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Abstract

An important problem in time series analysis is the discrimination between non-stationarity and long-

range dependence. Most of the literature considers the problem of testing specific parametric hypotheses of

non-stationarity (such as a change in the mean) against long-range dependent stationary alternatives. In

this paper we suggest a simple nonparametric approach, which can be used to test the null-hypothesis of a

general non-stationary short-memory against the alternative of a non-stationary long-memory process. This

test is working in the spectral domain and uses a sieve of approximating tvFARIMA models to estimate

the time varying long-range dependence parameter nonparametrically. We prove uniform consistency of this

estimate and asymptotic normality of an averaged version. These results yield a simple test (based on the

quantiles of the standard normal distribution), and it is demonstrated in a simulation study that - despite of

its nonparametric nature - the new test outperforms the currently available methods, which are constructed

to discriminate between specific parametric hypotheses of non-stationarity short- and stationarity long-range

dependence.

AMS subject classification: 62M10, 62M15, 62G10

Keywords and phrases: spectral density, long-memory, non-stationary processes, goodness-of-fit tests, empirical

spectral measure, integrated periodogram, locally stationary process, sieve method

1 Introduction

Many time series [like asset volatility or regional temperatures] exhibit a slow decay in the auto correlation

function and simple stationary short-memory models can not be used to analyze this type of data. A typical

example is displayed in Figure 1, which shows 2048 log-returns of the IBM stock between July 15th 2005 and

August 30th 2013, with estimated autocovariance function of the squared returns X2
t . In this example the

assumption of stationarity with a summable sequence of autocovariances, say (γ(k))k∈N, is hard to justify for
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Figure 1: Left panel: log-returns of the IBM stock between July 15th 2005 and August 30th 2013; right panel:

Autocovariance function of the squared returns X2
t

the volatility process. Long-range dependent processes have been introduced as an attractive alternative to

model features of this type using an autocovariance function with the property

γ(k) ∼ Ck2d−1

as k → ∞, where d ∈ (0, 0.5) denotes a “long memory” parameter. Statistical models (and corresponding

theory) for long-range dependent processes are very well developed [see Doukhan et al. (2003) or Palma (2007)

for recent surveys] and have found applications in numerous fields [see Breidt et al. (1998), Beran et al. (2006)

or Haslett and Raftery (1989) for such an approach in the framework of asset volatility, video traffic and wind

power modeling]. However, it was pointed out by several authors that the observation of “long memory”

features in the autocovariance function can be as well explained by non stationarity [see Mikosch and Starica

(2004) or Chen et al. (2010) among many others]. This is clearly demonstrated in Figure 2, which shows the

autocovariances of the squared returns from a fit of the (non-stationary) model Xt,T = σ(t/T )Zt for the returns

[here Zt is an i.i.d. sequence and σ(·) is some suitable function, cf. Starica and Granger (2005) or Fryzlewicz

et al. (2006) for more details], and from a stationary FARIMA(3, d, 0)-fit for the squared ones X2
t . Both models

are able to explain the observed effect of ’long-range dependence’ for the volatility process. So, in summary,

the same effect can be explained by two completely different modeling approaches.

For this reason several authors have pointed out the importance to distinguish between long-memory and

non-stationarity [see Starica and Granger (2005), Perron and Qu (2010) or Chen et al. (2010) to mention only

a few]. However, there exists a surprisingly small number of statistical procedures which address problems

of this type. To the best of our knowledge, Künsch (1986) is the first reference investigating the existence

of “long memory” if non-stationarities appear in the time series. In this article a procedure to discriminate

between a long-range dependent model and a process with a monotone mean functional and weakly dependent

innovations is derived. Later on, Heyde and Dai (1996) and Sibbertsen and Kruse (2009) developed methods

for distinguishing between long-memory and small trends. Furthermore, Berkes et al. (2006), Baek and Pipiras
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Figure 2: Left panel: Autocovariance function of a simulated time series from a FARIMA(3,d,0)-fit to the

2048 squared IBM-returns X2
t , right panel: Autocovariance function of X2

t for Xt simulated from the model

Xt,T = σ̂(t/T )Zt with σ̂(·) estimated by a rolling-window of length 128.

(2012) and Yau and Davis (2012) investigated CUSUM and likelihood ratio tests to discriminate between the

null hypothesis of no long-range and weak dependence with one change point in the mean.

Although the procedures proposed in these articles are technically mature and work rather well in suitable

situations, they are, however, only designed to discriminate between long-range dependence and a very specific

change in the first-order structure, like one structural break and two stationary segments of the series. This

is rather restrictive, since the expectation might change in a different way than assumed [there could be, for

example, continuous changes or multiple breaks instead of a single one] and the second-order structure could be

time-varying as well. However, if these or more general non-stationarities occur, the discrimination techniques,

which have been proposed in the literature so far, usually fail, and a procedure which is working under less

restrictive assumptions is still missing.

The objective of this paper is to fill this gap and to develop a nonparametric test for the null hypothesis of no

long-range dependence in a framework which is flexible enough to deal with different types of non-stationarity

in both the first and second-order structure. The general model is introduced in Section 2. Our approach

is based on an estimate of a (possibly time varying) long-range dependence parameter, which is derived by

a sieve of approximating tvFARIMA model. This estimator vanishes if and only if the null hypothesis of a

short-memory locally stationary process is satisfied. Its asymptotic properties are investigated in Section 3. In

particular we prove asymptotic normality of the proposed test-statistic under the null hypothesis of no long-

range dependence. As a consequence we obtain a nonparametric test, which is based on the quantiles of the

standard normal distribution and therefore very easy to implement. The finite sample properties of the new

test are investigated in Section 4, which also provides a comparison with the competing procedures with a focus

on non-stationarities. We demonstrate the superiority of the new method and also illustrate the application of

the method in two data examples. Finally, all technical details are deferred to an appendix.
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2 Locally stationary long-range dependent processes

In order to develop a test for the presence of long-range dependence which can deal with different kinds of

non-stationarity, a set-up is required which includes short-memory processes with a rather general time-varying

first and second order structure and a reasonable long-range dependent extension. For this purpose, we consider

a triangular scheme ({Xt,T }t=1,...,T )T∈N of locally stationary long-memory processes, which have an MA(∞)

representation of the form

Xt,T = µ(t/T ) +

∞∑
l=0

ψt,T,lZt−l, t = 1, . . . , T, (2.1)

where

sup
T∈N

sup
t∈{1,...,T}

∞∑
l=0

ψ2
t,T,l < ∞, (2.2)

µ : [0, 1] → R is a “smooth” function and {Zt}t∈Z are independent standard normal distributed random

variables. For the coefficients ψt,T,l and the function µ in the expansion (2.1) we make the following additional

assumptions.

Assumption 2.1. Let ({Xt,T }t=1,...,T )T∈N denote a sequence of stochastic processes which have an MA(∞)

representation of the form (2.1) satisfying (2.2), where µ is twice continuously differentiable. Furthermore, we

assume that the following conditions are satisfied:

1) There exist twice continuously differentiable functions ψl : [0, 1]→ R (l ∈ Z) such that the conditions

sup
t=1,...,T

∣∣ψt,T,l − ψl(t/T )
∣∣ ≤ CT−1I(l)D−1 ∀l ∈ N (2.3)

ψl(u) = a(u)I(l)d0(u)−1 +O(I(l)D−2) (2.4)

are satisfied uniformly with respect to u as l → ∞ , where I(x) := |x| · 1{x 6=0} + 1{x=0} and D =

supu∈[0,1] d0(u) < 1/2. Moreover, the functions a : [0, 1] → R, d0 : [0, 1] → R0
+ in (2.4) are twice

continuously differentiable.

2) The time varying spectral density f : [0, 1]× [−π, π]→ R+
0

f(u, λ) :=
1

2π

∣∣∣ ∞∑
l=0

ψl(u) exp(−iλl)
∣∣∣2 (2.5)

can be represented as

f(u, λ) = |1− eiλ|−2d0(u)g(u, λ), (2.6)

where the function g defined by

g(u, λ) :=
1

2π

∣∣1 +

∞∑
j=1

aj,0(u) exp(−iλj)
∣∣−2

(2.7)

is twice continuously differentiable.
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3) There exists a constant C ∈ R+, which is independent of u and λ, such that for l 6= 0 the conditions

sup
u∈(0,1)

|ψ′l(u)| ≤ C log |l||l|D−1, sup
u∈(0,1)

|ψ′′l (u)| ≤ C log2 |l||l|D−1, (2.8)

sup
u∈(0,1)

∣∣ ∂
∂u
f(u, λ)

∣∣ ≤ C log(λ)λ2D, sup
u∈(0,1)

∣∣ ∂2

∂u2
f(u, λ)

∣∣ ≤ C log2(λ)λ2D

are satisfied.

Similar locally stationary long-range dependent models have been investigated by Beran (2009), Palma and Olea

(2010) and Roueff and von Sachs (2011). Note that in contrast to the standard framework of local stationarity

introduced by Dahlhaus (1997) and extended to the long-memory case in Palma and Olea (2010), condition

(2.3) is much weaker and allows, for example, to include tvFARIMA(p, d, q)-models as well [see Theorem 2.2 in

Preuß and Vetter (2013)]. Moreover, it is also worthwhile to mention that the assumption of Gaussianity is only

imposed to simplify the technical arguments in the proofs of our main results and that it is straightforward (but

cumbersome) to extend the theory to a more general framework, see Remark 3.9 for more details on this. The

very specific form of the function g in (2.7) implies that the process {Xt,T }t=1,...,T can be locally approximated

by a FARIMA(∞, d, 0) process in the sense of (2.3). More precisely, we obtain with

b0(u) ≡ 1, bk(u) =
Γ(k + d(u))

Γ(d(u))Γ(k + 1)
and (1 +

∞∑
k=1

ak,0(u)zk)−1 =
∞∑
k=0

a
(−1)
k,0 (u)zk

the relation

ψl(u) =

l∑
k=0

a
(−1)
k,0 (u)bl−k(u)

between the approximating functions ψl(u) and the time-varying AR-parameters [see the proof of Lemma 3.2

in Kokoszka and Taqqu (1995) for more details].

In order to further visualize some properties of these kinds of locally stationary long-memory models we

introduce for every fixed u ∈ [0, 1] the stationary process

Xt(u) :=
∞∑
l=0

ψl(u)Zt−l.

One can show that condition (2.4) implies the existence of bounded functions yi : [0, 1] → R (i = 1, 2) such

that the approximations

|Cov(Xt(u), Xt+k(u))| ∼ y1(u)k2d0(u)−1 as k →∞

and

f(u, λ) ∼ y2(u)λ−2d0(u) as λ→ 0

hold [see Palma and Olea (2010) for details]. Consequently, the autocovariance function γ(u, k) = Cov(X0(u), Xk(u))

is not absolutely summable if the function a(u) in (2.4) is not vanishing, and in this case the time varying

spectral density f(u, λ) has a pole at λ = 0 for any u ∈ [0, 1] for which d0(u) is positive.
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In the framework of these long-range dependent locally stationary processes we now investigate the null hypoth-

esis that the time-varying “long memory” parameter d0(u) vanishes for all u ∈ [0, 1], i.e. there is no long-range

dependence in the locally stationary process Xt,T . Since the function d0 is continuous and non-negative we

obtain that the hypotheses

H0 : d0(u) = 0 ∀u ∈ [0, 1] vs. H1 : d0(u) > 0 for some u ∈ [0, 1]

are equivalent to

H0 : F = 0 vs. H1 : F > 0, (2.9)

where the quantity F is defined by

F :=

∫ 1

0
d0(u)du. (2.10)

In the next section we will develop an estimator of the function d0 and establish uniform convergency. The

integral is then estimated by a Riemann sum and we investigate the asymptotic properties of the resulting

estimator both under the null hypothesis and the alternative. In particular we prove consistency and asymptotic

normality. As a consequence we obtain a consistent level-α test for the presence of long-range dependence in

non-stationary time series models by rejecting the null hypothesis for large values of the estimator of F .

