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Abstract Quantile- and copula-related spectral concepts recently
have been considered by various authors. Those spectra, in their
most general form, provide a full characterization of the copulas
associated with the pairs (Xt, Xt−k) in a process (Xt)t∈Z, and ac-
count for important dynamic features, such as changes in the condi-
tional shape (skewness, kurtosis), time-irreversibility, or dependence
in the extremes, that their traditional counterpart cannot capture.
Despite various proposals for estimation strategies, no asymptotic
distributional results are available so far for the proposed estima-
tors, which constitutes an important obstacle for their practical ap-
plication. In this paper, we provide a detailed asymptotic analysis of
a class of smoothed rank-based cross-periodograms associated with
the copula spectral density kernels introduced in Dette et al. (2011).
We show that, for a very general class of (possibly non-linear) pro-
cesses, properly scaled and centered smoothed versions of those cross-
periodograms, indexed by couples of quantile levels, converge weakly,
as stochastic processes, to Gaussian processes. A first application of
those results is the construction of asymptotic confidence intervals
for copula spectral density kernels. The same convergence results also
provide asymptotic distributions (under serially dependent observa-
tions) for a new class of rank-based spectral methods involving the
Fourier transforms of rank-based serial statistics such as the Spear-
man, Blomqvist or Gini autocovariance coefficients.
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1. Introduction. Spectral analysis and frequency domain methods play
a central role in the nonparametric analysis of time series data. The classi-
cal frequency domain representation is based on the spectral density—call it
the L2-spectral density in order to distinguish it from other spectral densi-
ties to be defined in the sequel—which is traditionally defined as the Fourier
transform of the autocovariance function of the process under study. Fun-
damental tools for the estimation of spectral densities are the periodogram
and its smoothed versions. The classical periodogram—similarly call it the
L2-periodogram—can be defined either as the discrete Fourier transform of
empirical autocovariances, or through L2-projections of the observed series
on a harmonic basis. The success of periodograms in time series analysis is
rooted in their fast and simple computation (through the fast Fourier trans-
form algorithm) and their interpretation in terms of cyclic behavior, both
of a stochastic and of deterministic nature, which in specific applications
are more illuminating than time-domain representations. L2-periodograms
are particularly attractive in the analysis of Gaussian time series, since the
distribution of a Gaussian process is completely characterized by its spec-
tral density. Classical references are Priestley (1981), Brillinger (1975) or
Chapters 4 and 10 of Brockwell and Davis (1987).

Being intrinsically connected to means and covariances, the L2-spectral
density and L2-periodogram inherit the nice features (such as optimality
properties in the analysis of Gaussian series) of L2 methods, but also their
weaknesses: they are lacking robustness against outliers and heavy tails, and
are unable to capture important dynamic features such as changes in the
conditional shape (skewness, kurtosis), time-irreversibility, or dependence in
the extremes. This was realized by many researchers, and various extensions
and modifications of the L2-periodogram have been proposed to remedy
those drawbacks.

Robust non-parametric approaches to frequency domain estimation have
been considered first: see Kleiner, Martin and Thomson (1979) for an early
contribution, and Chapter 8 of Maronna, Martin and Yohai (2006) for an
overview. More recently, Klüppelberg and Mikosch (1994) proposed a weighted
(“self-normalized”) version of the periodogram; see also Mikosch (1998). Hill
and McCloskey (2013) used a robust version of autocovariances to obtain a
robustified periodogram. In the context of signal detection, Katkovnik (1998)
introduced a periodogram based on robust loss functions. The objective of
all those attempts is a robustification of classical tools: they essentially aim
at protecting existing L2 spectral methods against the impact of possible
outliers or violations of distributional assumptions.

Other attempts, more recent and somewhat less developed, consist in de-
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veloping alternative spectral concepts and tools, mostly related with quan-
tiles or copulas, and accounting for more general dynamic features. A first
step in that direction was taken by Hong (1999), who proposes a generalized
spectral density with covariances replaced by joint characteristic functions.
In the specific problem of testing pairwise independence, Hong (2000) in-
troduces a test statistic based on the Fourier transforms of (empirical) joint
distribution functions and copulas at different lags. Recently, there has been
a renewed surge of interest in that type of concept, with the introduction,
under the names of Laplace-, quantile- and copula spectral density and spec-
tral density kernels, of various quantile-related spectral concepts, along with
the corresponding sample-based periodograms and smoothed periodograms.
That strand of literature includes Li (2008, 2012, 2013), Hagemann (2011),
Dette et al. (2011, 2013), and Lee and Rao (2012). A Fourier analysis of
extreme events, which is related in spirit but quite different in many other
respects, was considered by Davis, Mikosch and Zhao (2013). Finally, in the
time domain, Linton and Whang (2007), Davis and Mikosch (2009), and
Han et al. (2014) introduced the related concepts of quantilograms and ex-
tremograms. A more detailed account of some of those contributions is given
in Section 2.

A deep understanding of the distributional properties of any statistical
tool is crucial for its successful application. The construction of confidence
intervals, testing procedures, and efficient estimation all rest on results
concerning finite-sample or asymptotic properties of related estimators—
here the appropriate (smoothed) periodograms associated with the quantile-
related spectral density under study. Obtaining such asymptotic results, un-
fortunately, is not trivial, and, to the best of our knowledge, no results on
the asymptotic distribution of the aforementioned (smoothed) quantile and
copula periodograms are available so far.

In the case of i.i.d. observations, Hong (2000) derived the asymptotic
distribution of an empirical version of the integrated version of his quantile
spectral density, while Lee and Rao (2012) investigated the distributions of
Cramér-von Mises type statistics based on empirical joint distributions. No
results on the asymptotic distribution of the periodogram itself are given,
though. Li (2008, 2012) does not consider asymptotics for smoothed versions
of his quantile periodograms, while Hagemann (2011) and Dette et al. (2011,
2013) only obtain consistency results. This is perhaps not so surprising:
the asymptotic distribution of classical L2-spectral density estimators for
general non-linear processes also has remained an active domain of research
for several decades—see Brillinger (1975) for early results, Shao and Wu
(2007), Liu and Wu (2010) or Giraitis and Koul (2013) for more recent
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references.
The present paper has two major objectives. First, it aims at provid-

ing a rigorous analysis of the asymptotic properties of a general class of
smoothed rank-based copula cross-periodograms generalizing the quantile
periodograms introduced by Hagemann (2011) and, in an integrated version,
by Hong (2000). In Section 3, we show that, for general non-linear time se-
ries, properly centered and smoothed versions of those cross-periodograms,
indexed by couples of quantile levels, converge in distribution to centered
Gaussian processes. A first application of those results is the construction
of asymptotic confidence intervals which we discuss in detail in Section 5.

The second objective of this paper is to introduce a new class of rank-
based frequency domain methods that can be described as a nonstandard
rank-based Fourier analysis of the serial features of time series. Examples
of such methods are discussed in detail in Section 4, where we study a
class of spectral densities, such as the Spearman, Blomqvist and Gini spec-
tra, and the corresponding periodograms, associated with rank-based au-
tocovariance concepts. Denoting by F the marginal distribution function
of Xt, the Spearman spectral density, for instance, is defined as

∑
k∈Z e

iωkρSp

k ,
where ρSp

k := Corr(F (Xt), F (Xt−k)) denotes the lag-k Spearman autocorrela-
tion. We show that estimators of those spectral densities can be obtained as
functionals of the rank-based copula periodograms investigated in this paper.
This connection, and our process-level convergence results on the rank-based
copula periodograms, allow us to establish the asymptotic normality of the
smoothed versions of the newly defined rank-based periodograms. Those re-
sults can be considered as frequency domain versions of Hájek’s celebrated
asymptotic representation and normality results for (non-serial) linear rank
statistics under non-i.i.d. observations (Hájek, 1968).

The paper is organized as follows. Section 2 provides precise definitions
of the spectral concepts to be considered throughout, and motivates the
use of our quantile-related methods by a graphical comparison of the cop-
ula spectra of white noise, QAR(1) and ARCH(1) processes, respectively—
all of which share the same helplessly flat L2 spectral density. Section 3
is devoted to the asymptotics of rank-based copula (cross-)periodograms
and their smoothed versions, presenting the main results of this paper: the
convergence to a Gaussian process of the smoothed copula rank-based peri-
odogram process (Theorem 3.5), based on an equally interesting asymptotic
representation result (Theorem 3.6). Section 4 is dealing with the relation
with Spearman, Gini, and Blomqvist autocorrelation coefficients and the
related spectra. Based on a short Monte-Carlo study, Section 5 discusses
the practical performances of the methods proposed, and Section 6 provides
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some conclusions and directions for future research. Proofs are concentrated
in an appendix (Section 7) and an online supplement (Section 8).

2. Copula spectral density kernels and rank-based periodograms.
In this section, we provide more precise definitions of the various quantile-
and copula-related spectra mentioned in the introduction, along with the
corresponding periodograms.

Throughout, let (Xt)t∈Z denote a strictly stationary process, of which we
observe a finite stretch X0, ..., Xn−1, say. Denote by F the marginal distri-
bution function of Xt, and by qτ := F−1(τ), τ ∈ (0, 1) the corresponding
quantile function. Our main object of interest is the copula spectral density
kernel

(2.1) fqτ1 ,qτ2 (ω) :=
1

2π

∑
k∈Z

e−iωkγUk (τ1, τ2), ω ∈ R, (τ1, τ2) ∈ [0, 1]2,

based on the copula cross-covariances

γUk (τ1, τ2) := Cov
(
I{Ut ≤ τ1}, I{Ut−k ≤ τ2}

)
, k ∈ Z, Ut := F (Xt).

where Ut := F (Xt). Those copula spectral density kernels were introduced
in Dette et al. (2011), and generalize the τ -th quantile spectral densities of
Hagemann (2011), with which they coincide for τ1 = τ2 = τ . An integrated
version of this copula spectral density kernel was also considered by Hong
(2000). The same copula spectral density kernel also takes the form

(2.2) fqτ1 ,qτ2 (ω) :=
1

2π

∑
k∈Z

e−iωk
(
P(Xk ≤ qτ1 , X0 ≤ qτ2)− τ1τ2

)
,

ω ∈ R, (τ1, τ2) ∈ (0, 1)2,

where P(Xk ≤ qτ1 , X0 ≤ qτ2)—the joint distribution function of (Xk, X0)
taken at (qτ1 , qτ2)—is, by definition, the copula of the pair (Xk, X0) eval-
uated at (τ1, τ2), while τ1τ2 is the independence copula evaluated at the
same (τ1, τ2). The copula spectral density kernel thus can be interpreted as
the Fourier transform of the difference between pairwise copulas at lag k and
the independence copula, which justifies the notation and the terminology.

As argued by Dette et al. (2011), the copula spectral densities provide a
complete description of the pairwise copulas of a time series. Similar to the
regression setting, where joint distributions and quantiles provide important
generalizations of covariances and means, the copula spectral density kernel,
by accounting for much more than the covariance between Xk an X0, extends
and supplements the classical L2-spectral density.
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Figure 1. Traditional L2-spectra (2π)−1 ∑
k∈Z Cov(Yt+k, Yt)e−iωk. The process (Yt) in

the left-hand picture is independent standard normal white noise; in the middle picture,
Yt = Xt/Var(Xt)

1/2 where (Xt) is QAR(1) as defined in (5.16); in the right-hand picture,
Yt = Xt/Var(Xt)

1/2 where (Xt) is the ARCH(1) process defined in (5.18). All curves are
plotted against ω/(2π).
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Figure 2. Copula spectra (2π)−1 ∑
k∈Z Cov(I{F (Yt+k) ≤ τ1}, I{F (Yt) ≤ τ2})e−iωk

for τ1, τ2 = 0.1, 0.5, and 0.9. Real parts (imaginary parts) are shown in subfigures
with τ2 ≤ τ1 (τ2 > τ1). Solid, dashed, and dotted lines correspond to the white noise,
QAR(1) and ARCH(1) processes in Figure 1. All curves are plotted against ω/(2π).
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As an illustration, the L2-spectra and copula spectral densities are shown
in Figures 1 and 2, respectively, for three different processes: (a) a Gaussian
white noise process, (b) a QAR(1) process, and (c) an ARCH(1) process
[the same processes are also considered in the simulations of Section 5]. All
processes were standardized so that the marginal distributions have unit
variance. Although their dynamics obviously are quite different, those three
processes are uncorrelated, and thus they all exhibit the same L2-spectrum.
This very clearly appears in Figure 1. In Figure 2, the copula spectral den-
sities associated with various values of τ1 and τ2 are shown for the same
processes. Obviously, the three copula spectral densities differ considerably
from each other, and therefore provide a much richer information about the
dynamics of the three processes at hand. For a more detailed discussion of
the advantages of the copula spectrum compared to the classical one, see
Hong (2000), Dette et al. (2011, 2013), Hagemann (2011), and Lee and Rao
(2012).

The consistent estimation of fqτ1 ,qτ2 (ω) was independently considered in
Hagemann (2011) for the special case τ1 = τ2 ∈ (0, 1) and by Dette et al.
(2011, 2013) for general couples (τ1, τ2) ∈ [0, 1]2 of quantile levels, under
different assumptions such as m(n)-decomposability and β-mixing.

Hagemann’s estimator, called the τ -th quantile periodogram, is a tradi-
tional L2 periodogram where observations are replaced with the indica-
tors I{F̂n(Xt) ≤ τ} = I{Rn;t ≤ nτ}, where F̂n(x) := n−1

∑n−1
t=0 I{Xt ≤ x}

denotes the empirical marginal distribution function and Rn;t the rank of Xt

among X0, . . . , Xn−1. Dette et al. (2011, 2013) introduce their Laplace rank-
based periodograms by substituting an L1 approach for the L2 one, and con-
sidering the cross-periodograms associated with arbitrary couples (τ1, τ2) of
quantile levels. See Remark 2.1 for details.

In this paper, we stick to the L2 approach, but extend Hagemann’s con-
cept by considering, as in Dette et al. (2011), the cross-periodograms asso-
ciated with couples (τ1, τ2). More precisely, we define the rank-based copula
periodogram In,R—shortly, the CR-periodogram—as the collection

(2.3) Iτ1,τ2n,R (ω) :=
1

2πn
dτ1n,R(ω)dτ2n,R(−ω), ω ∈ R, (τ1, τ2) ∈ [0, 1]2,

with

dτn,R(ω) :=

n−1∑
t=0

I{F̂n(Xt) ≤ τ}e−iωt =

n−1∑
t=0

I{Rn;t ≤ nτ}e−iωt,

Those cross-periodograms, as well as Hagemann’s τ -th quantile periodograms,
are measurable functions of the marginal ranks Rn;t, whence the terminology
and the notation.
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Classical periodograms and rank-based Laplace periodograms converge,
as n → ∞, to random variables whose expectations are the corresponding
spectral densities; but they fail estimating those spectral densities in a con-
sistent way. Similarly, the CR-periodogram Iτ1,τ2n,R (ω) fails to estimate fqτ1 ,qτ2 (ω)
consistently. More precisely, we show (see Proposition 3.4 for details) that,
under suitable assumptions, denoting by  the Hoffman-Jørgensen conver-
gence in `∞([0, 1]2) (see Chapter 1 of van der Vaart and Wellner (1996)), for
any frequencies ω 6= 0 mod 2π,(

Iτ1,τ2n,R (ω)
)

(τ1,τ2)∈[0,1]2
 
(
I(τ1, τ2;ω)

)
(τ1,τ2)∈[0,1]2

as n→∞,

where the limiting process I is such that

E[I(τ1, τ2;ω)] = fqτ1 ,qτ2 (ω) for all (τ1, τ2) ∈ (0, 1)2 and ω 6= 0 mod 2π

and I(τ1, τ2;ω1) and I(τ3, τ4;ω2) are independent for any τ1, . . . , τ4 as soon
as ω1 6= ω2.

In view of this asymptotic independence at different frequencies, it seems
natural to consider smoothed versions of Iτ1,τ2n,R (ω), namely, for (τ1, τ2) ∈
[0, 1]2 and ω ∈ R, averages of the form

(2.4) Ĝn,R(τ1, τ2;ω) :=
2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
Iτ1,τ2n,R (2πs/n),

where Wn denotes a sequence of weighting functions. For the special case
τ1 = τ2, the consistency of a closely related estimator is established by
Hagemann (2011). However, even for τ1 = τ2, obtaining the asymptotic
distribution of smoothed CR-periodograms is not trivial, and so far has re-
mained an open problem. Similarly, Dette et al. (2011) do not provide any
results on the asymptotic distributions of their (smoothed) Laplace rank-
based periodograms. Note that even consistency results in Hagemann (2011),
as well as in Dette et al. (2011) are only pointwise in τ1, τ2.

In the present paper, we fill that gap. Theorem 3.5 below does not only
provide pointwise asymptotic distributions for smoothed CR-periodograms,
but also describes the asymptotic behavior of a properly centered and rescaled
version of the full collection {Ĝn,R(τ1, τ2;ω), (τ1, τ2) ∈ [0, 1]2} as a sequence
of stochastic processes. Such convergence results (process convergence rather
than pointwise) are of particular interest, as they can be used to obtain the
asymptotic distribution of functionals of smoothed CR-periodograms as es-
timators of functionals of the corresponding copula spectral density kernel.
As an example, we derive, in Section 4, the asymptotic distributions of
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periodograms computed from various rank-based autocorrelation concepts
(Spearman, Gini, Blomqvist, ... ).

In the process of analyzing the asymptotic behavior of {Ĝn,R(τ1, τ2;ω)},
we establish several intermediate results of independent interest. For in-
stance, we prove an asymptotic representation theorem (Theorem 3.6(i)),
where we show that, uniformly in τ1, τ2 ∈ [0, 1]2, ω ∈ R, the smoothed
periodogram Ĝn,R(τ1, τ2;ω) can be approximated by

(2.5) Ĝn,U (τ1, τ2;ω) :=
2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
Iτ1,τ2n,U (2πs/n),

where

(2.6) Iτ1,τ2n,U (ω) :=
1

2π

1

n
dτ1n,U (ω)dτ2n,U (−ω),

and

dτn,U (ω) :=
n−1∑
t=0

I{Ut ≤ τ}e−iωt with Ut := F (Xt).

