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Abstract

In this paper we consider the problem of measuring stationarity in locally stationary long-

memory processes. We introduce an L2-distance between the spectral density of the locally

stationary process and its best approximation under the assumption of stationarity. The dis-

tance is estimated by a numerical approximation of the integrated spectral periodogram and

asymptotic normality of the resulting estimate is established. The results can be used to con-

struct a simple test for the hypothesis of stationarity in locally stationary long-range dependent

processes. We also propose a bootstrap procedure to improve the approximation of the nominal

level and prove its consistency. Throughout the paper, we will work with Riemann sums of a

squared periodogram instead of integrals (as it is usually done in the literature) and as a by-

product of independent interest it is demonstrated that the two approaches behave differently

in the limit.

AMS subject classification: 62M10, 62M15, 62G10

Keywords and phrases: spectral density, long-memory, non-stationary processes, goodness-of-fit

tests, empirical spectral measure, integrated periodogram, locally stationary process, bootstrap

1 Introduction

The assumption of (second-order) stationarity is quite common in the analysis of time series data

like wind speeds, computer network traffic or stock returns. This condition allows for a well

developed statistical analysis, and there exist numerous books and articles dealing with parameter

estimation or forecasting techniques. However, under the assumption of stationarity many real

world phenomena can only be described by complicated and less intuitive models. A typical example
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Figure 1: Left panel: log-returns of the IBM stock between June 9th 2004 and July 24th 2012,

middle panel: ACF of the log-returns Xt, right panel: ACF of the squared returns X2
t

can be found in the left panel of Figure 1 which shows 2048 log-returns of the IBM stock between

June 9th 2004 and July 24th 2012. We observe that the autocovariance function (ACF) γ(k) =

Cov(X0, Xk) of the log-returns Xt is converging to zero very “fast” as k →∞, while this is not the

case for the ACF of the squared returns X2
t [see the middle and right panel in Figure 1]. The latter

effect serves as the usual motivation to employ stationary long-memory models in the analysis of

stock volatilities [see Breidt et al. (1998)]. This means that stationary processes satisfy

γ(k) ∼ Ck2d−1, k →∞ (1.1)

for some d ∈ (0, 0.5), which is called the long-memory parameter. Examples which fit into this

framework are the well-known FARIMA(p, d, q)-models introduced by Granger and Joyeux (1980)

and Hosking (1981). However, these kinds of processes are not very intuitive and it was suggested

by several authors that one should use simple but non-stationary “short-memory” models instead

[see for example Mikosch and Starica (2004), Starica and Granger (2005), Fryzlewicz et al. (2006)

or Chen et al. (2010) among others]. Therefore an important question of interest in this context is,

if the data should be analyzed by a stationary long-range dependent model or by a non-stationary

“short-memory” model.

In the present paper we propose a measure of stationarity in long-range dependent locally stationary

processes, which is used for the construction of a consistent test for the hypothesis of stationarity.

Since the assumption of stationarity is crucial in the application of various statistical tools, there

exist several procedures to validate this condition in the context of short-memory processes. A first

test for stationarity in locally stationary processes [as introduced by Dahlhaus (1997)] was proposed

by von Sachs and Neumann (2000) and is based on the estimation of wavelet coefficients by a

localized version of the periodogram. Paparoditis (2009, 2010) suggested an L2-distance between

the estimated spectral densities under the assumptions of stationarity and of local stationarity, and

Dwivedi and Subba Rao (2010) developed a Portmanteau-type test statistic to detect deviations

from stationarity. Besides the choice of a window width for the localized periodogram, which is

inherent in essentially any statistical inference for locally stationary processes, all these methods

require the choice of at least one additional smoothing parameter, such as the order of the wavelet
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expansion, a bandwidth for the estimation of the spectral density or the order in a Portmanteau-

type test. Dette et al. (2011a) developed tests for stationarity in the framework of locally stationary

processes which only require the choice of one regularization parameter, namely the window length

for the localized periodogram in the estimation procedure. These authors considered the L2-

distance

D2 :=

∫ 1

0

∫ π

−π

(
f(u, λ)−

∫ 1

0
f(v, λ)dv

)2

dλdu (1.2)

between the time varying spectral density f(u, λ) and its approximation λ 7→
∫ 1
0 f(v, λ)dv through

a spectral density corresponding to a stationary process. It is easy to see that the process is

stationary (i.e. the time varying spectral density does not depend on u) if and only if D2 = 0, and

D2 can be considered as a measure of deviation from stationarity in the frequency domain. This

quantity corresponds to the measure used in Paparoditis (2009), but unlike to this author, Dette

et al. (2011a) estimated D2 directly via Riemann sums of the (squared) local periodogram instead

of a smoothed local periodogram and thus avoided the choice of a smoothing parameter. Preuß

et al. (2012) proposed an alternative measure for deviations from stationarity which is based on

the Kolmogorov-Smirnov distance

DKS := sup
(v,ω)∈[0,1]2

1

π

∣∣∣∫ v

0

∫ πω

−πω
f(u, λ)dλdu− v

∫ πω

−πω

∫ 1

0
f(u, λ)dudλ

∣∣∣ (1.3)

[see also Dahlhaus (2009)]. Both approaches have their pros and cons. In particular tests based on

the distance (1.3) are
√
T -consistent (here T denotes the sample size). On the other hand it is well

known that - although such tests are consistent against alternatives converging to the null hypothesis

at a parametric rate - Kolmogorov-type and related tests greatly weigh down contributions from

high frequency components [see Ghosh and Huang (1991), Eubank and LaRiccia (1992) or Fan

(1996)]. Moreover, the limiting distribution of Kolmogorov-Smirnov-type test statistics is usually

not known. In principle this problem can be solved by bootstrap methods. However in many cases

this yields to a loss of power. On the other hand, tests based on the L2-approach can often use

critical values from the standard normal distribution.

As all procedures which have been suggested so far for discriminating between stationarity and non-

stationarity, the tests proposed by Dette et al. (2011a) and Preuß et al. (2012) are only applicable

to short-memory processes, and the development of a corresponding methodology in the context of

long-range dependence is missing. In fact, although stationary long-memory models are employed

numerously in practice, there do not exist many tests for the hypothesis of stationarity which

include these processes. Berkes et al. (2006), Sibbertsen and Kruse (2009) and Dehling et al.

(2011) consider CUSUM and Wilcoxon type tests to discriminate between long-range dependence

and one change in mean. However a change with respect to the mean is of course only the simplest

possible deviation from stationarity and there is particular interest in measuring deviations in the

dependency structure over time as well.

Recently, Preuß and Vetter (2012) developed a test for stationarity which includes the long-range

dependent case and is based on the distance (1.3). As mentioned in the previous paragraph there
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exist several situations where this approach is not the best and for this reason we consider in this

paper an alternative test which is based on the measure defined in (1.2). For this purpose, we

estimate the integrals in the distance D2 in (1.2) by Riemann sums where the unknown spectral

densities are replaced by periodograms. For the resulting statistic we will show that an appro-

priately standardized statistic converges to a standard normal distribution if the (possibly time

varying) long-memory parameter d(u) is smaller than 1/8. These results are used to develop a

bootstrap procedure for the approximation of the limit distribution and to prove its consistency in

the general case.

Although that the proof of asymptotic normality seems to be more of theoretical nature, because the

bootstrap procedure derived in the second part of the paper can in principle also be applied in the

case d(u) < 1/8, these results are of interest from several perspectives. Firstly, several arguments

used in the proof of asymptotic normality are also required in the proof of consistency of the

bootstrap procedure and easier illustrated in the unconditional case. Secondly, and most important,

the estimate D̂2
T of D2 is based on estimates of the integrated and integrated squared spectral

density
∫ 1
0 f(u, λ) du and

∫ 1
0

∫ π
−π f

2(u, λ) dλ du, respectively. For this purpose we use Riemann

sums of the squared periodogram instead of not computable integrals as it is usually done in the

literature [see Taniguchi (1980), Fox and Taqqu (1987) and Palma and Olea (2010) among others].

Although one might expect that both estimators exhibit a similar behavior with respect to weak

convergence, it is demonstrated in Section 3 that this is not the case in the present context. A

similar observation was also made by Deo and Chen (2000) in the case of short-memory stationary

processes. To the best of our knowledge, even in the (much simpler) stationary case, Riemann sums

of a squared periodogram have not been considered in the literature for the long-range dependent

case.

The remaining part of this paper is organized as follows: In Section 2, we introduce the necessary

notation and define an empirical measure of stationarity. In Section 3, we prove that an appropri-

ately standardized version of this measure converges weakly to a standard normal distribution if

the time varying long-memory parameter is smaller than 1/8. In Section 4, we present a bootstrap

procedure to approximate the distribution of D̂2
T and prove its consistency. The finite sample prop-

erties are investigated in Section 5. Finally, we defer all technical details to appendices in Section

6 and 7.

2 Measuring stationarity in locally stationary long-memory pro-

cesses

In order to obtain a measure of stationarity including the long-range dependent case, we require a

set-up which is flexible enough to cover stationary long-memory processes and a reasonable time-

varying extension of it as well. For this reason, we consider the following theoretical framework of

a locally stationary long-memory process [similar approaches can be found in Beran (2009), Palma

and Olea (2010) and Roueff and von Sachs (2011)].

4



Assumption 2.1. Let {Xt,T }t=1,...,T denote a sequence of stochastic processes which have a MA(∞)

representation of the form

Xt,T =
∞∑
l=0

ψt,T,lZt−l, t = 1, . . . , T, (2.1)

such that

sup
T∈N

sup
t∈{1,...,T}

∞∑
l=0

ψ2
t,T,l <∞, (2.2)

where {Zt}t∈Z are independent and standard normal distributed random variables. We further

assume the following conditions.

1) There exist twice continuously differentiable functions ψl : [0, 1]→ IR (l ∈ ZZ) such that

sup
t=1,...,T

∣∣∣ψt,T,l − ψl(t/T )
∣∣∣ ≤ C

TI(l)1−d∞
∀l ∈ IN (2.3)

and

ψl(u) =
a(u)

I(l)1−d(u)
+O

(
1

I(l)2−d∞

)
(2.4)

holds uniformly in u as l → ∞, where d, a : [0, 1] → IR+ are twice differentiable functions,

C ∈ IR+ and d∞ = supu∈[0,1] d(u) are constants and I(x) := |x| · 1{x 6=0} + 1{x=0}.

2) The time varying spectral density

f(u, λ) :=
1

2π

∣∣∣ ∞∑
l=0

ψl(u) exp(−iλl)
∣∣∣2 (2.5)

is twice continuously differentiable on (0, 1) × (0, π). Moreover, f(u, λ) and all its partial

derivatives up to order two are continuous on [0, 1]× (0, π].

3) There exists a constant C ∈ IR+, which is independent of u and λ, such that for l 6= 0

sup
u∈(0,1)

|ψ′l(u)| ≤ C log |l|
|l|1−d∞

, (2.6)

sup
u∈(0,1)

|ψ′′l (u)| ≤ C log2 |l|
|l|1−d∞

. (2.7)

In addition, we assume

sup
u∈(0,1)

∣∣∣ ∂
∂u
f(u, λ)

∣∣∣ ≤ C log(λ)

λ2d∞
, (2.8)

sup
u∈(0,1)

∣∣∣ ∂2
∂u2

f(u, λ)
∣∣∣ ≤ C log2(λ)

λ2d∞
. (2.9)
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For the sake of a transparent notation, we will use C ∈ IR+ as a universal constant throughout this

paper. Note that the process is stationary if ψl,t,T = ψl for all l, t, T ∈ IN . Condition (2.2) ensures

that the infinite sum in (2.1) exists in the L2 sense, and (2.3) means that the process Xt,T can be

approximated by a stationary model on a small time interval. It is also worthwhile to mention that

the assumption of Gaussianity is only imposed here to simplify technical arguments [since they are

quite involved even in this case]; see Remark 3.5 for more details. Next, we consider the process

Xt(u) :=

∞∑
l=0

ψl(u)Zt−l (2.10)

in order to visualize some properties of a locally stationary long-memory process. Firstly, Xt(u)

is stationary for every fixed u ∈ [0, 1] and analogously to the stationary case, the condition (2.4)

implies the existence of bounded functions yi : [0, 1]→ R (i = 1, 2) such that

|Cov(Xt(u), Xt+k(u))| ∼ y1(u)

k1−2d(u)
as k →∞

and

f(u, λ) ∼ y2(u)

λ2d(u)
as λ→ 0; (2.11)

[see Palma and Olea (2010)]. Consequently, the autocovariance function γ(u, k) = Cov(X0(u), Xk(u))

is not absolutely summable and the time varying spectral density f(u, λ) has a pole at λ = 0 for

any u ∈ [0, 1].