3 Testing short- versus long-memory

In order to estimate the integral F we use a sieve of semi-parametric models approximating the processes

{Xt(u)}t∈Z with time varying spectral density (2.6) and proceed in several steps. First we choose an in-

creasing sequence k = k(T ) ∈ N, which diverges ’slowly’ to infinity as the sample size T grows, and fit a

tvFARIMA(k,d,0) model to the data. To be precise we consider a locally stationary long-memory model with

time varying spectral density f : [0, 1]× [−π, π]→ R+
0 defined by

fθk(u)(λ) = |1− exp(iλ)|−2d(u)gk(u, λ), (3.1)

where

gk(u, λ) =
1

2π
|1 +

k∑
j=1

aj(u) exp(−iλj)|−2

and, for each k ∈ N, θk = (d, a1, . . . , ak) : [0, 1] → Rk+1 is a vector valued function. We then estimate the

function θk(u) by a localized Whittle-estimator, that is

θ̂N,k(u) = arg min
θk∈ΘbuTc/T,k

Lµ̂N,k(θk, u), (3.2)

where

Lµ̂N,k(θk, u) :=
1

4π

∫ π

−π

(
log(fθk(λ)) +

I µ̂N (u, λ)

fθk(λ)

)
dλ (3.3)
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denotes the (local) Whittle likelihood [see Dahlhaus and Giraitis (1998) or Dahlhaus and Polonik (2009)] and

for each u ∈ [0, 1] Θu,k ⊂ Rk+1 is a compact set which will be specified in Assumption 3.1. In (3.2) and (3.3)

the quantity

I µ̂N (u, λ) :=
∣∣∣ 1√

2πN

N−1∑
p=0

[
XbuT c−N/2+1+p,T − µ̂(buT c −N/2 + 1 + p, T )

]
e−ipλ

∣∣∣2, (3.4)

denotes the mean-corrected local periodogram, N is an even window-length which is ’small’ compared to T

and µ̂ is an asymptotically unbiased estimator of the mean function µ : [0, 1]→ R, see Dahlhaus (1997). Here

and throughout this paper we use the convention Xj,T = 0 for j 6∈ {1, ..., T}. We finally obtain an estimator

d̂N (u) for the time-varying long-memory parameter by taking the first component of the (k + 1) dimensional

vector θ̂N,k(u) defined in (3.2). It will be demonstrated in Theorem 3.3 below that this approach results

in a uniformly consistent estimator of the time-varying long-memory parameter. For this purpose we define

θ0,k(u) := (d0(u), a1,0(u), ..., ak,0(u)) as the (k + 1) dimensional vector containing the long memory parameter

d0(u) and the first k AR-parameter functions a1,0(u), ..., ak,0(u) of the approximating process {Xt(u)}t∈Z defined

by the representation (2.6) and (2.7). Here and throughout this paper, A11 denotes the element in the position

(1,1) and ‖A‖sp the spectral norm of the matrix A = (aij)
k
i,j=1, respectively. We state the following technical

assumptions.

Assumption 3.1. For each u ∈ [0, 1] and k ∈ {k(T ), T ∈ N} define Θu,k = [0, D] × Θu,k,1 × . . . × Θu,k,k,

where the constant D is the same as in Assumption 2.1 and for each i = 1, . . . , k Θu,k,i is a compact set with a

finite number (independent of u, k, i) of connected components with positive Lebesgue measure. Let Θk denote

the space of all four times continuously differentiable functions θk : [0, 1] → Rk+1 with θk(u) ∈ Θu,k for all

u ∈ [0, 1]. We assume that the following conditions hold for each k ∈ {k(T ), T ∈ N} :

(i) The functions gk in (3.1) are bounded from below by a positive constant (which is independent of k) and

are four times continuously differentiable with respect to λ and u, where all partial derivates of gk up to

the order four are bounded with a constant independent of k.

(ii) For each u ∈ [0, 1] the parameter θ̃0,k(u) = arg minθk∈Θu,k
Lk(θk, u) exists and is uniquely determined,

where

Lk(θk, u) :=
1

4π

∫ π

−π

(
log(fθk(λ)) +

f(u, λ)

fθk(λ)

)
dλ.

Moreover, for each u ∈ [0, 1] the vectors θ̃0,k(u) and θ0,k(u) are interior points of Θu,k.

(iii) Define

Γk(θk) =
1

4π

∫ π

−π
f2
θk

(λ)∇f−1
θk

(λ)∇f−1
θk

(λ)T dλ, (3.5)

Vk(θk, u) =
1

4π

∫ π

−π
f2(u, λ)∇f−1

θk
(λ)∇f−1

θk
(λ)Tdλ,

[here ∇ denotes the derivative with respect to the parameter-vector θk], then the matrix Γk(θ0,k) is non-

singular for every u ∈ [0, 1], k ∈ {k(T ), T ∈ N}, and

lim
T→∞

∫ 1

0
[Γ−1
k (θ0,k(u))]1,1du

/∫ 1

0
[Γ−1
k (θ0,k(u))Vk(θ0,k(u), u)Γ−1

k (θ0,k(u))]1,1du = 1 (3.6)
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as T → ∞. Furthermore, (3.6) is also satisfied if the function θ0,k(u) is replaced by any sequence θ̃T (u)

such that supu∈[0,1] |θ̃T (u)− θ0,k(u)| → 0. For such a sequence we additionally assume that the condition

lim
T→∞

∫ 1

0
[Γ−1
k (θ0,k(u))]1,1du/

∫ 1

0
[Γ−1
k (θ̃T (u))]1,1du = 1

is satisfied as T →∞.

(iv) Define ΘR,k =
⋃
u∈[0,1] Θu,k, then

sup
θk∈ΘR,k

‖Γ−1
k (θk)‖sp = O(k) , lim inf

T→∞

∫ 1

0
[Γ−1
k (θ0,k(u))]1,1du ≥ c > 0.

Assumption (i) and (ii) are rather standard in a semi-parametric locally stationary time series model [see for

example Dahlhaus and Giraitis (1998) or Dahlhaus and Polonik (2009) among others]. Note that in order to be

fully nonparametric it is necessary that the number of parameters k grows with increasing sample size. In this

case the restriction on the spectral norm in part (iv) was verified for a large number of long-range dependent

models by Bhansalia et al. (2006) [see equation (4.4) in this reference]. While these assumptions solely depend

on the ”true” underlying model, the following assumption links the growth rate of k and N as the sample size

T increases if the spectral density f(u, λ) in (2.6) is approximated by the truncated analogue

|1− eiλ|−2d0(u)|1 +
k∑
j=1

aj,0(u)e−iλj |−2.

Assumption 3.2. Suppose that N →∞, N log(N) = o(T ) and

sup
u∈[0,1]

∞∑
j=k+1

|aj,0(u)| = O(N−1+ε) (3.7)

for some 0 < ε < 1/6 as T →∞.

It follows by similar arguments as given in the proof of Lemma 2.4 in Kreiß et al. (2011) that condition (3.7)

implies

sup
u∈[0,1]

∫ π

−π

∣∣f(u, λ)− fθ0,k(u)(λ)
∣∣dλ = O(N−1+ε). (3.8)

As a consequence Assumption 3.1 (iii) is rather intuitive, because the parametric model (3.1) can be considered

as an approximation of the “true” model defined in terms of the time varying spectral density (2.5). We finally

note that condition (3.7) is satisfied for a large number of tvFARIMA(p, d, q) models, because it can be shown

by similar arguments as in the proof of Theorem 2.2 in Preuß and Vetter (2013) that the coefficients aj,0(u) are

geometrically decaying. This yields
∑∞

j=k+1 supu |aj,0(u)| = O(qk) for some q ∈ (0, 1) resulting in a logarithmic

growth rate for k, which is in line with the findings of Bhansalia et al. (2006). Similarly, one can include

processes whose AR coefficients decay such that
∑∞

j=0 supu |aj,0(u)|jr <∞ is satisfied for some r ∈ N0. In this

case k needs to grow at some specific polynomial rate.

Our first main result states a uniform convergence rate for the difference between θ̂N,k(u) and its true coun-

terpart θ0,k(u). As a consequence it implies that the estimator d̂N obtained by sieve estimation is uniformly

consistent for the (time varying) long-range dependence parameter of the locally stationary process.
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Theorem 3.3. Let Assumption 2.1, 3.1 and 3.2 be satisfied and suppose that the estimator of the mean function

µ satisfies

N εk3 max
t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣ = op(1) (3.9)

for some ε > 0. If N5/2/T 2 → 0 and k4 log2(T )N−ε/2 → 0, then

sup
u∈[0,1]

∥∥θ̂N,k(u)− θ0,k(u)
∥∥

2
= OP (k3/2N−1/2+ε +N εk3/2 max

t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣). (3.10)

In particular

sup
u∈[0,1]

|d̂N (u)− d0(u)| = OP (k3/2N−1/2+ε +N εk3/2 max
t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣).

Remark 3.4. It follows from the proof of Theorem 3.7 below that, the local window estimator with window

length N

µ̂(u) =
1

N

N−1∑
p=0

XbuT c−N/2+1+p,T

satisfies

N1/2−D−α max
t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣ = op(1) for every α > 0.

Because we use tvFARIMA(k, d, 0) models in (3.1), we can choose a logarithmic rate for the dimension k [see

the discussion following (3.8)]. Consequently, for the local window estimate the uniform rate in equation (3.10)

is arbitrary close to the factor ND−1/2.

In order to obtain an estimator of the quantity F in (2.10) we assume without loss of generality that the sample

size T can be decomposed into M blocks with length N (i.e. T = NM), where M is some positive integer.

We define the corresponding midpoints in both the time and rescaled time domain by tj = (N − 1)j + N/2,

uj = tj/T , respectively, and calculate d̂N (uj) on each of the M blocks as described in the previous paragraph.

The test statistic is then obtained as

F̂T =
1

M

M∑
j=1

d̂N (uj).

The following two results specify the asymptotic behaviour of the statistic F̂T under the null hypothesis and

alternative.

Theorem 3.5. Assume that the null hypothesis H0 (of no long-range dependence) is true. Let Assumptions

2.1, 3.1 and 3.2 be satisfied, define WT = [
∫ 1

0 Γ−1
k (θ0,k(u))du]1,1 and suppose that the estimator µ̂ of the mean

function satisfies

max
t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣ = Op(N

−1/2+ε/2), (3.11)

max
t=1,...,T

∣∣∣{µ( t− 1

T

)
− µ̂

( t− 1

T

)}
−
{
µ
( t
T

)
− µ̂

( t
T

)}∣∣∣ = Op(N
−1/2−2εT−1/2), (3.12)
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where 0 < ε < 1/6 is the constant in Assumption 3.2. Moreover, if the conditions

k6
√
T/N1−ε → 0, k4 log2(T )/N ε/2 → 0, k2 log(T )/T 1/6−ε → 0, k2N2/T

3
2 → 0

hold as T →∞, then we have

√
T F̂T /

√
WT

D→ N (0, 1). (3.13)

Theorem 3.6. Assume that the alternative H1 of long-range dependence is true. Let Assumptions 2.1, 3.1

and 3.2 be satisfied and suppose that the estimator µ̂ of the mean function satisfies

N εk3 max
t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣ = op(1), (3.14)

where 0 < ε < min{1/2−D, 1/6} is the constant in Assumption 3.2. Moreover, if the conditions

k6/N1−2ε → 0, k4 log2(T )/N ε/2 → 0, k4/N1−2D−2ε → 0, k2N5/2/T 2 → 0

are satisfied as T →∞, then we have

F̂T
P→ F > 0.

