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Abstract

Suppose the random vector (X,Y ) satisfies the regression model Y = m(X) +

σ(X)ε, where m(·) and σ(·) are unknown location and scale functions and ε is

independent of X. The response Y is subject to random right censoring and the

covariate X is completely observed. A new test for a specific parametric form of

any scale function σ(·) (including the standard deviation function) is proposed. Its

statistic is based on the distribution of the residuals obtained from the assumed

regression model. Weak convergence of the corresponding process is obtained and

its finite sample behaviour is studied via simulations. Finally, characteristics of the

test are illustrated in the analysis of a fatigue data set.

KEY WORDS: Bootstrap; Goodness-of-fit tests; Fatigue data; Kernel method; Least

squares estimation; Nonparametric regression; Right censoring; Survival analysis.
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1 Introduction

In this paper, we consider the following heteroscedastic regression model

Y = m(X) + σ(X)ε, (1.1)

where m(X) and σ(X) are some unknown but smooth location and scale functions and ε

(with location zero and scale one) is independent of X (one-dimensional). Suppose also

that Y is subject to random right censoring, i.e. instead of observing Y , we only observe

(Z, ∆), where Z = min(Y, C), ∆ = I(Y ≤ C) and the random variable C represents

the censoring time which is independent of Y , conditionally on X. Let (Yi, Ci, Xi, Zi, ∆i)

(i = 1, . . . , n) be n independent copies of (Y, C, X, Z, ∆).

The aim of this paper is to test the hypothesis

H0 : σ(·) ∈M versus H1 : σ(·) /∈M, (1.2)

where M = {σϑ : ϑ ∈ Θ} is a class of parametric functions and Θ ⊂ IRD. However,

it is well known that functions which involve the right tails of the conditional distri-

bution of F (·|x) = P (Y ≤ ·|X = x) of Y given X = x (like the conditional variance

V ar[Y |X = x] =
∫
(y − E[Y |x])2dF (y|x)) cannot be estimated in a consistent way in a

completely nonparametric model, due to the presence of right censoring. In fact, the com-

pletely nonparametric (kernel) estimator of F (·|x) is not consistent in the right tail (see

Beran, 1981) if the conditional distribution of Y has a larger support than the conditional

distribution of C. In this paper, we present a way to overcome this problem by imposing

the weak model assumption (1.1) and replacing the class M in (1.2) by the more specific

class

M′ = {σϑ : σϑ = ϑ1σ1p and ϑ ∈ Θ}
(H0 will therefore be replaced by a new hypothesis H ′

0 using M′), where p = (ϑ2 · · · ϑD)′,

ϑ = (ϑ1 p′)′ and Θ ⊂ IRD. We will show that using those assumptions enables to reduce

the inconsistency problems included in the testing procedure.

A nice advantage of the method is that it applies to any scale function (see Section

2 for formal definitions of location and scale functions) including the square root of the

general expression

σ2(x) = aσ
0

∫ 1

0
(F−1(s|x)−m0(x))2Lσ(s)ds +

kσ∑

j=1

aσ
j {

∫ 1

0
ρj(F

−1(s|x)−mj(x))ds}2, (1.3)

where F−1(s|x) = inf{y : F (y|x) ≥ s} is the quantile function of Y given x, m0, . . . ,mkσ

are general location functions of the type

mp(x) = am
p0

∫ 1

0
F−1(s|x)Lm

p (s) ds +

km
p∑

j=1

am
pjF

−1(sm
pj|x), (1.4)
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p = 0, . . . , kσ (see e.g. Serfling, 1980, p. 265), Lσ(s) and Lm
p (s) are given weight functions

satisfying
∫ 1
0 Lσ(s)ds = 1 and

∫ 1
0 Lm

p (s)ds = 1, p = 0, . . . , kσ, kσ ≥ 0, km
p ≥ 0, aσ

0 , . . . , a
σ
kσ

are positive real numbers (aσ
0 can be zero if kσ > 0), am

p0, . . . , a
m
pkm

p
are real numbers such

that
∑km

p

j=0 am
pj = 1, p = 0, . . . , kσ, ρj(u) = sσ

j uI(u ≥ 0) + (sσ
j − 1)uI(u < 0), j = 1, . . . , kσ,

and 0 < sσ
1 , . . . , s

σ
kσ , sm

p1, . . . , s
m
pkm

p
< 1, p = 0, . . . , kσ. The expression (1.3) includes a very

broad class of scale functions. For example, for kσ = 0, km
0 = 0, Lσ ≡ Lm

0 ≡ 1, (1.3)

corresponds to the conditional variance, for aσ
0 = am

10 = 0, aσ
1 = kσ = km

1 = 1, sσ
1 = 1/2

(sσ
1 = 1/4) and sm

11 = 1/2 (sm
11 = 1/4), (1.3) corresponds to the square of the usual scale

function associated with the median (the first quartile).

A key idea to obtain consistent test statistics is to replace (possibly inconsistently

estimated) mP (x) = (m0(x) · · ·mkσ(x))′ and σ(x) in (1.4) and (1.3) by other location and

scale functions m0(x) and σ0(x) of the same type as (1.4) and (1.3) and which can be

consistently estimated (see Section 2 for specific definitions). Indeed, under model (1.1),

it is easy to check that σ0(X) and σ(X) are proportional and that the model

Y = m0(X) + σ0(X)ε0 (1.5)

also holds for any location and scale functions m0(X) and σ0(X) with ε0 = (Y −
m0(X))/σ0(X) independent of X.