We conclude this section with two remarks clarifying the relation between
the approach considered here, that of Dette et al. (2011, 2013), and some
other copula-based approaches in the analysis of time series.

Remark 2.1. The classical L2-periodogram of a real-valued time series
can be represented in two distinct ways, providing two distinct interpre-
tations. First, it can be defined as the Fourier transform of the empirical
autocovariance function. More precisely, considering the empirical autoco-
variance

γ̂k :=
1

n− k

n−k∑
t=1

(Xt+k − X̄)(Xt − X̄) k ≥ 0, γ̂k := γ̂−k k < 0,

the classical L2-periodogram can be defined as

(2.7) In(ω) :=
1

2π

∑
|k|<n

n− k
n

γ̂ke
−ikω.

However, an alternative definition is

(2.8) In(ω) :=
1

2π

1

n

∣∣∣ n−1∑
t=0

Xte
−itω

∣∣∣2 =
n

4
(b̂21 + b̂22)
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where b1, b2 are the coefficients of the projection of the observationsX0, ..., Xn−1

on the basis (1, sin(ωt), cos(ωt)), that is

(2.9) (â, b̂1, b̂2) = Argmin(a,b1,b2)′∈R3

n−1∑
t=0

(
Xt−a−b1 cos(ωt)−b2 sin(ωt)

)2
.

This suggests two different starting points for generalization. We either
can replace autocovariances in (2.7) by alternative measures of dependence
such as (empircal) joint distributions or copulas, or consider alternative loss
functions in the minimization step (2.8). Replacing the autocovariance func-
tion by the pairwise copula with τ1 = τ2 = τ yields the τ -quantile peri-
odogram of Hagemann (2011), which we also consider here, under the name
of CR-periodogram, for general (τ1, τ2) ∈ [0, 1]2. Replacing the quadratic
loss in (2.9) was, in a time series context, first considered by Li (2008, 2012)
and Dette et al. (2011, 2013), who observed that substituting the check
function ρτ (x) = x(τ − I{x < 0}) of Koenker and Bassett (1978) for the
standard L2-loss leads to an estimator for the quantity

f̃τ ,τ (ω) :=
1

2πf2(qτ )

∑
k∈Z

e−iωk
(
P(X0 ≤ qτ , X−k ≤ qτ )− τ2

)
.

This latter expression is is a weighted version of the copula spectral den-
sity kernel at τ1 = τ2 = τ introduced in (2.2). This weighting, which in-
volves f(qτ ), is undesirable, since it involves the unknown marginal dis-
tribution of Xt, which is unrelated with its dynamics. Dette et al. (2011)
demonstrate that, by considering ranks instead of the original data, that
weighting can be removed. The same authors also proposed a generalization
to cross-periodograms associated with distinct quantile levels. See Li (2012),
Dette et al. (2011), and Hagemann (2011) for details and discussion.

Remark 2.2. The benefits of considering joint distributions and copulas
as a measure of serial dependence in a nonparametric time-domain analy-
sis of time series has been realized by many authors. Skaug and Tjøstheim
(1993) and Hong (1999) used joint distribution functions to test for serial
independence at given lag. Subsequently, related approaches were taken by
many authors, and an overview of related results can be found in Tjøstheim
(1996) and Hong (1999). Copula-based tests of serial independence were con-
sidered by Genest and Rémillard (2004), among others. Linton and Whang
(2007) introduced the so-called quantilogram, defined as the autocorrelation
of the series of indicators I{Xt ≤ q̂τ}, t = 0, . . . , n − 1, where q̂τ denotes
the empirical τ -quantile; they discuss the application of this quantilogram
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(closely related to Hagemann’s τ -quantile periodogram) to measuring direc-
tional predictability of time series. They do not, however, enter into any
spectral considerations. An extension of those concepts to the dependence
between several time series was recently considered in Han et al. (2014).
Finally, Davis and Mikosch (2009) also considered a related quantity which
is based on autocorrelations of indicators of extreme events.

3. Asymptotic properties of rank-based copula periodograms.
The derivation of the asymptotic properties of CR-periodograms requires
some assumptions on the underlying process and the weighting functionsWn.

Recall that the rth order joint cumulant cum(ζ1, . . . , ζr) of the random
vector (ζ1, . . . , ζr) is defined as

cum(ζ1, . . . , ζr) :=
∑

{ν1,...,νp}

(−1)p−1(p− 1)!(E
∏
j∈ν1

ζj) · · · (E
∏
j∈νp

ζj),

with summation extending over all partitions {ν1, . . . , νp}, p = 1, . . . , r
of {1, . . . , r} (cf. Brillinger (1975), p. 19).

The assumption we make on the dependence structure of the process (Xt)t∈Z
is as follows. Its relation to more classical assumptions of weak dependence
is discussed in Propositions 3.1 and 3.2 below, and in Lemma 3.3.

(C) There exist constants ρ ∈ (0, 1) and K < ∞ such that, for arbitrary
intervals A1, ..., Ap ⊂ R and arbitrary t1, ..., tp ∈ Z,

(3.1) | cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})| ≤ Kρmaxi,j |ti−tj |.

The crucial point here is that we replace an assumption on the cumulants
of the original observations by an assumption on the cumulants of certain
indicators. Thus, in contrast to classical assumptions, condition (C) does not
require the existence of any moments. Additionally, note that the sets Aj
in (3.1) only need to be intervals, not general Borel sets as in classical mixing
assumptions.

Proposition 3.1. Assume that the process (Xt)t∈Z is strictly stationary
and exponentially α-mixing, i. e.,

(3.2) α(n) := sup
A∈σ(X0,X−1,...)
B∈σ(Xn,Xn+1,...)

|P(A ∩B)− P(A)P (B)| ≤ Kκn , n ∈ N

for some K <∞ and κ ∈ (0, 1). Then Assumption (C) holds.



12 T. KLEY, S. VOLGUSHEV, H. DETTE, AND M. HALLIN

While mixing assumptions are very general and intuitively interpretable,
which makes them quite attractive from a probabilistic point of view, verify-
ing conditions such as (3.1) or (3.2) can be difficult in specific applications.
An alternative description of dependence that is often easier to check for
was recently proposed by Wu and Shao (2004). More precisely, these au-
thors assume that the process (Xt)t∈Z can be represented as

(3.3) Xt = g(. . . , εt−2, εt−1, εt)

where g denotes some measurable function and (εt)t∈Z is a collection of
i.i.d. random variables. Note that the function g is not assumed to be linear,
which makes this kind of process very general. To quantify the long-run
dependence between (..., X−1, X0), and (Xt, Xt+1, ...), denote by (ε∗t )t≤0 an
independent copy of (εt)t≤0 and define X∗t := g(. . . , ε∗−1, ε

∗
0, ε1, ..., εt), t ∈ N.

The process (Xt)t∈Z satisfies a geometric moment contraction of order a
property (shortly, GMC(a) throughout this paper) if, for some K < ∞
and σ ∈ (0, 1),

(3.4) E|Xn −X∗n|a ≤ Kσn , n ∈ N;

see Wu and Shao (2004). Examples of processes that satisfy this condi-
tion include, (possibly, under mild additional conditions on the parameters)
ARMA, ARCH, GARCH, asymmetric GARCH, random coefficient autore-
gressive, quantile autoregressive and Markov models, to name just a few.
Proofs and additional examples can be found in Shao and Wu (2007) and
Shao (2010). The definition in (3.4) still requires the existence of moments,
which is quite undesirable in our setting. However, the following result shows
that a modified version of (3.4) is sufficient for our purposes.

Proposition 3.2. Assume that the strictly stationary process (Xt)t∈Z
can be represented as in (3.3), and that X0 has distribution function F . Let
the process (F (Xt))t∈Z satisfy GMC(a) for some a > 0, i.e. assume that
there exist K <∞ and σ ∈ (0, 1) such that

(3.5) E|F (Xn)− F (X∗n)|a ≤ Kσn , n ∈ N.

Then Assumption (C) holds.

The important difference between assumptions (3.4) and (3.5) lies in the
fact that, in condition (3.5), only the random variables F (Xt) = Ut, which
possess moments of arbitrary order, appear. This implies that a GMC(a)
condition on Xt with arbitrarily small values of a, together with a very mild
regularity condition on F , are sufficient to imply Assumption (C). More
precisely, we have the following result.
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Lemma 3.3. Assume that (Xt)t∈Z is strictly stationary. Let (Xt)t∈Z sat-
isfy the GMC(b) condition for some b > 0, and assume that the distribution
function F of X0 is Hölder-continuous of order γ > 0. Then (3.5) holds for
any a > 0.

For a proof of Lemma 3.3, note that

E|F (Xt)− F (X∗t )|b ≤ 2b−a/γE|F (Xt)− F (X∗t )|a/γ ≤ CE|Xt −X∗t |a ≤ Cηt.

Remark 3.1. Although not very deep at first sight, the above result
has some remarkable implications. In particular, we show in the Appendix
that, under a very mild regularity condition on F , the copula spectra of
a GMC(a) process are analytical functions of the frequency ω. This is in
sharp contrast with classical spectral density analysis, where higher-order
moments are required to obtain smoothness of the spectral density.

We now are ready to state a first result on the asymptotic properties of
the CR-periodogram Iτ1,τ2n,R defined in (2.3).

Proposition 3.4. Assume that F is continuous and that (Xt)t∈Z is
strictly stationary and satisfies Assumption (C). Then, for every ω 6= 0
mod 2π,(

Iτ1,τ2n,R (ω)
)

(τ1,τ2)∈[0,1]2
 
(
I(τ1, τ2;ω)

)
(τ1,τ2)∈[0,1]2

in `∞([0, 1]2).

The (complex-valued) limiting processes I are of the form

I(τ1, τ2;ω) =
1

2π
D(τ1;ω)D(τ2;ω)

with D(τ ;ω) = C(τ ;ω) + iS(τ ;ω) where C and S denote two centered jointly
Gaussian processes. For ω1 6= ω2 with ω1, ω2 6= 0 mod 2π, the processes
D(·;ω1) and D(·;ω2) are mutually independent; for ω = ω1 = ω2 6= 0
mod 2π, their covariance structure takes the form

E
[
(C(τ1;ω), S(τ1;ω))′(C(τ2;ω),S(τ2;ω)))

]
= π

(
<fqτ1 ,qτ2 (ω) −=fqτ1 ,qτ2 (ω)

=fqτ1 ,qτ2 (ω) <fqτ1 ,qτ2 (ω)

)
.

As stated in Section 2, smoothed versions of the CR-periodogram kernel
yield consistent estimators of the copula spectral density kernel f. In order
to establish the convergence of the smoothed CR-periodogram process (2.4),
we require the weights Wn in (2.4) to satisfy the following assumption, which
is quite standard in classical time series analysis [see, for example, p. 147 of
Brillinger (1975)].



14 T. KLEY, S. VOLGUSHEV, H. DETTE, AND M. HALLIN

(W) The weight function W is real-valued and even, with support [−π, π];
moreover, it has bounded variation, and satisfies

∫ π
−πW (u)du = 1.

Denoting by bn > 0, n = 1, 2, . . ., a sequence of scale parameters such
that bn → 0 and nbn →∞ as n→∞, define

Wn(u) :=
∞∑

j=−∞
b−1
n W (b−1

n [u+ 2πj]).

We now are ready to state our main result.

Theorem 3.5. Let Assumptions (C) and (W) hold. Assume that X0 has
a continuous distribution function F and that there exist constants κ1 > 0
and k ∈ N, such that

bn = o(n−1/(2k+1)) and bnn
1−κ1 →∞.

Then, for any fixed ω ∈ R, the process

Gn(·, ·;ω) :=
√
nbn

(
Ĝn,R(τ1, τ2;ω)− fqτ1 ,qτ2 (ω)−B(k)

n (τ1, τ2;ω)
)
τ1,τ2∈[0,1]

satisfies

(3.6) Gn(·, ·;ω) H(·, ·;ω)

in `∞([0, 1]2), where the bias B
(k)
n is given by

(3.7)

B(k)
n (τ1, τ2;ω) :=


k∑
j=2

bjn
j!

∫ π

−π
vjW (v)dv

dj

dωj
fqτ1 ,qτ2 (ω) ω 6= 0 mod 2π,

n(2π)−1τ1τ2 ω = 0 mod 2π

and fqτ1 ,qτ2 is defined in (2.2). The process H(·, ·;ω) in (3.6) is a centered
Gaussian process characterized by

Cov
(
H(u1, v1;ω

)
, H(u2, v2;ω)) = 2π

(∫ π

−π
W 2(w)dw

)
×
(
fqu1 ,qu2 (ω)fqv2 ,qv1 (ω) + fqu1 ,qv2 (ω)fqv1 ,qu2 (ω)I{ω = 0 mod π}

)
.

Moreover, H(ω + π) = H(ω), H(ω + 2π) = H(ω), and the family {H(ω),
ω ∈ [0, π]} is a collection of independent processes. In particular, the weak
convergence (3.6) holds jointly for any finite fixed collection of frequencies ω.
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For fixed quantile levels τ1, τ2, the asymptotic distribution of Gn(τ1, τ2;ω)
is the same as the distribution of the smoothed L2 cross-periodogram [see
Chapter 7 of Brillinger (1975)] corresponding to the (unobservable) bivari-
ate time series (I{F (Xt) ≤ τ1}, I{F (Xt) ≤ τ2})0≤t≤n−1. In particular, the
estimation of the marginal quantiles has no impact on the asymptotic dis-
tribution of Gn. Intuitively, this can be explained by the fact that (q̂τ1 , q̂τ2)
converge at n−1/2 rate while the normalization

√
nbn appearing in Gn is

strictly slower.
One aspect of Theorem 3.5 that does not appear in the context of classical

spectral density estimation is the convergence of Gn as a process. Establish-
ing this result is challenging, and it requires the development of new tools.
On the other hand, once convergence has been established at process level,
it can be applied to derive the asymptotic distributions of various related
statistics: see Section 4.

Remark 3.2. In the derivation of Theorem 3.5, it would be natural to
show that dτn,R(ω) and dτn,U (ω) are sufficiently close uniformly with respect
to τ and ω as n → ∞. Indeed, using modifications of standard arguments
from empirical process theory, it is possible to establish that

(3.8) n−1/2 sup
ω∈R
τ∈[0,1]

|dτn,R(ω)− dτn,U (ω)| = oP (rn)

for some rate rn → 0 depending on the underlying dependence structure.
Unfortunately, the best rate rn that can theoretically be obtained must be
slower than o(n−1/4), and this makes the approximation (3.8) useless for
establishing Theorem 3.5 for practically relevant choices of the bandwidth
parameter.

Remark 3.3. Another type of process convergence is frequently dis-
cussed in the literature on classic L2-based spectral analysis, which is dealing
with empirical spectral processes of the form(∫ π

−π
g(ω)In(ω)dω

)
g∈G

with G denoting a suitable class of functions. For more details, see Dahlhaus
(1988), Dahlhaus and Polonik (2009), and the references therein. Those pro-
cesses are completely different from the processes considered above, and the
mathematical tools that need to be developed for their analysis also differ
substantially. It would be very interesting to extend our results to classes of
integrated periodograms that are indexed by classes of functions. Such an
extension, however, is beyond of the scope of the present paper.
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Remark 3.4. At first glance, it seems surprising that the asymptotic
theory developed here does not require the marginal distribution function
F to have a continuous Lebesgue density, although the CR-periodograms
in (2.3) are based on marginal quantiles. The reason is that the estimators
which are constructed from X0, ..., Xn−1 are almost surely equal to estima-
tors based on the (unobserved) transformed variables F (X0), ..., F (Xn−1).
A similar phenomenon can be observed in the estimation of copulas, see e.g.
Fermanian, Radulović and Wegkamp (2004).

In order to establish Theorem 3.5, we prove (an asymptotic representation
result) that the estimator Ĝn,R can be approximated by Ĝn,U in a suitable
uniform sense. Theorem 3.5 then follows from the asymptotic properties
of Ĝn,U , which we state now.

Theorem 3.6. Let Assumptions (C) and (W) hold, and assume that the
distribution function F of X0 is continuous. Let bn be such that, for some
k ∈ N, κ2 > 0, bn = o(n−1/(2k+1)) and (nbn)−1 = o(n−κ2). Then,

(i) for any ω ∈ R, as n→∞,√
nbn
(
Ĝn,U (τ1, τ2;ω)− EĜn,U (τ1, τ2;ω)

)
τ1,τ2∈[0,1]

 H(·, ·;ω)

in `∞([0, 1]2), where the process H(·, ·;ω) is defined in Theorem 3.5;
(ii) still as n→∞,

sup
τ1,τ2∈[0,1]

ω∈R

∣∣∣EĜn,U (τ1, τ2;ω)−fqτ1 ,qτ2 (ω)−B(k)
n (τ1, τ2, ω)

∣∣∣ = O((nbn)−1)+o(bkn).

where B
(k)
n is defined in (3.7);

(iii) for any ω ∈ R,

sup
τ1,τ2∈[0,1]

|Ĝn,R(τ1, τ2;ω)− Ĝn,U (τ1, τ2;ω)| = oP
(
(nbn)−1/2 + bkn

)
;

if moreover the kernel W is uniformly Lipschitz-continuous, this bound
is uniform with respect to ω ∈ R.

4. Spearman, Blomqvist and Gini spectra. In the past decades,
considerable effort has been put into replacing empirical autocovariances
by alternative (scalar) measures of dependence – see for example Kendall
(1938), Blomqvist (1950), Cifarelli, Conti and Regazzini (1996), Ferguson,
Genest and Hallin (2000), and Schmid et al. (2010) for a recent survey. Such
measures of association provide a good compromise between the limited
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information contained in autocovariances on one hand, and the fully non-
parametric nature of joint distributions and copulas on the other.