Note that the term WT in the denominator of the left hand side in (3.13) can be consistently estimated by

ŴT =
[ 1

M

M∑
j=1

Γ−1
k (θ̂N,k(uj))

]
11

such that ŴT /WT
P−→ 1. Consequently, an asymptotic level α-test is obtained by rejecting the null hypothesis

(2.9), whenever

√
T F̂T /

√
ŴT ≥ u1−α, (3.15)

where u1−α denotes the (1 − α)-quantile of the standard normal distribution. It then follows from Theorem

3.5 and 3.6 that for any estimator of the mean function µ satisfying (3.11), (3.12) and (3.14), the test, which

rejects H0 whenever (3.15) is satisfied, is a consistent level-α test for the null hypothesis stated in (2.9). A

popular estimate for this quantity is given by the the local-window estimator

µ̂L(u) =
1

L

L−1∑
p=0

XbuT c−L/2+1+p,T (3.16)

where L is a window-length which does not necessarily coincide with the corresponding parameter in the

calculation of the local periodogram. Note that also I µ̂N (u, λ) is an asymptotically unbiased estimator for

f(u, λ) if N → ∞ and N/T → 0. The final result of this section shows that this estimator satisfies the

assumptions of Theorem 3.5 and 3.6 if L grows at a ’slightly’ faster rate than N . This means, it can be used

in the asymptotic level α test defined by (3.15)

10



Theorem 3.7.

a) Suppose that the assumptions of Theorem 3.5 hold and additionally N1+4ε/L1−δ → 0 and

L5/2−δ/T 3/2 → 0 are satisfied for some δ > 0, where ε > 0 denotes the constant in Theorem 3.5.

Then the local-window estimator µ̂L defined in (3.16) satisfies (3.11) and (3.12).

b) Suppose the assumptions of Theorem 3.6 hold. If additionally N εk5/L1/2−D−δ → 0 and L5/2−D/T 2 → 0

for some 0 < δ < 1/2−D − ε (with the constant ε from Theorem 3.6), then the local-window estimator

µ̂L defined in (3.16) satisfies (3.14).

Remark 3.8. Analogues of Theorem 3.5 and 3.6 can be obtained in a parametric framework. To be precise,

assume that the approximating processes {Xt(u)}t∈Z has a time varying spectral density of the form (3.1),

where k is fixed and known. In this case it is not necessary that the dimension k is increasing with the sample

size T and Assumption 3.1(iii) and 3.2 are not required. All other stated assumptions are rather standard in

this framework of a semi-parametric locally stationary time series model [see for example Dahlhaus and Giraitis

(1998) or Dahlhaus and Polonik (2009) among others]. With these modifications Theorem 3.5 and 3.6 remain

valid and as a consequence we obtain an alternative test to the likelihood ratio test proposed in Yau and Davis

(2012), which operates in the spectral domain and can be used for more general null hypotheses as considered

by these authors.

Remark 3.9. It is worthwhile to mention that the assumption of Gaussianity for the innovation process in

2.1 is not necessary at all and is only imposed here to simplify technical arguments in the proof of Theorem

5.1. In fact, all results of this section remain true as long as the innovations are independent with all moments

existing, mean zero and E(Z2
t,T ) = σ2(t/T ) for some twice continuously differentiable function σ : [0, 1] → R.

To be more precise, in order to address for non-gaussian innovations the variance VT in Theorem 5.1 (which is

one of the main ingredients for the proofs in Section 5) has to be replaced by

VT,general = VT +
1

TM

M∑
j=1

κ4(uj)/σ
4(uj)

(∫ π

−π
f(uj , λ)φT (uj , λ)dλ

)2
,

where VT is defined in (5.5) and κ4(u) denotes the fourth cumulant of the innovations, i.e. κ(t/T ) = E(Z4
t,T )−

3σ4(t/T ) for all t, T . Since we apply this result with φT (uj , λ) = (4π)−1[Γ−1
k (θ0,k(uj))∇f−1

θ0,k(uj)(λ)]11 in the

proof of Theorem 3.5, we must replace ŴT in the decision rule (3.15) by

ŴT,general = ŴT +
1

4πM

M∑
j=1

κ̂4(uj)/σ̂
4(uj)

(∫ π

−π
fθ̂N,k(uj)(λ)[Γ−1

k (θ̂N,k(uj))∇f−1

θ̂N,k(uj)
(λ)]11dλ

)2
,

where σ̂(uj) and κ̂(uj) are obtained by calculating the empirical second and fourth moment µ̂2,Z(uj), µ̂4,Z(uj)

of the residuals

Zt,res = Xt,T −
k∑
i=2

[θ̂N,k(uj)]iXt−i+1,T , t = tj −N/2 + k + 1, tj −N/2 + k + 2, ..., tj +N/2,

and setting σ̂2(uj) = µ̂2,Z(uj), κ̂(uj) = µ̂4,Z(uj)− 3µ̂2,Z(uj).
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4 Finite sample properties

The application of the test (3.15) requires the choice of several parameters. Based on an extensive numerical

investigation we recommend the following rules. For the choice of the parameter L in the local window estimate

µ̂L of the mean function [for a precise definition see (3.16)] we use L = N1.05. Because the procedure is based

on a sieve of approximating tvFARIMA(k, d, 0)-processes the choice of the order k is essential, and we suggest

the AIC criterion for this purpose, that is

k̂ = arg min
k

1

T

T/2∑
j=1

(
log(hθ̂k,s(λj)) +

I µ̂(λj)

hθ̂k,s(λj)

)
+
k + 1

T
,

where λj = 2πj/T (j = 1, . . . , T ), and hθ̂k,s(λ) is the estimated spectral density of a stationary FARIMA(k, d, 0)

process and I µ̂L(λ) is the mean-corrected periodogram given by

I µ̂L(λ) :=
∣∣∣ 1√

2πN

T∑
t=1

[
Xt,T − µ̂L(t/T )

]
e−itλ

∣∣∣2.
Finally, the performance of the test depends on the choice of N , and this dependency will be investigated in

the following discussion.

4.1 Simulation results

All results presented in this Section are based on 1000 simulation runs, and we begin with an investigation of

the approximation of the nominal level of the test (3.15) considering three examples. The first example is given

by a tvAR(1)-process

Xt,T = µi(t/T ) + 0.6
t

T
Xt−1,T + Zt,T , t = 1, . . . , T, (4.1)

where {Zt,T }t=1,...,T denotes a Gaussian white noise process with variance 1. Two cases are investigated for

the mean function representing a smooth change and abrupt change in the mean effect, i.e.

µ1(t/T ) = 1.2
t

T
, (4.2)

µ2(t/T ) =

{
0.65 for t = 1, . . . , T/2

1.3 for t = T/2 + 1, . . . T.
(4.3)

Our third example consists of a tvMA(1)-process given by

Xt,T = Zt,T + 0.55 sin
(
π
t

T

)
Zt−1,T , t = 1, . . . , T, (4.4)

where {Zt,T }t=1,...,T denotes again a Gaussian white noise process with variance 1. Figure 3 shows the autoco-

variance functions of 1024 observations generated by the models (4.2), (4.3) and (4.4), respectively, from which

it is clearly visible that the mean functions in (4.2) and (4.3) are causing a long-memory type behaviour of the

autocovariance functions [see the left and middle panel in Figure 3]. In Table 1, we show the simulated level of

the test (3.15) for various choices of N . We observe a reasonable approximation of the nominal level whenever

N/T ≈ 1/4 and the sample size T is larger or equal than 512. Note that even for model (4.1) with mean

12
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Figure 3: Estimated autocovariance functions of model (4.1) with mean function (4.2) (left panel), (4.3)

(middle panel) and of model (4.4) (right panel). The sample size is T=1024.

function (4.3) the level is only slightly overestimated, although this mean function is not twice continuously

differentiable as required by the asymptotic theory. We conjecture that the performance of the test could be

improved by using estimators addressing for such jumps.

In order to investigate the power of the test (3.15) and to compare it with the competing procedures pro-

posed by Berkes et al. (2006), Baek and Pipiras (2012) and Yau and Davis (2012), we simulated data from a

tvFARIMA(1, d, 0)-process

(1 + 0.2
t

T
B)(1−B)d(t/T )Xt,T = Zt,T , t = 1, . . . , T, (4.5)

and a tvFARIMA(0, d, 1)-process

(1−B)d(t/T )Xt,T = (1− 0.35
t

T
B)Zt,T , t = 1, . . . , T, (4.6)

where {Zt,T }t=1,...,T denotes a Gaussian white noise process with variance 1 and B is the backshift operator

given by BjXt,T := Xt−j,T . In both cases the long-memory function is given by d(t/T ) = 0.1+0.3t/T . Because

all competing procedures are designed to detect stationary long-range dependent alternatives, we also simulated

data from a stationary FARIMA(1,d,1)-process

(1 + 0.25B)(1−B)0.1XT = (1− 0.3B)Zt,T , t = 1, . . . , T. (4.7)

The corresponding results for the new test (3.15) are shown in the second column of Table 2, 3 and 4, and we

observe reasonable rejection frequencies in the first two cases. Interestingly, the differences in power between

the tvFARIMA(1, d, 0) and the tvFARIMA(0, d, 1)-model are rather small (see second column in Table 2 and 3).

The results in Table 4 show a loss in power, which corresponds to intuition because the “average” long-memory

effect in model (4.7) is 0.1, while it is
∫ 1

0 (0.1 + 0.3u) du = 0.25 in model (4.5) and (4.6).

In order to compare our new test with existing approaches we next investigate the performance of the proce-

dures proposed by Berkes et al. (2006), Baek and Pipiras (2012) and Yau and Davis (2012), which are designed

for a test of the null hypothesis ”the process has the short memory property with a structural break in the

mean” against the alternative ”the process has the long memory property”. The third column of Table 2, 3 and
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4 shows the power of the test in Baek and Pipiras (2012), which also operates in the spectral domain. These

authors estimate the change in the mean with a break point estimator and remove this mean effect (which is

responsible for the observed local stationarity) from the time series. Then they calculated the local Whittle

estimator introduced by Robinson (1995) for the self similarity parameter and reject the null hypothesis for

large value of this estimate. Note that the calculation of the local Whittle estimator requires the specification of

the number of “low frequencies” and we used m =
√
T as Baek and Pipiras (2012) suggested in their simulation

study. We observe that the new test (3.15) yields larger power than the procedure of Baek and Pipiras (2012)

in nearly all cases under consideration. This improvement becomes more substantial with increasing sample

size.

Next we study the performance of the procedure proposed by Berkes et al. (2006) in model (4.5)-(4.7). These

authors use a CUSUM statistic to construct an estimator, say k̂∗, for a (possible) change point k∗ in a time

series. Then two CUSUM statistics are computed for the first k̂∗ elements of the time series and the remaining

ones, respectively. The test statistic is given by the maximum of those two. For the choice of the bandwidth

function we used q(n) = 15 log10(n) as suggested by these authors in Section 3 of their article. The results

are depicted in the fourth column of Table 2, 3 and 4. From this we see that their test is not able to detect

long-range dependence in both the stationary and locally stationary case. These findings coincide with the

results of Baek and Pipiras (2012) who also remarked that the test in Berkes et al. (2006) has very low power

against long-range dependence alternatives.

Finally, we investigate the method proposed by Yau and Davis (2012) which consists of a parametric like-

lihood ratio test assuming two (not necessarily equal) ARMA(p, q) models before and after the breakpoint

of the mean function. Their method requires a specification of the order of these two models and we used

ARMA(1, 1)-models under the null hypothesis and a FARIMA(1, d, 1) model under the alternative hypothesis.

The corresponding results are depicted in the fifth column of Table 2, 3 and 4 corresponding to non-stationary

and stationary long-range dependent alternatives, respectively. We observe that in these cases the new test

(3.15) outperforms the test proposed in Yau and Davis (2012) if the sample size is larger than 512 and that both

tests have similar power for sample size 256 (see the fifth column of Table 2 and 3). On the other hand, in the

case of the long-range dependent stationary alternative (4.7) the test of Yau and Davis (2012) yields slightly

better rejection probabilities than the new test (3.15) for smaller sample sizes while we observe advantages of

the proposed test in this paper for sample sizes 512 and 1024. These results are remarkable, because the test

of Yau and Davis (2012) is especially designed to detect stationary alternatives of FARIMA(1, d, 1) type, but

the nonparametric test still yields an improvement.