The approach used in this paper is based on the estimated difference of residuals

distributions given by

F̂ 0
ε (y)− F̂ε0(y), −∞ < y ≤ T, (1.6)

where F̂ 0
ε (·) and F̂ε0(·) are estimators (described in Section 2) of F 0

ε (y) = P (ε0 ≤ y) and

Fε0(y) = P (ε0
0 ≤ y), the distributions of the residuals obtained from model (1.5),

ε0 =
Y −m0(X)

σ0(X)
(1.7)

and

ε0
0 =

Y −m0(X)

σθ̃0
(X)

. (1.8)

σθ̃0
(·) denotes the best approximation of σ0(·) by elements of the class M′ (if H ′

0 is true,

then σθ̃0
(X) = σ0(X) = σθ0(X), for a true parametric scale σθ0(X)). The point T in (1.6)

is chosen smaller than the upper bound of the support of the distribution of the observed

residuals Z−m0(X)
σ0(X)

(see Section 2). The presence of this cutting point is due to possible

right censoring problems of the residuals (1.7) and (1.8). However, under model (1.5),

each false H ′
0 will be detected by a nonzero difference between both residuals distributions

F 0
ε (y) and Fε0(y) for points y smaller than T (see Lemma 2.1).
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In the case of no censoring the problem of testing for heteroscedasticity in the classical

nonparametric regression model with conditional expectation m and conditional variance

σ2 has been considered by numerous authors [see Dette and Munk (1998), Dette (2002),

Liero (2003), Dette and Hetzler (2009a,b) and Dette, Neumeyer and Van Keilegom (2007)

among others]. Similar testing problems in semiparametric models have been considered

by You and Chen (2005).

Although a number of goodness-of-fit tests exists for the regression function with cen-

sored data, few results are obtained for the conditional variance and especially for a scale

function which is different from the usual standard deviation function. In the censored

case, González Manteiga, Heuchenne and Sánchez Sellero (2007) considered goodness-

of-fit tests for the conditional mean and variance functions while Pardo Fernández, Van

Keilegom and González Manteiga (2007) addressed the problem for a specific location

function using the process of the difference of residuals distributions. This process has

been widely studied, b.e., by Dette, Pardo Fernández and Van Keilegom (2007) or Van

Keilegom, González Manteiga and Sánchez Sellero (2007). Indeed, it is more naturally

related to the commonly used graphical procedures based on visual examination of the

residuals (see Atkinson 1985). In the case of variance testing, it has been used by Dette,

Neumeyer and Van Keilegom (2007). In fact, nonparametric residuals submitted to com-

pressions and expansions (due to their transformation into parametric residuals) seem to

produce important discrepancies in the corresponding distributions.

The paper is organized as follows. In the next section, the testing procedure is de-

scribed in detail. Section 3 summarizes the main asymptotic results, including the weak

convergence (under H ′
0) of the proposed process to a Gaussian process. In Section 4, we

present the results of a simulation study and different parametric forms are tested on a

fatigue data set in Section 5. Finally, the Appendix contains the assumptions, functions

and proofs needed to obtain the main results of Section 3.

Remark 1.1 (Choice of the null hypothesis). In practice, a null hypothesis for which

a parametric form σϑ cannot be factorized by one of its parameters can be tested. In this

case, the above methodology doesn’t apply. However, this restriction is not so much

constraining since a new null hypothesis for which σϑ is multiplied by a parameter can be

tested; rejection of this will also imply rejection of the initial null hypothesis.

2 Notations and description of the method

As explained in Section 1, the idea of the method is first to construct consistent residuals

by replacing m(·) and σ(·) by some specific m0(·) and σ0(·) and then to introduce the
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so-obtained residuals in expression (1.6). To develop the procedure, we first need to

introduce a number of notations.

Define F (y|x) = P (Y ≤ y|x), G(y|x) = P (C ≤ y|x), H(y|x) = P (Z ≤ y|x), H(y) =

P (Z ≤ y), Hδ(y|x) = P (Z ≤ y, ∆ = δ|x) (δ = 0, 1), FX(x) = P (X ≤ x), S0
ε (y) = 1 −

F 0
ε (y), Sε0(y) = 1−Fε0(y), for E0 = (Z−m0(X))/σ0(X), we denote H0

ε (y) = P (E0 ≤ y),

H0
εδ(y) = P (E0 ≤ y, ∆ = δ), H0

ε (y|x) = P (E0 ≤ y|x), H0
εδ(y|x) = P (E0 ≤ y, ∆ = δ|x),

for E0
0 = (Z − m0(X))/σθ̃0

(X), we denote Hε0(y) = P (E0
0 ≤ y), Hε0δ(y) = P (E0

0 ≤
y, ∆ = δ), Hε0(y|x) = P (E0

0 ≤ y|x), Hε0δ(y|x) = P (E0
0 ≤ y, ∆ = δ|x), and for C0 =

(C −m0(X))/σ0(X) (resp. C0
0 = (C −m0(X))/σθ̃0

(X)), we denote G0
ε(y) = P (C0 ≤ y)

(resp. Gε0(y) = P (C0
0 ≤ y)). The probability density functions of the distributions defined

above will be denoted with lower case letters and RX denotes the compact support of the

distribution of the random variable X.

Now, let ml(·) be any location function and σs(·) be any scale function, meaning that

ml(x) = T (F (·|x)) and σs(x) = S(F (·|x)) for some functionals T and S that satisfy

T (FaY +b(·|x)) = aT (FY (·|x)) + b and S(FaY +b(·|x)) = aS(FY (·|x)), for all a ≥ 0 and

b ∈ IR (here FaY +b(·|x) denotes the conditional distribution of aY + b given X = x). Let

εls = (Y −ml(X))/σs(X). Then, it can be easily seen that if model (1.1) holds (i.e. ε is

independent of X), then εls is also independent of X. Moreover, σ(X) = Sd(Fεls(·))σs(X),

Fεls(·) denoting the distribution of εls and Sd(Fεls(·)) the scale functional corresponding to

σ(X) and applied to Fεls(·) instead of F (·|X) (εls independent of X). Therefore, achieving

goodness-of-fit tests for σ(·) or σs(·) are equivalent when the parametric function to test

can be factorized by one of its parameters. If the objective is to estimate σ(X), this can

be achieved in a second step by estimating the quantity Sd(Fεls(·)) (a simple case for

Sd(Fεls(·)) is the standard deviation of the residuals).