A particularly appealing class of such dependence measures is given by
general rank-based autocorrelations [see Hallin and Puri (1992) or Hallin
(2012) for a survey]. The idea of using ranks in a time-series concept is not
new, and rank-based measures of serial dependence actually can be traced
back to the early developments of rank-based inference; runs statistics, or
the serial version of Spearman’s rho [see Wald and Wolfowitz (1943)] are
such early examples. The asymptotics of rank-based autocorrelations are
well studied under assumptions of white noise or, at least, exchangeabil-
ity, and under contiguous alternatives of serial dependence. An alternative
approach to deriving the asymptotic distribution of rank-based autocorre-
lations, which is applicable under general kinds of dependence, is based on
their representation as functionals of empirical copula processes and was
considered, for instance, in Fermanian, Radulović and Wegkamp (2004).

Despite the great success of the L2-periodogram in time series analysis, the
only attempt to consider Fourier transforms of rank-based autocorrelations
(or any other rank-based scalar measures of dependence), to the best of our
knowledge, is that of Ahdesmäki et al. (2005). The latter paper is of a more
empirical nature, and no theoretic foundation is provided. The aim of the
present section is to introduce a general class of frequency domain methods
and discuss their connection to rank-based extensions of autocovariances.

4.1. The Spearman periodogram. To illustrate our purpose, first consider
in detail the classical example of Spearman’s rank autocorrelation coeffi-
cients (more precisely, a version of it – see Remark 4.1); at lag k, that
coefficient can be defined as

ρ̂kn :=
12

n3

n−|k|−1∑
t=0

(
Rn;t −

n+ 1

2

)(
Rn;t+|k| −

n+ 1

2

)
.

Letting Fn := {2πj/n| j = 1, . . . , bn−1
2 c − 1, bn−1

2 c}, define the Spearman
and smoothed Spearman periodograms as

In,ρ(ω) :=
1

2π

∑
|k|<n

e−iωkρ̂kn, ω ∈ Fn

and

Ĝn,ρ(ω) :=
2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
In,ρ(2πs/n), ω ∈ R,
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respectively. Intuition suggests that the (smoothed) rank-based periodogram Ĝn,ρ
should be an estimator for the Fourier transform

fρ(ω) :=
1

2π

1

12

∑
k∈Z

e−iωkρk

of the population counterpart

(4.9) ρk = ρ(Ck) = 12

∫
[0,1]2

(Ck(u, v)− uv)dudv,

of ρ̂kn, where Ck is the copula associated with (Xt, Xt+k) [see e.g. Schmid
et al. (2010)]. Due to the presence of ranks, the investigation of the asymp-
totic properties of the Spearman periodogram under non-exchangeable ob-
servations seems highly non-trivial. However, as we shall demonstrate now,
those properties can be obtained via Theorem 3.5 by establishing a connec-
tion between the Spearman periodogram and the CR-periodogram.

Proposition 4.1. For any ω ∈ Fn,

(4.10) In,ρ(ω) = 12

∫
[0,1]2

Iu,vn,R(ω)dudv,

where Iu,vn,R is defined in (2.3) Moreover, for any ω ∈ R,

Ĝn,ρ(ω) = 12

∫
[0,1]2

Ĝn,R(u, v;ω)dudv

where Ĝn,R is defined in (2.4).

Proof of Proposition 4.1 Simple algebra yields

In,ρ(ω) =
12

2π

1

n
dn,ρ(ω)dn,ρ(−ω) with dn,ρ(ω) :=

1

n

n−1∑
t=0

Rn;te
−iωt.

Observe that

In,ρ(ω) =
12

2π

1

n3

n−1∑
s,t=0

Rn;tRn;se
−iωteiωs.
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On the other hand,∫
[0,1]2

Iu,vn,R(ω)dudv =
12

2π

1

n

n−1∑
s,t=0

e−iωteiωs

∫
[0,1]2

I{Rn;t ≤ nu,Rn;s ≤ nv}dudv

=
12

2π

1

n

n−1∑
s,t=0

e−iωteiωs(1− n−1Rn;t)(1− n−1Rn;s)

= In,ρ(ω) +
12

2π

1

n2

n−1∑
s,t=0

e−iωteiωs(n−Rn;t −Rn;s).(4.11)

For ω ∈ Fn,
∑n−1

t=0 e
iωt = 0, so that the second term in (4.11) vanishes. The

claim follows.

This result is useful in several ways. On one hand, it allows to easily
derive the asymptotic distribution of the smoothed Spearman periodogram
by applying the continuous mapping theorem in combination with Theo-
rem 3.5—see Proposition 4.2 below. On the other hand, it motivates the
definition of a general class of rank-based spectra, to be discussed in the
next section.

Proposition 4.2. Under the assumptions of Theorem 3.5, for any fixed
frequency ω ∈ (0, π),

In,ρ(ω) 12

∫ 1

0

∫ 1

0
I(τ1, τ2;ω)dτ1dτ2

and√
nbn
(
Ĝn,ρ(ω)− fρ(ω)−B(k)

n,ρ(ω)
) D−→ Zρ(ω) ∼ N

(
0, 2πf2ρ(ω)

∫
W 2(w)dw

)
where

B(k)
n,ρ(ω) :=

k∑
j=2

bjn
j!

∫
vjW (v)dv

dj

dωj
fρ(ω).

Moreover {Zρ(ω)}ω∈(0,π) is a collection of mutually independent random
variables. The weak convergence above holds jointly for any finite, fixed col-
lection of frequencies ω.

This result is a direct consequence of the more general Proposition 4.3,
which we establish in the next section.
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Remark 4.1. A closely related version of the Spearman periodogram
was recently considered by Ahdesmäki et al. (2005). The main difference
with our approach is that these authors use a slightly different version of
the lag-k Spearman coefficient, namely

ρ̃k :=
1

n

12

(n− k)2 − 1

n−k−1∑
t=0

(
Rkn;t −

n− k + 1

2

)(
R̄kn;t+k −

n− k + 1

2

)
where Rkn;t denotes the rank of Xt among X0, ..., Xn−k−1 and R̄kn;t the rank
of Xt among Xk−1, ..., Xn−1, respectively. Letting ρ̃k := ρ̃−k for k < 0,
Ahdesmäki et al. (2005) then consider a statistic of the form

∑
|k|<n e

ikωρ̃k.
Note that these authors investigate their method by means of a simulation
study and do not provide any asymptotic theory.

4.2. A general class of rank-based spectra. The findings in the previous
section suggest considering a general class of rank-based periodograms which
are defined in terms of the CR-periodogram as

(4.12) In,µ(ω) :=

∫
[0,1]2

Iu,vn,R(ω)dµ(u, v), ω ∈ Fn

where µ denotes an arbitrary finite measure on [0, 1]2. A smoothed version
of In,µ is defined through

Ĝn,µ(ω) :=
2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
In,µ(2πs/n), ω ∈ R.

As discussed in the previous section, taking µ as 12 times the uniform distri-
bution on [0, 1]2 yields the Fourier transform of Spearman autocorrelations.

The general results in Theorem 3.5 combined with the continuous map-
ping theorem imply that the smoothed periodogram Ĝn,µ is a consistent and
asymptotically normal estimator of a spectrum of the form

fµ(ω) :=
1

2π

1

12

∑
k∈Z

e−iωk

∫
[0,1]2

Ck(u, v)dµ(u, v),

where Ck denotes the copula of the pair (X0, Xk).

Proposition 4.3. Under the assumptions of Theorem 3.5, for any fixed
frequency ω ∈ (0, π),√

nbn
(
Ĝn,µ(ω)− fµ(ω)−B(k)

n,µ(ω)
) D−→ Zµ(ω) ∼ N

(
0, σ2

µ

)
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where the variance σ2
µ takes the form

σ2
µ = 2π

∫ π

−π
W 2(w)dw

∫
[0,1]2

∫
[0,1]2

fqu,qu′ (ω)fqv ,qv′ (ω)dµ(u, v)dµ(u′, v′)

and the bias is given by

B(k)
n,µ(ω) :=

k∑
j=2

bjn
j!

∫
vjW (w)dw

dj

dωj
fµ(ω).

Moreover, {Zµ(ω)}ω∈(0,π) is a collection of independent random variables.
The weak convergence above holds jointly for any finite, fixed collection of
frequencies ω.

Proof Assumption (C) entails

fµ(ω)−B(k)
n,µ(ω) =

∫
[0,1]2

fqu,qv(ω)−B(k)
n (u, v;ω)dµ(u, v).

This yields

Ĝn,µ(ω)− fµ(ω) +B(k)
n,µ(ω) =

∫
[0,1]2

Gn(u, v;ω)dµ(u, v)

where Gn was defined in Theorem 3.5. An application of the Continuous
Mapping Theorem implies√

nbn
(
Ĝn,µ(ω)− fµ(ω)−B(k)

n,µ(ω)
) D−→

∫
[0,1]2

H(u, v;ω)dµ(u, v).

SinceH(·, ·;ω) is a centered Gaussian process, the integral
∫

[0,1]2 H(u, v;ω)dudv
follows a normal distribution with mean zero and variance∫

[0,1]2

∫
[0,1]2

Cov(H(u, v;ω), H(u′, v′;ω))dµ(u, v)dµ(u′, v′)

= 2π

∫
W 2(w)dw

∫
[0,1]2

∫
[0,1]2

fqu,qu′ (ω)fqv ,qv′ (ω)dµ(u, v)dµ(u′, v′)

This completes the proof.
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4.3. The Blomqvist and Gini periodograms. In this section, we identify
two measures µ that correspond to two classical measures of serial depen-
dence, Blomqvist’s beta [see Blomqvist (1950); Schmid et al. (2010); Genest,
Carabaŕın-Aguirre and Harvey (2013)] and Gini’s gamma [see Nelsen (1998)]
coefficients, which lead to the definition of the Blomqvist and Gini spectra,
respectively.

Let Ck denote the copula of the pair (X0, Xk) and assume that it is
continuous. The corresponding Blomqvist beta coefficient at lag k is

(4.13) βk := 4Ck(1/2, 1/2)− 1.

Similarly, Gini’s gamma, also known as Gini’s lag k rank association coeffi-
cient [see Nelsen (1998)] is the copula-based quantity

Γk := 2

∫
[0,1]2

(|u+ v − 1| − |v − u|)dCk(u, v)

= 4
(∫

[0,1]
Ck(u, u)− u2du+

∫
[0,1]

Ck(u, 1− u)− u(1− u)du
)
.(4.14)

This motivates the definition of the Blomqvist spectrum

fβ(ω) :=
1

2π

∑
k∈Z

e−iωkβk

and the Gini spectrum

fΓ(ω) :=
1

2π

∑
k∈Z

e−iωkΓk.

Sample versions of the Blomqvist and Gini coefficients are

β̂
k

n :=
1

n− |k|

n−|k|−1∑
t=1

(
4I{Rn;t ≤ 1/2, Rn;t+|k| ≤ 1/2} − 1

)
,

and

Γ̂kn :=
2

n(n− |k|)

n−|k|−1∑
t=0

(
|Rn;t +Rn;t+|k| − n| − |Rn;t −Rn;t+|k||

)
,

respectively. To establish the connection with the general periodogram de-
fined in the previous section, consider the measures µβ which puts mass 4 in
the point (1/2, 1/2) and µΓ which puts mass 4 on the sets {(u, u) : u ∈ [0, 1]}
and {(u, 1− u) : u ∈ [0, 1]}, respectively.
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Proposition 4.4. For any ω ∈ Fn,

In,β(ω) :=

∫
[0,1]2

Iu,vn,R(ω)dµβ(u, v) =
1

2π

∑
|k|<n

n− k
n

eiωkβ̂
k

n

and

In,Γ(ω) :=

∫
[0,1]2

Iu,vn,R(ω)dµΓ(u, v) =
1

2π

∑
|k|<n

n− k
n

eiωkΓ̂kn.

Proof on Proposition 4.4 Observing that

|n−Rn;t −Rn;t+k| = 2 max(n−Rn;t −Rn;t+k, 0)− (n−Rn;t −Rn;t+k)

and
|Rn;t −Rn;t+k| = 2 max(Rn;t, Rn;t+k)− (Rn;t +Rn;t+k)

yields

|Rn;t +Rn;t+k − n| − |Rn;t −Rn;t+k|
= 2 max(n−Rn;t −Rn;t+k, 0)− 2 max(Rn;t, Rn;t+k) + 2(Rn;t +Rn;t+k)− n.

On the other hand,∫ 1

0
Iu,un,R(ω)du =

1

2π

1

n

n−1∑
s,t=0

e−iωteiωs

∫ 1

0
I{Rn;t ≤ nu,Rn;s ≤ nu}du

=
1

2π

1

n

n−1∑
s,t=0

e−iωteiωs(1− n−1 max(Rn;t, Rn;s))

= − 1

2π

1

n2

n−1∑
s,t=0

e−iωteiωs max(Rn;t, Rn;s)

and∫ 1

0
Iu,1−un,R (ω)du =

1

2π

1

n

n−1∑
s,t=0

e−iωteiωs

∫ 1

0
I{Rn;t ≤ nu,Rn;s ≤ n(1− u)}du

=
1

2π

1

n

n−1∑
s,t=0

e−iωteiωs max(1− n−1Rn;t − n−1Rn;s, 0).
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Elementary algebra yields, for arbitrary functions a from Z2 to Z such
that a(j, k) = a(k, j) for all j, k,

∑
|k|<n

n−1−|k|∑
t=0

eiωka(t, t+ |k|) =
n−1∑
s=0

n−1∑
t=0

e−iωteiωsa(t, s).

This implies (recall that ω ∈ Fn)

In,Γ(ω) =
1

2π

2

n

∑
|k|<n

n−1−|k|∑
t=0

eiωk
(
|Rn;t +Rn;t+k − n| − |Rn;t −Rn;t+k|

)

=
1

2π

4

n2

n−1∑
s=0

n−1∑
t=0

e−iωteiωs
(

max(n−Rn;t −Rn;s, 0)−max(Rn;t, Rn;s)
)

+
1

2π

2

n2

n−1∑
s=0

n−1∑
t=0

e−iωteiωs
(

2(Rn;t +Rn;s)− n
)

= 4
(∫

[0,1]
Iu,un,R(ω)du+

∫
[0,1]

Iu,1−un,R (ω)du
)
.

The representation for In,β can be derived similarly; details are omitted for
the sake of brevity.

Smoothed versions of the Blomqvist and Gini periodograms can be defined
accordingly, and their asymptotic distributions follow from Proposition 4.3.
In particular, this yields consistent estimators of the Blomqvist and Gini
spectra defined above.

We conclude this section with some general remarks. First, note that the
approach above can be applied to any scalar dependence measure that can
be represented as a continuous linear functional of the copula. For instance,
Cifarelli, Conti and Regazzini (1996) consider a general measure of monotone
dependence of the form

(4.15)

∫
[0,1]2

g(|u+ v − 1|)− g(|u− v|)dC(u, v)

where g : [0, 1]→ R is strictly increasing and convex. Choosing g(x) = x and
g(x) = x2 yields (up to constants) the Gini and Spearman rank correlations,
respectively. Under suitable assumptions on g, the monotone dependence
measure in (4.15) can be written (by applying integration-by-parts) in the
form of equation (4.12), and the results from section 4.2 apply.

Other measures of serial dependence such as Kendall’s τ (see Ferguson,
Genest and Hallin (2000)) only can be represented as non-linear functionals
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of the copula. More general rank-based autocorrelation coefficients also have
been introduced in the context of inference for ARMA models (see Hallin
and Puri (1992) or Hallin (2012)); they involve score functions, typically are
not time-revertible, and lead to possibly unbounded measures µ. We expect
that the general results presented here can be extended to the periodograms
associated with such coefficients, but leave this question to future research.

5. Simulation study. In this section, we show how the result on the
asymptotic distribution of the smoothed CR-periodogram defined in (2.4)
can be used to construct asymptotic confidence intervals for the copula spec-
tra. We consider three different models:

(a) the QAR(1) process

(5.16) Yt = 0.1Φ−1(Ut) + 1.9(Ut − 0.5)Yt−1

[cf. Koenker and Xiao (2006)], where (Ut) is a sequence of i. i. d. stan-
dard uniform random variables, and Φ denotes the distribution func-
tion of the standard normal distribution;

(b) the AR(2) process

(5.17) Yt = −0.36Yt−2 + εt,

where (εt) is standard normal white noise [cf. Li (2012)];
(c) the ARCH(1) process

(5.18) Yt =
(
1/1.9 + 0.9Y 2

t−1

)1/2
εt

where (εt) is standard normal white noise [cf. Lee and Rao (2012)].