As an example which fits in this theoretical set-up we consider the time varying FARIMA(p, d, q)

model defined by the equation

a(t/T,B)(1−B)d(t/T )Xt,T = b(t/T,B)Zt, t = 1, ..., T, (2.12)

where B denotes the backshift operator,

a(u, z) := 1−
p∑
j=1

aj(u)zj , b(u, z) := 1 +

q∑
j=1

bj(u)zj

for given functions aj , bj : [0, 1]→ R, and d : [0, 1]→ (0, d∞] is twice continuously differentiable with

d∞ < 1/2. It is shown in Preuß and Vetter (2012) that under certain regularity conditions on the

functions aj , bj , these equations have a locally stationary solution in the sense of Assumption 2.1. If

the functions aj , bj and d do not depend on u, (2.12) corresponds to the common FARIMA(p, d, q)

equation [see for example Palma (2007) for conditions for the existence of a solution], which is

included in our theoretical framework.

For the construction of an estimate of the quantity (1.2) we note that

D2 = 2πF1 − 4πF2, (2.13)

where

F1 :=
1

2π

∫ 1

0

∫ π

−π
f2(u, λ)dλdu, (2.14)
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F2 :=
1

4π

∫ π

−π

(∫ 1

0
f(u, λ)du

)2
dλ. (2.15)

Consequently, it follows from (2.11) that the distance D2 is only well defined if d∞ < 1
4 . We assume

without loss of generality that the sample size T can be decomposed into M blocks with length N

(i.e. T = NM) where N and M are positive integers and N is even. A rough estimator for the

time varying spectral density f(u, λ) is then given by the local periodogram at the rescaled time

point u ∈ [0, 1] which is defined by

IN (u, λ) :=
1

2πN

∣∣∣N−1∑
s=0

XbuT c−N/2+1+s,T exp(−iλs)
∣∣∣2,

where Xj,T = 0 for j 6∈ {1, . . . , T} [see Dahlhaus (1997)]. This is the usual periodogram computed

from the observationsXbuT c−N/2+1,T , . . . , XbuT c+N/2,T , and it can be shown that it is asymptotically

unbiased for the time-varying spectral density f(u, λ) if N →∞ and N = o(T ). However, IN (u, λ)

is not consistent just as the usual periodogram. In addition, IN (u, λ)2 is an unbiased (but not

consistent) estimate of the quantity 2f2(u, λ) instead of f2(u, λ).

We now construct empirical versions of (2.14) and (2.15) by replacing the integrals through appro-

priate Riemann-sums and substitute f(u, λ) and f2(u, λ) by IN (u, λ) and IN (u, λ)2/2, respectively.

For this purpose, we define the rescaled mid-points of the M blocks

uj :=
tj
T

:=
N(j − 1) +N/2

T
(j = 1, . . . ,M)

and consider the statistics

F̂1,T :=
1

T

M∑
j=1

bN
2
c∑

k=1

IN (uj , λk,N )2, (2.16)

F̂2,T :=
1

N

bN
2
c∑

k=1

( 1

M

M∑
j=1

IN (uj , λk,N )
)2
, (2.17)

where λk,N = 2πk/N denote the usual Fourier frequencies. The empirical measure of stationarity

(1.2) is finally given by

D̂2
T := 2πF̂1,T − 4πF̂2,T . (2.18)

We would like to point out here that it is far from obvious that D̂2
T is a consistent estimator of D2. In

general it is not true that an integrated function of the periodogram converges to the corresponding

integrated function of the spectral density. This - at a first glance - is a counterintuitive property

of the integrated periodogram and was already observed by Taniguchi (1980) in the context of

stationary short-memory processes. These problems are also visible here as well as we require a

multiple of IN (u, λ)2 to obtain an asymptotically unbiased estimator for f2(u, λ). In the following

section we will prove consistency of D̂2
T and study its weak convergence.
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3 Consistency and weak convergence

Throughout this paper, the symbols
P−−→ and

D−−→ denote convergence in probability and weak

convergence, respectively. In order to specify the bias of F̂1,T and F̂2,T we define

F1,T :=
1

2πM

M∑
j=1

∫ π

−π
f2(uj , λ) dλ, F2,T :=

1

4π

∫ π

−π

( 1

M

M∑
j=1

f(uj , λ)
)2
dλ,

and obtain the following results.

Theorem 3.1. Suppose Assumption 2.1 holds with supu∈[0,1] d(u) < 1/4 and that the conditions

N →∞, N

T
→ 0 (3.1)

are satisfied. Then F̂1,T
P−−→ F1, F̂2,T

P−−→ F2 and in particular

D̂2
T
P−−→ D2

as T →∞.

Theorem 3.2. Suppose Assumption 2.1 holds with d∞ = supu∈[0,1] d(u) < 1/8 and that the condi-

tions

N →∞, N

T
→ 0,

√
T

N1−4d∞ → 0 (3.2)

are satisfied. Then as T →∞ we have

√
T
{

(F̂1,T , F̂2,T )T − (F1,T , F2,T + dN,T )T −CT

} D−−→ N (0,Σ),

where the covariance matrix Σ and the constant dN,T are given by

Σ =

 5
π

∫ π
−π
∫ 1
0 f

4(u, λ)dudλ 2
π

∫ π
−π

(∫ 1
0 f(u, λ)du

∫ 1
0 f

3(u, λ)du
)
dλ

2
π

∫ π
−π

(∫ 1
0 f(u, λ)du

∫ 1
0 f

3(u, λ)du
)
dλ 1

π

∫ π
−π

((∫ 1
0 f(u, λ)du

)2 ∫ 1
0 f

2(u, λ)du
)
dλ

(3.3)

dN,T =
1

4πM2

M∑
j=1

∫ π

−π
f2(uj , λ) dλ, (3.4)

respectively, and the vector CT ∈ IR2 is of order O
(
N2/T 2 + log(N)/(MN1−4d∞)

)
. In particular,

this term vanishes if the functions ψl(u) are independent of u for all l ∈ ZZ [i.e. the spectral density

f(u, λ) of the underlying process Xt,T is independent of u].

A similar result for the short-memory situation has been derived by Dette et al. (2011a). In contrast

to their result, there appears an additional bias term CT in Theorem 3.2. This term is negligible

under the additional condition N2/T 3/2 → 0 which holds under the stronger restriction d∞ < 1/12

due to (3.2). On the other hand, under the null hypothesis of a time independent spectral density

H0 : f(u, λ) is independent of u, (3.5)
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we have that CT = 0 (this follows from the proof of Theorem 3.2 in the Appendix). Since the

covariance matrix (3.3) contains the integrated fourth power of the spectral density, we obtain

from (2.11) that Theorem 3.2 is not valid whenever d∞ ≥ 1/8. Writing (C1,T , C2,T )T := CT , a

straightforward application of the Delta-method yields the following result.

Corollary 3.3. Under the assumptions of Theorem 3.2, it holds

√
T
(
D̂2
T −D2

T + 4πdN,T + 4πC2,T − 2πC1,T

)
D−−→ N (0, τ2), (3.6)

where D2
T := 2πF1,T − 4πF2,T and the asymptotic variance is given by

τ2 := 20π

∫ π

−π

∫ 1

0
f4(u, λ)dudλ− 32π

∫ π

−π

(∫ 1

0
f(u, λ)du

∫ 1

0
f3(u, λ)du

)
dλ (3.7)

+16π

∫ π

−π

((∫ 1

0
f(u, λ)du

)2 ∫ 1

0
f2(u, λ)du

)
dλ.

Under the null hypothesis (3.5) we have D2
T = C1,T = C2,T = 0 and the asymptotic variance in

(3.7) reduces to τ2H0
:= 4π

∫ π
−π f

4(λ)dλ. The asymptotic bias 4πdN,T = 2πN
T F1,T can easily be

estimated by the statistic B̂T := 2πN
T F̂1,T and we infer from Theorem 3.2

√
T
(
B̂T − 4πdN,T

)
=

2πN

T

√
T
(
F̂1,T − F1,T

)
P−−→ 0.

Thus Slutzky’s Lemma together with (3.6) yields

√
T
(
D̂2
T + B̂T

)
D−−→ N (0, τ2H0

) (3.8)

under the null hypothesis. To construct an asymptotic level α-test for stationarity, it therefore

remains to estimate the variance τ2H0
in (3.8), and an estimator for this quantity is given by

τ̂2H0
:= 4π2τ̂21 with

τ̂21 :=
1

6T

bN
2
c∑

k=1

M∑
j=1

IN (uj , λk,N )4.

The consistency of this estimator follows from the next theorem.

Theorem 3.4. If the assumptions of Theorem 3.2 are satisfied, we have

τ̂21
P−−→ 1

π

∫ π

−π

∫ 1

0
f4(u, λ)dudλ.

Combining (3.8) with Theorem 3.4 yields

√
T
(
D̂2
T + B̂T

)/√
τ̂2H0

D−−→ N (0, 1) (3.9)

and therefore an asymptotic level α-test is obtained by rejecting the null hypothesis (3.5) whenever

√
T
(
D̂2
T + B̂T

)/√
τ̂2H0
≥ u1−α, (3.10)

where u1−α denotes the (1 − α)-quantile of the standard normal distribution. It follows from

Theorem 3.2 that this test is consistent, because the left hand side of (3.10) converges to infinity,

whenever there exists a λ̃ ∈ [−π, π] such that the function u 7→ f(u, λ̃) is not constant.
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Remark 3.5. If the innovation process (Zt)t∈Z in (2.1) is not Gaussian, it can be shown that

Corollary 3.3 is still valid where the asymptotic variance τ2 in (3.7) has to be replaced by

τ2g = τ2 +
κ4
κ22

{
4

∫ 1

0

(∫ π

−π
f2(u, λ) dλ

)2

du+ 4

∫ 1

0

(∫ π

−π
f(u, λ)

(∫ 1

0
f(ν, λ) dν

)
dλ

)2

du

−8

∫ 1

0

(∫ π

−π
f2(u, λ) dλ

∫ π

−π
f(u, λ)

(∫ 1

0
f(ν, λ) dν

)
dλ

)
du

}
and κ2 and κ4 denote the second and fourth cumulants of the innovation process, respectively. In

particular, under the null hypothesis of stationarity, it follows that τ2g = τ2 = τ2H0
and hence no

adjustments in the asymptotic level α-test in (3.10) are necessary to address non normal distributed

innovations.

Remark 3.6. We note that for locally stationary long-range dependent models the asymptotic

variances of the statistics

F̃1,T =
1

4πM

M∑
j=1

∫ π

−π
IN (uj , λ)2 dλ

and of F̂1,T , defined in (2.16), are different. In fact it follows by similar arguments as given in the

appendix that

lim
T→∞

T Var(F̃1,T ) =
14

3π

∫ π

−π

∫ 1

0
f4(u, λ)dudλ,

while

lim
T→∞

T Var(F̂1,T ) =
5

π

∫ π

−π

∫ 1

0
f4(u, λ)dudλ

by Theorem 3.2. Moreover, similar arguments as given in the proof of this statement show that

even in the stationary case the asymptotic variance of the statistic
∫ π
−π IT (λ)2 dλ and its discretized

version (2π/T )
∑T

k=1 IT (λk,T )2 are not the same (here IT (λ) denotes the usual periodogram and

λk,T = 2πk/T are the Fourier frequencies). Deo and Chen (2000) observed the same effect in the

context of stationary short-memory processes.