Next, for ml(x) and σs2(x), we choose

m0(x) =

1∫

0

F−1(s|x)J(s) ds, σ02(x) =

1∫

0

F−1(s|x)2J(s) ds−m02(x), (2.1)

where J(s) is a given score function satisfying
∫ 1
0 J(s) ds = 1. When J(s) is chosen

appropriately (namely put to zero in the right tail, there where the quantile function

cannot be estimated in a consistent way due to the right censoring), m0(x) and σ0(x) can

be estimated consistently (see Section 4 for a data-driven choice of J). The distribution

F (y|x) in (2.1) is replaced by the Beran (1981) estimator, defined by (in the case of no

ties) :

F̂ (y|x) = 1− ∏

Zi≤y,∆i=1

{
1− Wi(x, an)∑n

j=1 I(Zj ≥ Zi)Wj(x, an)

}
, (2.2)
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where

Wi(x, an) =
K

(
x−Xi

an

)

∑n
j=1 K

(
x−Xj

an

) ,

K is a kernel function and {an} a bandwidth sequence. Therefore,

m̂0(x) =

1∫

0

F̂−1(s|x)J(s) ds, σ̂02(x) =

1∫

0

F̂−1(s|x)2J(s) ds− m̂02(x) (2.3)

estimate m0(x) and σ02(x). Next,

F̂ 0
ε (y) = 1− ∏

Ê0
(i)
≤y,∆(i)=1

(
1− 1

n− i + 1

)
, (2.4)

denotes the Kaplan-Meier (1958)-type estimator of F 0
ε (in the case of no ties), where

Ê0
i = (Zi − m̂0(Xi))/σ̂

0(Xi), Ê0
(i) is the i-th order statistic of Ê0

1 , . . . , Ê
0
n and ∆(i) is

the corresponding censoring indicator. This estimator has been studied in detail by Van

Keilegom and Akritas (1999).

Next, we consider a parametric estimator for σ0 defined by

ϑn := argminϑ∈Θ

n∑

i=1

[σ̂0(Xi)− σϑ(Xi)]
2. (2.5)

Asymptotic properties of this estimator can be found in the Appendix. Similarly to (2.4),

let

F̂ε0(y) = 1− ∏

Ê0
(i)0

≤y,∆(i)0=1

(
1− 1

n− i + 1

)
, (2.6)

denote the Kaplan-Meier (1958)-type estimator of Fε0 (in the case of no ties), where

Ê0
i,0 = (Zi − m̂0(Xi))/σϑn(Xi), Ê0

(i)0 is the i-th order statistic of Ê0
1,0, . . . , Ê

0
n,0 and ∆(i)0

is the corresponding censoring indicator.

Therefore, we consider the following process

Ŵ (y) = n1/2(F̂ 0
ε (y)− F̂ε0(y)), −∞ < y ≤ T, (2.7)

where T < τH0
ε

= τF 0
ε
∧ τG0

ε
and τF = inf{x : F (x) = 1}. As it is clear from the definitions

of F̂ 0
ε (y) and F̂ε0(y), Ŵ (y) is actually estimating

W (y) = n1/2(F 0
ε (y)− Fε0(y)) (2.8)

for −∞ < y ≤ T, such that the whole supports of the involved distributions are not

considered. However, as already mentioned in Section 1, differences between scale func-

tions can only be detected with a part of the considered supports. This is shown by the

following Lemma.
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Lemma 2.1 Assume that all moments of the random variable ε0I(ε0 ≤ T ) exist and that

T is a positive real value. Then H ′
0 holds if and only if there exists some θ̃0 ∈ Θ such that

F 0
ε (y ∧ T ) = Fε0(y ∧ T ) for all y, −∞ < y < ∞.

Proof of Lemma 2.1. The direct implication is trivial. On the other hand, assume that

there exists some θ̃0 such that F 0
ε (y ∧ T ) = Fε0(y ∧ T ), for all y and some T. It is then

clear that

P (ε0 ≤ y) = P (ε0
0 ≤ y) = P (ε0 ≤ y

σθ̃0
(X)

σ0(X)
) for all y ≤ T. (2.9)

We have
∫ T

−∞
y2ndF 0

ε (y) =
∫ T

−∞
y2ndFε0(y)

=
∫ ∫ T

σ
θ̃0

(x)

σ0(x)

−∞
(y

σ0(x)

σθ̃0
(x)

)2ndF 0
ε (y)dFX(x)

≤
∫

(
σ02(x)

σ2
θ̃0

(x)
)n

∫ T

−∞
y2ndF 0

ε (y)dFX(x), (2.10)

for all n ∈ IN, since
∫ ∫ T

σ
θ̃0

(x)

σ0(x)

T (y σ0(x)
σθ̃0

(x)
)2ndF 0

ε (y)dFX(x) ≤ 0. The last inequality can be

obtained as follows. For regions of RX where
σθ̃0

(x)

σ0(x)
< 1,

∫ T
σ

θ̃0
(x)

σ0(x)

T
(y

σ0(x)

σθ̃0
(x)

)2ndF 0
ε (y) ≤ −

∫ T

T
σ

θ̃0
(x)

σ0(x)

T 2ndF 0
ε (y),

while for regions of RX where
σθ̃0

(x)

σ0(x)
≥ 1,

∫ T
σ

θ̃0
(x)

σ0(x)

T
(y

σ0(x)

σθ̃0
(x)

)2ndF 0
ε (y) ≤

∫ T
σ

θ̃0
(x)

σ0(x)

T
T 2ndF 0

ε (y).

Using (2.9), we therefore have

∫

RX

F 0
ε (T

σθ̃0
(x)

σ0(x)
)dFX(x)− F 0

ε (T ) = 0.

The inequality 1 ≥ ∫
(σ02(x)

σ2
θ̃0

(x)
)ndFX(x) is simply obtained by replacing T by −T in (2.10).

Therefore we obtain from Carleman’s condition (see e.g. Feller (1966) p. 228) that the

distribution of the random variable σ02(X)
σ2

θ̃0
(X)

coincides with the distribution of the constant

random variable U ≡ 1, that is H ′
0 holds.
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From (2.7), we therefore propose a Kolmogorov-Smirnov type statistic

TKS = sup
−∞<y≤T

|Ŵ (y)|

and a Cramer-von Mises type statistic

TCM =
1

F̂ 0
ε (T )

∫ T

−∞
Ŵ 2(y)dF̂ 0

ε (y).