For each model, 10, 000 independent copies of length n ∈ {28, 29, 210, 211}
were generated. For each of them, the smoothed CR-periodograms
(5.19)

G̃n,R(τ1, τ2;ωjn) := Ĝn,R(τ1, τ2;ωjn)/W j
n, W j

n :=
n−1∑

0=s 6=j
Wn

(
ωjn − ωsn

)
,

were computed for ωjn := 2πj/n, j = 1, . . . , n/2−1) and τ1, τ2 ∈ {0.1, 0.5, 0.9},
where we used the kernel of order 4

W (u) :=
15

32

1

π

(
7(u/π)4 − 10(u/π)2 + 3

)
I{|u| ≤ π}

minimizing the asymptotic IMSE (see Gasser, Muller and Mammitzsch (1985)).
The bandwidth was chosen as bn = 0.4n−1/4 which is of lower order than
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the IMSE-optimal bandwidth n−1/9 to reduce bias and the factor (W j
n)−1

ensures that the weights in (5.19) sum up to one for every n.
Based on Theorem 3.6, we then computed pointwise asymptotic (1− α)-

level confidence bands for the real and imaginary parts of the spectrum,
namely,

(5.20) IC1,n(τ1, τ2;ω) := <G̃n,R(τ1, τ2;ω)±<σ(τ1, τ2;ω)Φ−1(1− α/2),

for the real part, and

(5.21) IC2,n(τ1, τ2;ω) := =G̃n,R(τ1, τ2;ω)±=σ(τ1, τ2;ω)Φ−1(1− α/2),

for the imaginary part of the copula spectrum. As usual, Φ stands for the
standard normal distribution function, and

(
<σ(τ1, τ2;ω)

)2
:= 0 ∨

{
c(τ1, τ2;ω, ω) if τ1 = τ2,
1
2

(
c(τ1, τ2;ω, ω) + c(τ1, τ2;ω,−ω)

)
if τ1 6= τ2,

and

(
=σ(τ1, τ2;ω)

)2
:= 0 ∨

{
0 if τ1 = τ2,
1
2

(
c(τ1, τ2;ω, ω)− c(τ1, τ2;ω,−ω)

)
if τ1 6= τ2

are estimators for Var
(
<Ĝn,R(τ1, τ2;ω)

)
and Var

(
=Ĝn,R(τ1, τ2;ω)

)
, respec-

tively. Here

c(τ1, τ2;ω, ω′) :=
(2π

n
W j
n

)2

×

[
n−1∑
s=1

Wn

(
ω−2πs/n

)
Wn

(
ω′−2πs/n

)
Ĝn,R(τ1, τ1; 2πs/n)Ĝn,R(τ2, τ2; 2πs/n)

+

n−1∑
s=1

Wn

(
ω − 2πs/n

)
Wn

(
ω′ + 2πs/n

)∣∣Ĝn,R(τ1, τ1; 2πs/n)
∣∣2],

is an estimator for the covariance of G̃n,R(τ1, τ2;ω) and G̃n,R(τ1, τ2;ω′);
this follows from the representation in Theorem 3.6(iii) and Theorem 7.4.3
in Brillinger (1975). To motivate this approach, recall that, for any complex-
valued random variable Z with complex conjugate Z̄,

Var(<Z) =
1

2

(
Var(Z)+<Cov(Z, Z̄)

)
; Var(=Z) =

1

2

(
Var(Z)−<Cov(Z, Z̄)

)
.
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Table 1
Coverage frequencies for the confidence intervals ICn(τ1, τ2, ω),

n = 28, bn = 0.4n−1/4, 1− α = 0.95

(τ1, τ2) (0.1, 0.1) (0.1, 0.9) (0.5, 0.5) (0.1, 0.9) (0.9, 0.9)
Model ω/π (<) (=) (<) (<) (<)

(a) QAR(1) (5.16) 1/8 0.911 0.921 0.906 0.987 0.899
1/4 0.934 0.917 0.920 0.979 0.910
1/2 0.947 0.919 0.932 0.976 0.915
3/4 0.946 0.918 0.927 0.979 0.916
7/8 0.941 0.915 0.931 0.979 0.921

(b) AR(2) (5.17) 1/8 0.913 0.926 0.900 0.975 0.916
1/4 0.935 0.925 0.917 0.967 0.940
1/2 0.940 0.927 0.929 0.966 0.949
3/4 0.939 0.924 0.928 0.969 0.947
7/8 0.937 0.920 0.928 0.972 0.945

(c) ARCH(1) (5.18) 1/8 0.860 0.910 0.906 0.902 0.878
1/4 0.872 0.905 0.922 0.909 0.887
1/2 0.902 0.897 0.937 0.946 0.914
3/4 0.906 0.894 0.934 0.959 0.924
7/8 0.906 0.891 0.935 0.962 0.920

Table 2
Coverage frequencies for the confidence intervals ICn(τ1, τ2, ω),

n = 29, bn = 0.4n−1/4, 1− α = 0.95

(τ1, τ2) (0.1, 0.1) (0.1, 0.9) (0.5, 0.5) (0.1, 0.9) (0.9, 0.9)
Model ω/π (<) (=) (<) (<) (<)

(a) QAR(1)(5.16) 1/8 0.934 0.932 0.915 0.974 0.916
1/4 0.953 0.933 0.931 0.968 0.925
1/2 0.954 0.932 0.940 0.968 0.934
3/4 0.952 0.926 0.939 0.973 0.932
7/8 0.953 0.923 0.941 0.975 0.934

(b) AR(2) (5.17) 1/8 0.930 0.934 0.913 0.962 0.932
1/4 0.950 0.932 0.928 0.956 0.951
1/2 0.948 0.935 0.933 0.957 0.949
3/4 0.951 0.932 0.936 0.964 0.952
7/8 0.949 0.931 0.937 0.965 0.955

(c) ARCH(1) (5.18) 1/8 0.890 0.932 0.918 0.913 0.892
1/4 0.900 0.924 0.938 0.917 0.903
1/2 0.922 0.912 0.939 0.948 0.928
3/4 0.926 0.913 0.944 0.957 0.934
7/8 0.928 0.908 0.943 0.958 0.937
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Table 3
Coverage frequencies for the confidence intervals ICn(τ1, τ2, ω),

n = 210, bn = 0.4n−1/4, 1− α = 0.95

(τ1, τ2) (0.1, 0.1) (0.1, 0.9) (0.5, 0.5) (0.1, 0.9) (0.9, 0.9)
Model ω/π (<) (=) (<) (<) (<)

(a) QAR(1) (5.16) 1/8 0.942 0.943 0.933 0.961 0.924
1/4 0.959 0.938 0.941 0.963 0.929
1/2 0.953 0.938 0.941 0.962 0.934
3/4 0.954 0.935 0.941 0.967 0.933
7/8 0.956 0.935 0.943 0.969 0.936

(b) AR(2) (5.17) 1/8 0.939 0.943 0.931 0.953 0.940
1/4 0.954 0.939 0.942 0.954 0.952
1/2 0.954 0.944 0.945 0.953 0.955
3/4 0.950 0.937 0.942 0.956 0.954
7/8 0.954 0.937 0.940 0.959 0.952

(c) ARCH(1) (5.18) 1/8 0.900 0.935 0.933 0.911 0.906
1/4 0.901 0.930 0.945 0.916 0.908
1/2 0.929 0.928 0.945 0.942 0.928
3/4 0.941 0.916 0.948 0.954 0.937
7/8 0.940 0.918 0.948 0.953 0.936

Table 4
Coverage frequencies for the confidence intervals ICn(τ1, τ2, ω),

n = 211, bn = 0.4n−1/4, 1− α = 0.95

(τ1, τ2) (0.1, 0.1) (0.1, 0.9) (0.5, 0.5) (0.1, 0.9) (0.9, 0.9)
Model ω/π (<) (=) (<) (<) (<)

(a) QAR(1) (5.16) 1/8 0.953 0.945 0.944 0.957 0.933
1/4 0.957 0.943 0.945 0.961 0.932
1/2 0.955 0.938 0.949 0.960 0.938
3/4 0.952 0.938 0.946 0.963 0.939
7/8 0.954 0.936 0.945 0.964 0.945

(b) AR(2) (5.17) 1/8 0.953 0.944 0.943 0.954 0.947
1/4 0.954 0.944 0.945 0.953 0.956
1/2 0.955 0.946 0.945 0.951 0.954
3/4 0.954 0.947 0.940 0.954 0.957
7/8 0.952 0.945 0.943 0.956 0.951

(c) ARCH(1) (5.18) 1/8 0.911 0.942 0.944 0.918 0.908
1/4 0.918 0.937 0.950 0.926 0.917
1/2 0.934 0.931 0.947 0.946 0.937
3/4 0.944 0.931 0.949 0.954 0.943
7/8 0.944 0.928 0.950 0.958 0.945
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For n → ∞, the estimated variances above converge to the asymptotic
variance in Theorem 3.5. However, in small samples the more elaborate
version considered here typically leads to better coverage probabilities.

In Tables 1–4, we report the simulated coverage frequencies associated
with

P
(
<fqτ1 ,qτ2 (ω) ∈ IC1,n(τ1, τ2, ω)

)
and P

(
=fqτ1 ,qτ2 (ω) ∈ IC2,n(τ1, τ2, ω)

)
.

Inspection of Tables 1–4 reveals that, as n gets larger, the coverage fre-
quencies converge to the confidence level 1 − α. For models (5.16)–(5.17),
those frequencies are quite close to 1 − α even for moderately large val-
ues of n. Due to boundary effects, the coverage frequencies for ω close to
multiples of π are too low in all three models, but, as noted earlier, they
improve as n increases. Finally, in models (5.16) and (5.18) and when n is
not large, the confidence intervals involving extreme quantiles tend to cover
less frequently. Again, the accuracy improves with increasing sample size.

6. Conclusions. Spectral analysis for the past fifty years has been a
major tool in the analysis of time series. Being essentially covariance-based,
however, classical L2 spectral methods have obvious limitations—for in-
stance (see Figures 1 and 2), they cannot discriminate between QAR or
ARCH and white noise processes. Quantile-related spectral concepts have
been proposed, which palliate those limitations. No asymptotic distribu-
tional results, however, have been available in the literature for the estima-
tion of such concepts, which so far has precluded most practical applications.

In this paper, we provide (Theorem 3.5), in the very strong form of conver-
gence to a Gaussian process of the smoothed copula rank-based periodogram
process, such asymptotic results for the generalization (Dette et al. 2011,
2013) of the copula rank periodograms proposed by Hagemann (2011).

Being copula- or rank-based, our spectral concepts furthermore are in-
variant under monotone increasing continuous marginal transformations of
the data, and are likely to enjoy appealing robustness features their tra-
ditional L2 counterparts are severely lacking. Another application is in the
asymptotic behavior of the spectra associated with more classical rank-based
autocorrelation coefficients, such as the Spearman, Gini, or Blomqvist spec-
tra.

Copula rank-based periodogram methods are improving over the classical
ones both from the point of view of efficiency (detection of nonlinear fea-
tures) and from the point of view of robustness. They are likely to be ideal
tools for a large variety of problems of practical interest, such as change-point
analysis, model diagnostics, or local stationary procedures—essentially, all
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problems covered in the traditional spectral context can be extended here,
with the huge advantage that nonlinear features that cannot be accounted
for by traditional methods can be analyzed via the new ones. This seems to
offer most promising perspectives for future research.
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7. Proof of Theorem 3.6. The proof of Theorem 3.6 relies on a series
of technical Lemmas; for the readers’ convenience, we begin by giving a
general overview of the main steps and the corresponding lemmas.

For all n ∈ N, consider the stochastic process

(7.22) Ĥn,U (τ1, τ2;ω) :=
√
nbn
(
Ĝn,U (τ1, τ2;ω)− EĜn,U (τ1, τ2;ω)

)
,

indexed by (τ1, τ2) ∈ [0, 1]2 and ω ∈ R; for a = (a1, a2) ∈ [0, 1]2, write Ĥn(a;ω)
for Ĥn,U (a1, a2;ω).

The key step in the process of establishing parts (i) and (iii) of Theo-
rem 3.6 is a uniform bound on the increments of the process Ĥn,U . That
bound is required, for example, when showing the stochastic equicontinuity
of Ĥn(a;ω)−Ĥn(b;ω). We derive such a bound by a restricted chaining tech-
nique, which is described in Lemma 7.1. The application of Lemma 7.1 re-
quires two ingredients. First, we need a general bound, uniform in a and b, on
the moments of Ĥn(a;ω)− Ĥn(b;ω). Such a bound is derived in Lemma 7.2.
Second, we need a sharper bound on the increments Ĥn(a;ω) − Ĥn(b;ω)
when a and b are “sufficiently close”. We provide this result in Lemma 7.7.

Lemma 7.2 is a very general result, relying on an abstract condition on
the cumulants of discrete Fourier transforms of certain indicator functions,
see (7.26). The link between assumption (C) and (7.26) is established in
Lemma 7.4.

Finally, the proof of part (ii) of Theorem 3.6 follows by a series of uniform
generalizations of results from Brillinger (1975), the details of which are
provided in the Online Appendix [Lemmas 8.1-8.5].

7.1. Proof of Part (i) of Theorem 3.6. In view of Theorems 1.5.4 and 1.5.7
in van der Vaart and Wellner (1996), it is sufficient to prove the following
two claims:

(i1) convergence of the finite-dimensional distributions of the process (7.22),
that is,

(7.23)
(
Ĥn(a1j , a2j ;ωj)

)
j=1,...,k

d−→
(
H(a1j , a2j ;ωj)

)
j=1,...,k

for any (a1j , a2j , ωj) ∈ [0, 1]2 ×R, j = 1, . . . , k and k ∈ N;
(i2) stochastic equicontinuity: for any x > 0 and any ω ∈ R,

(7.24) lim
δ↓0

lim sup
n→∞

P
(

sup
a,b∈[0,1]2

‖a−b‖1≤δ

|Ĥn(a;ω)− Ĥn(b;ω)| > x
)

= 0.
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Note indeed that (7.24) implies stochastic equicontinuity of both the real
part

(
<Ĥn(a;ω)

)
a∈[0,1]2

and the imaginary part
(
=Ĥn(a;ω)

)
a∈[0,1]2

of Ĥn.

First consider (i1). Observe that Ĝn,U (τ1, τ2;ω) is the traditional smoothed
periodogram estimator [see Chapter 7.1 in Brillinger (1975)] of the cross-
spectrum of the clipped processes (I{F (Xt) ≤ τ1})t∈Z and (I{F (Xt) ≤
τ2})t∈Z. Thus, (7.23) is an immediate corollary of Theorem 7.4.4 in Brillinger
(1975). The limiting first and second moment structures are given by Theo-
rem 7.4.1 and Corollary 7.4.3 in Brillinger (1975). This implies the desired
convergence (7.23) of finite-dimensional distributions. Note that, by con-
dition (C), the summability condition required for the three theorems to
hold [Assumption 2.6.2(`), for every `; cf. Brillinger (1975)] is implied by
Assumption (A2).

Turning to (i2), in the notation from van der Vaart and Wellner (1996),
p. 95, put Ψ(x) := x6: the Orlicz norm ‖X‖Ψ = inf{C > 0 : EΨ(|X|/C) ≤ 1}
coincides with the L6 norm ‖X‖6 = (E|X|6)1/6. Therefore, by Lemma 7.2
and Lemma 7.4, we have, for any κ > 0 and sufficiently small ‖a− b‖1,

‖Ĥn(a;ω)− Ĥn(b;ω)‖Ψ ≤ K
(‖a− b‖κ1

(nbn)2
+
‖a− b‖2κ1
nbn

+ ‖a− b‖3κ1
)1/6

.

It follows that, for all a, b with ‖a − b‖1 sufficiently small and ‖a − b‖1 ≥
(nbn)−1/γ and all γ ∈ (0, 1) such that γ < κ,

‖Ĥn(a;ω)− Ĥn(b;ω)‖Ψ ≤ K
(
‖a− b‖κ+2γ

1 + ‖a− b‖2κ+γ
1 + ‖a− b‖3κ1

)1/6

≤ K̄‖a− b‖γ/21 .

Note that ‖a− b‖1 ≥ (nbn)−1/γ iff d(a, b) := ‖a− b‖γ/21 ≥ (nbn)−1/2 =: η̄n/2.
Denoting by D(ε, d) the packing number of ([0, 1]2, d) [cf. van der Vaart

and Wellner (1996), p. 98], we haveD(ε, d) � ε−4/γ . Therefore, by Lemma 7.1,
for all x, δ > 0 and η ≥ η̄n,

P
(

sup
‖a−b‖1≤δ2/γ

|Ĥn(a;ω)− Ĥn(b;ω)| > x
)

= P
(

sup
d(a,b)≤δ

|Ĥn(a;ω)− Ĥn(b;ω)| > x
)

≤

[
8K̃

x

(∫ η

η̄n/2
ε−2/(3γ)dε+ (δ + 2η̄n)η−4/(3γ)

)]6

+ P
(

sup
d(a,b)≤η̄n

|Ĥn(a;ω)− Ĥn(b;ω)| > x/4
)
.
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Now choose 1 > γ > 2/3. Letting n tend to infinity, the second term tends
to zero by Lemma 7.7 since, by construction, 1/γ > 1 and

d(a, b) ≤ η̄n iff ‖a− b‖1 ≤ 22/γ(nbn)−1/γ .

All together, this implies

lim
δ↓0

lim sup
n→∞

P
(

sup
d(a,b)≤δ

|Ĥn(a;ω)− Ĥn(b;ω)| > x
)
≤

[
8K̃

x

∫ η

0
ε−2/(3γ)dε

]6

,

for every x, η > 0; the claim follows, since the integral in the right-hand side
can be made arbitrarily small by choosing η accordingly.

7.2. Proof of Part (ii) of Theorem 3.6. Essentially, this part of Theo-
rem 3.6 is a uniform version of Theorem 5.6.2 in Brillinger (1975) in the
present setting of Laplace spectra. The proof is based on a series of uniform
versions of results from Brillinger (1975); details are provided in the online
supplement [see in particular Lemma 8.5].

7.3. Proof of Part (iii) of Theorem 3.6. It follows from the continuity
of F that the ranks of the random variablesX0, ..., Xn−1 and F (X0), ..., F (Xn−1)
coincide almost surely. Thus, without loss of generality, we can assume that
the estimator is computed from the unobservable data F (X0), ..., F (Xn−1).
In particular, this implies that we can assume the marginals to be uniform.

Denote by F̂−1
n (τ) := inf{x : F (x) ≥ τ} the generalized inverse of F̂n and

let inf ∅ := 0. Elementary computation shows that, for any k ∈ N,
(7.25)

sup
ω∈R

sup
τ∈[0,1]

∣∣∣dτn,R(ω)− dF̂
−1
n (τ)
n,U (ω)

∣∣∣ ≤ n sup
τ∈[0,1]

|F̂n(τ)− F̂n(τ−)| = OP (n1/2k)

where F̂n(τ−) := limξ↑0 F̂n(τ − ξ) and the OP -bound in the above equation

follows from Lemma 8.6. By the definition of Ĝn,R and arguments similar
to the ones used in the proof of Lemma 7.7, it follows that

sup
ω∈R

sup
τ1,τ2∈[0,1]

|Ĝn,R(τ1, τ2;ω)− Ĝn,U (F̂−1
n (τ1), F̂−1

n (τ2);ω)| = oP (1).