4 Critical values by resampling

We now consider the more general set-up with d∞ < 1
4 as specified in Assumption 2.1. We will show

that in this case a bootstrap procedure can be used to approximate the distribution of D̂2
T under

the null hypothesis (3.5). We employ the FARI(∞) bootstrap which was recently introduced by

Preuß and Vetter (2012) and fits an FARIMA(p, d, 0)-model to the data, where p = p(T ) converges

to infinity with increasing sample size T . To prove consistency of this procedure, we require the

following technical assumptions.
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Assumption 4.1. For the stationary process {Xt}t∈Z with strictly positive spectral density λ 7→∫ 1
0 f(u, λ)du, there exists a constant d ∈ (0, 1/4) such that the process

Yt = (1−B)dXt (4.1)

has an AR(∞)-representation of the form

Yt =
∞∑
j=1

ajYt−j + ZARt , (4.2)

where {ZARj }j∈Z denotes a Gaussian White Noise process with variance σ2 > 0 and the coefficients

in the representation (4.2) satisfy

∞∑
j=1

|aj ||j|7 <∞, (4.3)

1−
∞∑
j=1

ajz
j 6= 0 for |z| ≤ 1. (4.4)

Note that under the null hypothesis of a time independent spectral density, it follows that d = d∞ =

d(u) for all u ∈ [0, 1], but under the alternative we usually have d 6= d∞. The FARI(∞) bootstrap

incorporates the following steps: First we choose a p = p(T ) ∈ IN to construct an estimator, say d̂,

of the long-range dependence parameter d in model (4.1). Secondly we calculate an estimator of

(a1,p, ..., ap,p) = argmin
b1,p,...,bp,p

E

(
Yt −

p∑
j=1

bj,pYt−j

)2
, (4.5)

by fitting an AR(p)-model to the data. In order to describe the main idea of our procedure in more

detail, we introduce the “true” approximating process Y AR
t (p) by

Y AR
t (p) =

p∑
j=1

aj,pY
AR
t−j (p) + ZARt , (4.6)

where the parameters aj,p are defined in (4.5) and {ZARt }t∈Z is a Gaussian White Noise process

with mean zero and variance σ2p = E(Yt −
∑p

j=1 aj,pYt−j)
2. If p = p(T ) → ∞ the process Y AR

t (p)

approximates Yt and therefore (1−B)−dY AR
t (p) is “close” to the stationary process Xt whose spec-

tral density is given by λ 7→
∫ 1
0 f(u, λ)du. Under the null hypothesis of stationarity, this function

coincides with the spectral density of {Xt,T }t=1,...,T . Hence, observing the data X1,T , ..., XT,T , the

FARI(∞) bootstrap precisely works as follows:

1) Choose p = p(T ) ∈ IN and calculate θ̂T,p = (d̂, σ̂2p, â1,p, ..., âp,p) as the minimizer of

1

T

T/2∑
k=1

(
log fθp(λk,T ) +

IT (λk,T )

fθp(λk,T )

)
,

11



where θp = (d, σ2p, a1,p, ..., ap,p),

IT (λ) =
1

2πT

∣∣∣ T∑
t=1

Xt,T exp(−iλt)
∣∣∣2

is the usual periodogram, and

fθp(λ) =
|1− exp(−iλ)|−2d

2π
×

σ2p
|1−

∑p
j=1 aj,p exp(−iλj)|2

is the spectral density of a stationary FARIMA(p, d, 0)-model. Note that the estimator θ̂T,p

is the classical Whittle estimator of a stationary process [see Whittle (1951)].

2) Calculate Yt,T = (1 − B)d̂Xt,T for t = 1, ..., T and simulate a pseudo-series Y ∗1,T , ..., Y
∗
T,T

according to the model

Y ∗t,T = Yt,T ; t = 1, ..., p,

Y ∗t,T =

p∑
j=1

âj,pY
∗
t−j,T + σ̂pZ

∗
j , p < t ≤ T,

where Z∗j denotes an independent sequence of standard normal distributed random variables.

3) Create the pseudo-series X∗1,T , ..., X
∗
T,T from the equation

X∗i,T = (1−B)−d̂Y ∗i,T (4.7)

and compute D̂2,∗
T in the same way as D̂2

T where the original observations X1,T , ..., XT,T are

replaced by the bootstrap replicates X∗1,T , ..., X
∗
T,T .

Our main theorem in this section describes the theoretical properties of this procedure.

Theorem 4.2. Assume that the null hypothesis (3.5) holds and let Assumption 2.1 and 4.1 be

fulfilled. Furthermore, suppose that the conditions

N →∞, N

T
→ 0,

T

N1+δ
→ 0 (4.8)

are satisfied for some 0 < δ < 1/2, and assume for the growth rate (rate of convergence) of p = p(T )

the following:

i) There exist sequences pmax(T ) ≥ pmin(T )
T→∞−−−−−→∞ such that p(T ) ∈ [pmin(T ), pmax(T )],

p9max(T ) log(T )3N δT−1 = O(1), (4.9)
√
Tp−9min(T )/

√
log(T ) = o(1). (4.10)

ii) The condition

||θ̂T,p − θp||∞ = OP

(√
log(T )

T

)
(4.11)

is fulfilled uniformly with respect to p, where θ̂T,p denotes the estimator used in step 1) of the

bootstrap procedure and θp = (dp, σ
2
p, a1,p, ..., ap,p) are the corresponding “true” parameters.
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Then there exist random variables D̂2
T,a and D̂2,∗

T,a such that

(a) D̂2
T,a
D
= D̂2,∗

T,a,

(b) Var(D̂2
T )−1/2

(
D̂2
T − D̂2

T,a

)
= oP (1),

(c) Var(D̂2,∗
T )−1/2

(
D̂2,∗
T − D̂

2,∗
T,a

)
= oP (1),

(d) E
∣∣D̂2,∗

T,a

∣∣ = O

(
Nmax(4d−1/2,0)

√
T

+

√
log(N)1{d=1/8}√

T
+

1

N1−4d

)
.

The estimate in (d) also holds if the null hypothesis (3.5) is not satisfied.

Note that conditions like (4.9)-(4.11) are standard in the context of parametric bootstraps [see for

example Berg et al. (2010) or Kreiß et al. (2011)] and a detailed discussion of them is given in Preuß

and Vetter (2012). We now obtain an asymptotic level α-test based on D̂2
T as follows: Calculate B

bootstrap replicates D̂2,∗
T , denote by (D̂2,∗

T )T,1, ..., (D̂
2,∗
T )T,B the resulting order statistic and reject

the null hypothesis whenever

D̂2
T > (D̂2,∗

T )T,b(1−α)Bc. (4.12)

Theorem 4.2 and the argumentation in Paparoditis (2010) indicate that this procedure is valid

for obtaining an asymptotic level α-test. In order to prove this more formally, we follow Bickel

and Freedman (1981) by considering the Mallow metric d2(F,G) = inf
√
E(X − Y )2 between two

distributions F and G, where the infimum is taken over all pairs (X,Y ) of random variables with

marginal distributions F and G. Theorem 4.2 then yields the following result which states that the

test (4.12) has, in fact, asymptotic level α.

Theorem 4.3. Suppose the null hypothesis (3.5) and the assumptions of Theorem 4.2 are satisfied.

Then, as T →∞, the Mallow distance d2 between the distributions of the random variables

D̂2
T /

√
Var(D̂2

T ) and D̂2,∗
T /

√
Var(D̂2,∗

T )

converges to zero in probability.

Consistency under the alternative follows since Theorem 4.2 d) yields that each bootstrap statistic

D̂2,∗
T converges to zero while D̂2

T exceeds some positive constant (for T sufficiently large) due to

Theorem 3.1.

5 Finite sample properties

In this section we examine the finite sample properties of the proposed decision rule (4.12). An

important problem is the choice of the window length N for the calculation of the local periodogram

and the choice of the AR parameter p in the bootstrap procedure. Throughout this section we

choose p as the minimizer of the AIC criterion [see Akaike (1973)], which is defined by

p̂ = argminp
2π

T

T/2∑
k=1

(
log fθ̂(p)(λk,T ) +

IT (λk,T )

fθ̂(p)(λk,T )

)
+
p

T
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in the context of stationary processes due to Whittle (1951) [here fθ̂(p) is the spectral density of

the fitted stationary FARIMA(p, d, 0) process and IT is the usual stationary periodogram]. We

therefore restrict ourselves to an analysis of the sensitivity with respect to N in the following, and

it will turn out that the test (4.12) using the FARI(∞) bootstrap exhibits a remarkable robustness

with respect to the choice of N . All reported results of this section are based on 1000 simulation

runs and 200 bootstrap replications.

5.1 Size of the test

In order to investigate the approximation of the nominal level we simulate data from the

FARIMA(1, d, 0) model

(1− φB)(1−B)dXt = Zt (5.1)

and the FARIMA(0, d, 1) process

(1−B)dXt = (1 + θB)Zt (5.2)

for different values of φ, θ and d where the random variables Zt are independent standard normal

distributed. The rejection probabilities for the bootstrap test (4.12) are displayed in Table 1–4

where d ∈ {0.1, 0.2}. We observe a very precise approximation of the nominal level in nearly all

cases which is rather robust with respect to different choices of the parameter M and N .

In order to study the power of the test we consider the following alternatives

(1−B)dXt,T = Zt + 0.8 cos (1.5− cos(4πt/T ))Zt−1, (5.3)

(1− 0.6 sin(4πt/T )B) (1−B)dXt,T = Zt, (5.4)

(1−B)dXt,T =
√

sin(πt/T )Zt, (5.5)

where d = 0.2. These kinds of alternatives were investigated by several authors in the context

of locally stationary short-memory processes [see Paparoditis (2010) and Dahlhaus (1997)]. The

rejection frequencies for the bootstrap test (4.12) are depicted in Figure 2–4 for different combi-

nations of T and N . Additionally, the results for the Kolmogorov-Smirnov approach of Preuß and

Vetter (2012) are presented. We observe that the new procedure clearly outperforms the test of

Preuß and Vetter (2012) for the models (5.3) and (5.4) while the Kolmogorov-Smirnov test works

better for the process (5.5). In addition, we observe that the new decision rule is less sensitive with

respect to different choices of N than the test based on the Kolmogorov-Smirnov distance.

Acknowledgements. This work has been supported in part by the Collaborative Research Center

“Statistical modeling of nonlinear dynamic processes” (SFB 823, Teilprojekt A1, C1) of the German

Research Foundation (DFG).
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φ = −0.9 φ = −0.5 φ = 0 φ = 0.5 φ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

A1 128 16 8 .126 .182 .072 .123 .036 .074 .073 .126 .084 .147

A2 128 8 16 .140 .200 .085 .132 .041 .090 .073 .128 .084 .118

B1 256 32 8 .065 .135 .064 .119 .042 .088 .062 .113 .075 .147

B2 256 16 16 .080 .132 .056 .108 .040 .082 .051 .109 .062 .109

B3 256 8 32 .068 .111 .045 .095 .046 .097 .072 .147 .049 .114

C1 512 64 8 .054 .109 .049 .106 .039 .089 .049 .114 .082 .134

C2 512 32 16 .038 .093 .043 .086 .039 .085 .059 .108 .065 .132

C3 512 16 32 .061 .095 .051 .102 .045 .081 .059 .109 .043 .104

C4 512 8 64 .060 .107 .053 .098 .045 .083 .060 .116 .042 .093

D1 1024 128 8 .039 .104 .042 .093 .042 .085 .035 .093 .079 .132

D2 1024 64 16 .053 .104 .058 .097 .050 .110 .057 .101 .068 .126

D3 1024 32 32 .033 .076 .058 .114 .046 .086 .070 .107 .062 .115

D4 1024 16 64 .046 .089 .036 .091 .044 .084 .054 .109 .044 .099

D5 1024 8 128 .037 .073 .041 .091 .041 .091 .061 .131 .045 .097

Table 1: Rejection probabilities of the bootstrap test (4.12) under H0 for different choices of T,N

and M. The data was generated according to model (5.1) with d = 0.1 and different values for φ.