The null hypothesis H ′
0 is rejected for large values of the test statistics.

Remark 2.2. This testing procedure is used to check a parametric form for a scale func-

tion σ(·) but (2.5) only provides a parametric estimation for σ0(·). However, a parametric

estimation for σ(·) under H ′
0 is easily obtained by multiplying σϑn(·) by an estimator of

Sd(Fε0(·)) which in the case of (1.3), (1.4), could be given by

S̃d2(F̂ε0(·)) = aσ
0

∫ T

−∞
(y − T̃0(F̂ε0(·)))2Lσ(F̂ε0(y))dF̂ε0(y)

+
kσ∑

j=1

aσ
j {

∫ 1

0
ρj(F̂

−1
ε0

(s) ∧ T − T̃j(F̂ε0(·)))ds}2, (2.11)

where T̃0, . . . , T̃kσ are pseudo-location functionals of the type

T̃q(F̂ε0(·)) = am
q0

∫ T

−∞
yLm

q (F̂ε0(y)) dF̂ε0(y) +

km
q∑

j=1

am
qj(F̂

−1
ε0

(sm
qj) ∧ T ), (2.12)

q = 0, . . . , kσ.

3 Asymptotic results

We start by developing an asymptotic representation for the expression (2.7) under the

null hypothesis H ′
0 and where the remaining term is oP (n−1/2) uniformly in y. This will

allow us to obtain the weak convergence of the process Ŵ (y). Finally, the asymptotic

distributions of the proposed test statistics are obtained under the null hypothesis H ′
0.

The assumptions, proofs and involved functions in the results below are given in the

Appendix.

Theorem 3.1 Assume (A1)-(A8) (in the Appendix). Then, under the null hypothesis

H ′
0,

F̂ 0
ε (y)− F̂ε0(y) = n−1

n∑

i=1

χθ0(Xi, Zi, ∆i, y) + Rn(y),

where sup{|Rn(y)|;−∞ < y ≤ T} = oP (n−1/2) and χθ0(x, z, δ, y) is defined in the Ap-

pendix.
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Theorem 3.2 Assume (A1)-(A8) (in the Appendix). Then, under the null hypothesis

H ′
0, the process Ŵ (y) = n−1/2(F̂ 0

ε (y) − F̂ε0(y)), −∞ < y ≤ T converges weakly to a

centered gaussian process W (y) with covariance function

Cov(W (y),W (y′)) = E[χθ0(X, Z, ∆, y)χθ0(X, Z, ∆, y′)].

Corollary 3.3 Assume (A1)-(A8) (in the Appendix). Then, under the null hypothesis

H ′
0,

TKS
d→ sup
−∞<y≤T

|W (y)|,

TCM
d→ 1

F 0
ε (T )

∫ T

−∞
W 2(y)dF 0

ε (y).

4 Practical implementation and simulations

In this section, we study the finite sample behavior of both test statistics. We are inter-

ested in the behavior of the percentage of simulated samples for which the null hypothesis

is rejected. The simulations are carried out for samples of size n = 50 and n = 100 and the

results are obtained by using 1000 simulation runs. First, we describe the characteristics

of the proposed methods.

(1) For the score function J , we recommend the choice

J(s) = b−1I(0 ≤ s ≤ b) (0 ≤ s ≤ 1),

where

b = min
1≤i≤n

F̂ (+∞|Xi).

In this way, the region where the Beran estimator is inconsistent is not used, and

on the other hand, we exploit to a maximum the common ‘consistent’ region.

(2) For the K(x), we work with the biquadratic kernel function

K(x) = (15/16)(1− x2)2I(|x| ≤ 1).

In order to improve the behavior near the boundaries of the covariate space, we use

the reflection method to compute all kernel estimates.

(3) For the calculation of the parametric estimate in (2.5)we use the Levenberg-Marquardt

algorithm (Levenberg (1944) and Marquardt (1963)) (for a fixed value of the band-

width parameter).
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(3) The point T is chosen as Ê0
(n)0 for the Cramer von Mises test and as Ê0

(n) ∨ Ê0
(n)0 for

the Kolmogorov-Smirnov type statistic.

For the calculation of the critical values we need the distributions of the statistics

TKS and TCM under the null hypothesis. Unfortunately, the asymptotic distributions

obtained in Corollary 3.3 are too complicated and contain too many unknow quantities.

We therefore propose a bootstrap procedure to estimate the critical values of the test in

practical situations. This is based on a smoothed version of the ’naive bootstrap’ described

in Efron (1981) and on the method suggested in Pardo Fernández, Van Keilegom and

González Manteiga (2007).

First, define Ẽ0
1 , . . . , Ẽ

0
n, the standardized versions of the residuals Ê0

1 , . . . , Ê
0
n. In fact,

for λ1 =
∫

yJ(F̂ 0
ε (y))dF̂ 0

ε (y) and λ2
2 =

∫
(y − λ1)

2J(F̂ 0
ε (y))dF̂ 0

ε (y), we compute Ẽ0
i =

(Ê0
i − λ1)/λ2, i = 1, . . . , n. Note that the right tail of F̂ 0

ε (y) could be involved by λ1 and

λ2. In this case, the last order statistic Ê0
(n) is redefined as uncensored. The boostrap

procedure consists of the following steps. For fixed B and b = 1, . . . , B,

(1) For i = 1, . . . , n:

· Let

Y ∗
i,b = m̂0(Xi) + σϑn(Xi)ε

∗
i,b,

where ε∗i,b = Vi,b + aSi,b, Vi,b is drawn from F̃ 0
ε , (the Kaplan-Meier estimator based

on the standardized residuals) and Si,b is a normal distributed random variable

with mean 0 and variance 1 which introduces a small perturbation in the residuals

(controlled by the constant a).

· Select C∗
i,b from a smoothed version of Ĝ(·|Xi), the Beran (1981) estimator of the

distribution G(·|Xi) obtained by replacing ∆i by 1−∆i in the expression of F̂ (·|Xi).