4.2 Data examples

As an illustration we apply our test to two different datasets. The first contains annual flow volume of the

Nile River at Aswan Egypt between the years 1871 and 1970 while the second data set contains 2048 squared

log-returns of the IBM stock between July 15th 2005 and August 30th 2013 which were already discussed in

the introduction. Both time series are depicted in Figure 4, and in the case of Nile River data our test statistic√
T F̂T /

√
ŴT equals -1.9 for M = 4, which is far below every reasonable critical value and yields a p-value of

0.971. This implies that the null hypothesis of a non-stationary short-memory model can not be rejected for

this dataset, which is in line with the findings of Yau and Davis (2012) who obtained p-values larger than 0.7

for their likelihood ratio approach and the CUSUM procedure of Berkes et al. (2006). The test of Baek and

Pipiras (2012) does not reject the null hypothesis as well, since the p-value equals 0.944.
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(4.1), (4.2) (4.1),(4.3) (4.4)

T N M 5% 10% 5% 10% 5% 10%

256 64 4 0.090 0.128 0.094 0.145 0.085 0.122

256 32 8 0.151 0.228 0.165 0.255 0.182 0.261

512 128 4 0.061 0.095 0.070 0.114 0.069 0.099

512 64 8 0.089 0.130 0.089 0.126 0.081 0.107

1024 256 4 0.046 0.072 0.077 0.119 0.069 0.106

1024 128 8 0.059 0.087 0.061 0.088 0.064 0.093

Table 1: Simulated level of the test (3.15) for different processes and choices of T,N and M.

(3.15) Baek/Pipiras Berkes et. al Yau/Davis

T N M 5% 10% 5% 10% 5% 10% 5% 10%

256 64 4 0.288 0.354 0.248 0.330 0.037 0.080 0.250 0.306

256 32 8 0.290 0.436

512 128 4 0.530 0.590 0.356 0.468 0.006 0.041 0.182 0.226

512 64 8 0.348 0.458

1024 256 4 0.746 0.770 0.562 0.656 0.026 0.102 0.204 0.267

1024 128 8 0.412 0.512

Table 2: Rejection frequencies of the test (3.15) and three competing procedures under the alternative (4.5) for different

choices of T,N and M.

(3.15) Baek/Pipiras Berkes et. al Yau/Davis

T N M 5% 10% 5% 10% 5% 10% 5% 10%

256 64 4 0.260 0.330 0.230 0.322 0.039 0.088 0.296 0.366

256 32 8 0.276 0.394

512 128 4 0.528 0.590 0.342 0.456 0.010 0.036 0.268 0.322

512 64 8 0.314 0.414

1024 256 4 0.774 0.796 0.546 0.656 0.024 0.086 0.228 0.292

1024 128 8 0.414 0.492

Table 3: Rejection frequencies of the test (3.15) and three competing procedures under the alternative (4.6) for different

choices of T,N and M.

(3.15) Baek/Pipiras Berkes et. al Yau/Davis

T N M 5% 10% 5% 10% 5% 10% 5% 10%

256 64 4 0.094 0.136 0.087 0.149 0.045 0.093 0.178 0.210

256 32 8 0.138 0.216

512 128 4 0.146 0.196 0.119 0.177 0.022 0.055 0.140 0.176

512 64 8 0.138 0.214

1024 256 4 0.328 0.406 0.127 0.197 0.018 0.079 0.152 0.206

1024 128 8 0.152 0.218

Table 4: Rejection frequencies of the test (3.15) and three competing procedures under the alternative (4.7) for different

choices of T,N and M.
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Figure 4: Left panel: plot of the 100 Nil River Annual flow volume between 1871 and 1970; Right panel: plot

of the squared log-returns of the IBM stock between July 15th 2005 and August 30th 2013.

In the situation of the squared log-returns of the IBM stock, the assumption of Gaussianity is too restric-

tive and we therefore apply the more general test described in Remark 3.9. The values of the test statistic
√
T F̂T /

√
ŴT,general are 5.67 and 9.48 for M = 4 and M = 8, respectively, yielding that the p-value is smaller

than 2.87 · 10−7 for both choices of the segmentation. This means that the assumption of no long-range depen-

dence is clearly rejected. If we apply the likelihood ratio test of Yau and Davis (2012) to this dataset, we obtain

a value for the statistic of 15.77 which is then compared with the quantiles of the standard normal distribution.

This yields an even smaller p-value. On the other hand, the CUSUM procedure of Berkes et al. (2006) only

rejects the null hypothesis of no long-range dependence at a 10 % but not at a 5 % level. This observation is,

however, not surprising given the low power of this test in the finite sample situations presented in the previous

section. The test of Baek and Pipiras (2012) rejects the null hypothesis with a p-value 8.65 · 10−12, yielding

the same result as our approach and the one of Yau and Davis (2012).
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Künsch, H. (1986). Discrimination between monotonic trends and long-range dependence. J. Appl. Prob.,

23:1025–1030.

Mikosch, T. and Starica, C. (2004). Non-stationarities in financial time series, the long range dependence and

the IGARCH effects. The Review of Economics and Statistics, 86:378–390.

Newey, W. K. (1991). Uniform convergence in probability and stochastic equicontinuity. Econometrica,

59(4):1161–1167.

Palma, W. (2007). Long-Memory Time Series: Theory and Methods. Wiley, Hoboken, NJ.

Palma, W. and Olea, R. (2010). An efficient estimator for locally stationary Gaussian long-memory processes.

Annals of Statistics., 38(5):2958–2997.

Perron, P. and Qu, Z. (2010). Long-memory and level shifts in the volatility of stock market return indices.

Journal of Business and Economic Statistics, 23(2):275–290.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

Preuß, P. and Vetter, M. (2013). On discriminating between long-range dependence and non stationarity.

Electronic Journal of Statistics, 7:2241–2297.

Robinson, P. M. (1995). Gaussian semiparametric estimation of long range dependence. The Annals of Statis-

tics, 23:1630–61.

Roueff, F. and von Sachs, R. (2011). Locally stationary long memory estimation. Stochastic Processes and

their Applications, 121:813–844.

Sen, K., Preuß, P., and Dette, H. (2013). Measuring stationarity in long-memory processes. Technical report,

arXiv:1303.3482, Ruhr-University Bochum.

Sibbertsen, P. and Kruse, R. (2009). Testing for a change in persistence under long-range dependencies. Journal

of Time Series Analysis, 30:263–285.

Starica, C. and Granger, C. (2005). Nonstationarities in stock returns. The Review of Economics and Statistics,

87:503–522.

Yau, C. Y. and Davis, R. A. (2012). Likelihood inference for discriminating between long-memory and change-

point models. Journal of Time Series Analysis, 33(4):649–664.

5 Appendix: Proofs

5.1 Preliminary results

We begin stating two results, which will be the main tools in the asymptotic analysis of the proposed estimators

and the test statistic. For this purpose, we let φT : [0, 1]× [−π, π]→ R denote a function which (might) depend
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on the the sample size T and define

GT (φT ) =
1

M

M∑
j=1

∫ π

−π
f(uj , λ)φT (uj , λ) dλ,

ĜT (φT ) =
1

M

M∑
j=1

∫ π

−π
IµN (uj , λ)φT (uj , λ) dλ,

where IµN is the analogue of the local periodogram (3.4) where the estimator µ̂ has been replaced by the “true”

mean function µ.

Theorem 5.1.

a) Let Assumption 2.1 be fulfilled and assume that φT (u, λ) : [0, 1] × [−π, π] → R is symmetric in λ, twice

continuously differentiable with uniformly bounded partial derivates such that for all u ∈ [0, 1], λ ∈ [−π, π],

T ∈ N

φT (u, λ) ≤ Cg(k)|λ|2d0(u)−ε, (5.1)

∂

∂λ
φT (u, λ) ≤ Cg(k)|λ|2d0(u)−1−ε, (5.2)

∂2

∂λ2
φT (u, λ) ≤ Cg(k)|λ|2d0(u)−2−ε, (5.3)

where C > 0, 0 < ε < 1/2−D are constants and g : N→ (0,∞) is a given function. Then we have

E[ĜT (φT )] = GT (φT ) +O
( g(k)

N1−ε

)
+O

(g(k)N2

T 2

)
, (5.4)

Var[ĜT (φT )] = VT +O
( 1

T

g2(k)

N1−2D−2ε

)
+O

(g2(k)N2

T 3

)
(5.5)

where

VT =
1

T

4π

M

M∑
j=1

∫ π

−π
f2(uj , λ)φ2

T (uj , λ) dλ.

b) Suppose the assumptions of part a) hold with D = 0, ε < 1/6 and additionally lim infT→∞ VT ≥ c,

N →∞, g(k)
√
T/N1−ε → 0, g(k) log(T )/T 1/6−ε → 0, and g(k)N2/T

3
2 → 0.

Then we have
√
T
(
ĜT (φT )−GT (φT )

)
/
√
VT

D→ N (0, 1).

Proof: In order to prove part a) Theorem 5.1 we define t̃j := tj − N/2 + 1, ψ̃l(uj,p) := ψl(
t̃j+p
T ), Za,b :=

Za−N/2+1+b and obtain

E[ĜT (φT )] =
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

ψt̃j+p,T,lψt̃j+q,T,m

∫ π

−π
φT (uj , λ)e−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m)

= EN,T +AN,T +BN,T
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where

EN,T :=
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

ψl(uj)ψm(uj)

∫ π

−π
φT (uj , λ)e−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m),

AN,T :=
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

∫ π

−π
φT (uj , λ)e−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m)

{
ψl(uj)

(
ψ̃m(uj,q)− ψm(uj)

)
+
(
ψ̃l(uj,p)− ψl(uj)

)
ψ̃m(uj,q)

}
,

BN,T :=
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

∫ π

−π
φT (uj , λ)e−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m)

{(
ψt̃j+p,T,l − ψ̃l(uj,p)

)
ψt̃j+q,T,m + ψ̃l(uj,p)

(
ψt̃j+q,T,m − ψ̃m(uj,q)

)}
.

Note that BN,T and AN,T compromise the error arising in the approximation of ψt̃j+p,T,l by ψl(
t̃j+p
T ) and

ψ̃m(uj,q) by ψm(uj), respectively. In order to establish the claim (5.4), we prove the following statements:

EN,T =
1

M

M∑
j=1

∫ π

−π
f(uj , λ)φT (uj , λ) dλ+O

( g(k)

N1−ε

)
(5.6)

AN,T = O
(g(k) log(N)

N1−εM

)
+O

(g(k)N2

T 2

)
(5.7)

BN,T = O
(g(k) log(T )

T

)
. (5.8)

Proof of (5.6): Due to the independence of the random variables Zt, we only need to consider terms fulfilling

p = q + l−m (this means 0 ≤ p = q + l−m ≤ N − 1 because of p ∈ {0, 1, 2 . . . , N − 1}) which in turn implies

|l −m| ≤ N − 1. Therefore

EN,T =
1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

N−1∑
q=0

0≤q+l−m≤N−1

ψl(uj)ψm(uj)

∫ π

−π
φT (uj , λ)e−i(l−m)λ dλ

=
1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

ψl(uj)ψm(uj)

∫ π

−π
φT (uj , λ)e−i(l−m)λ dλ(N − |l −m|)

=
1

M

M∑
j=1

∫ π

−π
φT (uj , λ)f(uj , λ) dλ+ E1

N,T + E2
N,T ,

where

E1
N,T = − 1

2π

1

M

M∑
j=1

∞∑
l,m=0

N≤|l−m|

ψl(uj)ψm(uj)

∫ π

−π
φT (uj , λ)e−i(l−m)λ dλ,

E2
N,T = − 1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

ψl(uj)ψm(uj)

∫ π

−π
φT (uj , λ)e−i(l−m)λ dλ|l −m|.
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Using (2.4), (5.1) and Lemma 6.2 in the online supplement, we obtain

|E1
N,T | ≤ C

g(k)

M

M∑
j=1

∞∑
l,m=1

N≤|l−m|

1

l1−d0(uj)

1

m1−d0(uj)

1

|l −m|1+2d0(uj)−ε (1 + o(1)),

where we used the fact that terms corresponding to l = 0 or m = 0 are of smaller or the same order (we will

use this property frequently from now on without further mentioning it). We set h := l −m and obtain from

Lemma 6.1a) in the online supplement that

g(k)

M

M∑
j=1

∑
h∈Z
N≤|h|

∞∑
m=1

h+m≥1

1

(h+m)1−d0(uj)

1

m1−d0(uj)

1

|h|1+2d0(uj)−ε ≤ Cg(k)
∑
h∈Z
N≤|h|

1

|h|2−ε
= O

( g(k)

N1−ε

)
.