φ = −0.9 φ = −0.5 φ = 0 φ = 0.5 φ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

A1 128 16 8 .107 .164 .063 .114 .050 .108 .072 .121 .108 .166

A2 128 8 16 .106 .160 .064 .118 .041 .085 .073 .124 .078 .138

B1 256 32 8 .064 .123 .048 .104 .042 .094 .075 .131 .079 .137

B2 256 16 16 .058 .125 .051 .101 .040 .101 .065 .112 .055 .116

B3 256 8 32 .079 .124 .047 .089 .051 .091 .053 .106 .050 .105

C1 512 64 8 .050 .093 .048 .090 .051 .103 .047 .104 .075 .133

C2 512 32 16 .047 .104 .044 .087 .039 .085 .053 .109 .068 .124

C3 512 16 32 .042 .097 .044 .087 .057 .106 .046 .105 .060 .104

C4 512 8 64 .050 .102 .053 .101 .052 .088 .058 .121 .062 .114

D1 1024 128 8 .044 .090 .046 .102 .051 .107 .039 .092 .076 .140

D2 1024 64 16 .043 .082 .040 .088 .050 .098 .046 .098 .060 .106

D3 1024 32 32 .045 .089 .054 .097 .057 .103 .060 .104 .066 .115

D4 1024 16 64 .044 .087 .038 .087 .049 .094 .059 .106 .051 .101

D5 1024 8 128 .041 .082 .041 .089 .038 .086 .061 .103 .054 .103

Table 2: Rejection probabilities of the bootstrap test (4.12) under H0 for different choices of T,N

and M. The data was generated according to model (5.1) with d = 0.2 and different values for φ.
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θ = −0.9 θ = −0.5 θ = 0 θ = 0.5 θ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

A1 128 16 8 .072 .116 .054 .107 .041 .085 .044 .088 .077 .123

A2 128 8 16 .068 .122 .054 .112 .059 .125 .073 .117 .070 .133

B1 256 32 8 .045 .100 .060 .101 .041 .081 .042 .082 .036 .084

B2 256 16 16 .053 .096 .058 .104 .045 .094 .045 .102 .060 .104

B3 256 8 32 .064 .123 .057 .113 .049 .101 .042 .092 .061 .130

C1 512 64 8 .043 .089 .043 .095 .044 .086 .045 .088 .041 .095

C2 512 32 16 .046 .109 .067 .112 .052 .093 .051 .096 .043 .086

C3 512 16 32 .048 .099 .055 .095 .062 .114 .050 .102 .051 .098

C4 512 8 64 .038 .097 .055 .100 .047 .100 .046 .093 .042 .092

D1 1024 128 8 .053 .103 .060 .099 .051 .099 .071 .118 .044 .094

D2 1024 64 16 .044 .100 .062 .124 .048 .090 .068 .119 .042 .093

D3 1024 32 32 .053 .107 .064 .116 .044 .082 .045 .094 .043 .098

D4 1024 16 64 .044 .096 .038 .084 .042 .093 .045 .087 .042 .087

D5 1024 8 128 .049 .109 .042 .085 .054 .109 .048 .083 .042 .096

Table 3: Rejection probabilities of the bootstrap test (4.12) under H0 for different choices of T,N

and M. The data was generated according to model (5.2) with d = 0.1 and different values for θ.

θ = −0.9 θ = −0.5 θ = 0 θ = 0.5 θ = 0.9

T N M 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

A1 128 16 8 .068 .112 .060 .103 .030 .081 .060 .108 .053 .111

A2 128 8 16 .060 .117 .051 .103 .061 .110 .062 .114 .068 .117

B1 256 32 8 .059 .122 .048 .102 .045 .094 .038 .078 .040 .083

B2 256 16 16 .053 .109 .041 .095 .047 .093 .040 .080 .048 .091

B3 256 8 32 .060 .100 .048 .098 .057 .119 .050 .092 .061 .106

C1 512 64 8 .059 .110 .064 .122 .052 .099 .056 .099 .055 .101

C2 512 32 16 .060 .122 .044 .107 .041 .103 .043 .113 .046 .086

C3 512 16 32 .061 .116 .056 .122 .049 .089 .046 .088 .052 .099

C4 512 8 64 .056 .095 .057 .118 .057 .110 .047 .100 .055 .102

D1 1024 128 8 .063 .125 .054 .102 .039 .086 .044 .101 .051 .098

D2 1024 64 16 .051 .109 .061 .112 .047 .107 .056 .106 .047 .100

D3 1024 32 32 .055 .092 .057 .111 .048 .095 .057 .106 .047 .119

D4 1024 16 64 .065 .124 .061 .116 .043 .092 .048 .087 .049 .098

D5 1024 8 128 .059 .116 .052 .095 .049 .093 .035 .075 .050 .115

Table 4: Rejection probabilities of the bootstrap test (4.12) under H0 for different choices of T,N

and M. The data was generated according to model (5.2) with d = 0.2 and different values for θ.
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Figure 2: Power of the test (4.12) and the Kolmogorov-Smirnov test of Preuß and Vetter (2012)

at 5% level for the model (5.3) under the scenarios A1-D5 from Table 1.

Figure 3: Power of the test (4.12) and the Kolmogorov-Smirnov test of Preuß and Vetter (2012)

at 5% level for the model (5.4) under the scenarios A1-D5 from Table 1.
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Figure 4: Power of the test (4.12) and the Kolmogorov-Smirnov test of Preuß and Vetter (2012)

at 5% level for the model (5.5) under the scenarios A1-D5 from Table 1.
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6 Appendix: technical details

In the following, we will state two results which will be central for the proof of the statements in

Sections 3 and 4.

Theorem 6.1. If Assumption 2.1 is satisfied with d∞ < 1/4, the following statements are correct.

a)
E
(
(F̂1,T , F̂2,T )T

)
= (F1,T , F2,T + dN,T )T + C̃T +O

( 1

N1−4d∞

)
,

where the vector C̃T ∈ IR2 is of order O
(
N2/T 2 + log(N)/(MN1−4d∞)

)
. In particular, this

term vanishes if the functions ψl(u) are independent of u for all l ∈ ZZ.

b) Cov
(
(F̂1,T , F̂2,T )T

)
= Σ̃T +O(T, d∞),

where

O(T, d∞) := O
( log(N)

N1−8d∞T

)
+O

(N2

T 3
+
N2+4d∞

T 3
1{ 1

8
≤d∞< 1

4
}

)
and Σ̃T is the same as the matrix Σ in (3.3) except that the integral

∫ 1
0 is replaced by 1

TM

∑M
j=1.

c) If d∞ < 1/8 and l1, l2 ∈ IN0 with l1 + l2 ≥ 3, then we have

cum(
√
T F̂1,T1Tl1 ,

√
T F̂2,T1Tl2) = O

(
T (1− l1+l2

2
)(1−8d∞)

)
,

where 1li ∈ IRli denotes a vector containing merely ones (i = 1, 2).

It follows by the same arguments as given in Section 4 of Preuß and Vetter (2012), that there exist

parameters ψ̂l,p such that the bootstrap process X∗t,T defined in (4.7) can be represented as

X∗t,T =
∞∑
l=0

ψ̂l,pZ
∗
t−l, (6.1)

where Z∗t are the innovations from part 2) of the bootstrap description. We now assume that the

null hypothesis (3.5) holds, and consider the process

X∗t,T,2 =

∞∑
l=0

ψlZ
∗
t−l, (6.2)

where the coefficients ψl = ψl(u) are the coefficients in (2.10). We then define D̂2,∗
T,2 as D̂2

T in

(2.18) whereby the random variables Xt,T are replaced by X∗t,T,2. The next theorem shows that the

random variable D̂2,∗
T can be approximated by D̂2,∗

T,2.

Theorem 6.2. Let α > 0 be fixed and denote with AT (α) the event where |d̂ − d| ≤ α/4. If

Assumption 2.1 and the inequality

|ψ̂l,p − ψl|l1−max(d̂,d) ≤ Cp
4 log(T )3/2√

T
∀l ∈ IN (6.3)

are satisfied, then

a) E

(
(D̂2,∗

T − D̂
2,∗
T,2)1AT (α)

)
= O

(
p4 log(T )3/2N4d−1+αT−1/2

)
,

b) Var
(

(D̂2,∗
T − D̂

2,∗
T,2)1AT (α)

)
= O

(
p8 log(T )3log(N)2Nmax(8d−1,0)+2αT−2

)
.
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6.1 Proof of Theorem 6.1:

Proof of part a): We define t̃j := tj − N/2 + 1, ψ̃l(uj,p) := ψl

(
t̃j+p
T

)
, Za,b := Za−N/2+1+b and

write similar to Dette et al. (2011b)

E[F̂1,T ] = E

( 1

T

M∑
j=1

bN
2
c∑

k=1

IN (uj , λk,N )2
)

=
1

2
E

( 1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

IN (uj , λk,N )2
)

=
1

2T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,N

ψt̃j+p,T,lψt̃j+q,T,mψt̃j+r,T,nψt̃j+s,T,oE[Ztj ,p−lZtj ,q−mZtj ,r−nZtj ,s−o]

= E1
N,T + E2

N,T +AN,T +BN,T ,

where we use the notation

E1
N,T =

1

2T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

ψl(uj)ψm(uj)ψn(uj)ψo(uj)e
−i(p−q+r−s)λk,N

(
E[Ztj ,p−lZtj ,q−m]E[Ztj ,r−nZtj ,s−o] +E[Ztj ,p−lZtj ,s−o]E[Ztj ,q−mZtj ,r−n]

)
,

E2
N,T =

1

2T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

ψl(uj)ψm(uj)ψn(uj)ψo(uj)

e−i(p−q+r−s)λk,NE[Ztj ,p−lZtj ,r−n]E[Ztj ,q−mZtj ,s−o],

AN,T =
1

2T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,NE[Ztj ,p−lZtj ,q−mZtj ,r−nZtj ,s−o]

{(
ψ̃l(uj,p)− ψl(uj)

)
ψ̃m(uj,q)ψ̃n(uj,r)ψ̃o(uj,s) + ψl(uj)

(
ψ̃m(uj,q)− ψm(uj)

)
ψ̃n(uj,r)ψ̃o(uj,s)

+ψl(uj)ψm(uj)
(
ψ̃n(uj,r)− ψn(uj)

)
ψ̃o(uj,s) + ψl(uj)ψm(uj)ψn(uj)

(
ψ̃o(uj,s)− ψo(uj)

)}
,

BN,T =
1

2T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,NE[Ztj ,p−lZtj ,q−mZtj ,r−nZtj ,s−o]

{(
ψt̃j+p,T,l − ψ̃l(uj,p)

)
ψ̃m(uj,q)ψ̃n(uj,r)ψ̃o(uj,s) + ψt̃j+p,T,l

(
ψt̃j+q,T,m − ψ̃m(uj,q)

)
ψ̃n(uj,r)ψ̃o(uj,s)

+ψt̃j+p,T,lψt̃j+q,T,m

(
ψt̃j+r,T,n − ψ̃n(uj,r)

)
ψ̃o(uj,s) + ψt̃j+p,T,lψt̃j+q,T,mψt̃j+r,T,n

(
ψt̃j+s,T,o − ψ̃o(uj,s)

)}
.

