ 0.

Hence, the assertion Un
p→ IV follows directly from (A.1). As a sufficient condition in the next

step, we deduce RRV ∆ − Un
p→ 0. Note the equality:

RRV ∆ − Un =
1
λ2

n∑

i=1

(
spi∆,∆ − σ i−1

n
sWi∆,∆

)(
spi∆,∆ + σ i−1

n
sWi∆,∆

)

≡ R1
n + R2

n,

with R1
n and R2

n defined by:

R1
n =

2
λ2

n∑

i=1

σ i−1
n

sWi∆,∆

(
spi∆,∆ − σ i−1

n
sWi∆,∆

)

R2
n =

1
λ2

n∑

i=1

(
spi∆,∆ − σ i−1

n
sWi∆,∆

)2
.
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We decompose the second term further:

R2
n ≤ 1

λ2

n∑

i=1

(
sup |

∫ t

s
(i−1)/n≤s,t≤i/n

µudu +
∫ t

s

(
σu − σ i−1

n

)
dWu |

)2

≤ 2
λ2

n∑

i=1

(
sup |

∫ t

s
(i−1)/n≤s,t≤i/n

µudu |
)2

+
2
λ2

n∑

i=1

(
sup |

∫ t

s
(i−1)/n≤s,t≤i/n

(
σu − σ i−1

n

)
dWu |

)2

≡ R2.1
n + R2.2

n .

It is straightforward to verify the estimation E
[
R2.1

n

]
= O

(
n−1

)
. For the latter term, we exploit

the Burkholder inequality (e.g., Revuz & Yor (1998)):

E
[
R2.2

n

] ≤ 2C

λ2

n∑

i=1

E

[∫ i
n

i−1
n

(
σu − σ i−1

n

)2
du

]

=
2C

λ2
E

[∫ 1

0

(
σu − σ [nu]

n

)2
du

]

= o(1),

for some constant C > 0. Thus, R2
n = op (1). With a decomposition as above and the Cauchy-

Schwarz inequality, we have R1
n = op (1). By assembling the parts, RRV ∆ − Un

p→ 0. ¥

A.2 Proof of Theorem 2

We need the following lemma from analysis.

Lemma 1 Given two continuous functions f, g : I → R on compact I ⊆ Rn, assume t∗ is the

only point where the maximum of the function f on I is achieved. Then, it holds:

Mε (g) ≡ 1
ε

[
sup
t∈I

{f (t) + εg (t)} − sup
t∈I

{f (t)}
]
→ g (t∗) as ε ↓ 0.

Proof

Construct the set

Ḡ = {h ∈ C (I) | h is constant on Bδ (t∗) ∩ I for some δ > 0} .

As usual, C (I) is the set of continuous functions on I and Bδ (t∗) is an open ball of radius δ

centered at t∗. Take ḡ ∈ Ḡ and recall ḡ is bounded on I. Thus, for ε small enough:

sup
t∈I

{f (t) + εḡ (t)} = max

{
sup {f (t) + εḡ (t)}

t∈I∩Bδ(t∗)
, sup {f (t) + εḡ (t)}

t∈I∩Bc
δ(t∗)

}

= sup {f (t) + εḡ (t)}
t∈I∩Bδ(t∗)

= f (t∗) + εḡ (t∗) .
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So,

Mε (ḡ) → ḡ (t∗) ,

∀ ḡ ∈ Ḡ. Now, let g ∈ C (I). As Ḡ is dense in C (I), ∃ ḡ ∈ Ḡ : ḡ (t∗) = g (t∗) and ||ḡ − g||∞ < ε′

(||·||∞ is the sup-norm). We see that ||Mε (ḡ)−Mε (g)||∞ < ε′, and

||Mε (g)− g (t∗)||∞ ≤ ||Mε (ḡ)− ḡ (t∗)||∞ + ||Mε (g)−Mε (ḡ)||∞ → 0.

Thus, the assertion is established. ¥

With this lemma at hand, we proceed with a three-stage proof of Theorem 2. In the first part,

a CLT is proved for the quantity

Ūn =
√

n
n∑

i=1

ηn
i .

The second step is to define a new sequence:

U ′
n =

√
n

1
λ2

n∑

i=1

(
s2
pi∆,∆

− E
[
s2
pi∆,∆

| F i−1
n

])
,

and show the result

U ′
n − Ūn

p→ 0.