It therefore suffices to bound the differences

sup
τ1,τ2∈[0,1]

|Ĝn,U (τ1, τ2;ω)− Ĝn,U (F̂−1
n (τ1), F̂−1

n (τ2);ω)|
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pointwise and uniformly in ω.
In what follows, we give a detailed proof of the statement for fixed ω ∈ R

and sketch the arguments needed for the proof of the uniform result.
By (7.22) we have, for any x > 0 and δn with

n−1/2 � δn = o(n−1/2b−1/2
n (log n)−d),

where d is the constant from Lemma 7.3 corresponding to j = k,

Pn(ω):=P
(

sup
τ1,τ2∈[0,1]

|Ĝn,U (F̂−1
n (τ1), F̂−1

n (τ2);ω)− Ĝn,U (τ1, τ2;ω)| > x((nbn)−1/2 + bkn)
)

≤P
(

sup
τ1,τ2∈[0,1]

sup
‖(u,v)−(τ1,τ2)‖∞

≤supτ∈[0,1] |F̂
−1
n (τ)−τ |

|Ĝn,U (u, v;ω)− Ĝn,U (τ1, τ2;ω)| > x((nbn)−1/2 + bkn)
)

≤P
(

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĝn,U (u, v;ω)− Ĝn,U (τ1, τ2;ω)| > x((nbn)−1/2 + bkn),

sup
τ∈[0,1]

|F̂−1
n (τ)− τ | ≤ δn

)
+ P

(
sup
τ∈[0,1]

|F̂−1
n (τ)− τ | > δn

)
=Pn1 + Pn2 , say.

It follows from Lemma 7.5 that Pn2 is o(1). As for Pn1 , it is bounded by

P
(

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥn,U (u, v;ω)− Ĥn,U (τ1, τ2;ω)| > (1 + (nbn)1/2bkn)x/2
)

+ I
{

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜn,U (u, v;ω)− EĜn,U (τ1, τ2;ω)| > ((nbn)−1/2 + bkn)x/2
}

where the first term tends to zero in view of (7.24). To see that the indicator
in the second term also is o(1), note that

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜn,U (u, v;ω)− EĜn,U (τ1, τ2;ω)|

≤ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜn,U (u, v;ω)− fqu,qv(ω)−B(k)
n (u, v, ω)|

+ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|B(k)
n (τ1, τ2, ω) + fqτ1 ,qτ2 (ω)− EĜn,U (τ1, τ2;ω)|

+ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|fqu,qv(ω) +B(k)
n (u, v, ω)− fqτ1 ,qτ2 (ω)−B(k)

n (τ1, τ2, ω)|

=o(n−1/2b−1/2
n + bkn) +O(δn(1 + | log δn|)d),
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where d still is the constant from Lemma 7.3 corresponding to j = k. Here,
we have applied part (ii) of Theorem 3.6 to bound the first two terms and
Lemma 7.3 for the third one. For any ω, thus, Pn(ω) = o(1), which estab-
lishes the pointwise version of the claim.

We now turn to the uniformity (with respect to ω) issue. For an arbi-
trary yn > 0, similar arguments as above yield, with the same δn,

P
(

sup
ω∈R

sup
τ1,τ2∈[0,1]

|Ĝn,R(τ1, τ2;ω)− Ĝn,U (τ1, τ2;ω)| > yn

)
≤ P

(
sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥn,U (u, v;ω)− Ĥn,U (τ1, τ2;ω)| > (nbn)1/2yn/2
)

+ I
{

sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜn,U (u, v;ω)− EĜn,U (τ1, τ2;ω)| > yn/2
}

+ o(1).

That the indicator in the latter expression is o(1) follows by the same argu-
ments as above [note that Lemma 7.3 and the statement of part (ii) both
hold uniformly in ω ∈ R]. To bound the probability term, observe that by
Lemma 7.6, supτ1,τ2 supj=1,...,n |I

τ1,τ2
n,U (2πj/n)| is OP (n2/K) for any K > 0.

Moreover, the uniform Lipschitz continuity of W implies that Wn also is
uniformly Lipschitz continuous with constant of order O(b−2

n ). Combining
those facts with Lemma 7.3 and the assumptions on bn, we obtain

sup
ω1,ω2∈R

|ω1−ω2|≤n−3

sup
τ1,τ2∈[0,1]

|Ĥn,U (τ1, τ2;ω1)− Ĥn,U (τ1, τ2;ω2)| = oP (1).

By periodicity of Ĥn,U in the argument ω, it thus remains to show that

max
ω=0,2πn−3,...,2π

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥn,U (u, v;ω)− Ĥn,U (τ1, τ2;ω)| = oP (1).

Lemmas 7.1 and 7.7 entail the existence of a random variable S(ω) such
that, for any ω ∈ R,

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥn,U (u, v;ω)− Ĥn,U (τ1, τ2;ω)| ≤ |S(ω)|+Rn(ω)

where supω∈R |Rn(ω)| = oP (1) and

max
ω=0,2πn−3...,2π

E[|S2L(ω)|] ≤ K2L
L

(∫ η

0
ε−4/(2Lγ)dε+(δγ/2n +2(nbn)−1/2)η−8/(2Lγ)

)2L
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for any 0 < γ < 1, L ∈ N, 0 < η < δn, and a constant KL depending on L
only. For appropriate choice of L and γ, this latter bound is o(n−3); since
the maximum is over a set with O(n3) elements, this completes the proof of
part (iii).

7.4. Details for the proof of Parts (i) and (iii) of Theorem 3.6. This
section contains the main Lemmas used in Sections 7.1 and 7.3 above. We
use the notation introduced at the beginning of the proof of Theorem 3.6.
The proofs of the results presented here can be found in the online appendix
[Section 8.3].

For the statement of the first result, recall that, for any non-decreasing,
convex function Ψ : R+ → R+ with Ψ(0) = 0 the Orlicz norm of a real-
valued random variable Z is defined as [see e.g. van der Vaart and Wellner
(1996), Chapter 2.2]

‖Z‖Ψ = inf
{
C > 0 : EΨ

(
|Z|/C

)
≤ 1
}
.

Lemma 7.1. Let {Gt : t ∈ T} be a separable stochastic process with
‖Gs −Gt‖Ψ ≤ Cd(s, t) for all s, t with d(s, t) ≥ η̄/2 ≥ 0. Denote by D(ε, d)
the packing number of the metric space (T, d). Then, for any δ > 0, η ≥ η̄,
there exists a random variable S1 and a constant K <∞ such that

sup
d(s,t)≤δ

|Gs −Gt| ≤ S1 + 2 sup
d(s,t)≤η̄,t∈T̃

|Gs −Gt| and

‖S1‖Ψ ≤ K
[ ∫ η

η̄/2
Ψ−1

(
D(ε, d)

)
dε+ (δ + 2η̄)Ψ−1

(
D2(η, d)

)]
,

where the set T̃ contains at most D(η̄, d) points. In particular, by Markov’s
inequality [cf. van der Vaart and Wellner (1996), p. 96],

P
(
|S1| > x

)
≤
(

Ψ
(
x
[
8K
( ∫ η

η̄/2
Ψ−1

(
D(ε, d)

)
dε+(δ+2η̄)Ψ−1

(
D2(η, d)

))]−1
))−1

.

for any x > 0.

Lemma 7.2. Let X0, ..., Xn−1 be the finite realization of a strictly sta-
tionary process with X0 ∼ U [0, 1], and let (W) hold. For x = (x1, x2)
let Ĥn(x;ω) :=

√
nbn(Ĝn(x1, x2;ω)−E[Ĝn(x1, x2;ω)]). For any Borel set A,

define

dAn (ω) :=
n−1∑
t=0

I{Xt ∈ A}e−itω.
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Assume that, for p = 1, . . . , P , there exist a constant C and a function
g : R+ → R+, both independent of ω1, ..., ωp ∈ R, n and A1, ..., Ap, such that

(7.26)
∣∣∣ cum(dA1

n (ω1), . . . , d
Ap
n (ωp))

∣∣∣ ≤ C(∣∣∣∆n

( p∑
i=1

ωi

)∣∣∣+ 1
)
g(ε)

for any Borel sets A1, . . . , Ap with minj P(X0 ∈ Aj) ≤ ε. Then, there exists
a constant K (depending on C,L, g only) such that

sup
ω∈R

sup
‖a−b‖1≤ε

E|Ĥn(a;ω)− Ĥn(b;ω)|2L ≤ K
L−1∑
`=0

gL−`(ε)

(nbn)`

for all ε with g(ε) < 1 and all L = 1, . . . , P .

Lemma 7.3. Under the assumptions of Theorem 3.5, the derivative

(τ1, τ2) 7→ dj

dωj
fqτ1 ,qτ2 (ω) exists and satisfies, for any j ∈ N0 and some con-

stants C, d that are independent of a = (a1, a2), b = (b1, b2) but may depend
on j,

sup
ω∈R

∣∣∣ dj

dωj
fqa1 ,qa2 (ω)− dj

dωj
fqb1 ,qb2 (ω)

∣∣∣ ≤ C‖a− b‖1(1 + | log ‖a− b‖1|)d.

Lemma 7.4. Let the strictly stationary process (Xt)t∈Z satisfy Assump-
tion (C). For any Borel set A, define

dAn (ω) :=

n−1∑
t=0

I{Xt ∈ A}e−itω.

Let A1, . . . , Ap ⊂ [0, 1] be intervals, and let ε := minj=1,...,pP(X0 ∈ Aj).
Then, for any p-tuple ω1, ..., ωp ∈ R,∣∣∣ cum(dA1

n (ω1), . . . , d
Ap
n (ωp))

∣∣∣ ≤ C(∣∣∣∆n

( p∑
i=1

ωi

)∣∣∣+ 1
)
ε(| log ε|+ 1)d,

where ∆n(λ) :=
∑n−1

t=0 e
itλ and the constants C, d depend only on K, p, and ρ

[with ρ from condition (C)].

Lemma 7.5. Let X0, . . . , Xn−1 be the finite realization of a strictly sta-
tionary process satisfying (C) and such that X0 ∼ U [0, 1]. Then,

sup
τ∈[0,1]

|F̂−1
n (τ)− τ | = OP (n−1/2).
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Lemma 7.6. Let the strictly stationary process (Xt)t∈Z satisfy Assump-
tion (C); assume moreover that X0 ∼ U [0, 1]. For any y ∈ [0, 1], define

dyn(ω) :=
n−1∑
t=0

I{Xt ≤ y}e−iωt.

Then, for any k ∈ N,

sup
ω∈Fn

sup
y∈[0,1]

|dyn(ω)| = OP (n1/2+1/k).

Lemma 7.7. Under the assumptions of Theorem 3.6, let δn be a se-
quence of non-negative real numbers. Assume that there exists γ ∈ (0, 1),
such that δn = O((nbn)−1/γ). Then,

sup
ω∈R

sup
u,v∈[0,1]2

‖u−v‖1≤δn

|Ĥn(u;ω)− Ĥn(v;ω)| = oP (1).
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8. Online Appendix.

8.1. Details for the Proof of Part (ii) of Theorem 3.6. For p ≥ 2, k1, . . . ,
kp−1 ∈ Z and x1, . . . , xp ∈ R, consider the Laplace cumulant of order p

γ
x1,...,xp
k1,...,kp−1

:= cum
[
I{Xk1 ≤ x1}, I{Xk2 ≤ x2}, . . . , I{X0 ≤ xp}

]
=

∑
{ν1,...,νR}

(−1)R−1(R− 1)!
R∏
j=1

P
(
Xki ≤ xi : i ∈ νj

)
, kp := 0,

where the summation runs over all partitions {ν1, . . . , νR} of {1, . . . , p}.
All results in this part of the Appendix are established under the following
condition on Laplace cumulants:

(CS) Let p ≥ 2, δ > 0. There exists a non-increasing function ap : N→ R+

such that

sup
x1,...,xp

|γx1,...,xpk1,...,kp−1
| ≤ ap

(
max
j
|kj |
)

and
∑
k∈N

kδap(k) <∞.

This condition follows from Assumption (C) but is in fact somewhat weaker.
Note that under assumption (CS) the following quantity, which we call

Laplace spectrum of order p, exists as soon as p− 1 < δ

fx1,...,xp(ω1, . . . , ωp−1) :=
1

(2π)p−1

∞∑
k1,...,kp−1=−∞

γ
x1,...,xp
k1,...,kp−1

e−i(ω1k1+...+ωp−1kp−1).

The existence of fx1,...,xp(ω1, . . . , ωp−1) follows, since under (CS)∣∣∣ ∞∑
k1,...,kp−1=−∞

γ
x1,...,xp
k1,...,kp−1

e−i(ω1k1+...+ωp−1kp−1)
∣∣∣ ≤ ∞∑

k1,...,kp−1=−∞
ap
(

max
j
|kj |
)

≤ ap(0) +
∞∑
m=1

ap(m)
∣∣{k1, ..., kp−1 : max

j
|kj | = m}

∣∣ <∞,
since

∣∣{k1, ..., kp−1 : maxj |kj | = m}
∣∣ = O(mp−2).

The main result in this section is Lemma 8.5, giving an asymptotic ex-
pansion of the expectation E[Ĝn,U (τ1, τ2;ω)] that holds uniformly in τ1, τ2,
and ω. Essentially, it is a uniform version, for Laplace spectra, of Theo-
rem 5.6.2 in Brillinger (1975). The proof is based on a series of uniform
reinforcements of results from Brillinger (1975).

We first prove the following version of Lemma P4.1 in Brillinger (1975)
in the special case where no tapering is applied, so that the constant can be
chosen as 2.
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Lemma 8.1. Let hn(u) := I{0 ≤ u < n} and ∆n(λ) :=
∑n−1

t=0 e−iλt.
Then, for any K ∈ N,K ≥ 2, u1, . . . , uK−1 ∈ Z and λ ∈ R,

(8.1)
∣∣∣ n−1∑
t=0

hn(t+u1) · · ·hn(t+uK−1)e−iλt−∆n(λ)
∣∣∣ ≤ 2(|u1|+ . . .+ |uK−1|).

Proof. The left-hand side in (8.1) is bounded by

K−1∑
j=1

n−1∑
t=0

|hn(t+ uj)− hn(t)| ≤ 2

K−1∑
j=1

|uj |.

Next, we extend Lemma P4.2, still from Brillinger (1975). Define

En(τ1, . . . , τK , λ1, . . . , λK) := cum(dτ1n,U (λ1), . . . , dτKn,U (λK))

−∆n

( K∑
j=1

λj

) ∑
|u1|<n

· · ·
∑

|uK−1|<n

γ
qτ1 ,...,qτK
u1,...,uK−1 exp

(
− i

K−1∑
j=1

λjuj

)
.

Lemma 8.2. Under (CS) with p = K and δ > K,∣∣∣En(τ1, . . . , τK , λ1, . . . , λK)
∣∣∣

≤ 2
∑
|u1|<n

· · ·
∑

|uK−1|<n

(|u1|+ . . .+ |uK−1|)
∣∣∣γqτ1 ,...,qτKu1,...,uK−1

∣∣∣ ≤ 2(K − 1)CK ,

for all τ1, . . . , τK ∈ [0, 1] and λ1, . . . , λK ∈ R, where CK does not depend
on λi, qτ i.

Proof. By multilinearity of the cumulants, we have

cum(dτ1n,U (λ1), . . . , dτKn,U (λK))

=

n−1∑
t1=0

· · ·
n−1∑
tK=0

hn(t1) . . . hn(tK) exp
(
− i

K∑
j=1

λjtj

)
γ
qτ1 ,...,qτK
t1−tK ,...,tK−1−tK

=
∑
|u1|<n

· · ·
∑

|uK−1|<n

exp
(
− i

K∑
j=1

λjuj

)
γ
qτ1 ,...,qτK
u1,...,uK−1

×
n−1∑
t=0

hn(t+ u1) · · ·hn(t+ uK−1)hn(t) exp
(
− i

K∑
j=1

λjt
)
.
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Therefore,

En(τ1, . . . , τK , λ1, . . . , λK) =
∑
|u1|<n

· · ·
∑

|uK−1|<n

exp
(
−i

K∑
j=1

λjuj

)
γ
qτ1 ,...,qτK
u1,...,uK−1

×

(
n−1∑
t=0

hn(t+u1) · · ·hn(t+uK−1)hn(t) exp
(
− i

K∑
j=1

λjt
)
−∆n

( K∑
j=1

λj

))
.

Applying the triangle inequality and Lemma 8.1, and taking condition (CS)
into account, completes the proof.

Finally, we establish a uniform version of Theorem 4.3.2 in Brillinger
(1975). Recalling the definition of dτn,U given in (2.6), let

εn(τ1, . . . , τK , λ1, . . . , λK) := cum(dτ1n,U (λ1), . . . , dτKn,U (λK))

− (2π)K−1∆n

( k∑
j=1

λj

)
fqτ1 ,...,qτK (λ1, . . . , λK).

Theorem 8.3. If (CS) holds with p = K and δ > K + 1, then

sup
n

sup
τ1,...,τK∈[0,1]
λ1,...,λK∈R

∣∣∣εn(τ1, . . . , τK , λ1, . . . , λK)
∣∣∣ <∞.

Proof. By the definition of fqτ1 ,...,qτK , we have

cum(dτ1n,U (λ1), . . . , dτKn,U (λK))

= ∆n

( K∑
j=1

λj

)
(2π)K−1fqτ1 ,...,qτK (λ1, . . . , λK−1)

−∆n

( K∑
j=1

λj

) ∑
|u1|∨...∨|uK−1|≥n

γ
qτ1 ,...,qτK
u1,...,uK−1 exp

(
− i

K−1∑
j=1

λjuj

)
+ En(τ1, . . . , τK , λ1, . . . , λK).