Note that BN,T corresponds to the error which occurs if the coefficients ψt,T,l are replaced by ψl(t/T )

and that AN,T contains the approximation error of ψl(t/T ) through ψl(tj/T ) with tj denoting the

midpoint of the j-th block. The following four statements conclude the proof for E[F̂1,T ]

E1
N,T =

1

2πM

M∑
j=1

∫ π

−π
f2(uj , λ) dλ+O

( 1

N1−4d∞

)
, (6.4)
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E2
N,T = O

( 1

N1−4d∞

)
, (6.5)

AN,T = O
( logN

MN1−4d∞

)
+O

(N2

T 2

)
, (6.6)

BN,T = O
( 1

T

)
. (6.7)

Proof of (6.4): Without loss of generality, we only consider the first summand in E1
N,T . Due to

the independence of the random variables Zt, we obtain that only those terms contribute to the

sum where the conditions 0 ≤ p = q + l −m ≤ N − 1 and 0 ≤ r = s+ n− o ≤ N − 1 are satisfied,

which implies the inequality max{|l −m|, |n − o|} ≤ N − 1. Thus, the first term in E1
N,T can be

expressed as

1

2T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

∞∑
l,m,n,o=0
|l−m|≤N−1
|n−o|≤N−1

ψl(uj)ψm(uj)ψn(uj)ψo(uj)e
−i(l−m+n−o)λk,N

×(N − |l −m|)(N − |n− o|)

=
1

2M

M∑
j=1

1∑
h=−1

1

(2πN)2

∞∑
l,m,n,o=0
|l−m|≤N−1
|n−o|≤N−1

l−m+n−o=hN

ψl(uj)ψm(uj)ψn(uj)ψo(uj)(N − |l −m|)(N − |n− o|),

where we used the well known identity

N−1∑
k=0

exp(−iλk,Nr) =

N if r = Nh for some h ∈ ZZ

0 else,
(6.8)

[note that we only have to consider three possible values of h since max{|l−m|, |n− o|} ≤ N − 1].

It is easy to see that

E1
N,T = E1

N,T,0 + E1
N,T,1 + E1

N,T,2 + E1
N,T,3

where

E1
N,T,0 =

1

2M

M∑
j=1

1

(2π)2

∞∑
l,m,n,o=0

l−m+n−o=0

ψl(uj)ψm(uj)ψn(uj)ψo(uj) =
1

4πM

M∑
j=1

∫ π

−π
f2(uj , λ) dλ,

E1
N,T,1 =

1

MN2

M∑
j=1

1∑
h=−1

∞∑
l,m,n,o=0
|l−m|≤N−1
|n−o|≤N−1

l−m+n−o=hN

ψl(uj)ψm(uj)ψn(uj)ψo(uj) (6.9)

×(−N |l −m| −N |n− o|+ |l −m||n− o|),

E1
N,T,2 =

1

M

M∑
j=1

∑
h∈{−1,1}

∞∑
l,m,n,o=0
|l−m|≤N−1
|n−o|≤N−1

l−m+n−o=hN

ψl(uj)ψm(uj)ψn(uj)ψo(uj), (6.10)
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E1
N,T,3 =

1

M

M∑
j=1

∞∑
l,m,n,o=0
N≤|l−m|
N≤|n−o|

l−m+n−o=0

ψl(uj)ψm(uj)ψn(uj)ψo(uj). (6.11)

In order to complete the proof of (6.4), it therefore suffices to demonstrate that the last three

expressions are of order O
(

1
N1−4d∞

)
. We commence with (6.9). Setting o = l −m + n − hN ≥ 0

and using (2.4), it follows that there exists a constant C ∈ IR such that

E1
N,T,1 ≤

C

MN

M∑
j=1

1∑
h=−1

∞∑
l,m,n=1

1≤|l−m−hN |≤N−1
1≤l−m+n−hN

1

l1−d∞
1

m1−d∞
1

n1−d∞
|l −m− hN |

(l −m+ n− hN)1−d∞
(6.12)

(note that all terms where one of the variables l,m, n or l −m + n − hN vanishes are of smaller

or the same order). This argument will be employed continuously throughout this proof without

mentioning it explicitly. Note that the summand |l−m| does not occur in the numerator of the above

expression due to the symmetry of |l−m| and |n−o| in (6.9), and that C ∈ IR+ denotes a universal

constant throughout the whole proof. Setting z := l−m−hN , we obtain |z| = |l−m−hN | ≤ N−1

and the expression on the right hand side of (6.12) can be written as

C

N

1∑
h=−1

∑
z∈ZZ

1≤|z|≤N−1

∞∑
m,n=1

1≤z+m+hN
1≤n+z

1

(z +m+ hN)1−d∞
1

m1−d∞
1

n1−d∞
|z|

(n+ z)1−d∞

(7.2)

.
1

N

1∑
h=−1

∑
z∈ZZ

1≤|z|≤N−1

|z|2d∞
|z + hN |1−2d∞

.
1

N1−2d∞

1∑
h=−1

∑
z∈ZZ

1≤|z|≤N−1

1

|z + hN |1−2d∞
.

1

N1−4d∞ ,

where an . bn means that an/bn is bounded by some finite constant for all n ∈ IN . By using (2.4),

(6.8), (7.2) and similar arguments, we obtain that (6.10) is bounded by

∑
h∈{−1,1}

∑
z∈ZZ

1≤|z|≤N−1

1

|z + hN |1−2d∞
1

|z|1−2d∞
(7.1),(7.2)

.
1

N1−4d∞ ,

and since (6.11) is shown analogously, we therefore conclude the proof of (6.4).

Proof of (6.5): The result follows by similar arguments as used in the treatment of (6.9)–(6.11).

Proof of (6.6): Without loss of generality, we only consider the first summand and replace

ψ̃m(uj,q)ψ̃n(uj,r)ψ̃o(uj,s) by ψm(uj)ψn(uj)ψo(uj) [the error due to this replacement is negligible,

which follows by analogous arguments as given for the term A
(2)
N,T,1 at a later stage of this proof].

Due to the independence of the random variables Zt, we obtain the sum of three terms [compare

the definition of E1
N,T for the first two summands and the definition of E2

N,T for the third one] and
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we restrict ourselves to the first one, i.e. we only consider

AN,T,1 :=
1

2T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,N

E[Ztj ,p−lZtj ,q−m]E[Ztj ,r−nZtj ,s−o]
(
ψ̃l(uj,p)− ψl(uj)

)
ψm(uj)ψn(uj)ψo(uj).

Using a Taylor expansion, we can write

ψ̃l(uj,p)− ψl(uj) = ψ
′
l(uj)

(−N/2 + 1 + p

T

)
+
ψ
′′
(ηl,j,p)

2

(−N/2 + 1 + p

T

)2
with ηl,j,p ∈ (uj −N/(2T ), uj +N/(2T )), and therefore AN,T,1 splits into two terms which will be

denoted by A
(1)
N,T,1 and A

(2)
N,T,1 in the following discussion. We start with the treatment of the first

summand. Employing the independence of the innovations we obtain that the indices corresponding

to non vanishing terms must satisfy q = p + m − l and n = o + r − s. Applying (6.8) afterwards

yields 0 ≤ m = l + r − s− hN with h ∈ {−1, 0, 1} and this combined with (2.4) and (2.6) implies

A
(1)
N,T,1 .

1

N2

1∑
h=−1

N−1∑
r,s=0

∞∑
l,o=1

1≤o+r−s
1≤l+r−s−hN

0≤|r−s−hN |≤N−1

log(l)

l1−d∞
1

(l + r − s− hN)1−d∞
1

(o+ r − s)1−d∞
1

o1−d∞

∣∣∣∣ N−1∑
p=0

0≤p+r−s−hN≤N−1

(−N/2 + 1 + p

T

)∣∣∣∣.
We restrict ourselves to the cases |r − s| ≥ 1 and |r − s − hN | ≥ 1 since the remaining terms are

of smaller order. A straightforward calculation yields∣∣∣∣ N−1∑
p=0

0≤p+q≤N−1

(−N/2 + 1 + p

T

)∣∣∣∣ (6.13)

=
N

2T
× 1{q=0} + min

(
N |q|
T

,
(N − |q|)|q|

T

)
O(1)× 1{1≤|q|≤N−1} (6.14)

and by using the second summand it follows that A
(1)
N,T,1 is bounded by

C

NT

1∑
h=−1

N−1∑
r,s=0

∞∑
l,o=1

1≤o+r−s
1≤l+r−s−hN

1≤|r−s−hN |≤N−1

log(l)

l1−d∞
1

(l + r − s− hN)1−d∞
1

(o+ r − s)1−d∞
1

o1−d∞
|r − s− hN |

.
log(N)

N1−2d∞T

N−1∑
r,s=0

∞∑
o=1

1≤o+r−s

1

(o+ r − s)1−d∞
1

o1−d∞
.

log(N)

N1−2d∞T

N−1∑
r,s=0

1

|r − s|1−2d∞
.

log(N)

MN1−4d∞

where we used Lemma 7.1c) and 7.1b) for the first and second inequality, respectively. Next, we

show that A
(2)
N,T,1 is of orderO(N2T−2), and for this reason we choose ε > 0 such that 1−4d∞−ε > 0.
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Using (2.4), (2.6), (2.7) and h ∈ {−1, 0, 1}, the claim then follows by a further application of Lemma

7.1b)

C

N2

N−1∑
r,s=0

∞∑
l,o=1

1≤o+r−s
1≤l+r−s−hN

log2(l)

l1−d∞
1

(l + r − s− hN)1−d∞
1

(o+ r − s)1−d∞
1

o1−d∞

×
N−1∑
p=0

0≤p+r−s−hN≤N−1

(−N/2 + 1 + p

T

)2

.
N

T 2

N−1∑
r,s=0

∞∑
l,o=1

1≤o+r−s
1≤l+r−s−hN

1

l1−d∞−ε
1

(l + r − s− hN)1−d∞
1

(o+ r − s)1−d∞
1

o1−d∞

.
N

T 2

N−1∑
r,s=0

1

|r − s− hN |1−2d∞−ε
1

|r − s|1−2d∞
.
N2

T 2
.

Proof of (6.7): The statement follows from (2.3) and similar arguments as given in the proofs of

(6.4) and (6.6).

In order to proof the assertion for F̂2,T , one proceeds in the same way and the details are omitted

for the sake of brevity. However it turns out that the expression corresponding to E2
N,T does not

vanish in this case and there appears an additional bias, which will be denoted by dN,T .

Proof of part b) We restrict ourselves to the proof of

Var(F̂1,T ) =
1

4
Var
( 1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

IN (uj , λk,N )2
)

=
5

π

1

TM

M∑
j=1

∫ π

−π
f4(uj , λ) dλ+O(T, d∞)

and recall the definition of the remainder

O(T, d∞) = O
( log(N)

N1−8d∞T

)
+O

(N2

T 3
+
N2+4d∞

T 3
1{ 1

8
≤d∞< 1

4
}

)
.

All other statements can be verified completely analogously and the details are omitted. By com-

bining the arguments from the proof of part a) and from Dette et al. (2011b), we obtain that

Var
( 1

T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

IN (uj , λk,N )2
)

= 32V ∗(ν
′
) + 8V ∗(ν

′′
) +O(T, d∞),

where

V ∗(ν
′
) =

1

T 2

M∑
j1,j2=1

bN
2
c∑

k1,k2=−bN−1
2
c

1

(2πN)4

N−1∑
p1,q1,r1,s1=0

N−1∑
p2,q2,r2,s2=0

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0
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ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

e−i(p1−q1+r1−s1)λk1e−i(p2−q2+r2−s2)λk2

E[Ztj1 ,p1−v1Ztj1 ,q1−w1 ]E[Ztj1 ,r1−x1Ztj2 ,p2−v2 ]E[Ztj1 ,s1−y1Ztj2 ,q2−w2 ]E[Ztj2 ,r2−x2Ztj2 ,s2−y2 ]

and

V ∗(ν
′′
) =

1

T 2

M∑
j1,j2=1

bN
2
c∑

k1,k2=−bN−1
2
c

1

(2πN)4

N−1∑
p1,q1,r1,s1=0

N−1∑
p2,q2,r2,s2=0

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

e−i(p1−q1+r1−s1)λk1e−i(p2−q2+r2−s2)λk2E[Ztj1 ,p1−v1Ztj2 ,p2−v2 ]E[Ztj1 ,r1−x1Ztj2 ,r2−x2 ]

E[Ztj1 ,q1−w1Ztj2 ,q2−w2 ]E[Ztj1 ,s1−y1Ztj2 ,s2−y2 ].