The interested reader may note that Assumptions (M) and (V) are not needed for Part I and

II. Finally, in Part III, the theorem follows from:

√
n

n∑

i=1

(
1
λ2
E

[
s2
pi∆,∆

| F i−1
n

]
− E

[
ξn
i | F i−1

n

])
p→ 0, and

√
n

(
n∑

i=1

E
[
ξn
i | F i−1

n

]
− IV

)
p→ 0.

Proof of Part I

Notice that:

n
n∑

i=1

E
[
(ηn

i )2 | F i−1
n

]
p→ ΛIQ,

and by the scaling property of Brownian motion,

√
n

n∑

i=1

E
[
ηn

i

(
W i

n
−W i−1

n

)
| F i−1

n

]
p→ ν

λ2
IV,

where ν = E
[
W1s

2
W

]
. Quite trivially, {Wt}t∈[0,1]

d= {−Wt}t∈[0,1], with the consequence ν = −ν

and, hence, ν = 0.

Next, let N = {Nt}t∈[0,1] be a bounded martingale on
(
Ω,F , {Ft}t∈[0,1], P

)
, which is or-

thogonal to W (i.e., with quadratic covariation [W,N ]t = 0). Then,

√
n

n∑

i=1

E
[
ηn

i

(
N i

n
−N i−1

n

)
| F i−1

n

]
= 0. (A.2)
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For this result, we use Clark’s Representation Theorem (see, e.g., Karatzas & Shreve (1998,

Appendix E)):

s2
Wi∆,∆

− 1
n

λ2 =
∫ i

n

i−1
n

Hn
s dWs, (A.3)

for some predictable function Hn
s . Notice E

[∫ b
a fsdWs (Nb −Na) | Fa

]
= 0, for any [a, b] and

predictable f . To prove this assertion, take a partition a = t∗0 < t∗1 < . . . < t∗n = b and compute:

E

[
n∑

i=1

ft∗i−1

(
Wt∗i −Wt∗i−1

)
(Nb −Na) | Fa

]
= E

[
n∑

i=1

ft∗i−1

(
Wt∗i −Wt∗i−1

)
Nb | Fa

]

= E

[
n∑

i=1

E
[
E

[
ft∗i−1

(
Wt∗i −Wt∗i−1

)
Nb | Ft∗i

]
| Ft∗i−1

]
| Fa

]

= 0.

From Equation (A.3), (A.2) is attained. Finally, stable convergence in law follows by Theorem

IX 7.28 in Jacod & Shiryaev (2002):

√
n

(
RRV ∆ − IV

) ds→
√

Λ
∫ 1

0
σ2

sdBs.

¥
Proof of Part II

We begin by setting

ζn
i =

√
n

(
1
λ2

s2
pi∆,∆

− ξn
i

)
,

and obtain the identity:

U ′
n − Ūn =

n∑

i=1

(
ζn
i − E

[
(ζn

i )2 | F i−1
n

])
.

To complete the second step, it suffices that

n∑

i=1

E
[
(ζn

i )2
]
→ 0.

We can show this result with the same methods applied to the estimates of R1
n and R2

n in the

proof of Theorem 1. ¥

Proof of Part III

It holds that:

√
n

(
n∑

i=1

E
[
ξn
i | F i−1

n

]
− IV

)
=
√

n
n∑

i=1

∫ i
n

i−1
n

(
σ2

i−1
n

− σ2
s

)
ds.
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Exploiting the results of Barndorff-Nielsen et al. (2005), we find, under Assumption V2,

√
n

(
n∑

i=1

E
[
ξn
i | F i−1

n

]
− IV

)
p→ 0.

Now, we prove the first convergence of Part III stated above. After some tedious computations

- identical to the methods in Theorem 1 - we get that, using V2,

√
n

n∑

i=1

(
1
λ2
E

[
s2
pi∆,∆

| F i−1
n

]
− E

[
ξn
i | F i−1

n

])

= 2
√

n
1
λ2

n∑

i=1

E
[
σ i−1

n
sWi∆,∆

(
spi∆,∆−σ i−1

n

sWi∆,∆

)
| F i−1

n

]
+ op (1)

= 2
√

n
1
λ2

n∑

i=1

E

[
σ i−1

n
sWi∆,∆

(
sup

(
σ i−1

n

s,t∈[ i−1
n

, i
n ]

(Wt −Ws) +
∫ t

s
µudu +

∫ t

s

(
σu − σ i−1

n

)
dWu

)

−σ i−1
n

sWi∆,∆

)
| F i−1

n

]
+ op (1) .