By proceeding analogously we obtain that E2
N,T = O(g(k)N−1+ε) which proves the assertion in (5.6).

Proof of (5.7): Without loss of generality we only consider the first summand

AN,T (1) =
1

2πN

1

M

M∑
j=1

N−1∑
p,q=0

∞∑
l,m=0

ψl(uj)
(
ψ̃m(uj,q)− ψm(uj)

) ∫ π

−π
φT (uj , λ)e−i(p−q)λ dλE(Ztj ,p−lZtj ,q−m)

in AN,T (the second term is treated exactly in the same way). A Taylor expansion and similar arguments as

in the proof of (5.6) yield

AN,T (1) = A1
N,T +A2

N,T

where

A1
N,T =

1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

N−1∑
q=0

0≤q+l−m≤N−1

ψl(uj)ψ
′
m(uj)

(−N/2 + 1 + q

T

)∫ π

−π
φT (uj , λ)e−i(l−m)λ dλ,

A2
N,T =

1

2πN

1

M

M∑
j=1

∞∑
l,m=0

|l−m|≤N−1

N−1∑
q=0

0≤q+l−m≤N−1

ψl(uj)ψ
′′
m(ηm,j,q)

(−N/2 + 1 + q

T

)2
∫ π

−π
φT (uj , λ)e−i(l−m)λ dλ

and ηm,j,q ∈ (uj −N/(2T ), uj +N/(2T )). Using (2.4), (2.8), (5.1), Lemma 6.2 it follows

|A1
N,T | ≤ C

g(k)

N

1

M

M∑
j=1

∞∑
l,m=1

1≤|l−m|≤N−1

1

l1−d0(uj)

log(m)

m1−d0(uj)

1

|l −m|1+2d0(uj)−ε

∣∣∣ N−1∑
q=0

0≤q+l−m≤N−1

(−N/2 + 1 + q

T

)∣∣∣
≤ C

g(k)

T

1

M

M∑
j=1

∞∑
l,m=1

1≤|l−m|≤N−1

1

l1−d0(uj)

log(m)

m1−d0(uj)

1

|l −m|2d0(uj)−ε

= C
g(k)

T

1

M

M∑
j=1

∑
s∈Z

1≤|s|≤N−1

∞∑
l=1

1≤l−s

1

l1−d0(uj)

log(l − s)
(l − s)1−d0(uj)

1

|s|2d0(uj)−ε
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≤ C
g(k) log(N)

T

1

M

M∑
j=1

∑
s∈Z

1≤|s|≤N−1

1

|s|1−ε
= O

(g(k) log(N)

N1−εM

)

where we used Lemma 6.1(c) in the online supplement for the last step. Finally (2.4), (2.8), (5.1), Lemma

6.2 in the online supplement and the same same arguments as above, show that the term A2
N,T is of order

O(g(k)N2T−2).

Proof of (5.8): By employing (2.3) and the same arguments as above it can be shown that BN,T is of order

O(g(k) log(T )
T ).

In the next step we prove the asymptotic representation for the variance in (5.5). We obtain

Var(ĜT (φT )) =
1

(2πN)2

1

M2

M∑
j1,j2=1

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

cum(Ztj1 ,p−lZtj1 ,q−m, Ztj2 ,r−nZtj2 ,s−o)

∫ π

−π
φT (uj1 , λ1)e−i(p−q)λ1 dλ1

∫ π

−π
φT (uj2 , λ2)e−i(r−s)λ2 dλ2

+O
(g2(k) log(N)

TN1−εM

)
+O

(g2(k)N2

T 3

)
,

where we used assumption (2.3) and similar arguments as given in the proof of (5.4). Because of the Gaussianity

of the innovations we obtain

cum(Ztj1 ,p−lZtj1 ,q−m, Ztj2 ,r−nZtj2 ,s−o) = E(Ztj1 ,p−lZtj2 ,r−n)E(Ztj1 ,q−mZtj2 ,s−o)

+E(Ztj1 ,p−lZtj2 ,s−o)E(Ztj1 ,q−mZtj2 ,r−n).

This implies that the calculation of the (dominating part of the) variance splits into two sums, say V 1
N,T and

V 2
N,T . In the following discussion we will show that both terms converge to the same limit, that is

V i
N,T =

1

T

2π

M

M∑
j=1

∫ π

−π
f2(uj , λ)φ2

T (uj , λ) dλ+O
( 1

T

g2(k)

N1−2D−2ε

)
; i = 1, 2

For the sake of brevity we restrict ourselves to the case i = 1. Because of the independence of the innovations

Zt, we obtain that the conditions p = r+ l− n+ (j2 − j1)N and s = q+ o−m+ (j1 − j2)N must hold, which,

because of p, s ∈ {0, ..., N − 1}, directly implies |l− n+ (j2− j1)N | ≤ N − 1 and |o−m+ (j1− j2)N | ≤ N − 1.

Thus, the term V 1
N,T can be written as

1

(2πN)2

1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=0

M∑
j2=1

0≤r+l−n+(j2−j1)N≤N−1
0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

×
∫ π

−π
φT (uj1 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1 dλ1

∫ π

−π
φT (uj2 , λ2)e−i(r−q+m−o+(j2−j1)N)λ2 dλ2.
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Since q ∈ {0, 1, 2 . . . , N − 1}, we get from the condition 0 ≤ q + o−m+ (j1 − j2)N ≤ N − 1 that, if q, o,m, j1
are fixed, there are at most two possible values for j2 such that the corresponding term does not vanish. It

follows from Lemma 6.3 (i)–(iii) in the online supplement that there appears an error of order O( 1
T

g2(k)
N1−2D−2ε )

if we drop the condition 0 ≤ r+ l−n+ (j2− j1)N ≤ N − 1 and assume that the variable r runs from −(N − 1)

to −1. Therefore, up to an error of order O( 1
T

g2(k)
N1−2D−2ε ), the term V 1

N,T is equal to

D1,T +D2,T ,

where

D1,T =
1

(2πN)2

1

M2

M∑
j1=1

N−1∑
q=0

N−1∑
r=−(N−1)

∞∑
l,m,n,o=0

M∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

×
∫ π

−π
φT (uj1 , λ1)φT (uj2 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1 dλ1

∫ π

−π
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2

D2,T =
1

(2πN)2

1

M2

M∑
j1=1

N−1∑
q=0

N−1∑
r=−(N−1)

∞∑
l,m,n,o=0

M∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

×
∫ π

−π
φT (uj1 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1

∫ π

−π

[
φT (uj2 , λ2)− φT (uj2 , λ1)

]
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 dλ1.

We show

D1,T =
2π

N

1

M2

M∑
j1=1

∫ π

−π
f2(uj1 , λ1)φ2

T (uj1 , λ1) dλ1 +O
( 1

T

g2(k)

N1−2D−2ε

)
(5.9)

D2,T = O
( 1

T

g2(k)

N1−2D−2ε

)
,

which then concludes the proof of (5.5). For this purpose we begin with an investigation of the term D1,T for

which the terms in the sum vanish if r− q+m− o+ (j2− j1)N 6= 0. Moreover, the following facts are correct:

I. The variable r runs from 0 to N−1 since r−q+m−o+(j2−j1)N = 0 and 0 ≤ q+o−m+(j1−j2)N ≤ N−1.

II. We can drop the condition |l−n+(j2−j1)N | ≤ N−1 by making an error of order O(g2(k)T−1N−1+2D+2ε)

[this follows from Lemma 6.3(iv) in the online supplement].

III. There appears an error of order O(g2(k)T−1N−1+2D+2ε) if we omit the sum with j1 6= j2 [we prove this

in Lemma 6.3(v) in the online supplement].

IV. We can afterwards omit the condition 0 ≤ q+o−m ≤ N−1 since it is 0 ≤ r ≤ N−1 and r−q+m−o = 0

[note that, because of III., we assume j1 = j2 from now on].

V. We can then drop the condition |o−m| ≤ N − 1 since r − q +m− o = 0 and |r − q| ≤ N − 1.
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Thus, using the representation of f(uj1 , λ) in (2.5), the term D1,T can be written as (up to an error of order

O(g2(k)T−1N−1+2D+2ε))

1

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∫ π

−π
f(uj1 , λ1)φ2

T (uj1 , λ1)e−i(r−q)λ1 dλ1

∫ π

−π
f(uj1 , λ2)e−i(r−q)λ2 dλ2

=
1

N2

1

M2

M∑
j1=1

N−1∑
s=−(N−1)

∫ π

−π
f(uj1 , λ1)φ2

T (uj1 , λ1)e−isλ1 dλ1

∫ π

−π
f(uj1 , λ2)e−isλ2 dλ2(N − |s|)

= D
(1)
1,T +D

(2)
1,T +D

(3)
1,T ,

where

D
(1)
1,T =

1

N

1

M2

M∑
j1=1

∞∑
s=−∞

∫ π

−π
f(uj1 , λ1)φ2

T (uj1 , λ1)e−isλ1 dλ1

∫ π

−π
f(uj1 , λ2)e−isλ2 dλ2

D
(2)
1,T = − 1

N

1

M2

M∑
j1=1

∑
s∈Z
|s|≥N

∫ π

−π
f(uj1 , λ1)φ2

T (uj1 , λ1)e−isλ1 dλ1

∫ π

−π
f(uj1 , λ2)e−isλ2 dλ2

D
(3)
1,T = − 1

N2

1

M2

M∑
j1=1

N−1∑
s=−(N−1)

|s|
∫ π

−π
f(uj1 , λ1)φ2

T (uj1 , λ1)e−isλ1 dλ1

∫ π

−π
f(uj1 , λ2)e−isλ2 dλ2

With Parseval’s identity, we get

D
(1)
1,T =

2π

N

1

M2

M∑
j1=1

∫ π

−π
f2(uj1 , λ2)φ2

T (uj1 , λ2) dλ2,

while Lemma 6.2 in the online supplement yields (up to a constant) the inequalities

D
(2)
1,T ≤

g2(k)

N

1

M2

M∑
j1=1

∑
s∈Z
|s|≥N

1

|s|2−2ε
≤ g2(k)

N2−2ε

1

M
,

D
(3)
1,T ≤

g2(k)

N2

1

M2

M∑
j1=1

N−1∑
s∈Z

1≤|s|≤N−1

1

|s|1−2ε
≤ g2(k)

N2−2εM
,

which proves (5.9). We now consider the term

D2,T = D
(1)
2,T +D

(2)
2,T ,

where

D
(1)
2,T =

1

(2πN)2

1

M2

M∑
j1=1

N−1∑
q=0

∞∑
r=−∞

∞∑
l,m,n,o=0

∞∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)
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∫ π

−π
φT (uj1 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1

∫ π

−π

[
φT (uj2 , λ2)− φT (uj2 , λ1)

]
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 dλ1

D
(2)
2,T = − 1

(2πN)2

1

M2

M∑
j1=1

N−1∑
q=0

∑
r∈Z
|r|≥N

∞∑
l,m,n,o=0

∞∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π
φT (uj1 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1

∫ π

−π

[
φT (uj2 , λ2)− φT (uj2 , λ1)

]
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 dλ1.