Noting that |∆n(λ)| ≤ n, we have by condition condition (CS),

sup
τ1,...,τK∈[0,1]
λ1,...,λK∈R

∣∣∣ ∑
|u1|∨...∨|uK−1|≥n

γ
qτ1 ,...,qτK
u1,...,uK−1 exp

(
− i

K−1∑
j=1

λjuj

)∣∣∣
≤ sup

τ1,...,τK∈[0,1]
λ1,...,λK∈R

∞∑
m=n

∑
|u1|∨...∨|uK−1|=m

|γqτ1 ,...,qτKu1,...,uK−1 | ≤
∞∑
m=n

O(mK−2)a(m) = O(1/n).
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The claim follows by applying Lemma 8.2 to En.

In analogy to Theorem 5.2.2 in Brillinger (1975), we also have

Lemma 8.4. Under (CS) with K = 2, δ > 3,
(8.2)

EIτ1,τ2n,U (ω) =

fqτ1 ,qτ2 (ω) + 1
2πn

[
sin(nω/2)
sin(ω/2)

]2
τ1τ2 + ετ1,τ2n (ω) ω 6= 0 mod 2π

fqτ1 ,qτ2 (ω) + n
2π τ1τ2 + ετ1,τ2n (ω) ω 6= 0 mod 2π

with supτ1,τ2∈[0,1],ω∈R |ε
τ1,τ2
n (ω)| = O(1/n).

Remark: For the Fourier frequencies ω = 2πj
n , j ∈ Z, the second term in

the right-hand side of (8.2) vanishes, leading to the useful simple result

EIτ1,τ2n (ω) = fqτ1 ,qτ2 (ω) +
n

2π
τ1τ2I{ω = 0 mod 2π}+ ετ1,τ2n (ω).

Proof. First note that, by definition,

EIτ1,τ2n (ω) =
1

2πn

(
cum(dτ1n,U (ω), dτ2n,U (−ω)) + (Edτ1n,U (ω))(Edτ2n,U (−ω))

)
The result follows from applying Theorem 8.3 and noting that

Edτn,U (ω) = τ
n−1∑
t=0

e−iωt = τ
e−iωn − 1

e−iω − 1
,

for ω 6= 0 mod 2π, while, for ω = 0 mod 2π, obviously, Edτn,U (ω) = nτ.

Lemma 8.5. Assume that (CS), with p = 2 and δ > k + 1, and (W)
hold. Then, with the notation of Theorem 3.5,

sup
τ1,τ2∈[0,1],ω∈R

∣∣∣EĜn(τ1, τ2;ω)−fqτ1 ,qτ2 (ω)−B(k)
n (τ1, τ2;ω)

∣∣∣ = O((nbn)−1)+o(bkn).
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Proof. By definition of Ĝn and Lemma 8.4, following the proof of Theo-
rem 5.6.1 in Brillinger (1975), we have, uniformly in τ1, τ2 and ω,

EĜn(τ1, τ2;ω)

=
1

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
fqτ1 ,qτ2 (2πs/n) +

2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
ετ1,τ2n (2πs/n)

=

∫ 2π

0
Wn(ω − α)fqτ1 ,qτ2 (α)dα+O(b−1

n n−1)

= b−1
n

∫ ∞
−∞

W (b−1
n [ω − α])fqτ1 ,qτ2 (α)dα+O(b−1

n n−1)

= fqτ1 ,qτ2 (ω) +B(k)
n (τ1, τ2;ω) + o(bkn) +O(b−1

n n−1),

where the last equality follows from the fact that (CS) implies that the func-
tion ω 7→ fqτ1 ,qτ2 (ω) is k times continuously differentiable with derivatives
that are bounded uniformly in τ1, τ2.

8.2. Proofs for Section 3. In this appendix, we give the proofs for Propo-
sitions 3.1, 3.2 and 3.4.

8.2.1. Proof of Proposition 3.1. Recall that, by the definition of cumu-
lants,

| cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})|

=
∣∣∣ ∑
{ν1,...,νR}

(−1)R−1(R− 1)!P
( ⋂
i∈ν1

{Xti ∈ Ai}
)
· · ·P

( ⋂
i∈νR

{Xti ∈ Ai}
)∣∣∣(8.3)

where the summation is performed with respect to all partitions {ν1, . . . , νR}
of the set {1, . . . , p}. It suffices to establish that∣∣∣ cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})

∣∣∣ ≤ Kpα
(⌊
p−1 max

i,j
|ti − tj |

⌋)
.

In the case t1 = ... = tp this is obviously true. If at least two indices
are distinct, choose j with maxi=1,...,p−1(ti+1 − ti) = tj+1 − tj > 0 and
let (Ytj+1 , . . . , Ytp) be a random vector that is independent of (Xt1 , . . . , Xtj )
and possesses the same joint distribution as (Xtj+1 , . . . , Xtp). By an elemen-
tary property of the cumulants [cf. Theorem 2.3.1 (iii) in Brillinger (1975)]
we have

cum(I{Xt1 ∈ A1}, . . . , I{Xtj ∈ Aj}, I{Ytj+1 ∈ Aj+1}, . . . , I{Ytp ∈ Ap}) = 0.
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Therefore, we can write the cumulant of interest as∣∣∣ cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})

− cum(I{Xt1 ∈ A1}, . . . , I{Xtj ∈ Aj}, I{Ytj+1 ∈ Aj+1}, . . . , I{Ytp ∈ Ap})
∣∣∣

=
∣∣∣ ∑
{ν1,...,νR}

(−1)R−1(R− 1)![Pν1 · · ·PνR −Qν1 · · ·QνR ]
∣∣∣,

where the sum runs over all partitions {ν1, . . . , νR} of {1, . . . , p},

Pνr := P
( ⋂
i∈νr

{Xti ∈ Ai}
)

and Qνr := P
( ⋂
i∈νr
i≤j

{Xti ∈ Ai}
)
P
( ⋂
i∈νr
i>j

{Xti ∈ Ai}
)
,

r = 1, . . . , R, with P(
⋂
i∈∅{Xti ∈ Ai}) := 1 by convention. Since Xt is α-

mixing, it follows that, for any partition ν1, ..., νR and any r = 1, ..., R, we
have |Pνr −Qνr | ≤ α(tj+1 − tj). Thus, for every partition ν1, ..., νR,

|Pν1 · · ·PνR −Qν1 · · ·QνR | ≤
R∑
r=1

|Pνr −Qνr | ≤ Rα(tj+1 − tj).

All together, this yields

| cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})| ≤ α(tj+1 − tj)
∑

{ν1,...,νR}

R!.

Noting that p(tj+1 − tj) ≥ maxi1,i2 |ti1 − ti2 | and observing that α is a
monotone function, we obtain

| cum(I{Xt1 ∈ A1}, . . . , I{Xtp ∈ Ap})| ≤ Kα(max |ti − tj |).

Now, additionally assume that α(n) ≤ Cκn. Then,

α(bp−1 max |ti − tj |c) ≤ Cκbp
−1 max |ti−tj |c ≤ Cκ−1(κ1/p)pbp

−1 max |ti−tj |c+1

≤ Cκ−1(κ1/p)max |ti−tj |.

Setting ρ = κ1/p ∈ (0, 1) completes the proof.
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8.2.2. Proof of Proposition 3.2. We follow the ideas of the proof of Propo-
sition 2 in Wu and Shao (2004). Let p ≥ 2 and assume without loss of
generality that t1 ≤ t2 ≤ ... ≤ tp. For t > 0, define the coupled random
variables X ′t := g(..., ε∗−1, ε

∗
0, ε1, ...εt). Choose an arbitrary j ∈ {1, ..., p − 1}

that satisfies tj+1 − tj = maxi(ti+1 − ti). In the case maxi(ti+1 − ti) = 0,
there is nothing to prove. So, assume that maxi(ti+1 − ti) > 0. Define
Vi := I{Xti−tj ∈ Ai} and V ′i := I{X ′ti−tj ∈ Ai}. Strict stationarity im-
plies

cum(I{Xt1 ∈ A1}, ..., I{Xtj ∈ Aj}, I{Xtj+1 ∈ Aj}, ..., I{Xtp ∈ Ap})

= cum(V1, ..., Vp)

= cum(V1, ..., Vj , Vj+1 − V ′j+1, Vj+2, ..., Vp)

+

p−j−1∑
m=1

cum(V1, ..., Vj , V
′
j+1, ..., V

′
j+m, Vj+1+m − V ′j+1+m, ..., Vp)

+ cum(V1, ..., Vj , V
′
j+1, ..., V

′
p).(8.4)

By an elementary property of cumulants, the last term in (8.4) is zero since
the groups of random variables (Vt)t<0 and (V ′t )t≥0 are independent by defi-
nition of the V ′t . Additionaly, by the definition of cumulants, uniform bound-
edness of indicators, and Assumption (G), we obtain the bounds∣∣ cum(V1, ..., Vj , Vj+1 − V ′j+1, Vj+2, ..., Vp)| ≤ CE|Vj+1 − V ′j+1

∣∣ ≤ Cσtj+1−tj ,∣∣ cum(V1, ..., Vj , V
′
j+1, ..., V

′
j+m, Vj+1+m − V ′j+1+m, ..., Vp)

∣∣ ≤ Cσtj+m+1−tj .

Observe that maxi 6=l |ti − tl| ≥ pmaxi(ti+1 − ti). The bound

| cum(I{Xt1 ∈ A1}, ..., I{Xtp ∈ Ap})| ≤ C(σ1/p)max |ti−tj |

follows from the fact that the number of summands in the sum is at most p.
Setting ρ := σ1/p completes the proof.

8.2.3. Proof of Proposition 3.4. It suffices to prove that

(8.5)
(
n−1/2dτn,R(ω)

)
τ∈[0,1]

 
(
D(τ ;ω)

)
τ∈[0,1]

in `∞([0, 1]).

Now, for (8.5) to hold, it is sufficient that
(
n−1/2dτn,U (ω)

)
τ∈[0,1]

satisfies the

following two conditions:

(i1) convergence of the finite-dimensional distributions, that is,

(8.6)
(
n−1/2d

τ j
n,U (ωj)

)
j=1,...,k

d−→
(
D(τ j ;ωj)

)
j=1,...,k

,

for any τ j ∈ [0, 1] and ωj 6= 0( mod 2π), j = 1, . . . , k and k ∈ N;
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(i2) stochastic equicontinuity: for any x > 0 and any ω 6= 0 mod 2π,

(8.7) lim
δ↓0

lim sup
n→∞

P
(

sup
τ1,τ2∈[0,1]
|τ1−τ2|≤δ

|n−1/2(dτ1n,U (ω)− dτ2n,U (ω))| > x
)

= 0.

Indeed, under (i1) and (i2), an application of Theorems 1.5.4 and 1.5.7 in
van der Vaart and Wellner (1996) yields

(8.8)
(
n−1/2dτn,U (ω)

)
τ∈[0,1]

 
(
D(τ ;ω)

)
τ∈[0,1]

in `∞([0, 1]),

which, in combination with

(8.9) sup
τ∈[0,1]

|n−1/2(dτn,R(ω)− dτn,U (ω))| = oP (1), for ω 6= 0 mod 2π,

which we prove below, yields the desired result that (8.5) holds. To prove (8.9),
observe that, by (7.25), it suffices to bound the term

sup
τ∈[0,1]

n−1/2|dF̂
−1
n (τ)
n,U (ω)− dτn,U (ω))|.

Now, for any x > 0 and δn = o(1) such that n1/2δn →∞,

P
(

sup
τ∈[0,1]

n−1/2|dF̂
−1
n (τ)
n,U (ω)− dτn,U (ω))| > x

)
≤ P

(
sup
τ∈[0,1]

sup
|u−τ |≤δn

|dun,U (ω)− dτn,U (ω)| > xn1/2, sup
τ∈[0,1]

|F̂−1
n (τ)− τ | ≤ δn

)
+ P

(
sup
τ∈[0,1]

|F̂−1
n (τ)− τ | > δn

)
= o(1) + o(1),

where the first o(1) follows from (8.7), and the second one is a consequence
of Lemma 7.5.

It thus remains to establish (8.6) and (8.7). First consider (8.7). Let-
ting T := (τ1 ∧ τ2, τ1 ∨ τ2], we use the following moment inequality, which
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holds for ω 6= 0 mod 2π and κ ∈ (0, 1), if |τ1 − τ2| is small enough:

E
∣∣n−1/2(dτ1n (ω)− dτ2n (ω))

∣∣2L = n−LE
2L∏
m=1

dTn
(
(−1)m−1ω)

)
= n−L

∑
{ν1,...,νR}

R∏
r=1

cum
(
dTn
(
(−1)m−1ω

)
: m ∈ νr

)
(8.10)

≤ n−L
∑

{ν1,...,νR}

R∏
r=1

[
C̃
(∣∣∆n

(
ω
∑
m∈νr

(−1)m−1
)∣∣+ 1

)
|τ1 − τ2|κ

]
(8.11)

≤ Cn−L
2L∑
R=1

nR∧(2L−R)|τ1 − τ2|κR = C
2L∑
R=1

n−|R−L||τ1 − τ2|κR.(8.12)

Equality in (8.10) (summation is with respect to all partitions {ν1, . . . , νR}
of the set {1, . . . , 2L}) follows from Theorem 2.3.2 in Brillinger (1975). In-
equality (8.11) follows from Lemma 7.4, and holds for arbitrary κ ∈ (0, 1)
as long as |τ1 − τ2| is small enough.

As for (8.12), note that the fact that

∆n(ω) =

{
n ω = 0 mod 2π,

sin
(
ω(n+ 1/2)

)
/ sin(ω/2) ω 6= 0 mod 2π,

implies |∆n(ω)| ≤ | sin(ω/2)|−1 if ω 6= 0 mod 2π. Therefore, (8.12) follows
if we show that

(8.13) |{j = 1, . . . , R : |νj | ≥ 2}| ≤ R ∧ (2L−R)

for any partition {ν1, . . . , νR} of the set {1, . . . , 2L}. If R ≤ L, the bound
obviously holds true. For any R > L, let us show that

(8.14) |{j = 1, . . . , R : |νj | = 1}| ≥ 2(R− L)

holds for all {ν1, . . . , νR}. Denote by S the number of “singles” [sets νj with
|νj | = 1] in the given partition {ν1, . . . , νR}: the number of sets containing
two or more elements is thus R − S, which implies that there are more
than 2(R − S) + S = 2R − S elements in total. Inequality (8.14) follows,
because if S were strictly smaller than 2(R− L), this would imply that the
total number 2R− S of elements were strictly larger than 2L.

Inequality (8.14) implies that the number of elements in sets with two
or more elements is bounded by 2L − 2(R − L) = 4L − 2R, which in turn
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implies that there are no more than 2L − R such sets, since each of them
contains at least two elements. Inequality (8.13), hence also (8.12), follow.

We now use the moment inequality (8.12) and Lemma 7.1 for establish-
ing (8.7). Define Ψ(x) := x2L, and note that, for ω 6= 0 mod 2π, γ ∈ (0, κ)
and τ1, τ2 ∈ [0, 1] with |τ1 − τ2| > n−1/γ , we have

(8.15) ‖n−1/2(dτ1n (ω)− dτ2n (ω))‖Ψ = (E
∣∣n−1/2(dτ1n (ω)− dτ2n (ω))

∣∣2L)1/(2L)

≤
(
C̄

2L∑
R=1

n−|R−L||τ1 − τ2|κR
)1/(2L)

≤ C̃
2L∑
R=1

n−|R−L|/(2L)|τ1 − τ2|κR/(2L)

≤ C̃
2L∑
R=1

|τ1 − τ2|(κR+γ|R−L|)/(2L) ≤ C|τ1 − τ2|γ/2 =: Cd(τ1, τ2).

Letting η̄n := 2n−1/2 and choosing γ and L such that γL > 1, Lemma 7.1
entails, for any η ≥ η̄n,

(8.16) P
(

sup
τ1,τ2∈[0,1]
d(τ1,τ2)≤δ

n−1/2|dτ1n,U (ω)− dτ2n,U (ω)| > 2x
)

≤
(8K

x

[ ∫ η

η̄n/2
ε−1/(γL)dε+ (δ + 2η̄n)η−2/(γL)

])2L

+ P
(

sup
τ1,τ2∈[0,1]
d(τ1,τ2)≤η̄n

n−1/2|dτ1n,U (ω)− dτ2n,U (ω)| > x/2
)
.

Furthermore,

sup
τ1,τ2∈[0,1]
d(τ1,τ2)≤η̄n

n−1/2|dτ1n,U (ω)− dτ2n,U (ω)| ≤ sup
τ1,τ2∈[0,1]
d(τ1,τ2)≤η̄n

n−1/2
n−1∑
t=0

I{Xt ∈ (a ∧ b, a ∨ b]}

≤ sup
|x−y|≤22/γn−1/γ

n1/2|F̂n(x)− F̂n(y)− (x− y)|+ sup
|x−y|≤22/γn−1/γ

n1/2|x− y|

= OP

(
(n2−1/γ + n)1/(2k)

[
n−1/γ

(
| log n|/γ

)dk + n−1
]1/2

+ n1/2−1/γ
)

= oP (1).

(8.17)
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Together, (8.16) and (8.17) imply

lim
δ↓0

lim sup
n→∞

P
(

sup
τ1,τ2∈[0,1]
|τ1−τ2|≤δ

|n−1/2(dτ1n,U (ω)− dτ2n,U (ω))| > x
)

≤

[
8K̃

x

γL

γL− 1
η(γL−1)/(γL)

]2L

+ o(1)

for every x, η > 0. Condition (8.7) follows, since the integral in the right-
hand side can be made arbitrarily small by choosing η accordingly.

Turning to (8.6), we employ Lemma 7.4 in combination with Lemma P4.5
and Theorem 4.3.2 from Brillinger (1975). More precisely, we have to verify
that, for any τ1, . . . , τk ∈ [0, 1], k ∈ N, and ω1, . . . , ωk 6= 0 mod 2π, all
cumulants of the vector

n−1/2
(
dτ1n,U (ω1), dτ1n,U (−ω1), . . . , dτkn,U (ωk), d

τk
n,U (−ωk)

)
converge to the corresponding cumulants of the vector(

D(τ1;ω1),D(τ1;−ω1), . . . ,D(τk;ωk),D(τk;−ωk)
)
.