By appealing to Assumption V2 again, we get the decomposition:

√
n

n∑

i=1

(
1
λ2
E

[
s2
pi∆,∆

| F i−1
n

]
− E

[
ξn
i | F i−1

n

])
= V 1

n + V 2
n + op (1) ,

with the random variables V 1
n and V 2

n defined by

V 1
n = 2

1
λ2

n∑

i=1

E
[
σ i−1

n
sWi∆,∆

{
sup

(√
n

s,t∈[ i−1
n

, i
n ]

σ i−1
n

(Wt −Ws) +
√

n

∫ t

s
µ i−1

n
du

+
√

n

∫ t

s

{
σ′i−1

n

(
Wu −W i−1

n

)
+ v i−1

n

(
B′

u −B′
i−1
n

)}
dWu −

√
nσ i−1

n
sWi∆,∆

}
| F i−1

n

]
,

and

V 2
n = 2

√
n

1
λ2

n∑

i=1

E
[
σ i−1

n
sWi∆,∆

{
sup

(
σ i−1

n

s,t∈[ i−1
n

, i
n ]

(Wt −Ws) +
∫ t

s
µudu +

∫ t

s

(
σu − σ i−1

n

)
dWu

)

− σ i−1
n

sWi∆,∆

}
| F i−1

n

]
− V 1

n

≤ 2
√

n
1
λ2

n∑

i=1

E
[
σ i−1

n
sWi∆,∆

{
sup

(∫ t

s

(
µu

s,t∈[ i−1
n

, i
n ]

− µ i−1
n

)
du +

∫ t

s

{∫ u

i−1
n

µ′rdr

+
∫ u

i−1
n

(
σ′r − σ′i−1

n

)
dWr +

∫ u

i−1
n

(
vr − v i−1

n

)
dB′

r

}
dWu

)}
| F i−1

n

]
.

From the Cauchy-Schwarz and Burkholder inequalities, we find that

V 2
n = op (1) .
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At this point, we invoke the Lemma 1 by setting:

fin (s, t) =
√

nσ i−1
n

(Wt −Ws) ,

gin (s, t) = n

∫ t

s
µ i−1

n
du + n

∫ t

s

{
σ′i−1

n

(
Wu −W i−1

n

)
+ v i−1

n

(
B′

u −B′
i−1
n

)}
dWu

= µ i−1
n

g1
in (s, t) + σ′i−1

n

g2
in (s, t) + v i−1

n
g3
in (s, t) .

Note that ε = 1/
√

n. Through Assumption V1, we get the following identity:

(t∗in (W ) , s∗in (W )) = arg sup
s,t∈[ i−1

n
, i
n ]

fin (s, t)

= arg sup
s,t∈[ i−1

n
, i
n ]

√
n (Wt −Ws)

d= arg sup
s,t∈[0,1]

(Wt −Ws) .

A standard result then states that the points t∗in (W ) and s∗in (W ) are unique, almost surely, so

the lemma applies. Hence, by imitating the proof of the lemma, we get the decomposition:

V 1
n = 2

1
λ2

n∑

i=1

E
[
σ i−1

n
sWi∆,∆

(
1√
n

gin (t∗in (W ) , s∗in (W )) + Rin

)
| F i−1

n

]
,

where the term Rin satisfies:

E
[
(Rin)2

]
= o

(
n−1

)
,

(uniformly in i). By the Cauchy-Schwarz inequality, we have the estimation:

2
1
λ2

n∑

i=1

E
[
σ i−1

n
sWi∆,∆

Rin | F i−1
n

]
= op (1) .

As g1
in (s, t), g2

in (s, t) and g3
in (s, t) are independent of F i−1

n
, we obtain:

E
[
σ i−1

n
sWi∆,∆

1√
n

g1
in (t∗in (W ) , s∗in (W )) | F i−1

n

]
≡ 1√

n
σ i−1

n
µ i−1

n
ν1

E
[
σ i−1

n
sWi∆,∆

1√
n

g2
in (t∗in (W ) , s∗in (W )) | F i−1

n

]
≡ 1√

n
σ i−1

n
σ′i−1

n

ν2

E
[
σ i−1

n
sWi∆,∆

1√
n

g3
in (t∗in (W ) , s∗in (W )) | F i−1

n

]
≡ 1√

n
σ i−1

n
v i−1

n
ν3,

with

νk = E
[
sWi∆,∆

gk
in (t∗in (W ) , s∗in (W ))

]
, for k = 1, 2, and 3.