We start with V ∗(ν
′
). Because of the independence of the random variables Zt, the restrictions

p1 = q1 +v1−w1, p2 = r1 +v2−x1 +(j1−j2)N , q2 = s1 +w2−y1 +(j1−j2)N and s2 = r2 +y2−x2
are necessary for a non vanishing term. Consider h1, h2 ∈ {−1, 0, 1} and sum over k1, k2 by using

(6.8). Then, V ∗(ν
′
) can be written as

V ∗(ν
′
) =

1

T 2

M∑
j1,j2=1

bN
2
c∑

k1,k2=−bN−1
2
c

1

(2πN)4

N−1∑
q1,r1,s1,r2=0

∞∑
v1,w1,x1,y1=0

0≤q1+v1−w1≤N−1

∞∑
v2,w2,x2,y2=0

0≤r1+v2−x1+(j1−j2)N≤N−1
0≤s1+w2−y1+(j1−j2)N≤N−1

0≤r2+y2−x2≤N−1

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

e−i(v1−w1+r1−s1)λk1e−i(r1+v2−x1−s1−w2+y1−y2+x2)λk2

=
1

M2

M∑
j1,j2=1

1∑
h1,h2=−1

1

(2πN)4

N−1∑
r1,s1=0

∞∑
v1,w1,x1,y1=0

v1−w1+r1−s1=h1N
0≤|v1−w1|≤N−1

∞∑
v2,w2,x2,y2=0

r1+v2−x1−s1−w2+y1−y2+x2=h2N
0≤r1+v2−x1+(j1−j2)N≤N−1
0≤s1+w2−y1+(j1−j2)N≤N−1

0≤|y2−x2|≤N−1

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

(N2 −N |y2 − x2| −N |v1 − w1|+ |v1 − w1|y2 − x2|).

An application of (2.4) yields similar to the proof of part a) that the above expression is of order

O
(

1
N1−8d∞T

)
, if

(i) h1, h2 ∈ {−1, 1} [compare (6.10)],

(ii) j1 6= j2 [we prove this claim in Lemma 7.2 in the appendix since this kind of restriction did

not occur in the proof of part a)],

(iii) we drop −N |y2 − x2| −N |v1 − w1|+ |v1 − w1|y2 − x2| [compare (6.9)],

(iv) we drop 0 ≤ |v1 − w1| ≤ N − 1 and 0 ≤ |y2 − x2| ≤ N − 1 [compare (6.11)],
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(v) we drop 0 ≤ r1 + v2 − x1 + (j1 − j2)N ≤ N − 1 and 0 ≤ s1 + w2 − y1 + (j1 − j2)N ≤ N − 1

[compare (6.9)].

By rearranging the equation v1 − w1 + r1 − s1 = 0 to 0 ≤ s1 = r1 + v1 − w1 ≤ N − 1, it follows

V ∗(ν
′
) =

1

M2N2

M∑
j1=1

1

(2π)4

N−1∑
r1=0

∞∑
v1,w1,x1,y1=0

0≤r1+v1−w1≤N−1

∞∑
v2,w2,x2,y2=0

w1−v1+v2−x1−w2+y1−y2+x2=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1) +O(T, d∞)

=
1

M2N

M∑
j1=1

1

(2π)4

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

w1−v1+v2−w2+y1−x1+x2−y2=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1) +O(T, d∞)

=
1

TM

1

2π

M∑
j1=1

∫ π

−π
f4(uj1 , λ) dλ+O(T, d∞).

By using the same techniques as in V ∗(ν
′
), we obtain

V ∗(ν
′′
) =

1

M2

M∑
j1=1

1∑
h1=−1

1

(2πN)4

N−1∑
q2,r2,s2=0

0≤q2−r2+s2+h1N≤N−1

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

v1−v2+w2−w1+x1−x2+y2−y1=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1) +O(T, d∞).

Note that, in contrast to the term V ∗(ν
′
), the cases where h1 ∈ {−1, 1} do not vanish. In fact,

using the three equalities

N−1∑
q2,r2,s2=0

0≤q2−r2+s2≤N−1

=
2

3
N3 +O(N2),

N−1∑
q2,r2,s2=0

0≤q2−r2+s2+N≤N−1

=
1

6
N3 +O(N2),

N−1∑
q2,r2,s2=0

0≤q2−r2+s2−N≤N−1

=
1

6
N3 +O(N2)

we deduce

V ∗(ν
′′
) =

(2

3
+

1

6
+

1

6

) 1

M2N

M∑
j1=1

1

(2π)4

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

v1−v2+w2−w1+x1−x2+y2−y1=0

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1) +O(T, d∞)

=
1

TM

1

2π

M∑
j1=1

∫ π

−π
f4(uj1 , λ) dλ+O(T, d∞). (6.15)

Proof of part c) Exemplarily we consider the case l2 = 0 and l := l1 ≥ 3. The other cases can be

treated similarly with an additional amount of notation. Following the same lines as in the proof of

Theorem 3.1 in Dette et al. (2011a), it is sufficient to choose an arbitrary indecomposable partition{
(Zti1 ,a1−v1Zti2 ,a2−w1), (Zti3 ,a3−x1Zti4 ,a4−y1), ..., (Zti4l−1

,a4l−1−xlZti4l ,a4l−yl)
}
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of the table

Ztj1 ,p1−g1 Ztj1 ,q1−m1 Ztj1 ,r1−n1 Ztj1 ,s1−o1
...

...
...

...

Ztjl ,pl−gl Ztjl ,ql−ml
Ztjl ,rl−nl

Ztjl ,sl−ol

(6.16)

[see Brillinger (1981)] and to treat the term

T
l
2

T l
1

N2l

M∑
j1,...,jl=1

bN
2
c∑

k1,...,kl=−bN−1
2
c

N−1∑
p1,...,sl=0

∞∑
v1,w1,x1,y1=0

· · ·
∞∑

vl,wl,xl,yl=0

ψ̃v1(uj1,p1)ψ̃w1(uj1,q1)ψ̃x1(uj1,r1)ψ̃y1(uj1,s1)ψ̃v2(uj2,p2)ψ̃w2(uj2,q2)ψ̃x2(uj2,r2)ψ̃y2(uj2,s2)

· · ·

ψ̃vl(ujl,pl)ψ̃wl
(ujl,ql)ψ̃xl(ujl,rl)ψ̃yl(ujl,sl)e

−i(p1−q1+r1−s1)λk1 · · · e−i(pl−ql+rl−sl)λkl

E[Zti1 ,a1−v1Zti2 ,a2−w1 ]E[Zti3 ,a3−x1Zti4 ,a4−y1 ]E[Zti5 ,a5−v2Zti6 ,a6−w2 ]E[Zti7 ,a7−x2Zti8 ,a8−y2 ]

. . .

E[Zti4l−3
,a4l−3−vlZti4l−2

,a4l−2−wl
]E[Zti4l−1

,a4l−1−xlZti4l ,a4l−yl ]

with {a1, a2 . . . , a4l} ∈ {p1, . . . , pl, q1, . . . , ql, r1, . . . , rl, s1, . . . , sl}, ai 6= aj for i 6= j, {i1, i2, . . . , i4l} ∈
{j1, j2, . . . jl}, and |{i1, i2, . . . , i4l}| = l. We now discuss the conditions which yield a contribution

different from 0 in this sum. Note that some of the ik are equal to each other and we will therefore

write j1, ..., jl for the l different values and consider ik as a function depending on j1, ..., jl. Using

the independence of the random variables Zt and summing with respect to k1, . . . , kl, the conditions

a4m+1 − a4m+2 + wm+1 − vm+1 + (i4m+1 − i4m+2)N = 0 for m = 0, . . . , l − 1, (6.17)

a4m+3 − a4m+4 + ym+1 − xm+1 + (i4m+3 − i4m+4)N = 0 for m = 0, . . . , l − 1, (6.18)

pi − qi + ri − si = hiN for i = 1, 2, . . . , l and hi ∈ {−1, 0, 1} (6.19)

follow. Rearranging the equations in (6.19) for a variable and plugging them into the l equations

(6.17) (where in every equation only one variable is replaced) yields, due to the indecomposability

of the partition and vm+1, xm+1 ≥ 0, that the conditions

(1) 0 ≤ v1 = ã1 − ã2 + ã3 − ã4 + w1 + (i1 − i2 + h1)N,

(2) 0 ≤ v2 = ã7 − ã8 + ã9 − ã10 + w2 + (i5 − i6 + h2)N,
...

(l) 0 ≤ vl = ã6l−5 − ã6l−4 + ã6l−3 − ã6l−2 + wl + (i4l−3 − i4l−2 + hl)N,

(l + 1) 0 ≤ x1 = ã5 − ã6 + y1 + (i3 − i4)N,

(l + 2) 0 ≤ x2 = ã11 − ã12 + y2 + (i7 − i8)N,
...

(2l) 0 ≤ xl = ã6l−1 − ã6l + yl + (i4l−1 − i4l)N

(6.20)
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must hold, where {ã1, ã2, . . . , ã6l} ∈ {p1, . . . , sl} and |{ã1, ã2, . . . , ã6l}| = 3l. By employing (2.4),

we can bound the above expression up to a constant by

1

M l

T
l
2

N2l

M∑
j1,...,jl=1

1∑
h1,...,hl=−1

N−1∑
ã1,...,ã6l=0

∞∑
w1,y1=1

ã1−ã2+ã3−ã4+w1+(i1−i2+h1)N≥1
ã5−ã6+y1+(i3−i4)N≥1

· · ·
∞∑

wl,yl=1
ã6l−5−ã6l−4+ã6l−3−ã6l−2+wl+(i4l−3−i4l−2+hl)N≥1

ã6l−1−ã6l+yl+(i4l−1−i4l)N≥1

1

(ã1 − ã2 + ã3 − ã4 + w1 + (i1 − i2 + h1)N)1−d∞
1

w1−d∞
1

1

(ã5 − ã6 + y1 + (i3 − i4)N)1−d∞
1

y1−d∞1

1

(ã7 − ã8 + ã9 − ã10 + w2 + (i5 − i6 + h2)N)1−d∞
1

w1−d∞
2

1

(ã11 − ã12 + y2 + (i7 − i8)N)1−d∞
1

y1−d∞2
· · ·

1

(ã6l−5 − ã6l−4 + ã6l−3 − ã6l−2 + wl + (i4l−3 − i4l−2 + hl)N)1−d∞
1

w1−d∞
l

1

(ã6l−1 − ã6l + yl + (i4l−1 − i4l)N)1−d∞
1

y1−d∞l

.

Using Lemma 7.1b) in the appendix, this term can be (up to a constant) bounded by

1

M l

T
l
2

N2l

M∑
j1,...,jl=1

1∑
h1,...,hl=−1

N−1∑
ã1,ã2,...,ã6=0

|ã1−ã2+ã3−ã4+(i1−i2+h1)N |≥1
|ã5−ã6+(i3−i4)N |≥1

· · ·
N−1∑

ã6l−5,ã6l−4,...,ã6l=0
|ã6l−5−ã6l−4+ã6l−3−ã6l−2+(i4l−3−i4l−2+hl)N |≥1

|ã6l−1−ã6l+(i4l−1−i4l)N |≥1

1

|ã1 − ã2 + ã3 − ã4 + (i1 − i2 + h1)N |1−2d∞
1

|ã5 − ã6 + (i3 − i4)N |1−2d∞
1

|ã7 − ã8 + ã9 − ã10 + (i5 − i6 + h2)N |1−2d∞
1

|ã11 − ã12 + (i7 − i8)N |1−2d∞
· · ·

1

|ã6l−5 − ã6l−4 + ã6l−3 − ã6l−2 + (i4l−3 − i4l−2 + hl)N |1−2d∞
1

|ã6l−1 − ã6l + (i4l−1 − i4l)N |1−2d∞
.