It is easy to see that the cumulants of order one converge as desired:

|E(n−1/2dτn,U (ω))| = n−1/2|∆n(ω)|τ ≤ n−1/2τ | sin(ω/2)|−1 = o(1),

for any τ ∈ [0, 1] and ω 6= 0 mod 2π. Furthermore, for the cumulants of or-
der two, applying Theorem 4.3.1 in Brillinger (1975) to the bivariate process
(I{Xt ≤ qµ1}, I{Xt ≤ qµ2}), we obtain

cum(n−1/2d
µ1
n,U (λ1), n−1/2d

µ2
n,U (λ2)) = 2πn−1∆n(λ1 + λ2)fqµ1 ,qµ2 (λ1) + o(1)

for any (λ1, µ1), (λ2, µ2) ∈
⋃k
i=1{(ωi, τ i), (−ωi, τ i)}. which yields the correct

second moment structure. Finally, the cumulants of order J , with J ∈ N
and J ≥ 3, all tend to zero as, in view of Lemma 7.4,

cum(n−1/2d
µ1
n,U (λ1), . . . , n−1/2d

µJ
n,U (λJ))

≤ Cn−J/2(|∆n(

J∑
j=1

λj)|+ 1)gp(
J

max
j=1

µj) = O(n−(J−2)/2) = o(1)

for (λ1, µ1), . . . , (λJ , µJ) ∈
⋃k
i=1{(ωi, τ i), (−ωi, τ i)}. This implies that the

limit D(τ ;ω) is Gaussian, and completes the proof of (8.6). Proposition 3.4
follows.
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8.3. Proofs of the results from Section 7.4. We begin this section by stat-
ing an auxiliary technical result that is used in the proofs of Lemmas 7.5, 7.6
and 7.7. Its proof relies on Lemma 7.4.

Lemma 8.6. Assume that (Xt)t∈Z is a strictly stationary process satisfy-
ing (C) and such that X0 ∼ U [0, 1]. Denote by F̂n the empirical distribution
function of X0, ..., Xn−1. Then, for any k ∈ N, there exists a constant dk
depending on k only such that

sup
x,y∈[0,1],|x−y|≤δn

√
n|F̂n(x)− F̂n(y)− (x− y)|

= OP

(
(n2δn + n)1/2k(δn| log δn|dk + n−1)1/2

)
as δn → 0.

Proof of Lemma 8.6. Observe the decomposition

|F̂n(x)− F̂n(y)− (x− y)| ≤
∣∣∣F̂n(x)− F̂n

(bnxc
n

)
−
(
x− bnxc

n

)∣∣∣
+
∣∣∣F̂n(y)− F̂n

(bnyc
n

)
−
(
y − bnyc

n

)∣∣∣
+
∣∣∣F̂n(bnxc

n

)
− F̂n

(bnyc
n

)
−
(bnxc

n
− bnyc

n

)∣∣∣.
Since |bnyc/n− y| ≤ 1/n, and by monotonicity of F̂n,∣∣∣F̂n(y)− F̂n

(bnyc
n

)
−
(
y − bnyc

n

)∣∣∣ ≤ F̂n

(1 + bnyc
n

)
− F̂n

(bnyc
n

)
+

1

n

≤
∣∣∣F̂n(1 + bnyc

n

)
− F̂n

(bnyc
n

)
− 1

n

∣∣∣+
2

n
.

A similar bound holds with x substituting y, so that, letting Mn := {j/n|j =
0, ..., n},

sup
x,y∈[0,1],|x−y|≤δn

|F̂n(x)− F̂n(y)− (x− y)|

≤ max
x,y∈Mn,|x−y|≤δn+2n−1

|F̂n(x)− F̂n(y)− (x− y)|+ 4/n.

The cardinality of the set {x, y ∈ Mn : |x− y| ≤ δn + 2n−1} is of the order
O(n2(δn+n−1)). Recalling that maxj=1,...,N |Zj | = OP (N1/m) as N →∞ for
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any sequence (Zj)j∈Z of random variables with uniformly bounded moments
of order m, the claim follows if we can show that, for any k ∈ N,

sup
x,y∈[0,1],|x−y|≤δ

E
(n1/2|F̂n(x)− F̂n(y)− (x− y)|

((δ(1 + | log δ|)d) ∨ n−1)1/2

)2k
≤ Ck.

Now, this latter inequality is a consequence of the fact that, for all y > x,

E(F̂n(x)− F̂n(y)− (x− y))2k

= n−2k
∑

ν1,...,νR,|νj |≥2

R∏
r=1

cum(d(x,y]
n (0), ..., d(x,y]

n (0))(8.18)

where d := max(d1, ..., dk) [recall the notation d
(x,y]
n (ω) from Lemma 7.4]

and the sum runs over all partitions of {1, ..., 2k}; in view of Lemma 7.4,
this latter quantity in turn is bounded by

C̃kn
−2k

k∑
j=1

nj |x− y|j(1 + | log(y − x)|)jd,

where the constant C̃k only depends on k, ρ, and K. This completes the
proof of Lemma 8.6.

8.3.1. Proof of Lemma 7.1. As in the proof of Theorem 2.2.4 in van der
Vaart and Wellner (1996), we construct nested sets T0 ⊂ T1 ⊂ T2 ⊂ . . . ⊂
Tk ⊂ T such that every Tj is a maximal set of points with d(s, t) > η2−j ,
for all s, t ∈ Tj . Here maximal means that no point can be added without
destroying the validity of the inequality. Stop adding subsets when k is such
that ∆k := η/2k < η̄ ≤ η/2k−1.

For s, t ∈ T with d(s, t) ≤ δ, denote by s′, t′ ∈ Tk the points closest
to s and t, respectively. Then, since by construction d(s, t) ≥ ∆k ≥ η̄/2 for
any s 6= t, s, t ∈ Tk,

sup
d(s,t)≤δ

|Gs −Gt| = sup
d(s,t)≤δ

|Gs −Gs′ − (Gt −Gt′)− (Gt′ −Gs′)|

≤ sup
d(s′,t′)≤δ+2∆k

s′,t′∈Tk

|Gt′ −Gs′ |+ 2 sup
t′∈Tk

sup
t:d(t,t′)≤∆k

|Gt −Gt′ |

≤ sup
d(s′,t′)≤δ+2η̄
s′,t′∈Tk

|Gt′ −Gs′ |+ 2 sup
t′∈Tk

sup
t:d(t,t′)≤η̄

|Gt −Gt′ |.
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Adapting the proof of Theorem 2.2.4 in van der Vaart and Wellner (1996),
let us show that
(8.19)∥∥∥ sup
d(s,t)≤δ+2η̄
s,t∈Tk

|Gt−Gs|
∥∥∥

Ψ
≤ 4K

[ ∫ η

η̄/2
Ψ−1

(
D(ε, d)

)
dε+(δ+2η̄)Ψ−1

(
D2(η, d)

)]
.

By the definition of packing numbers, we have |Tj | ≤ D(η2−j , d). Let every
point tj ∈ Tj be linked to a unique tj−1 ∈ Tj−1 such that d(tj , tj−1) ≤ η2−j .
This yields, for every tk a chain tk, tk−1, . . . , t0 connecting tk to a point
t0 ∈ T0. For two arbitrary points sk, tk ∈ Tk, the difference of increments
along their respective chains is bounded by

|(Gsk −Gs0)− (Gtk −Gt0)| = |
k−1∑
j=0

(Gsj+1 −Gsj )−
k−1∑
j=0

(Gtj+1 −Gtj )|

≤ 2

k−1∑
j=0

max
(u,v)∈Lj

|Gu −Gv|,

where Lj denotes the set of all links (u, v) from points u ∈ Tj+1 to points
v ∈ Tj . Because the links were constructed by connecting any point in Tj+1

to a unique point in Tj , we have |Lj | = |Tj+1|. By assumption,

‖Gu −Gv‖Ψ ≤ Cd(u, v) ≤ Cη2−j for all(u, v) ∈ Lj .

Therefore, it follows from Lemma 2.2.2 in van der Vaart and Wellner (1996)
that

(8.20)∥∥∥ max
s,t∈Tk

|(Gs −Gs0)− (Gt −Gt0)|
∥∥∥

Ψ
≤ 2

k−1∑
j=0

K̃Ψ−1
(
D(η2−(j+1), d)

)
Cη2−j

≤ K
k−1∑
j=0

Ψ−1
(
D(η2−j−1, d)

)
4η(2−j − 2−j−1) ≤ 4K

∫ η

η̄/2
Ψ−1

(
D(ε, d)

)
dε

for some constant K only depending on Ψ and C.
In (8.20), s0 = s0(s) and t0 = t0(t) are the endpoints of the chains starting

at s and t, respectively. We therefore have
(8.21)∥∥∥ max
d(s,t)≤δ+2η̄
s,t∈Tk

|Gt−Gs|
∥∥∥

Ψ
≤ 4K

∫ η

η̄/2
Ψ−1

(
D(ε, d)

)
dε+

∥∥∥ max
d(s,t)≤δ+2η̄
s,t∈Tk

|Gs0(s)−Gt0(t)|
∥∥∥

Ψ
.
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To complete the proof, we use the same arguments as in van der Vaart
and Wellner (1996). For every pair of endpoints s0(s), t0(t) of chains starting
at s, t ∈ Tk with distance d(s, t) ≤ δ, choose exactly one pair s0

k, t
0
k ∈ Tk,

with d(s0
k, t

0
k) < δ+2η̄, whose chains end at s0, t0. Because |T0| = D(η2−0, d),

there are at most D2(η, d) such (s0
k, t

0
k) pairs. Therefore, we have the follow-

ing bound for the second term in the right-hand side in (8.21):∥∥∥ max
d(s,t)≤δ+2η̄
s,t∈Tk

|Gs0(s) −Gt0(t)|
∥∥∥

Ψ
≤

∥∥∥ max
d(s,t)≤δ+2η̄
s,t∈Tk

|(Gs0(s) −Gs0k)− (Gt0(t) −Gt0k)|
∥∥∥

Ψ

+
∥∥∥ max
d(s,t)≤δ+2η̄
s,t∈Tk

|(Gs0k −Gt0k)|
∥∥∥

Ψ

= Sn1 + Sn2 , say.

Noting that Sn1 is bounded by the right-hand side in (8.20), while Sn2 can be
bounded by employing Lemma 2.2.2 in van der Vaart and Wellner (1996)
again, we obtain the desired inequality∥∥∥ max

d(s,t)≤δ+2η̄
s,t∈Tk

|(Gs0k −Gs0k)|
∥∥∥

Ψ
≤ (δ + 2η̄)Ψ−1

(
D2(η, d)

)
K.

This completes the proof of Lemma 7.1.

8.3.2. Proof of Lemma 7.2. The proof consists of two steps. In the first
step, we derive the representation

(8.22) E|Ĥn(a;ω)− Ĥn(b;ω)|2L =
∑

{ν1,...,νR}
|νj |≥2, j=1,...,R

R∏
r=1

Da,b(νr)

where the summation runs over all partitions {ν1, . . . , νR} of {1, . . . , 2L}
such that each set νj contains at least two elements, and

Da,b(ξ) :=
∑

`ξ1 ,...,`ξq∈{1,2}

n−3q/2bq/2n

( ∏
m∈ξ

σ`m

)

×
n−1∑

sξ1 ,...,sξq=1

( ∏
m∈ξ

Wn(ω − 2πsm/n)
)

cum(D`m,(−1)m−1sm : m ∈ ξ),

for any set ξ := {ξ1, . . . , ξq} ⊂ {1, . . . , 2L}, where q := |ξ| and

D`,s := dM1(`)
n (2πs/n)dM2(`)

n (−2πs/n), ` = 1, 2, s = 1, . . . , n− 1,
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with the sets M1(1), M2(2), M2(1), M1(2) and the signs σ` ∈ {−1, 1} defined
in (8.24) below.

In step two of the proof we employ assumption (7.26) to prove

(8.23) sup
ξ⊂{1,...,2L}
|ξ|=q

sup
‖a−b‖1≤ε

|Da,b(ξ)| ≤ C(nbn)1−q/2g(ε), 2 ≤ q ≤ 2L.

To conclude the proof of the lemma, it is sufficient to observe that, for
any partition in (8.22),∣∣∣ R∏

r=1

Da,b(νr)
∣∣∣ ≤ CgR(ε)(nbn)R−L

[note that
∑R

r=1 |νr| = 2L].

Step 1. For the proof of (8.22), let a = (a1, a2) and b = (b1, b2). Then,

E|Ĥn(a;ω)− Ĥn(b;ω)|2L = n−3LbLn

n−1∑
s1,...,s2L=1

( 2L∏
m=1

Wn(ω − 2πsm/n)
)

×
n−1∑

j1,...,j2L=0

n−1∑
k1,...,k2L=0

E
[ 2L∏
m=1

Ajmkm(a, b)
]

exp
(
−2π

n
i

2L∑
m=1

(−1)m−1sm(jm−km)
)
,

where

Ajk(a, b) := Bjk(a, b)− EBjk(a, b)
Bjk(a, b) := I{Xj ≤ a1}I{Xk ≤ a2} − I{Xj ≤ b1}I{Xk ≤ b2}

= σ1I{Xj ∈M1(1)}I{Xk ∈M2(1)}+ σ2I{Xj ∈M1(2)}I{Xk ∈M2(2)}

with

σ1 := 2I{a1 > b1} − 1, σ2 := 2I{a2 > b2} − 1,

M1(1) := (a1 ∧ b1, a1 ∨ b1], M2(2) := (a2 ∧ b2, a2 ∨ b2],(8.24)

M2(1) :=

{
[0, a2] b2 ≥ a2

[0, b2] a2 > b2,
M1(2) :=

{
[0, b1] b2 ≥ a2

[0, a1] a2 > b2.

Note that, for each ` = 1, 2, P(X0 ∈ M`(`)) = λ(M`(`)) ≤ ‖a − b‖1 ≤ ε.
The product theorem (Theorem 2.3.2 of Brillinger (1975)) entails

E
[ 2L∏
`=1

Aj`k`(a, b)
]

=
∑

{ν1,...,νR}
|νj |≥2, j=1,...,R

R∏
r=1

cum(Bjiki(a, b) : i ∈ νr)
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where the sum runs over all partitions {ν1, . . . , νR} of {1, . . . , 2L}. Note
that EAjk(a, b) = 0; consequently, a summand is vanishing for any partition
which has some νj with |νj | = 1. Therefore, it suffices to consider summation
over the partitions for which |νj | ≥ 2 for all j = 1, . . . , R.

Furthermore,

n−1∑
j=0

n−1∑
k=0

Bjk(a, b) exp(−i(2π/n)[s(j − k)])

=
n−1∑
j=0

n−1∑
k=0

(
σ1I{Xj ∈M1(1)}I{Xk ∈M2(1)}+ σ2I{Xj ∈M1(2)}I{Xk ∈M2(2)}

)
× exp(−i(2π/n)[s(j − k)])

= σ1D1,s + σ2D2,s,

which yields

E|Ĥn(a;ω)− Ĥn(b;ω)|2L = n−3LbLn

n−1∑
s1,...,s2L=1

( 2L∏
m=1

Wn(ω − 2πsm/n)
)

×
∑

{ν1,...,νR}
|νj |≥2, j=1,...,R

R∏
r=1

cum(σ1D1,(−1)m−1sm + σ2D2,(−1)m−1sm : m ∈ νr)

=
∑

{ν1,...,νR}
|νj |≥2, j=1,...,R

R∏
r=1

Da,b(νr),

and concludes the proof of (8.22).

Step 2. Still by the product theorem, letting q = |ξ|,

Da,b(ξ) =
∑

`ξ1 ,...,`ξq∈{1,2}

n−3q/2bq/2n

n−1∑
sξ1 ,...,sξq=1

( ∏
m∈ξ

Wn(ω − 2πsm/n)
)

×
( ∏
m∈ξ

σ`m

) ∑
{µ1,...,µN}

N∏
j=1

cum(dMk(`m)
n (2π(−1)k+msm/n) : (m, k) ∈ µj)

where the summation runs over all indecomposable partitions {µ1, . . . , µN}
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(see Brillinger (1975), p. 20) of the scheme

(8.25)

(ξ1, 1) (ξ1, 2)
...

...
(ξq, 1) (ξq, 2).

Note that for each m ∈ ξ ⊂ {1, . . . , 2L}, there exists a j ∈ {1, 2} such
that P(X0 ∈Mj(`m)) = λ(Mj(`m)) ≤ ‖a− b‖1 ≤ ε.

Now, by assumption (7.26),

|Da,b(ξ)| ≤ Kn−3q/2bq/2n 2q
∑

{µ1,...,µN}

n−1∑
sξ1 ,...,sξq=1

( ∏
m∈ξ

∣∣∣Wn(ω − 2πsm/n)
∣∣∣)

×
(∣∣∣∆n

(2π

n

∑
(m,k)∈µ1

(−1)m+ksm

)∣∣∣+ 1
)

× · · · ×
(∣∣∣∆n

(2π

n

∑
(m,k)∈µN

(−1)m+ksm

)∣∣∣+ 1
)
g(ε).

An indecomposable partition {µ1, . . . , µN} of the scheme (8.25) consists of
at most N ≤ q+ 1 sets, because any partition with N ≥ q+ 2 is necessarily
decomposable. To see this, note that there is only one partition with N = 2q
and that this partition is decomposable. Any partition with N = 2q− i < 2q
sets can be obtained by i steps of agglomeration (i. e., iteratively merging
sets from the partition, where each step reduces the number of sets by one
unit). Obviously, it requires at least q−1 steps to obtain an indecomposable
partition. Therefore, any partition that is the result of a sequence of q − 2
steps (or less) is decomposable. Any partition with at least 2q−(q−2) = q+2
sets thus is decomposable.