Here D
(1)
2,T corresponds to the sum over all r and vanishes by Parseval’s identity. D

(2)
2,T stands for the resulting

error term which is of order O(T−1g2(k)N−1+2D+2ε) because of Lemma 6.3 (vi) in the online supplement.

Part b) follows with par a) if we show

cuml[
√
TĜT (φ)] = O

(
g(k)lT l(ε−1/2+2D)+(1−4D) log(T )l

)
for l ≥ 3 and D < 1/4. (5.10)

For a proof of this statement where we proceed (with a slight modification) analogously to the proof of Theorem

6.1 c) in Preuß and Vetter (2013). Note that these authors work with functions φT such that

1

N

N/2∑
k=1

φT (u, λk)e
ihλk = O

( 1

|h modulo N/2|

)
(5.11)

while
∫ π
−π φT (u, λ)eihλdλ = O(h−1) for the integrated case. The authors then derive the exact same order as

in (5.10) with the only difference that ε = 0 and g(k) ≡ 1. In our situation, assumption (5.1) and Lemma 6.2

in the online supplement imply∫ π

−π
φT (u, λ)eihλ dλ = O

( g(k)

|h|1+2d0(u)−ε

)
= O

(
T ε
g(k)

|h|

)
(5.12)

and we can therefore proceed completely analogously to the proof of Theorem 6.1 c) in Preuß and Vetter (2013)

but using (5.12) instead of (5.11). The details are omitted for the sake of brevity. 2

For the formulation of the next result we define the set

GT (s, `) = {φ̃T : [−π, π]→ R | φ̃T is symmetric, there exists a polynomial P` of degree ` and a

constant d ∈ [0, 1/2) such that φ̃T (λ) = logs(|1− eiλ|)|1− eiλ|2d|P`(eiλ)|2}

and state the following result.

Theorem 5.2. Suppose Assumption 2.1 and 3.2 are fulfilled, N5/2/T 2 → 0 and 0 < ε < 1/2−D is the constant

of Assumption 3.2. Let ΦT denote a class of functions φT : [0, 1]× [−π, π] → R consisting of elements, which

are twice continuously differentiable with uniformly bounded partial derivates with respect to u, λ, T and satisfy

(5.1)–(5.3) with g(k) ≡ 1, where the constant C does not depend on ΦT , T . Furthermore, we assume that for

all u ∈ [0, 1] the condition φT (u, ·) ∈ GT (s, qk) holds, where q, s ∈ N are fixed and k = k(T ) denotes a sequence

satisfying k4 log2(T )N−ε/2 → 0. Then

sup
u∈[0,1]

sup
φT∈ΦT

∣∣∣ ∫ π

−π
(IµN (u, λ)− f(buT c/T, λ))φT (buT c/T, λ)dλ

∣∣∣ = oP (N−1/2+ε/2).
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Proof: We define Φ∗T as the set of functions which we obtain by multiplying all elements φT ∈ ΦT with

1{u=t/T}(u, λ), that is φ∗T (u, λ) = φT (t/T, λ) for some t = 1, ..., T and φT ∈ ΦT , and consider

D̂T,1(φ∗T ) :=
T∑

t1=1

∫ π

−π
IµN (t1/T, λ)φ∗T (t1/T, λ)dλ, φ∗T ∈ Φ∗T .

It follows from Theorem 2.1 in Newey (1991) that the assertion of Theorem 5.2 is a consequence of the

statements:

(i) For every φ∗T ∈ Φ∗T we have

ĜT,1(φ∗T ) := N1/2−ε/2
(
D̂T,1(φ∗T )−

∫ π

−π
f(t/T, λ)φT (t/T, λ)dλ

)
= op(1) (5.13)

(ii) For every η > 0 we have

lim
T→∞

P
(

sup
φ∗T,1,φ

∗
T,2∈Φ∗T

|ĜT,1(φ∗T,1)− ĜT,1(φ∗T,2)| > η
)

= 0. (5.14)

In order to prove part (i) we use the same arguments as given in the proof of (5.4) and (5.5) and obtain

E[D̂T,1(φ∗T ))] =

∫ π

−π
f(t/T, λ)φT (t/T, λ)dλ+O

( 1

N1−ε

)
+O

(N2

T 2

)
,

Var[N1/2D̂T,1(φ∗T )] =

∫ π

−π
f2(t/T, λ)φ2

T (t/T, λ)dλ+O
( 1

N1−2D−2ε

)
+O

(N2

T 2

)
,

which yields (5.13) observing the growth conditions on N and T . For the proof of part (ii) we note that it

follows by similar arguments as given in the proof of Theorem 6.1 d) of Preuß and Vetter (2013) that there

exists a positive constant C such that the inequlality

E(|ĜT,1(φ∗T,1)− ĜT,1(φ∗T,2)|l) ≤ (2l)!C l∆l
T,ε(φ

∗
T,1, φ

∗
T,2)

holds for all even l ∈ N and all φ∗T,1, φ
∗
T,2 ∈ Φ∗T , where

∆T,ε(φ
∗
T,1, φ

∗
T,2) = 1{t1=t2}N

−ε/2

√∫ π

−π
f2(t1/T, λ)(φT,1,1(t1/T, λ)− φT,1,2(t1/T, λ))2dλ+A1{t1 6=t2}N

−ε/2

for a constant A which is sufficiently large such that

sup
φT,1,i∈Φ∗T

√∫ π

−π
f2(t1/T, λ)(φT,1,1(t1/T, λ)− φT,1,2(t1/T, λ))2dλ ≤ A.

By an application of Markov’s inequality and a straightforward but cumbersome calculation [see the proof of

Lemma 2.3 in Dahlhaus (1988) for more details] this yields

P (|ĜT,1(φ∗T,1)− ĜT,1(φ∗T,2)| > η) ≤ 96 exp(−
√
η∆−1

T,ε(φ
∗
T,1, φ

∗
T,2)C−1)

for all φ∗T,1, φ
∗
T,2 ∈ Φ∗T . The statement (5.14) then follows with the extension of the classical chaining argument

as described in Dahlhaus (1988) if we show that the corresponding covering integral of Φ∗T with respect to

the semi-metric ∆T,ε is finite. More precisely, the covering number NT (u) of Φ∗T with respect to ∆T,ε is

equal to one for u ≥ AN−ε/2 and bounded by TC(qk)2u−qkN−qkε/2 for some constant C for u < AN−ε/2 [see

Chapter VII.2. of Pollard (1984) for a definition of covering numbers]. This implies that the covering integral

JT (δ) =
∫ δ

0 log(48NT (u)2u−1)2du is up to a constant bounded by k4 log2(T )N−ε/2. The assertion follows by

the assumptions on k and N . 2
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5.2 Proof of Theorem 3.3

Introducing the notation

LµN,k(θk, u) :=
1

4π

∫ π

−π

(
log(fθk(λ)) +

IµN (u, λ)

fθk(λ)

)
dλ, u ∈ [0, 1]

we obtain with the same arguments as given in the proof of Theorem 3.6 in Dahlhaus (1997)

max
t=1,...,T

∣∣Lµ̂N,k(θk, t/T )− LµN,k(θk, t/T )
∣∣

≤ C max
t=1,...,T

max
q=0,...,N

{∣∣µ(t/T )− µ̂(t/T )
∣∣∣∣ ∫ π

−π
dX−µN (t/T, λ)f−1

θk
(λ)eiqλ dλ

∣∣}+ C max
t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣2

for some constant C ∈ R and dX−µN is defined by
∣∣dX−µN (u, λ)

∣∣2 := IµN (u, λ). By proceeding as in the proof of

Theorem 5.2 one verifies

max
t=1,...,T

max
q=0,...,N

sup
θk∈ΘR,k

∣∣ ∫ π

−π
dX−µN (t/T, λ)f−1

θk
(λ)eiqλ dλ

∣∣ = O(N ε),

and (3.9) yields

max
t=1,...,T

sup
θk∈ΘR,k

∣∣Lµ̂N,k(θk, t/T )− LµN,k(θk, t/T )
∣∣ = max

t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣Op(N ε) = op(k

−5/2), (5.15)

and analogously we get

max
t=1,...,T

sup
θk∈ΘR,k

∥∥∇Lµ̂N,k(θk, t/T )−∇LµN,k(θk, t/T )
∥∥

2
= max

t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣Op(k1/2N ε) = op(k

−5/2).(5.16)

For each u ∈ [0, 1] let θ̂N,k(u) denote the Whittle-estimator defined in (3.2). Then Theorem 5.2 and similar

arguments as in the proof of Theorem 3.2 in Dahlhaus (1997) yield

sup
u∈[0,1]

∥∥θ̂N,k(u)− θ0,k(u)
∥∥

2
= op(1). (5.17)

We will now derive a refinement of this statement. By an application of the mean value theorem, there exist

vectors ζ
(k)
u = (ζ

(k)
u,1 , ζ

(k)
u,2 , . . . , ζ

(k)
u,k+1) ∈ Rk+1, u ∈ {1/T, 2/T, . . . , 1}, satisfying ‖ζ(k)

u − θ0,k(u)‖2 ≤ ‖θ̂N,k(u) −
θ0,k(u)‖2 such that

∇Lµ̂N,k(θ̂N,k(u), u)−∇Lµ̂N,k(θ0,k(u), u) = ∇2Lµ̂N,k(ζ
(k)
u , u)

(
θ̂N,k(u)− θ0,k(u)

)
,

and the first term on the left-hand side vanishes due to (5.17). This yields

ET −∇LµN,k(θ0,k(u), u) = ∇2Lµ̂N,k(ζ
(k)
u , u)

(
θ̂N,k(u)− θ0,k(u)

)
,

where ET denotes the difference between ∇LµN,k(θ0,k(u), u) and ∇Lµ̂N,k(θ0,k(u), u), which is of order

maxt=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣Op(k1/2N ε) by (5.16). It follows from

∇LµN,k(θk, u) =
1

4π

∫ π

−π

[
IµN (u, λ)− fθk(λ)

]
∇f−1

θk
(λ) dλ

and Theorem 5.2 that maxu∈{1/T,...1} ‖∇L
µ
N,k(θ0,k(u), u)‖2 = Op(

√
kN−1/2+ε/2) so it remains to show

P (∇2Lµ̂N,k(ζ
(k)
u , u)−1 exists and ‖∇2Lµ̂N,k(ζ

(k)
u , u)−1‖sp ≤ Ck for all u ∈ {1/T, . . . , 1})→ 1

for some positive constant C. This, however, follows with a Taylor expansion, (5.17), Theorem 5.2 and As-

sumption 3.1 (iv) for the corresponding expression with µ̂ replaced by µ. The more general case is then implied

by the convergence-assumptions on µ̂. 2
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5.3 Proof of Theorem 3.5 and Theorem 3.6

We will show in Section 5.3.1 that under the null hypothesis H0 the estimate

max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥

2
= Op(k

3/2N−1/2+ε/2) (5.18)

is valid, while Theorem 3.3 and (3.14) imply

k3/2 max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥

2
= op(1) (5.19)

under the alternativeH1. As in the proof of Theorem 3.3 there exist vectors ζ
(k)
j = (ζ

(k)
j,1 , ζ

(k)
j,2 , . . . , ζ

(k)
j,k+1) ∈ Rk+1,

j = 1, . . . ,M , satisfying ‖ζ(k)
j − θ0,k(uj)‖2 ≤ ‖θ̂N,k(uj)− θ0,k(uj)‖2 such that