Note that,

(t∗in (W ) , s∗in (W )) = (s∗in (−W ) , t∗in (−W )) . (A.4)

Using (A.4) and the relationship (W,B) d= (−W,−B), it follows that νk = −νk and, hence,

νk = 0 for k = 1, 2, and 3. This yields the estimation:

V 1
n = op (1) ,

and the proof is complete. ¥
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A.3 Proof of Theorem 3

The result is shown in the same manner as the proofs of Theorem 1 and 2. ¥
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Table 1: Data Cleaning, Tick Data with Price Effects and without Instantaneous Reversals

Company No. Tick Data Pr. Trading Day

Trades Quotes

All #∆pτi 6= 0 #∆2pτi 6= 0 All #∆pτi 6= 0 #∆2pτi 6= 0

Alcoa 2285 966 549 5393 1370 1002

The table gives information about the filtering of Alcoa high-frequency data. All numbers are

averages. #∆pτi 6= 0 is the daily amount of tick data left, after counting out price repetitions

in consecutive ticks. #∆2pτi 6= 0 also removes instantaneous price reversals.
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Table 2: Summary Statistics for Realized Estimators of Integrated Variance

Mean Var. Skew. Kurt. Min. Max. Correlation

RV ∆ RRV ∆
m

RV ∆ 0.093 0.533 2.686 12.656 0.011 0.600 1.000

RRV ∆
m 0.082 0.349 2.306 9.592 0.013 0.421 0.973 1.000

We report summary statistics for the annualized realized return- and range-based estimators

for Alcoa during the sample period covering January 2, 2001 up to December 31, 2004. The

table prints the mean, variance, skewness, kurtosis, mininum and maximum of the various time

series, plus their correlation. Variance figures are multiplied by 100.
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Figure 1: The Distribution of the Absolute Return and Range
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We plot the distribution of the absolute return and range of a standard Brownian motion over

an interval of unit length.
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Figure 2: The Finite Sample Expectation of the Squared Range
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This figure details the second moment of the range of a standard Brownian motion over an

interval of unit length, when increments to the underlying continuous time process is only

observed at m equidistant points in time. The dashed line is the asymptotic value, and the

figure is based on a simulation with 1,000,000 repetitions.
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Figure 3: The Variance Factor of the Realized Range-Based Estimator
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We plot the variance of the realized range-based estimator of integrated variance of a standard

Brownian motion over an interval of unit length, when increments to the underlying contin-

uous time process is only observed at m equidistant points in time. The dashed line is the

asymptotic value, and the figure is based on a simulation with 1,000,000 repetitions.
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Figure 4: Asymptotic Normality for the Standardized Realized Range-Based Statistic in Esti-

mating Integrated Variance
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The figure shows kernel densities of the measurement errors for the studentized RRV ∆
m in

estimating IV . We show the finite sample settings n = 10, 50, 100 and m = 10. All plots are

based on a simulation with 1,000,000 repetitions from a log-normal diffusion for σ, as detailed

in the main text. The upper panel depicts t-statistics of the feasible CLT for RRV ∆
m , while the

lower panel is the corresponding log-based version. The solid line is the N(0,1) density.
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Figure 5: Estimates of Integrated Variance for Alcoa
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Time series for the daily IV estimates for Alcoa are plotted for the sample period January

2, 2001 to December 31, 2004. All series are constructed from 5-minute midquote returns or

ranges for quotation data extracted from the TAQ database.
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Figure 6: Confidence Intervals for Integrated Variance
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Daily IV estimates for Alcoa are drawn together with 95% confidence intervals for the subsam-

ple period January 2, 2002 through December 31, 2002. The confidence bands are constructed

from the log-based limit theory and converted back to variances. The upper (lower) dashed

line is the 97,5% (2,5%) level.
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Figure 7: Autocorrelation Functions for Estimators of Integrated Variance

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Lag

A
ut

oc
or

re
la

tio
n

RV∆ RRVm
∆ 

We plot the autocorrelation functions of RV ∆ and RRV ∆
m constructed from 5-minute midquote

returns or ranges for Alcoa through the sample period January 2, 2001 to December 31, 2004;

or 1,004 trading days in total. The first 75 lags are shown and the dashed vertical line is

Bartlett’s standard errors for testing a white noise hypothesis.
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