We now follow an argument from Brillinger (cf. the proof of his The-
orem 7.4.4) to complete the proof. As sketched there, we have, with the
common convention that

∏
i∈∅ ai := 1,

N∏
j=1

(∣∣∣∆n

(2π

n

∑
(m,k)∈µj

(−1)m+ksm

)∣∣∣+ 1
)

=
∑

I⊂{1,...,N}

∏
j∈I

∆n

(2π

n

∑
(m,k)∈µj

(−1)m+ksm

)
,

by using the fact that

0 ≤ ∆n

(2π

n
k
)

=

{
n k ∈ nZ
0 k /∈ nZ.
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As explained by Brillinger, the functions ∆n introduce linear constraints
on summation with respect to sm, m ∈ ξ. First note that the case |I| =
q + 1 = N is irrelevant. Indeed, we then have that

n−1∑
sξ1 ,...,sξq=1

( ∏
m∈ξ

∣∣∣Wn(ω − 2πsm/n)
∣∣∣)∏

j∈I
∆n

(2π

n

∑
(m,k)∈µj

(−1)k+msm

)
= 0,

because |I| > q implies that there exists an index j ∈ I with |µj | =

|{(m̄, k̄)}| = 1, which in turn implies
∑

(m,k)∈µj

(−1)m+ksm = (−1)m̄+k̄sm̄ /∈ nZ
for all sm̄ = 1, . . . , n− 1.

Next consider the case |I| ≤ q. We have

n−1∑
sξ1 ,...,sξq=1

( ∏
m∈ξ

∣∣∣Wn(ω − 2πsm/n)
∣∣∣)∏

j∈I
∆n

(2π

n

∑
(m,k)∈µj

(−1)k+msm

)
=

∑
(sξ1 ,...,sξq )∈Sn(µ,I)

( ∏
m∈ξ

∣∣∣Wn(ω − 2πsm/n)
∣∣∣)n|I|,

where

Sn(µ, I) :=
{

(sξ1 , . . . , sξq) ∈ {1, . . . , n− 1}q
∣∣∣∑

(m,k)∈µj

(−1)k+msm ∈ nZ, ∀µj ∈ µ, j ∈ I
}
.

Elementary linear algebra implies that there are |I| linear constraints
if |I| < N and |I| − 1 linear constraints if |I| = N . More precisely, for every
element µj of the partition {µ1, ..., µN}, define a vector

w(j)
m := (−1)m+1I{(m, 1) ∈ µj}+ (−1)m+2I{(m, 2) ∈ µj} ∈ {−1, 0, 1}L

for m = 1, ..., L. Observe that the linear constraint introduced by the equal-
ity

∑
(m,k)∈µj (−1)k+msm ∈ nZ can be written as (s1, ..., sm)′w(j) ∈ nZ.

In particular, the linear constraints corresponding to µj1 , ..., µj` are lin-

early dependent if and only if
∑`

k=1w
(jk) = 0, which follows from the spe-

cial structure of the vectors w(j) [note, in particular, that at each position
k = 1, ..., 2L, at most two vectors w(1), ..., w(N) can have non-zero entries,
and that in this case the entry in one vector is 1 and the entry in the other
vector is −1]. However, for non-decomposable partitions

∑`
k=1w

(jk) = 0 if
and only if {j1, ..., j`} = {1, ...., N}.
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To complete the proof of (8.23) it is therefore sufficient to show that
(8.26) ∑
(sξ1 ,...,sξq )∈Sn(µ,I)

( ∏
m∈ξ

∣∣∣Wn(ω−2πsm/n)
∣∣∣) = O

(
(b−1
n )|I|−b|I|/Ncnq−(|I|−b|I|/Nc)

)
,

because this implies that Da,b(ξ) is of the order

n−3q/2bq/2n max
N≤q

max
|I|≤N

(b−1
n )|I|−b|I|/Ncnq−(|I|−b|I|/Nc)n|I|g(ε) � (nbn)1−q/2g(ε).

As for the proof of (8.26), it suffices to point out that |I|− b|I|/Nc of the
s-indices can be expressed via the independent linear constraints and will
take only a number of values which is less or equal to q. Then, (8.26) follows
from the fact that

n
1

n

n−1∑
s=1

∣∣∣Wn(ω − 2πs/n)
∣∣∣ ≤ n(∫

R

b−1
n

∣∣∣W (b−1
n (ω − β)

)∣∣∣dβ + o(1)

)
= O(n),

and |Wn(ω)| ≤ ‖W‖∞b−1
n = O(b−1

n ). The proof is thus complete.

8.3.3. Proof of Lemma 7.3. Observe that

cum(I{X0 ≤ qa1}, I{Xk ≤ qa2})− cum(I{X0 ≤ qb1}, I{Xk ≤ qb2})
= cum(I{F (X0) ≤ a1}, I{F (Xk) ≤ a2})
− cum(I{F (X0) ≤ b1}, I{F (Xk) ≤ b2})

= σ1 cum(I{F (X0) ∈M1(1)}, I{F (Xk) ∈M2(1)})
+σ2 cum(I{F (X0) ∈M1(2)}, I{F (Xk) ∈M2(2)})

where

σ1 := 2I{a1 > b1} − 1, σ2 := 2I{a2 > b2} − 1,

M1(1) := (a1 ∧ b1, a1 ∨ b1], M2(2) := (a2 ∧ b2, a2 ∨ b2],

M2(1) :=

{
[0, a2] b2 ≥ a2

[0, b2] a2 > b2,
M1(2) :=

{
[0, b1] b2 ≥ a2

[0, a1] a2 > b2.
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In particular, observe that λ(Mj(j)) ≤ ‖a− b‖1 for j = 1, 2. We thus have∣∣∣ dj

dωj
fqa1 ,qa2 (ω)− dj

dωj
fqb1 ,qb2 (ω)

∣∣∣
≤
∑
k∈Z
|k|j | cum(I{F (X0) ∈M1(1)}, I{F (Xk) ∈M2(1)})|

+
∑
k∈Z
|k|j | cum(I{F (X0) ∈M1(2)}, I{F (Xk) ∈M2(2)}|

≤ 4
∞∑
k=0

kj
(

(Kρk) ∧ ‖a− b‖1
)
,

and the assertion follows by simple algebraic manipulations similar to those
in the proof of Proposition 3.1.

8.3.4. Proof of Lemma 7.4. By the definition of cumulants and strict
stationarity, we have

cum(dA1
n (ω1), . . . , d

Ap
n (ωp))

=
n−1∑
t1=0

· · ·
n−1∑
tp=0

cum(I{Xt1∈A1}, . . . , I{Xtp∈Ap}) exp
(
− i

p∑
j=1

tjωj

)

=
n−1∑
t1=0

exp
(
− it1

p∑
j=1

ωj

) n−1∑
t2,...,tp=0

exp
(
− i

p∑
j=2

ωj(tj − t1)
)

× cum(I{X0∈A1}, I{Xt2−t1∈A2} . . . , I{Xtp−t1∈Ap})

=
n∑

u2,...,up=−n
cum(I{X0∈A1}, I{Xu2∈A2} . . . , I{Xup∈Ap}) exp

(
− i

p∑
j=2

ωjuj

)

×
n−1∑
t1=0

exp
(
− it1

p∑
j=1

ωj

)
I{0≤t1+u2<n} · · · I{0≤t1+up<n}.(8.27)

Lemma 8.1 implies that
(8.28)∣∣∣∆n(

p∑
j=1

ωj)−
n−1∑
t1=0

exp
(
−it1

p∑
j=1

ωj

)
I{0≤t1+u2<n} · · · I{0≤t1+up<n}

∣∣∣ ≤ 2

p∑
j=2

|uj |.

Let us show that, for any p+ 1 intervals A0, . . . , Ap ⊂ R and any p-tuple
κ := (κ1, ..., κp) ∈ Rp+, p ≥ 2

∞∑
k1,...,kp=−∞

(
1 +

p∑
j=1

|kj |κj
)∣∣ cum

(
I{Xk1∈A1}, . . . , I{Xkp∈Ap}, I{X0∈A0}

)∣∣
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(8.29) ≤ Cε(| log ε|+ 1)d.

To this end, define k0 = 0 and consider the set

Tm :=
{

(k1, ..., kp) ∈ Zp| max
i,j=0,...,p

|ki − kj | = m
}

and note that |Tm| ≤ cpm
p−1 for some constant cp. With this notation, it

follows from condition (C) and the bound

| cum(I{Xt1 ∈ A1}, ..., I{Xtp ∈ Ap})| ≤ C min
i=1,...,p

P (X0 ∈ Ai),

which follows from the definition of cumulants and some simple algebra, that
∞∑

k1,...,kp=−∞

(
1 +

p∑
j=1

|kj |κj
)∣∣ cum

(
I{Xk1∈A1}, . . . , I{Xkp∈Ap}, I{X0∈A0}

)∣∣
=

∞∑
m=0

∑
(k1,...,kp)∈Tm

(
1 +

p∑
j=1

|kj |κj
)∣∣ cum

(
I{Xk1∈A1}, . . . , I{Xkp∈Ap}, I{X0∈A0}

)∣∣
≤

∞∑
m=0

∑
(k1,...,kp)∈Tm

(
1 + pmmaxj κj

)(
ρm ∧ ε

)
Kp

≤ Cp
∞∑
m=0

(
ρm ∧ ε

)
|Tm|mmaxj κj .

For ε ≥ ρ, (8.29) follows trivially. For ε < ρ, set mε := log ε/ log ρ and note
that ρm ≤ ε if and only if m ≥ mε. Thus

∞∑
m=0

(
ρm ∧ ε

)
mu ≤

∑
m≤mε

muε+
∑
m>mε

muρm

≤ C
(
εmu+1

ε + ρmε
∞∑
m=0

(m+mε)
uρm

)
.

Observing that ρmε = ε completes the proof of the desired inequality (8.29).
The lemma then follows from (8.27), (8.28), (8.29) and the triangular in-
equality.

8.3.5. Proof of Lemma 7.5. By the functional delta method applied to
the map F 7→ F−1 [see Theorem 3.9.4 and Lemma 3.9.23(ii) in van der
Vaart and Wellner (1996)], it suffices to show that

√
n(F̂n(τ) − τ) con-

verges to a tight Gaussian limit with continuous sample paths. This can
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be done by proving convergence of finite-dimensional distributions together
with stochastic equicontinuity [see the discussion in the proof of Theo-
rem 3.6(iii)]. The stochastic equicontinuity follows by an application of
Lemma 7.1, Lemma 8.6 and (8.18). For the convergence of the finite-dimen-
sional distributions, apply the cumulant central limit theorem [Lemma P4.5
in Brillinger (1975)] in combination with Lemma 7.4.

8.3.6. Proof of Lemma 7.6. Let T := [0, 1], Tn := {j/n : j = 0, ..., n},
and note that, for n large enough,
(8.30)

sup
ω∈Fn

sup
τ∈T
|dτn(ω)| ≤ max

ω∈Fn
max
τ∈Tn

|dτn(ω)|+ max
ω∈Fn

max
τ∈Tn

sup
|η−τ |≤1/n

|dτn(ω)− dηn(ω)|.

Expressing moments in terms of cumulants, straightforward arguments and
Lemma 7.4 yield

max
ω∈Fn

max
τ∈Tn

E|dτn(ω)|2k ≤ Cknk.

Thus n−1/2dτn(ω) has uniformly bounded moments of order 2k. Recall that
an arbitrary sequence (Zj)j∈Z of random variables with uniformly bounded
moments of order m is such that maxj=1,...,N |Zj | = OP (N1/m). Thus

max
ω∈Fn

max
τ∈Tn

n−1/2|dτn(ω)| = OP ((n2)1/2k) = OP (n1/k)

since the maximum is taken over O(n2) values. For the second term in the
right-hand side of (8.30), note that

max
ω∈Fn

∣∣∣dτn(ω)− dηn(ω)
∣∣∣ ≤ n−1∑

t=0

I{Xt ≤ τ ∨ η} − I{Xt ≤ τ ∧ η}.

Thus, by Lemma 8.6, we have

max
ω∈Fn

max
τ∈Tn

sup
|η−τ |≤1/n

|dτn(ω)− dηn(ω)|

≤ nmax
τ∈Tn

sup
|η−τ |≤1/n

|F̂n(τ ∨ η)− F̂n(τ ∧ η)− τ ∨ η + τ ∧ η|+ C

= OP (n1/2+1/2k(log n)dk).

for some constant dk. This completes the proof. �

8.3.7. Proof of Lemma 7.7. Without loss of generality, we can assume
that n−1 = o(δn) [otherwise, enlarge the supremum by considering δ̃n :=
max(n−1, δn)]. Letting u = (u1, u2) and v = (v1, v2),

Ĥn(u;ω)−Ĥn(v;ω) = b1/2n n−1/2
n−1∑
s=1

Wn(ω−2πs/n)(Ks,n(u, v)−EKs,n(u, v))
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where [with dn,U defined in (2.6)]

Ks,n(u, v) := n−1
(
du1n,U (2πs/n)du2n,U (−2πs/n)− dv1n,U (2πs/n)dv2n,U (−2πs/n)

)
= du1n,U (2πs/n)n−1

[
du2n,U (−2πs/n)− dv2n,U (−2πs/n)

]
+ dv2n,U (−2πs/n)n−1

[
du1n,U (2πs/n)− dv1n,U (2πs/n)

]
.

Note that, by Lemma 7.6, we have, for any k ∈ N,

(8.31) sup
y∈[0,1]

sup
ω∈Fn

|dyn,U (ω)| = OP

(
n1/2+1/k

)
.

Furthermore, by Lemma 8.6, for any ` ∈ N,

sup
ω∈R

sup
y∈[0,1]

sup
x:|x−y|≤δn

n−1|dxn,U (ω)− dyn,U (ω)|

≤ sup
y∈[0,1]

sup
x:|x−y|≤δn

n−1
n−1∑
t=0

|I{Yt ≤ x} − I{Yt ≤ y}|

≤ sup
y∈[0,1]

sup
x:|x−y|≤δn

|F̂n(x ∨ y)− F̂n(x ∧ y)− F (x ∨ y) + F (x ∧ y)|+ Cδn

= OP
(
ρn(δn, `) + δn

)
,

with ρn(δn, `) := n−1/2(n2δn + n)1/2`(δn| log δn|d` + n−1)1/2, where d` is a
constant depending only on `. Combining these arguments and observing

that supω∈R
∑n−1

s=1

∣∣∣Wn(ω − 2πs/n)
∣∣∣ = O(n) yields

(8.32)

sup
ω∈R

sup
u,v∈[0,1]2

‖u−v‖1≤δn

∣∣∣ n−1∑
s=1

Wn(ω− 2πs/n)Ks,n(u, v)
∣∣∣ = OP

(
n3/2+1/k(ρ(δn, `) + δn)

)
.

Next, define the intervals

M1(1) := (u1 ∧ v1, u1 ∨ v1], M2(2) := (u2 ∧ v2, u2 ∨ v2],

M2(1) :=

{
[0, u2] v2 ≥ u2

[0, v2] u2 > v2,
M1(2) :=

{
[0, v1] v2 ≥ u2

[0, u1] v2 > v2.

With this notation, observe that

(8.33) sup
‖u−v‖1≤δn

sup
s=1,...,n−1

|EKs,n(u, v)|

≤ n−1 sup
‖u−v‖1≤δn

sup
s=1,...,n−1

∣∣ cum(d
M1(1)
n,U (2πs/n), d

M2(1)
n,U (−2πs/n))

∣∣
+n−1 sup

‖u−v‖1≤δn
sup

s=1,...,n−1

∣∣ cum(d
M1(2)
n,U (2πs/n), d

M2(2)
n,U (−2πs/n))

∣∣
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where we have used the fact that EdMn,U (2πs/n) = 0. Lemma 7.4 and the
fact that λ(Mj(j)) ≤ δn (with λ denoting the Lebesgue measure over R)
for j = 1, 2 yield

sup
‖u−v‖1≤δn

sup
s=1,...,n−1

| cum(dM1(j)
n (2πs/n), dM2(j)

n (−2πs/n))| ≤ C(n+1)δn(1+| log δn|)d,

It follows that the right-hand side in (8.33) is O(δn| log δn|d). Therefore,

since supω∈R
∑n−1

s=1

∣∣∣Wn(ω − 2πs/n)
∣∣∣ = O(n), we obtain

sup
ω∈R

sup
‖u−v‖1≤δn

∣∣∣b1/2n n−1/2
n−1∑
s=1

Wn(ω−2πs/n)EKs,n(u, v)
∣∣∣ = O

(
(nbn)1/2δn| log n|d

)
.

Observe that, in view of the assumption that n−1 = o(δn), we have δn =
O(n1/2ρn(δn, `)), which, in combination with (8.32), yields

sup
ω∈R

sup
‖u−v‖1≤δn

|Ĥn(u;ω)− Ĥn(v;ω)|

= OP

(
(nbn)1/2[n1/2+1/k(ρn(δn, `) + δn) + δn| log δn|d]

)
= OP

(
(nbn)1/2n1/2+1/kρn(δn, `)

)
= OP

(
(nbn)1/2n1/k+1/`(n−1 ∨ δn(log n)d`)1/2

)
.

This latter quantity is oP (1): indeed, for arbitrary k and `,

O((nbn)1/2n1/k+1/`δ1/2
n (log n)d`/2) = O((nbn)1/2−1/2γn1/k+1/`(log n)d`/2);

in view of the assumptions on bn, which imply (nbn)1/2−1/2γ = o(n−κ)
for some κ > 0, this latter quantity is o(1) for k, ` sufficiently large. The
term (nbn)1/2n1/k+1/`n−1/2 can be handled in a similar fashion. This con-
cludes the proof.

Address of the First author
Fakultät für Mathematik
Ruhr-Universität Bochum
44780 Bochum, Germany
E-mail: tobias.kley@ruhr-uni-bochum.de

Address of the Second author
Fakultät für Mathematik
Ruhr-Universität Bochum
44780 Bochum, Germany
E-mail: stanislav.volgushev@ruhr-uni-bochum.de

Address of the Third author
Fakultät für Mathematik
Ruhr-Universität Bochum
44780 Bochum, Germany
E-mail: holger.dette@rub.de

Address of the Fourth author
Marc Hallin
ECARES
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