−∇Lµ̂N,k(θ0,k(uj), uj) = ∇2Lµ̂N,k(ζ
(k)
j , uj)

(
θ̂N,k(uj)− θ0,k(uj)

)
holds because of Assumption 3.1 (ii) and (5.18) (under H0) or (5.19) (under H1). By rearranging and summing

over every block, it follows that

1

M

M∑
j=1

(
θ̂N,k(uj)− θ0,k(uj)

)
= R0,T −R1,T −R2,T −R3,T −R4,T (5.20)

where

R0,T := − 1

M

M∑
j=1

Γ−1
k (θ0,k(uj))∇LµN,k(θ0,k(uj), uj),

Γ−1
k is defined in (3.5) and the terms Ri,T (i = 1 . . . , 4) are given by

R1,T :=
1

M

M∑
j=1

Γ−1
k (θ0,k(uj))

(
∇Lµ̂N,k(θ0,k(uj), uj)−∇LµN,k(θ0,k(uj), uj)

)
,

R2,T :=
1

M

M∑
j=1

Γ−1
k (θ0,k(uj))

(
∇2Lµ̂N,k(ζ

(k)
j , uj)−∇2LµN,k(ζ

(k)
j , uj)

)(
θ̂N,k(uj)− θ0,k(uj)

)
,

R3,T :=
1

M

M∑
j=1

Γ−1
k (θ0,k(uj))

(
∇2LµN,k(ζ

(k)
j , uj)−∇2LµN,k(θ0,k(uj), uj)

)(
θ̂N,k(uj)− θ0,k(uj)

)
,

R4,T :=
1

M

M∑
j=1

Γ−1
k (θ0,k(uj))

(
∇2LµN,k(θ0(uj), uj)− Γk(θ0,k(uj))

)(
θ̂N,k(uj)− θ0,k(uj)

)
.

We obtain for the first summand in (5.20)

R0,T = − 1

M

M∑
j=1

1

4π

∫ π

−π

[
IµN (uj , λ)− fθ0,k(uj)(λ)

]
Γ−1
k (θ0,k(uj))∇f−1

θ0,k(uj)(λ) dλ

and with the notation φT (uj , λ) = 1/(4π)[Γ−1
k (θ0,k(uj))∇f−1

θ0,k(uj)(λ)]11, it is easy to see that Assumption 3.1

(i)–(iv) imply the conditions of Theorem 5.1 b) with g(k) = k2. Moreover, observing the definition of VT and
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WT in Theorem 5.1 and 3.5, (3.6) yields VT /WT → 1. Consequently, under the assumptions of Theorem 3.5 it

follows (observing (3.8) and the growth conditions on N , T )

√
T

M

M∑
j=1

[
Γ−1
k (θ0,k(uj))∇LµN (θ0,k(uj), uj)

]
11
/
√
WT

D→ N (0, 1).

Since d0(u) is the first element of the vector θ0,k(u), Theorem 3.5 is a consequence of the fact 1
M

∑M
j=1 d0(uj) =

F +O(M−2) [this can be proved by a second order Taylor expansion] if we are able to show that

Ri,T = op(T
−1/2); i = 1, . . . , 4.

Analogously, Theorem 3.6 follows from (5.4) and (5.5) if the estimates

Ri,T = op(1) i = 1, . . . , 4.

can be established. It can be shown analogously to the proof of Theorem 3.6 in Dahlhaus (1997), that, under

assumptions (3.11) – (3.12), both terms R1,T and R2,T are of order Op(k
2N−εT−1/2 + k2N ε−1), while, under

assumption (3.14), the order is op(1) [see the proof of (5.23) and (5.15), respectively, for more details]. Therefore

it only remains to consider the quantities R3,T and R4,T . For this purpose note that

∇2LµN,k(θk(uj), uj) =
1

4π

∫ π

−π

[
IµN (uj , λ)− fθk(uj)(λ)

]
∇2f−1

θk(uj)(λ) dλ+ Γk(θk(uj)) (5.21)

∇3LµN,k(θk(uj), uj) =
1

4π

∫ π

−π

[
IµN (uj , λ)− fθk(uj)(λ)

][ ∂3f−1
θk(uj)(λ)

∂θj,t∂θj,s∂θj,r

]
r,s,t=1,...,k+1

dλ

− 1

4π

∫ π

−π

[
∂fθk(uj)(λ)

∂θj,t

∂2f−1
θk(uj)(λ)

∂θj,s∂θj,r

]
r,s,t=1,...,k+1

dλ

+
1

4π

∫ π

−π

[
∂

∂θj,t

(
∂fθk(uj)(λ)

∂θj,s

1

f2
θk(uj)(λ)

∂fθk(uj)(λ)

∂θj,r

)]
r,s,t=1,...,k+1

dλ, (5.22)

where we used the notation (θj,1, θj,2, . . . , θj,k+1) := (d(uj), a1(uj), . . . , ak(uj)). For the term R3,T we obtain

with the well-known inequality ‖Ax‖2 ≤ ‖A‖sp‖x‖2

‖R3,T ‖2 ≤ max
θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

1

M

M∑
j=1

∥∥∇2LµN,k(ζ
(k)
j , uj)−∇2LµN,k(θ0,k(uj), uj)

∥∥
sp

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥

2
.

By the mean value theorem there exist vectors ζ̃
(k)
j ∈ Rk such that∥∥∇2LµN,k(ζ

k
j , uj)−∇2LµN,k(θ0(uj), uj)

∥∥
sp
≤ k max

r,s=1,...,k

∣∣[∇2LµN,k(ζ
(k)
j , uj)−∇2LµN,k(θ0,k(uj), uj)

]
r,s

∣∣
= k max

r,s=1,...,k

∣∣∇[∇2LµN,k(ζ̃
(k)
j , uj)

]
r,s

(
ζ

(k)
j − θ0,k(uj)

)∣∣ ≤ k max
r,s=1,...,k

∥∥∇[∇2LµN,k(ζ̃
(k)
j , uj)

]
r,s

∥∥
2

∥∥ζ(k)
j − θ0,k(uj)

∥∥
2

≤ k
∥∥θ̂N,k(uj)− θ0,k(uj)

∥∥
2

sup
θk∈ΘR,k

r,s=1,...,k

∥∥∇[∇2LµN,k(θk, uj)
]
r,s

∥∥
2
,

where ‖ζ̃(k)
j − θ0,k(uj)‖2 ≤ ‖ζ

(k)
j − θ0,k(uj)‖2 for every j = 1, ...,M . Therefore, we obtain

‖R3,T ‖2 ≤ k max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥2

2
sup

θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

sup
θk∈ΘR,k;j=1,...,M

r,s=1,...k

∥∥∇[∇2LµN (θk, uj)
]
r,s

∥∥
2
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≤ kC max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥2

2
sup

θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp(

k · sup
θk∈ΘR,k;j=1,...,M

r,s,t=1,...,k

∣∣∣ 1

4π

∫ π

−π

[
IµN (uj , λ)− fθk(λ)

] ∂3f−1
θk

(λ)

∂θj,t∂θj,s∂θj,r
dλ
∣∣∣+ k

)
,

where, in the last inequality, we have used the fact that the second and third term in (5.22) are bounded by

a constant [this follows directly from Assumption 3.1]. Before we investigate the order of this expression, we

derive a similar bound for the term R4,T . Observing (5.21) we obtain

‖R4,T ‖2 ≤ max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥

2
sup

θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

max
j=1,...,M

∥∥∇2LµN,k(θ0,k(uj), uj)− Γk(θ0,k(uj))
∥∥
sp

= max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥

2
sup

θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

× max
j=1,...,M

∥∥ 1

4π

∫ π

−π

[
IµN (uj , λ)− fθ0,k(uj)(λ)

]
∇2f−1

θ0,k(uj)(λ) dλ
∥∥
sp

≤ k max
j=1,...,M

∥∥θ̂N,k(uj)− θ0,k(uj)
∥∥

2
sup

θk∈ΘR,k

∥∥Γ−1
k (θk)

∥∥
sp

× max
j=1,...,M

max
r,s=1,...,k

∣∣∣ 1

4π

∫ π

−π

[
IµN (uj , λ)− fθ0,k(uj)(λ)

]∂2f−1
θ0,k(uj)(λ)

∂θj,s∂θj,r
dλ
∣∣∣.

If we show

max
j=1,...,M

sup
θk∈ΘR,k

r,s,t=1,...,k

∣∣∣ 1

4π

∫ π

−π

[
IµN (uj , λ)− fθk(λ)

] ∂3f−1
θk

(λ)

∂θj,t∂θj,s∂θj,r
dλ
∣∣∣ = Op(1),

max
j=1,...,M

max
r,s=1,...,k

∣∣∣ 1

4π

∫ π

−π

[
IµN (uj , λ)− fθ0,k(uj)(λ)

]∂2f−1
θ0,k(uj)(λ)

∂θj,s∂θj,r
dλ
∣∣∣ = Op(N

−1/2+ε/2),

it follows with Assumption 3.1 (iv) in combination with (5.18) (under H0) and (5.19) (under H1) that the

terms R3,T and R4,T are of order op(T
−1/2) (under H0) and op(1) (under H1). These two claims, however are

a direct consequence of Theorem 5.2 and (3.8). 2

5.3.1 Proof of (5.18)

With the same arguments as in the proof of Theorem 3.6 in Dahlhaus (1997) we obtain

max
j=1,...,M

∣∣Lµ̂N,k(θk, uj)− LµN,k(θk, uj)∣∣ ≤ Π1,T + Π2,T ,

where

Π1,T = C max
t=1,...,T

max
q=1,...,N

sup
θk∈ΘR,k

∣∣∣ ∫ π

−π
dX−µN (t/T, λ)f−1

θk
(λ)

q−1∑
s=0

eisλ dλ
∣∣∣

×
(

max
t=1,...,T

∣∣∣{µ( t− 1

T

)
− µ̂

( t− 1

T

)}
−
{
µ
( t
T

)
− µ̂

( t
T

)}∣∣∣+ max
t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣/N)

Π2,T = C sup
θk∈ΘR,k

|f−1
θk

(λ)| max
t=1,...,T

∣∣µ(t/T )− µ̂(t/T )
∣∣2
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and C denotes a positive constant. By proceeding as in the proof of Theorem 5.2 one obtains

max
t=1,...,T

max
q=1,...,N

sup
θk∈ΘR,k

∣∣∣ ∫ π

−π
dX−µN (t/T, λ)f−1

θk
(λ)

q−1∑
s=0

eisλ dλ
∣∣∣ = o(N1/2+ε/2),

which implies (observing the assumptions (3.11) and (3.12))

max
j=1,...,M

sup
θk∈ΘR,k

∣∣Lµ̂N,k(θk, uj)− LµN,k(θk, uj)∣∣ = Op(N
−εT−1/2 +N ε−1) = oP (N−1/2+ε/2k1/2) (5.23)

under H0. Analogously we obtain

max
j=1,...,M

sup
θk∈ΘR,k

∥∥∇Lµ̂N,k(θk, uj)−∇LµN,k(θk, uj)∥∥2

= Op(k
1/2N−εT−1/2 + k1/2N ε−1) = oP (N−1/2+ε/2k1/2) (5.24)

under the null hypothesis. By using (5.23) and (5.24) instead of (5.15) and (5.16), assertion (5.18) follows by

the same arguments as given in the proof of Theorem 3.3. 2

5.4 Proof of Theorem 3.7

A second order Taylor expansion yields

E(µ̂L(t/T )) = µ(t/T ) +
µ′(t/T )

L

L−1∑
p=0

(−L/2 + 1 + p)/T +O(L2/T 2) = µ(t/T ) +O(1/T + L2/T 2).(5.25)