We now assume without loss of generality that

ã6m+1 − ã6m+2 + ã6m+3 − ã6m+4 + (i4m+1 − i4m+2 + hm+1)N ≥ 1,

ã6m+5 − ã6m+6 + (i4m+3 − i4m+4)N ≥ 1 (6.21)

holds for m = 0, 1, 2, . . . , l−1 (the more general case follows analogously with an additional amount

of notation). In this case the absolute values in the above expression can be skipped. It follows,

as in Dette et al. (2011a), that the conditions on the ãi imply that, if i1 is chosen, there are only

finitely many possible choices for ik, k = 2, ..., l. Thus it suffices to consider the following sum

1

M l−1
T

l
2

N2l

N−1∑
ã1,ã2,...,ã6=0

ã1−ã2+ã3−ã4+C1N≥1
ã5−ã6+Cl+1N≥1

· · ·
N−1∑

ã6l−5,ã6l−4,...,ã6l=0
ã6l−5−ã6l−4+ã6l−3−ã6l−2+ClN≥1

ã6l−1−ã6l+C2lN≥1
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1

(ã1 − ã2 + ã3 − ã4 + C1N)1−2d∞
1

(ã5 − ã6 + Cl+1N)1−2d∞

1

(ã7 − ã8 + ã9 − ã10 + C2N)1−2d∞
1

(ã11 − ã12 + Cl+2N)1−2d∞

· · ·
1

(ã6l−5 − ã6l−4 + ã6l−3 − ã6l−2 + ClN)1−2d∞
1

(ã6l−1 − ã6l + C2lN)1−2d∞

with C1, C2, . . . , Cl ∈ {−1, 0 . . . ,M} and Cl+1, Cl+2, . . . , C2l ∈ {0, 1 . . . ,M − 1} (because of (6.21)

and ãi ∈ {0, 1, 2, . . . , N − 1} there are no other possible values for Ci). We remind that (due to

the indecomposability of the partition) the 2l-fractions inside the addend are hooked. This means

that for two different fractions there exists a chain of fractions (starting with the first considered

fraction and ending with the second one), such that in every element of the chain there exists at

least one element ãi which also occurs in the consecutive fraction. We will perform a summation

in a particular way and in order to illustrate this, we consider the first two fractions and assume

that ã1 and ã6 are (up to a the algebraic sign) the same. We distinguish two cases.

(i) If ã1 = ã6, we obtain from Lemma 7.1a) that

N−1∑
ã1=0

ã1−ã2+ã3−ã4+C1N≥1
ã5−ã6+Cl+1N≥1

1

(ã1 − ã2 + ã3 − ã4 + C1N)1−2d∞
1

(ã5 − ã6 + Cl+1N)1−2d∞

.
1

(−ã2 + ã3 − ã4 + ã5 + (C1 + Cl+1)N)1−4d∞
(6.22)

.
T 2d∞

(−ã2 + ã3 − ã4 + ã5 + (C1 + Cl+1)N)1−2d∞
. (6.23)

Furthermore we have −ã2+ ã3− ã4+ ã5+(C1+Cl+1)N ≥ 2 which follows from the conditions

ã1 − ã2 + ã3 − ã4 + C1N ≥ 1 and ã5 − ã6 + Cl+1N = ã5 − ã1 + Cl+1N ≥ 1.

(ii) If ã1 = −ã6 and −ã2 + ã3 − ã4 − ã5 + (C1 − Cl+1)N 6= 0, it follows from Lemma 7.1b) that

N−1∑
ã1=0

ã1−ã2+ã3−ã4+C1N≥1
ã5−ã6+Cl+1N≥1

1

(ã1 − ã2 + ã3 − ã4 + C1N)1−2d∞
1

(ã5 − ã6 + Cl+1N)1−2d∞

.
1

| − ã2 + ã3 − ã4 − ã5 + (C1 − Cl+1)N |1−4d∞
(6.24)

.
T 2d∞

| − ã2 + ã3 − ã4 − ã5 + (C1 − Cl+1)N |1−2d∞
. (6.25)

In both cases, it is possible that variables cancel out, for example if ã4 = ã5 and ã3 = ã5 in the

first and second case, respectively. We apply (6.22)–(6.25) in total 2l− 2-times. In the first 2l− 4-

applications, we use (6.23) and (6.25) (depending on the algebraic sign of the variable which appears

in both fractions) and in the (2l − 3)th and (2l − 2)th application we employ (6.22) and (6.24).

We furthermore assume that h variables cancel out while utilizing these inequalities. Afterwards
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3l − (2l − 2) − h = l + 2 − h variables remain with 0 ≤ h ≤ l, namely ã6l−1, ã6l and l − h other

variables with values in {0, 1, 2, . . . , N − 1}. Denoting these l − h variables with b1, b2, . . . , bl−h we

obtain

1

M l−1
T

l
2

N2l

N−1∑
ã1,ã2,...,ã6=0

ã1−ã2+ã3−ã4+C1N≥1
ã5−ã6+Cl+1N≥1

· · ·
N−1∑

ã6l−5,ã6l−4,...,ã6l=0
ã6l−5−ã6l−4+ã6l−3−ã6l−2+ClN≥1

ã6l−1−ã6l+C2lN≥1

1

(ã1 − ã2 + ã3 − ã4 + C1N)1−2d∞
1

(ã5 − ã6 + Cl+1N)1−2d∞

1

(ã7 − ã8 + ã9 − ã10 + C2N)1−2d∞
1

(ã11 − ã12 + Cl+2N)1−2d∞

· · ·
1

(ã6l−5 − ã6l−4 + ã6l−3 − ã6l−2 + ClN)1−2d∞
1

(ã6l−1 − ã6l + C2lN)1−2d∞

.
1

M l−1
T

l
2

N2l

N−1∑
ã6l−1,ã6l=0

ã6l−1−ã6l+C2lN≥1

N−1∑
b1,b2,...,bl−h=0

1≤|ã6l−1−ã6l+
∑l−h

j=1(−1)
kj 2bj+

∑2l−1
j=1 (−1)kjCjN |

NhT (2l−4)2d∞

|ã6l−1 − ã6l +
∑l−h

j=1(−1)kj2bj +
∑2l−1

j=1 (−1)kjCjN |1−6d∞
1

(ã6l−1 − ã6l + C2lN)1−2d∞

with some kj ∈ {0, 1}. We first consider the case h = l. If
∑2l−1

j=1 (−1)kjCjN = 0 and C2l = 0, it

follows that the above term equals

1

M l−1
T

l
2N lT (2l−4)2d∞

N2l

N−1∑
ã6l−1,ã6l=0
1≤ã6l−1−ã6l

1

(ã6l−1 − ã6l)2−8d∞
.

1

M l−1
T

l
2N l+1T (2l−4)2d∞

N2l
= T (1− l

2
)(1−8d∞).

If |
∑2l−1

j=1 (−1)kjClN | ≥ 1 or C2l = 1, we apply Lemma 7.1a) and b) in order to obtain the same

upper bound (it can be shown that, in this case, there appears an additional factor N1−8d∞ in the

denominator, so the corresponding term is, in fact, of smaller order). The same upper bound holds

for h ≤ l − 1. 2

6.2 Proof of Remark 3.6:

If we replace F̂1,T by the corresponding integrated version F̃1,T = 1
4πM

∑M
j=1

∫ π
−π IN (uj , λ)2 dλ, the

derivation of the asymptotic variance can be carried out almost analogously as in the proof of

Theorem 6.1b) except that the term, where the variable h1 in V ∗(v
′′
) equals −1 or 1, does not

occur, because for the integrated version one can use

1

2π

∫ π

−π
exp(−iλr)dλ =

1 if r = 0,

0 else,
(6.26)

(for r ∈ ZZ) instead of (6.8). Therefore, in the integrated case, we obtain

V ∗(ν
′′
) =

2

3

1

M2N

M∑
j1=1

1

(4π)2
1

(2π)2

∞∑
v1,w1,x1,y1=0

∞∑
v2,w2,x2,y2=0

v1−v2+w2−w1+x1−x2+y2−y1=0
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ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj1)ψw2(uj1)ψx2(uj1)ψy2(uj1) +O(T, d∞)

=
2

3

1

TM

1

8π

M∑
j1=1

∫ π

−π
f4(uj1 , λ) dλ+O(T, d∞)

instead of (6.15) and we recall that the order O(T, d∞) is defined in (6.1). This yields that the

asymptotic variance of
√
T F̃1,T is 14

3π

∫ π
−π
∫ 1
0 f

4(u, λ)dudλ and does not coincide with the asymptotic

variance of
√
T F̂1,T .

6.3 Proof of Theorem 6.2:

Proof of part a): We define F̂ ∗1,T and F̂ ∗1,T,2 as F̂1,T where the observed data Xt,T are replaced

by X∗t,T and X∗t,T,2, respectively. By using (6.1) and writing I∗N (u, λ) for the bootstrap analogue of

IN (u, λ), we then get

E((F̂ ∗1,T − F̂ ∗1,T,2)1AT (α)|X1,T , ..., XT,T ) =
1

2T

M∑
j=1

bN
2
c∑

k=−bN−1
2
c

1

(2πN)2

N−1∑
p,q,r,s=0

∞∑
l,m,n,o=0

e−i(p−q+r−s)λk,N

ψ̂l,m,n,o,p1AT (α)E[Z∗tj ,p−lZ
∗
tj ,q−mZ

∗
tj ,r−nZ

∗
tj ,s−o]

[compare the first set of equalities in the proof of Theorem 6.1 a)], where ψ̂l,m,n,o,p = ψ̂l,pψ̂m,pψ̂n,pψ̂o,p−
ψlψmψnψo. By using the decomposition

ψ̂l,m,n,o,p = (ψ̂l,p − ψl)ψ̂m,pψ̂n,pψ̂o,p + ψl(ψ̂m,p − ψm)ψ̂n,pψ̂o,p

+ψlψm(ψ̂n,p − ψn)ψ̂o,p + ψlψmψn(ψ̂o,p − ψo)

the above expression splits into four terms and for the sake of brevity we only consider the first

one. The other cases are treated similarly. As in the proof of Theorem 6.1 a) we then obtain terms

E1,∗
N,T and E2,∗

N,T which are defined as E1
N,T , E2

N,T where the coefficients ψl(uj)ψm(uj)ψm(uj)ψo(uj)

are replaced by (ψ̂l,p − ψl)ψ̂m,pψ̂n,pψ̂o,p [note that A∗N,T = B∗N,T = 0 since the coefficients of the

bootstrap process do not possess any time dependence]. If we employ (6.3) and combine it with

the fact that |d̂− d| < α/4 on the set AT (α), we get

|ψ̂l,p − ψl| ≤ Cp4 log(T )3/2T−1/2|l|α/4+d−1 ∀l ∈ IN, (6.27)

which together with (2.4) and the assumptions of the theorem implies

|ψ̂l,p| ≤ C|l|α/4+d−1 ∀l, p ∈ IN. (6.28)

Note that the coefficients in the MA(∞) representation of the bootstrap processes do not depend

on time and that for such processes we only required

sup
u
|ψl(u)| ≤ C|l|d−1 (6.29)
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in the proof of Theorem 6.1 a) to obtain appropriate bounds for the error. By using (6.27) and

(6.28) instead of (6.29) and similar arguments as given in the proof of Theorem 6.1 a) it follows

that

E((F̂ ∗1,T − F̂ ∗1,T,a)1AT (α)|X1,T , ..., XT,T ) = F ∗,−1,T +O
(
N4d−1+αp4 log(T )3/2T−1/2

)
,

where F ∗,−1,T is defined as F1,T but with f(u, λ) replaced by

σ2p
2π

∞∑
l,m,n,o=−∞

ψ̂l,m,n,o,p exp(−iλ(l −m+ n− o))× 1AT (α).