· Let Z∗
i,b = min(Y ∗

i,b, C
∗
i,b) and ∆∗

i,b = I(Y ∗
i,b ≤ C∗

i,b).

(2) The bootstrap sample is {(Xi, Z
∗
i,b, ∆

∗
i,b), i = 1, . . . , n}.

(3) Let T ∗
KS,b and T ∗

CM,b be the test statistics calculated with the bootstrap sample.

Let T ∗
KS,(b) be the b−th order statistic of T ∗

KS,1, . . . , T
∗
KS,B, and analogously for T ∗

CM,(b).

Then T ∗
KS,([(1−α)B]+1) and T ∗

CM,([(1−α)B]+1) (where [·] denotes the integer part) approximate

the (1−α)−quantiles of the distributions of TKS and TCM . In the following discussion we

illustrate the finite sample properties of this procedure for the Cramer von Mises statistic

in two examples. The results for the Kolmogoroff Smirnoff case are similar and therefore

omitted.
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In our first example we consider the problem of testing for homoscedasticity in the

regression model

Yi = Xi + 0.5 exp (cXi) ξi, i = 1, . . . , n,

where X1, . . . , Xn are i.i.d. ∼ U [0, 1] and ξ1, . . . , ξn are i.i.d. ∼ N [0, 1]. Note that the case

c = 0 corresponds to the null hypothesis of homoscedasticity and two alternatives are

considered, i.e. c = 0.5 and c = 1. The censoring times are generated by the model

Ci = Xi + q + 0.5 exp (cXi) ηi, i = 1, . . . , n,

where q determines the amount of censoring and η1, . . . , ηn are again ∼ N [0, 1].

In Table 1, we display the simulated rejection probabilities based on 1000 simulation

runs, where the number of bootstrap replications is chosen as B = 199. For the bandwidth

in the conditional Kaplan Meier estimate we used an = 0.1, while the bandwidth an = 0.15

was used in the Beran estimate to generate the censored observations in the bootstrap. For

the constant q we considered the cases q = 99, q = 0.85 and q = 0.35 which corresponds to

an amount of 0%, 11% and 31% censoring under the null hypothesis, respectively. Under

the alternative c = 0.5 and c = 1 the cases q = 99, q = 0.85, q = 0.35 yield to 0%, 18%

and 35% and 0%, 24% and 39% censoring, respectively.

Table 1 Simulated rejection probabilities of the bootstrap test for the hypothesis of ho-

moscedasticity.

n 50 100

c q 2.5% 5% 10% 20% 2.5% 5% 10% 20%

99 4.8 6.2 11.5 22.1 3.7 5.8 10.1 21.4

0 0.85 4.6 6.6 10.9 18.2 2.1 4.2 8.5 16.3

0.35 4.7 6.9 11.8 17.5 3.9 6.2 10.7 19.4

99 19.3 25.0 36.3 48.2 76.3 83.4 89.6 94.2

0.5 0.85 17.5 21.4 29.9 41.9 43.1 49.4 55.7 68.2

0.35 11.2 14.3 21.6 34.3 28.9 36.2 40.3 53.8

99 51.9 55.7 63.8 72.9 84.7 92.3 99.4 99.9

1.0 0.85 40.9 46.4 54.9 65.7 60.1 67.3 75.7 87.1

0.35 20.1 24.3 34.5 48.8 39.6 44.6 54.7 69.7

In the second example we investigate the problem of testing for a parametric form of

the scale function. In particular we consider the hypothesis

H0 : σ(X) = exp(β1 + β2 log X) (4.1)
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and the regression model

Yi = Xi + exp (0.5 + log Xi) ξi, i = 1, . . . , n,

where X1, . . . , Xn are i.i.d. ∼ U [0, 1] and ξ1, . . . , ξn are i.i.d. ∼ N [0, 1]. The censoring

times are generated by the model

Ci = Xi + q + exp (0.5 + log Xi) ηi, i = 1, . . . , n,

where q determines the amount of censoring and η1, . . . , ηn are again ∼ N [0, 1]. The

simulated rejection probabilities based on 1000 simulation runs are shown in Table 2 (the

number of bootstrap replications is again B = 199 and the bandwidths are chosen as

in the previous example). For the constant q we considered the cases q = 99, q = 0.85

and q = 0.35 which corresponds in the present context to an amount of 0%, 26% and

15% censoring under the null hypothesis. We observe a reasonable approximation of the

nominal level, which is slightly worse compared to the hypothesis of homoscedasticity.

Table 2 Simulated rejection probabilities of the bootstrap test for the parametric hypoth-

esis (4.1) under the null hypothesis.

n 50 100

q 2.5% 5% 10% 20% 2.5% 5% 10% 20%

99 4.3 6.9 12.5 23.1 3.8 5.6 10.3 21.7

0.85 5.1 6.8 11.9 22.2 3.2 5.8 9.5 16.6

0.35 4.9 6.4 11.0 18.5 3.5 6.4 10.9 18.6

5 Data analysis

We are here interested in the (nonlinear) relationship between fatigue life of metal, ceramic

or composite materials (which is considered as a survival time) and applied stress. This

important input to design-for-reliability processes is motivated by the need to develop

and present quantitative fatigue-life information used in the design of jet engines. Indeed,

according to the air speed that enters an aircraft engine, the fan, the compressor and

the turbine rotate at different speeds and therefore are submitted to different stresses.

Moreover, fatigue life may be censored since failures may result from impurities or vacuums

in the studied materials, or no failure may occur at all due to time constraints of the

experiments.
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Figure 1: Fatigue life data. Scatter plot of the logarithms of fatigue life versus the

logarithms of strain for specimens of a nickel-base superalloy. Uncensored data points are

given by ∗ and censored observations by 4.

From a long time, an important question in fatigue analysis is to know whether the

variability of fatigue life given the stress (or the strain) is constant for any stress (or

strain). Several authors addressed this problem, among others, Nelson (1984) and Pascual

and Meeker (1997,1999) who studied the number of cycles before failure of nickel-base

superalloys as functions of the strain or the pseudostress (Young’s modulus times strain).