For ti ∈ {1, ..., T} the cumulants of order l ≥ 2

cum(µ̂L(t1/T ), µ̂L(t2/T ), ..., µ̂L(tl/T )) =
1

Ll

L−1∑
p1,...,pl=0

∞∑
m1,...,ml=0

ψt,T,m1 · · ·ψt,T,ml
cum(Zp1−m1 , ..., Zpl−ml

)

are bounded by

C

Ll

L−1∑
p1=0

∞∑
m1,...,ml=0
|mi−mi+1|≤L

1

(I(m1 · · ·ml))1−D ≤ C
lL1−l(1−D),

where we used the independence of the innovations, (2.3) and (2.4) and the last inequality follows by replacing

the sums by its corresponding approximating integrals and holds for some positive constant C (which is inde-

pendent of l and may vary in the following arguments). This yields that µ̂L(t/T ) estimates its true counterpart

at a pointwise rate of L1/2−D and we now continue by showing stochastic equicontinuity. The expansion (5.25)

and the bound C lL1−l(1−D) for the l-th cumulant (l ≥ 2) of µ̂L yield cuml(L
1/2−D−α/2(µ̂L(t1/T )−µ̂L(t2/T ))) ≤

(2C)lL−lα/2 for all ti ∈ {1, ..., T} and every α > 0, from which we get

E(Ll(1/2−D−α)(µ̂L(t1/T )− µ̂L(t2/T ))l) ≤ (2l)!C lL−lα/2 for all even l ∈ N and ti ∈ {1, ..., T}

[see the proof of Lemma 2.3 in Dahlhaus (1988) for more details]. By considering the order of the bias (5.25)

this yields

L1/2−D−α max
t=1,...,T

∣∣µ(t/T )− µ̂L(t/T )
∣∣ = op(1), for every α > 0,
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as in the proof of Theorem 5.2. Consequently (3.11) [under the conditions of part a)] and (3.14) [under the

conditions of part b)] follow. So it remains to show (3.12) in the case D = 0. For this purpose we define

∆(t/T ) =
{
µ
( t− 1

T

)
− µ̂L

( t− 1

T

)}
−
{
µ
( t
T

)
− µ̂L

( t
T

)}
,

and from (5.25) we obtainE(∆(t/T )) = O(T−1+L2/T 2). A simple calculation reveals cum(∆(t1/T ),∆(t2/T )) =

O(L−1T−1) (where the estimate is independent of ti) and with the Gaussianity of the innovations we get

cum(∆(t1/T ), ...,∆(tl/T )) = 0 for l ≥ 3. This yields, as above,

L1/2−αT 1/2 max
t=1,...,T

|∆(t/T )| = op(1)

for every α > 0, and completes the proof of Theorem 3.7. 2

6 Online supplement: Auxiliary results

Finally we state some lemmas which were employed in the above proofs.

Lemma 6.1. Suppose it is µ, ν, a, b ∈ R. Then there exists a constant C ∈ R such that the following holds:

a) If µ, ν > 0 and b > a, then

N−1∑
p=0

p−a≥1
−p+b≥1

1

(p− a)1−µ
1

(b− p)1−ν ≤
b−1∑

p=1+a

1

(p− a)1−µ
1

(b− p)1−ν ≤
C

(b− a)1−µ−ν . (7.1)

b) If 0 < µ, ν and 0 < 1− µ− ν, then it follows for |a+ b| > 0

N−1∑
p=1
p+b≥1
p−a≥1

1

(p+ b)1−µ
1

(p− a)1−ν ≤
∞∑
p=1
p+b≥1
p−a≥1

1

(p+ b)1−µ
1

(p− a)1−ν ≤
C

|a+ b|1−µ−ν
. (7.2)

c) If 0 < ν < 1− µ and y, z ≥ 1, then

∞∑
p=1+y

log(p)

p1−µ
1

(p− y)1−ν ≤
C log(y)

y1−µ−ν ,

∞∑
p=1

log(p+ z)

(p+ z)1−µ
1

p1−ν ≤
C log(z)

z1−µ−ν .

Proof: The proof can be found in Sen et al. (2013). 2

Lemma 6.2. For every T ∈ N, let ηT : [−π, π] 7→ R be a symmetric and twice continuously differentiable

function such that ηT = O(|λ|α) for some α ∈ (−1, 1) as |λ| → 0 (where the constant in the O(·) term is

independent of T ). Then, for |h| → ∞, we have∫ π

−π
ηT (λ)eihλ dλ = O

( 1

|h|1+α

)
uniformly in T .
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Proof: The assertion follows from Lemma 4 and Lemma 5 in Fox and Taqqu (1986). 2

Lemma 6.3. If Assumption 2.1 holds, then

(i)
1

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=0

M∑
j2=1

N≤|r+l−n+(j2−j1)N |
0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π
φT (uj1 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1 dλ1

∫ π

−π
φT (uj2 , λ2)e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O

( 1

T

g2(k)

N1−2D−2ε

)
(ii)

1

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=0

M∑
j2=1

−(N−1)≤r+l−n+(j2−j1)N≤−1
0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π
φT (uj1 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1 dλ1

∫ π

−π
φT (uj2 , λ2)e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O

( 1

T

g2(k)

N1−2D−2ε

)
(iii)

1

N2

1

M2

M∑
j2=1

N−1∑
q=0

−1∑
r=−(N−1)

∞∑
l,m,n,o=0

M∑
j1=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π
φT (uj1 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1 dλ1

∫ π

−π
φT (uj2 , λ2)e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O

( 1

T

g2(k)

N1−2D−2ε

)
(iv)

1

N2

1

M2

M∑
j1=1

N−1∑
r,q=0

∞∑
l,m,n,o=0

M∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
N≤|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π
φT (uj1 , λ1)φT (uj2 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1 dλ1

∫ π

−π
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O

( 1

T

g2(k)

N1−2D−2ε

)
(v)

1

N2

1

M2

M∑
j1=1

N−1∑
r,q=0

∞∑
l,m,n,o=0

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π
φT (uj1 , λ1)φT (uj2 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1 dλ1

∫ π

−π
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 = O

( 1

T

g2(k)

N1−2D−2ε

)
(vi)

1

N2

1

M2

M∑
j1=1

N−1∑
q=0

∑
r∈Z
|r|≥N

∞∑
l,m,n,o=0

∞∑
j2=1

0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

ψl(uj1)ψm(uj1)ψn(uj2)ψo(uj2)

∫ π

−π
φT (uj1 , λ1)e−i(r−q+l−n+(j2−j1)N)λ1

∫ π

−π

[
φT (uj2 , λ2)− φT (uj2 , λ1)

]
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2 dλ1

= O
( 1

T

g2(k)

N1−2D−2ε

)
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Proof: Without loss of generality we restrict ourselves to a proof of part (i) and (v) and note that all other

claims are proven by using the same arguments.

Proof of (i): We use (2.4), (5.1) and Lemma 6.2 to bound the term in (i) (up to a constant) through

g2(k)

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=1

M∑
j2=1

N≤|r+l−n+(j2−j1)N |
0≤q+o−m+(j1−j2)N≤N−1
|l−n+(j2−j1)N |≤N−1
|o−m+(j1−j2)N |≤N−1

1≤|r−q+m−o+(j2−j1)N |

1

l1−d0(uj1 )

1

m1−d0(uj1 )

1

n1−D
1

o1−D

1

|r − q + l − n+ (j2 − j1)N |1+2d0(uj1 )−ε
1

|r − q +m− o+ (j2 − j1)N |1−ε
.

If the variables j1, o and m are fixed, it follows with the constraint 0 ≤ q + o −m + (j1 − j2)N ≤ N − 1 that

there are at most two possible values for j2 such that the resulting term is non vanishing. We now discuss for

which combinations of j1 and j2 the above expression is maximized and then restrict ourselves to the resulting

pair (j1, j2).

If j1 and j2 are given, the variables l,m, n, o can only be chosen such that |l − n + (j2 − j1)N | ≤ N − 1 and

|o − m + (j1 − j2)N | ≤ N − 1 are fulfilled. Therefore, the possible values of the fractions (|r − q + l − n +

(j2− j1)N |)−1(|r− q+m− o+ (j2− j1)N |)−1 are the same for any combination of j1 and j2. Consequently, in

order to maximize the term above we need to maximize l−1d0(uj1 )m−1+d0(uj1 )n−1+Do−1+D, which is achieved

by the choice j1 = j2 [since then l,m, n, o can be jointly taken as small as possible due to the constraints

|l − n + (j2 − j1)N | ≤ N − 1 and |o −m + (j1 − j2)N | ≤ N − 1]. Hence we can bound that above expression

(up to a constant) by

g2(k)

N2

1

M2

M∑
j1=1

N−1∑
q,r=0

∞∑
l,m,n,o=1
N≤|r+l−n|
|l−n|≤N−1
|o−m|≤N−1

1≤|r−q+m−o|

1

l1−d0(uj1 )

1

m1−d0(uj1 )

1

n1−D
1

o1−D
1

|r − q + l − n|1+2d0(uj1 )−ε
1

|r − q +m− o|1−ε
.

By setting g := r + l − n and s := q + o−m this term can be written as

g2(k)

N2

1

M2

M∑
j1=1

N−1∑
q,r,s=0
1≤|r−s|

∑
g∈Z
|g|≥N

∞∑
m,n=1

1≤g−r+n
1≤s−q+m
|g−r|≤N−1

1

(g − r + n)1−d0(uj1 )

1

m1−d0(uj1 )

1

n1−D

× 1

(s− q +m)1−D
1

|g − q|1+2d0(uj1 )−ε
1

|r − s|1−ε

Through an repeated application of (7.1) and (7.2) the claim now follows.

Proof of (v): By setting

f(uj1 , uj2 , λ) :=
1

2π

∞∑
l,n=0

ψl(uj1)ψn(uj2)e−i(l−n)λ.
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we can write the term in (v) as

2π

N2

1

M2

M∑
j1=1

N−1∑
r,q=0

∞∑
m,o=0

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1
|o−m+(j1−j2)N |≤N−1

ψm(uj1)ψo(uj2)

×
∫ π

−π
φT (uj1 , λ1)φT (uj2 , λ1)f(uj1 , uj2 , λ1)e−i(r−q+(j2−j1)N)λ1 dλ1

∫ π

−π
e−i(r−q+m−o+(j2−j1)N)λ2 dλ2.

and by integrating over λ2 this is the same as

4π2

N2

1

M2

M∑
j1=1

N−1∑
q=0

∞∑
m,o=0

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1
|o−m+(j1−j2)N |≤N−1

ψm(uj1)ψo(uj2)

∫ π

−π
φT (uj1 , λ1)φT (uj2 , λ1)f(uj1 , uj2 , λ1)e−i(o−m)λ1 dλ1.

By (5.1) and Lemma 6.2 this sum can be bounded by

Cg2(k)

N2

1

M2

M∑
j1=1

N−1∑
q=0

∞∑
m,o=1

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1
|o−m+(j1−j2)N |≤N−1

1

m1−d0(uj1 )

1

o1−d0(uj1 )

1

|o−m|1+d0(uj1 )+d0(uj2 )−2ε

≤ Cg2(k)

N2

1

M2

M∑
j1=1

N−1∑
q=0

∞∑
m,o=1

M∑
j2=1

|j1−j2|≥1
0≤q+o−m+(j1−j2)N≤N−1
|o−m+(j1−j2)N |≤N−1

1

m1−D
1

o1−D
1

|o−m|1−2ε
.

As in the proof of (i) we can argue that there are at most two possible values for j2 if o,m and j1 are chosen

and that the expression is maximized for |j1 − j2| = 1. Therefore we can bound the above expression up to a

constant through

g2(k)

N2

1

M

∑
κ∈{−1,1}

N−1∑
q=0

∞∑
m,o=1

0≤q+o−m+κN≤N−1
|o−m+κN |≤N−1

1

m1−D
1

o1−D
1

|o−m|1−2ε
.

By setting p := o−m+ κN the claim follows with (7.2). 2

35