Since F̂ ∗2,T and F̂ ∗2,T,2 are treated analogously, the claim follows [note that F ∗,−1,T cancels out since

the coefficients do not possess any time dependence]. 2

Proof of part b): The assertion follows by similar arguments as given in the proof of Theorem

6.1 b) employing (6.27) and (6.28) instead of (6.29) as above. The details are omitted for the sake

of brevity. 2

6.4 Proofs of the results in Section 3 and 4:

Proof of Theorem 3.2: The claim follows by employing the Cramér-Wold device in combination

with Theorem 6.1. 2

Proof of Theorem 3.4: Similarly to the proof of Theorem 6.1, the two equations

E(τ̂21 ) =
1

πM

M∑
j=1

∫ π

−π
f4(uj , λ) +O

( 1

N1−8d∞

)
,

Var (τ̂21 ) = O
( 1

MN1−8d∞

)
can be established. By Markov’s inequality the assertion of the theorem follows. 2

Proof of Theorem 4.2: We define D̂2,∗
T,a as D̂2,∗

T,2 and D̂2
T,a as D̂2

T but with Xt,T replaced by

Xt(t/T ) from (2.10). Then part a) is obvious, because we have ψl = ψl(u) for all u ∈ [0, 1] under

the null hypothesis and Zt and Z∗t are both independent and standard normal distributed. Part

b) follows from the proof of Theorem 6.1, so we focus on part c) and d). Note that (2.11) and

Theorem 6.1 a), b) imply

C1N
max(8d−1,0)/T ≤ Var(D̂∗T,a)/T ≤ C2(N

max(8d−1,0) + log(N)1{d=1/8})/T

which directly yields part d). If we have

P (AT (α))→ 1 as T →∞ (6.30)
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for every α > 0, Part c) follows from Theorem 6.2, (4.8), the conditions on the rate of p(T ) if α is

chosen sufficiently small. Finally, (6.30) is a consequence of Lemma 4.3 in Preuß and Vetter (2012).

2

Proof of Theorem 4.3: By employing the triangle inequality we can bound the Mallow metric

between D̂2
T /
√

Var(D̂2
T ) and D̂2,∗

T /
√

Var(D̂2,∗
T ) by

d2

(
D̂2
T /

√
Var(D̂2

T ), D̂2
T,a/

√
Var(D̂2

T,a)
)

+ d2

(
D̂2
T,a/

√
Var(D̂2

T,a), D̂
2,∗
T,a/

√
Var(D̂2,∗

T,a)
)

+d2

(
D̂2,∗
T,a/

√
Var(D̂2,∗

T,a), D̂
2,∗
T /

√
Var(D̂2,∗

T )
)

[where D̂2
T,a and D̂2,∗

T,a are the random variables from Theorem 4.2 specified in the proof of which].

It follows from the proof of Theorem 6.1 that the first summand converges to zero and the second

summand equals zero because of Theorem 4.2 a). So it suffices to treat the third summand which

is bounded by

2E
(
D̂2,∗
T,a/

√
Var(D̂2,∗

T,a)− D̂
2,∗
T /
√

Var(D̂2,∗
T,a)
)2

+ 2E
(
D̂2,∗
T /
√

Var(D̂2,∗
T,a)− D̂

2,∗
T /

√
Var(D̂2,∗

T )
)2
.

We obtain from Theorem 6.1 a) and b) that a constant L > 0 exists such that

Var(D̂2,∗
T,a) ≥ LN

8d∞−1T−1 (6.31)

[note the we are under the null hypothesis and that we therefore have d∞ = d]. This combined

with Theorem 6.2, (6.30) and the conditions on the growth rate on p = p(T ) yields that we can

restrict ourselves to the second term, which is [up to the constant 2] bounded by

E((D̂2,∗
T )2)

Var(D̂2,∗
T,a)Var(D̂2,∗

T )

(√
Var(D̂2,∗

T,a)−
√

Var(D̂2,∗
T )
)2

≤
E((D̂2,∗

T )2)

Var(D̂2,∗
T,a)Var(D̂2,∗

T )

∣∣∣Var(D̂2,∗
T,a)−Var(D̂2,∗

T )
∣∣∣.

If we follow the proof of Theorem 6.1 a), b) and employ (6.28) and (6.30), we obtain that

E((D̂2,∗
T )2) = O(log(N)Nmax(8d−1,0)+2αT−1 +N8d+2α−2) (6.32)

holds for every fixed α > 0. By employing (6.27) and similar arguments as in the proof of Theorem

6.2 we obtain thereafter∣∣∣Var(D̂2,∗
T,a1AT (α))−Var(D̂2,∗

T 1AT (α))
∣∣∣ = O(p8 log(T )3 log(N)2(Nmax(8d−1,0)+2αT−2 +N8d−2+2αT−1)).

The assertion then follows with (6.30)–(6.32) and the assumptions on the growth rate of p = p(T ).

2
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7 Appendix: Auxiliary Lemmas

Finally we show some lemmas which were employed in the above proofs.

Lemma 7.1. Suppose µ, ν, a, b ∈ IR. Then there exists a constant C ∈ IR such that the following

holds:

a) If µ, ν > 0 and b > a, then

N−1∑
k=0

k−a≥1
−k+b≥1

1

(k − a)1−µ
1

(b− k)1−ν
≤

b−1∑
k=1+a

1

(k − a)1−µ
1

(b− k)1−ν
≤ C

(b− a)1−µ−ν
. (7.1)

b) If 0 < µ, ν and 0 < 1− µ− ν, then it follows for |a+ b| > 0

N−1∑
k=1
k+b≥1
k−a≥1

1

(k + b)1−µ
1

(k − a)1−ν
≤

∞∑
k=1
k+b≥1
k−a≥1

1

(k + b)1−µ
1

(k − a)1−ν
≤ C

|a+ b|1−µ−ν
. (7.2)

c) If 0 < ν < 1− µ and y, z ≥ 1, then

∞∑
k=1+y

log(k)

k1−µ
1

(k − y)1−ν
≤ C log(y)

y1−µ−ν
, (7.3)

∞∑
k=1

log(k + z)

(k + z)1−µ
1

k1−ν
≤ C log(z)

z1−µ−ν
. (7.4)

Proof: a) Using equation 3.196(3) in Gradshteyn and Ryzhik (1980), it follows that

b−1∑
k=1+a

1

(k − a)1−µ
1

(b− k)1−ν
≤
∫ b

a

1

(x− a)1−µ
1

(b− x)1−ν
dx .

1

(b− a)1−µ−ν
.

b) If a+ b > 0 we can bound the middle sum in (7.2) by

∞∑
k=max{1,1−b,1+a}

1

(k + b)1−µ
1

(k − a)1−ν
≤

∞∑
k=1+a

1

(k + b)1−µ
1

(k − a)1−ν

≤
∫ ∞
a

1

(x+ b)1−µ
1

(x− a)1−ν
dx .

1

(a+ b)1−µ−ν
.

The last inequality follows from the equations 3.196(2) and 3.191(2) [for choosing b = 0] in Grad-

shteyn and Ryzhik (1980). On the other hand, if a+ b < 0 we have

∞∑
k=max{1,1−b,1+a}

1

(k + b)1−µ
1

(k − a)1−ν
≤

∞∑
k=1−b

1

(k + b)1−µ
1

(k − a)1−ν

=

∞∑
k=1+(−b)

1

(k − (−b))1−µ
1

(k + (−a))1−ν
.

1

(−a− b)1−µ−ν
.
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The last inequality follows with Gradshteyn and Ryzhik (1980) as above.

c) We start with (7.3). Using equation 13.2(18) in Erdelyi (1954b) yields

∞∑
k=1+y

log(k)

k1−µ
1

(k − y)1−ν
≤
∫ ∞
y

log(x)

x1−µ
1

(x− y)1−ν
dx .

log(y)

y1−µ−ν
.

Concerning (7.4) we use equation 6.4(23) in Erdelyi (1954a) which implies

∞∑
k=1

log(k + z)

(k + z)1−µ
1

k1−ν
≤
∫ ∞
0

log(x+ z)

(x+ z)1−µ
1

x1−ν
dx .

log(z)

z1−µ−ν
.

2

Lemma 7.2. If 0 < d∞ < 1
4 , then

1

M2N4

M∑
j1,j2=1
j1 6=j2

N−1∑
r1,s1=0

∞∑
v1,w1,x1,y1=0

v1−w1+r1−s1=0
0≤|v1−w1|≤N−1

∞∑
v2,w2,x2,y2=0

r1+v2−x1−s1−w2+y1−y2+x2=0
0≤r1+v2−x1+(j1−j2)N≤N−1
0≤s1+w2−y1+(j1−j2)N≤N−1

0≤|y2−x2|≤N−1

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

(N2 −N |y2 − x2| −N |v1 − w1|+ |v1 − w1|y2 − x2|) = O
( log(N)

N1−8d∞T

)
.

Proof: Firstly, we set 0 ≤ w1 = r1 − s1 + v1 and 0 ≤ x2 = s1 − r1 − v2 + x1 + w2 − y1 + y2. Then

we define p := r1 + v2 − x1 + (j1 − j2)N and rearrange to 0 ≤ x1 = r1 − p+ v2 + (j1 − j2)N . Since

p ∈ {0, 1, 2 . . . , N − 1}, it follows that if p, r1, v2, x1, j1 are fixed, there are at most two possible

values for j2. Hence it is enough to consider the following expression with 1 ≤ |C1| ≤M − 1

1

MN4

N−1∑
r1,s1=0

∞∑
v1,w1,x1,y1=0

v1−w1+r1−s1=0
0≤|v1−w1|≤N−1

∞∑
v2,w2,x2,y2=0

r1+v2−x1−s1−w2+y1−y2+x2=0
0≤r1+v2−x1+C1N≤N−1
0≤s1+w2−y1+C1N≤N−1

0≤|y2−x2|≤N−1

ψv1(uj1)ψw1(uj1)ψx1(uj1)ψy1(uj1)ψv2(uj2)ψw2(uj2)ψx2(uj2)ψy2(uj2)

(N2 −N |y2 − x2| −N |v1 − w1|+ |v1 − w1|y2 − x2|)
(2.4)

.
1

MN2

N−1∑
p,r1,s1=0

∞∑
v1,x1,y1=1
1≤r1−s1+v1

∞∑
v2,w2,x2,y2=1

1≤r1−p+v2+C1N
1≤s1−p+w2+y2−y1+C1N

1

v1−d∞1

1

y1−d∞1

1

v1−d∞2

1

w1−d∞
2

1

y1−d∞2

1

(r1 − s1 + v1)1−d∞
1

(r1 − p+ v2 + C1N)1−d∞
1

(s1 − p+ w2 + y2 − y1 + C1N)1−d∞

(7.1)

.
1

MN2

N−1∑
p,r1=0

∞∑
v1,x1,y1=1

∞∑
v2,w2,x2,y2=1

1≤r1−p+v2+C1N
1≤r1−p+w2−y1+y2+v1+C1N

1

v1−d∞1

1

y1−d∞1

1

v1−d∞2

1

w1−d∞
2

1

y1−d∞2
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1

(r1 − p+ v2 + C1N)1−d∞
1

(r1 − p+ w2 − y1 + y2 + v1 + C1N)1−2d∞

(7.1),(7.2)

.
1

MN2

N−1∑
p,r1=0

1

|r1 − p+ C1N |2−8d∞
.

1

MN2

N−1∑
p,r1=0

1

(r1 − p+N)2−8d∞

.
log(N)

MN2−8d∞ =
log(N)

N1−8d∞T
.

2
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