By example, Pascual and Meeker (1997) considered model (1.1) with the following form

for the conditional standard deviation of the logarithm of the number of cycles before

failure:

σ(X) = exp(β1 + β2 log X). (5.1)

However, those authors assumed parametric forms for both m(X) and the error distribu-

tion.

We present, in this section, a data set of 246 specimens of a nickel-base superalloy given

by Shen (1994) and studied by Pascual and Meeker (1999). For these data, we consider

model (1.1) where Y is the logarithm of the number of cycles before failure and X is

the logarithm of the resulting strain (see Figure 1). Pascual and Meeker (1999) only use

the 115 observations for which strain is below .007. The reason is that their completely

parametric model doesn’t fit the whole data set. As consequence, beyond robustness

questions, there are obvious reasons to study σ(X) independently of any parametric form.

In order to provide answers for the above questions, we display in the left part of

Figure 2 the nonparametric estimates of the scale function σ2(x). Next we illustrate the
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Figure 2: Left panel: residuals of a nonparametric fit to the fatigue life data. Right panel:

parametric and nonparametric estimates of the conditional scale function. Solid line:

nonparametric estimate; dashed line: parametric estimate obtained under the hypothesis

H02.

new test and consider the hypotheses H0j : σ(·) ∈Mj, j = 1, 2, for the classes of functions

M1 = {ϑ : ϑ ∈ Θ1},

(test for homoscedasticity) and

M2 = {exp(β1 + β2 log X) : (β1, β2) ∈ Θ2}

(test for the hypothesis (5.1)), where Θ1 ⊂ IR and Θ2 ⊂ IR2. For the problem of testing

for a constant scale the new bootstrap test yields a p-value of 0.000 (using 499 bootstrap

replications). This hypothesis is clearly rejected and reflects the picture of the residuals

in Figure 1. For the hypothesis (5.1) the p-value of the test is slightly larger, i.e. 0.018

and the hypothesis cannot be rejected at the 1%-level. However, in the right part of

Figure 2 we show the nonparametric estimate of the scale function (solid line) σ2 and the

corresponding parametric estimate (dashed line). This figure indicates that the function

exp(β1 + β2 log x) may not describe the variance structure adquately.
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Appendix

The following notations are needed in the statement of the asymptotic results given Section

3.

ξ(z, δ, y|x) = (1− F (y|x))



−

y∧z∫

−∞

dH1(s|x)

(1−H(s|x))2
+

I(z ≤ y, δ = 1)

1−H(z|x)



 ,

η(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)J(F (v|x)) dv σ0(x)−1,

ζ(z, δ|x) =

+∞∫

−∞
ξ(z, δ, v|x)J(F (v|x))

v −m0(x)

σ0(x)
dv σ0(x)−1,

γ0(y|x) =

y∫

−∞

sh0
ε(s|x)

(1−H0
ε (s))2

dH0
ε1(s) +

y∫

−∞

d (sh0
ε1(s|x))

1−H0
ε (s)

,

Ω = E[(
∂σθ̃0

(X)

∂ϑ
)(

∂σθ̃0
(X)

∂ϑ′
)],

ρ(x, z, δ, θ̃0) = −Ω−1σ0(x)ζ(z, δ|x)
∂σθ̃0

(x)

∂ϑ
,

χθ̃0
(x, z, δ, y) = (1− F 0

ε (y))[γ0(y|x)ζ(z, δ|x)

+
∫

(σ0(u))−1ρ′(x, z, δ, θ̃0)
∂σθ̃0

(u)

∂ϑ
γ0(y|u)dFX(u)].

Let T̃x be any value less than the upper bound of the support of H(·|x) such that

infx∈RX
(1 −H(T̃x|x)) > 0. For a (sub)distribution function L(y|x) we will use the nota-

tions l(y|x) = L′(y|x) = (∂/∂y)L(y|x), L̇(y|x) = (∂/∂x)L(y|x) and similar notations will

be used for higher order derivatives.

The assumptions needed for the asymptotic results are listed below.

(A1)(i) na4
n → 0 and na3+2δ

n (log a−1
n )−1 →∞ for some δ < 1/2.

(ii) RX is a compact interval of length LX .

(iii) K is a density with compact support,
∫

uK(u)du = 0 and K is twice continuously

differentiable.

(iv) The matrix Ω is non-singular.

(A2)(i) There exist 0 ≤ s0 ≤ s1 ≤ 1 such that s1 ≤ infx F (T̃x|x), s0 ≤ inf{s ∈
[0, 1]; J(s) 6= 0}, s1 ≥ sup{s ∈ [0, 1]; J(s) 6= 0} and infx∈RX

infs0≤s≤s1 f(F−1(s|x)|x) > 0.

(ii) J is twice continuously differentiable,
∫ 1
0 J(s)ds = 1 and J(s) ≥ 0 for all 0 ≤ s ≤ 1.
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(A3)(i) FX is three times continuously differentiable and infx∈RX
fX(x) > 0.

(ii) m0 is twice continuously differentiable.

(A4)(i) η(z, δ|x) and ζ(z, δ|x) are twice continuously differentiable with respect to x and

their first and second derivatives (with respect to x) are bounded, uniformly in x ∈ RX ,

z < T̃x and δ.

(A5) For L(y|x) = H(y|x), H1(y|x), H0
ε (y|x) or H0

ε1(y|x) : L′(y|x) is continuous in (x, y)

and supx,y |y2L′(y|x)| < ∞, the same holds for all other partial derivatives of L(y|x) with

respect to x and y up to order three.

(A6) For the density fX|Z,∆(x|z, δ) of X given (Z, ∆), supx,z |fX|Z,∆(x|z, δ)| < ∞,

supx,z |ḟX|Z,∆(x|z, δ)| < ∞, supx,z |f̈X|Z,∆(x|z, δ)| < ∞ (δ = 0, 1).

(A7) Θ is compact and θ̃0 is an interior point of Θ. All partial derivatives of σϑ(x) with

respect to the components of ϑ and x up to order three exist and are continuous in (x, ϑ)

for all x and ϑ. Moreover, infx∈RX
σ0(x) > 0.

(A8) For all ε > 0, inf ||ϑ−θ̃0||>ε E[(σ0(X)− σϑ(X))2] > 0.

Lemma A.1 Assume an satisfies na5
n(log a−1

n )−1 = O(1) and na3+2δ
n (log a−1

n )−1 →∞ for

some δ. Assume also (A1) (ii, iii), (A2) (i), J is continuous,
∫ 1
0 J(s)ds = 1, J(s) ≥ 0

for all 0 ≤ s ≤ 1, FX is twice continuously differentiable, infx∈RX
fX(x) > 0, H(y|x) and

H1(y|x) satisfy (A5), Θ is compact and θ̃0 is an interior point of Θ, σϑ(x) is continuous

in (x, ϑ) for all x and ϑ, infx∈RX
σ0(x) > 0 and for all ε > 0, inf ||ϑ−θ̃0||>ε E[(σ0(X) −

σϑ(X))2] > 0. Then under the null hypothesis H ′
0,

ϑn − θ0 →P 0.

Proof. Define S0(ϑ) = E[(σ0(X) − σϑ(X))2]. It follows from Theorem 5.7 in van der

Vaart (1998, p. 45) that it suffices to show that

sup
ϑ
|Sn(ϑ)− S0(ϑ)| →P 0,

where Sn(ϑ) = (1/n)
∑n

i=1(σ̂
0(Xi)−σϑ(Xi))

2. Using Proposition 4.5 of Van Keilegom and

Akritas (1999) (hereafter abbreviated by VKA) enables to write

sup
ϑ
|Sn(ϑ)− S0(ϑ)| ≤ sup

ϑ
|S̃n(ϑ)− S0(ϑ)|+ oP (1),

where S̃n(ϑ) = (1/n)
∑n

i=1(σ
0(Xi)− σϑ(Xi))

2. Next, the result follows from Theorem 2 in

Jennrich (1969).
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Lemma A.2 Assume (A1)-(A3), ζ(z, δ|x) satisfies (A4), H(y|x) and H1(y|x) satisfy

(A5) and (A6)-(A8). Then under the null hypothesis H ′
0,

ϑn − θ0 = −Ω−1n−1
n∑

i=1

σ0(Xi)ζ(Zi, ∆i|Xi)
∂σθ0(Xi)

∂ϑ
+ oP (n−1/2).

Proof. For some ϑ1n between ϑn and θ0,

ϑn − θ0 = −{∂2Sn(ϑ1n)

∂ϑ∂ϑ′
}−1∂Sn(θ0)

∂ϑ
,

where

∂Sn(θ0)

∂ϑ
= −2n−1

n∑

i=1

(σ̂0(Xi)− σθ0(Xi))
∂σθ0(Xi)

∂ϑ

= −2n−1
n∑

i=1

(σ̂0(Xi)− σ0(Xi))
∂σθ0(Xi)

∂ϑ
.

We have by Proposition 4.9 of VKA (1999)

∂Sn(θ0)

∂ϑ
= 2n−2a−1

n

n∑

i=1

n∑

j=1

K(
Xi −Xj

an

)f−1
X (Xi)σ

0(Xi)ζ(Zj, ∆j|Xi)
∂σθ0(Xi)

∂ϑ
+ oP (n−1/2)

= 2n−1
n∑

j=1

σ0(Xj)ζ(Zj, ∆j|Xj)
∂σθ0(Xj)

∂ϑ
+ oP (n−1/2),

using arguments similar to those used in expressions (A.5) to (A.7) of Heuchenne and

Van Keilegom (2007). Next,

∂2Sn(ϑ1n)

∂ϑ∂ϑ′

= −2n−1

{
n∑

i=1

(σ̂0(Xi)− σϑ1n(Xi))
∂2σϑ1n(Xi)

∂ϑ∂ϑ′
−

n∑

i=1

(
∂σϑ1n(Xi)

∂ϑ
)(

∂σϑ1n(Xi)

∂ϑ′
)

}

= 2Ω + oP (1),

for which Lemma A.1, Proposition 4.5 of VKA (1999) and assumption (A7) are used.

This finishes the proof.

Lemma A.3 If the assumptions of Lemma A.2 are satisfied, then under the null hypoth-

esis H ′
0, n1/2(ϑn − θ0)

d→ N(0, Σ), where

Σ = Ω−1E[σ02(X)ζ2(Z, ∆|X)
∂σθ0(X)

∂ϑ

∂σθ0(X)

∂ϑ′
]Ω−1.
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Proof. The proof follows readily from Lemma A.2.

Proof of Theorem 3.1. The objective of the proof is to provide asymptotic repre-

sentations for both differences F̂ε0(y) − Fε0(y) and F̂ 0
ε (y) − F 0

ε (y). Indeed, under H ′
0,

Fε0(y) = F 0
ε (y), for −∞ < y ≤ T. Following the lines of Theorem 3.1 of VKA (1999), we

obtain

F̂ε0(y)− Fε0(y)

= (1− Fε0(y))

[∫ y

−∞
Ĥε0(s)−Hε0(s)

(1−Hε0(s))
2

dHε01(s) +
∫ y

−∞
d(Ĥε01(s)−Hε01(s))

1−Hε0(s)

]

+Rn0(y) (A.1)

and

F̂ 0
ε (y)− F 0

ε (y)

= (1− F 0
ε (y))

[∫ y

−∞
Ĥ0

ε (s)−H0
ε (s)

(1−H0
ε (s))2

dH0
ε1(s) +

∫ y

−∞
d(Ĥ0

ε1(s)−H0
ε1(s))

1−H0
ε (s)

]

+R0
n(y), (A.2)

where sup{|Rn0(y)|;−∞ < y ≤ T} = oP (n−1/2), sup{|R0
n(y)|;−∞ < y ≤ T} = oP (n−1/2),

Ĥε0(y), Ĥε01(y), Ĥ0
ε (y), Ĥ0

ε1(y) denote the estimators

(1/n)
n∑

i=1

I(Êi ≤ y)

of the (sub)distributions Hε0(y), Hε01(y), H0
ε (y), H0

ε1(y) for Êi = Ê0
i,0, Ê0

i,0 for which

∆i = 1, Ê0
i and Ê0

i for which ∆i = 1, i = 1, . . . , n.

Now, from the proof of Proposition A.2 in VKA (1999), we have that

Ĥε0(y)−Hε0(y) =
1

n

n∑

i=1

(I(E0
i,0 ≤ y)−Hε0(y))

+
∫

hε0(y|x)
m̂0(x)−m0(x)

σ0(x)
dFX(x)

+
∫

yhε0(y|x)
σϑn(x)− σ0(x)

σ0(x)
dFX(x) + oP (n−1/2), (A.3)

uniformly in −∞ < y ≤ T. The last term (lower order terms of a Taylor developement) is

oP (n−1/2) because of assumption (A7), Proposition 4.5 of VKA (1999), Lemma A.3 and

the fact that supx,y |y2h′ε0
(y|x)| < ∞. In the same way,

Ĥε01(y)−Hε01(y) =
1

n

n∑

i=1

(I(E0
i,0 ≤ y, ∆i = 1)−Hε01(y))
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+
∫

hε01(y|x)
m̂0(x)−m0(x)

σ0(x)
dFX(x)

+
∫

yhε01(y|x)
σϑn(x)− σ0(x)

σ0(x)
dFX(x) + oP (n−1/2), (A.4)

uniformly in −∞ < y ≤ T, and similarly for both Ĥ0
ε (y) − H0

ε (y) and Ĥ0
ε1(y) − H0

ε1(y),

where E0
i,0 (resp. Hε0(y), hε0(y|x), Hε01(y) and hε01(y|x)) is replaced by E0

i (resp. H0
ε (y),

h0
ε(y|x), H0

ε1(y) and h0
ε1(y|x)), i = 1, . . . , n.

The results (A.1), (A.3) and (A.4) are actually true if Lemma A.1 of VKA (1999)

can be used with functions d2(x) ∈ ΣΘ(RX) = {x → σϑ(x)
σ0(x)

with infx{σϑ(x)
σ0(x)

} ≥ 1
2
, ϑ ∈ Θ}

instead of d2(x) ∈ C̃1+δ
2 (RX) used in this Lemma. It is clear that P (

σϑn(x)

σ0(x)
∈ ΣΘ(RX)) → 1

as n →∞. Next, the bracketing number N[](λ
2, ΣΘ(RX), L2(P )) = O(λ−2D) for any λ > 0,

due to the compactness of Θ ∈ IRD. Since this bracketing number is smaller than for the

class C̃1+δ
2 (RX), C̃1+δ

2 (RX) can be replaced by ΣΘ(RX) in Lemma A.1 of VKA (1999) and

consequently, (A.1), (A.3) and (A.4) are true.

Next, we treat the right hand side of (A.3). (A.4) is treated similarly. Using Proposi-

tion 4.8 of VKA (1999) and a Taylor development, we obtain for the second term of the

right hand side of (A.3)

∫
hε0(y|x)

m̂0(x)−m0(x)

σ0(x)
dFX(x) = −n−1

n∑

i=1

hε0(y|Xi)η(Zi, ∆i|Xi) + oP (n−1/2), (A.5)

uniformly in −∞ < y ≤ T. By Lemma A.2 and a Taylor development, the third term on

the right hand side of (A.3) becomes

n−1
n∑

i=1

∫
yhε0(y|x)(σ0(x))−1

D∑

d=1

ρd(Xi, Zi, ∆i, θ0)
∂σθ0(x)

∂ϑd

dFX(x) + oP (n−1/2), (A.6)

uniformly in −∞ < y ≤ T, where ρd(X, Z, ∆, θ0) is the dth component of the vector

ρ(X,Z, ∆, θ0), d = 1, . . . , D. Substituting (A.5) and (A.6) in (A.3) leads to

Ĥε0(y)−Hε0(y) =
1

n

n∑

i=1

(I(E0
i,0 ≤ y)−Hε0(y))

−n−1
n∑

i=1

hε0(y|Xi)η(Zi, ∆i|Xi)

+n−1
n∑

i=1

∫ {
yhε0(y|x)(σ0(x))−1

×
D∑

d=1

ρd(Xi, Zi, ∆i, θ0)
∂σθ0(x)

∂ϑd

}
dFX(x)

+oP (n−1/2), (A.7)
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uniformly in −∞ < y ≤ T. In the same way, (A.4) has the same structure with I(E0
0 ≤ y)

(resp. Hε0(y) and hε0(y|x)) replaced by I(E0
0 ≤ y, ∆ = 1) (resp. Hε01(y) and hε01(y|x)).

Finally, Proposition A.2 of VKA (1999) ensures that

Ĥ0
ε (y)−H0

ε (y) =
1

n

n∑

i=1

(I(E0
i ≤ y)−H0

ε (y))

−n−1
n∑

i=1

h0
ε(y|Xi)η(Zi, ∆i|Xi)

−n−1
n∑

i=1

yh0
ε(y|Xi)ζ(Zi, ∆i|Xi) + oP (n−1/2), (A.8)

uniformly in −∞ < y ≤ T, and similarly for Ĥ0
ε1(y)−H0

ε1(y). Therefore introducing (A.7),

(A.8) and their counterparts for Ĥε01(y)−Hε01(y) and Ĥ0
ε1(y)−H0

ε1(y) in (A.1) and (A.2)

leads to the asymptotic representation proposed in Theorem 3.1.

Proof of Theorem 3.2. We will make use of Theorem 2.5.6 in van der Vaart and Wellner

(1996), i.e. we will show that

∫ ∞

0

√
log N[](λ,F , L2(P ))dλ < ∞, (A.9)

where N[] is the bracketing number, P is the probability measure corresponding to the joint

distribution of (X,Z, ∆), L2(P ) is the L2−norm and F = {χθ0(X, Z, ∆, y);−∞ < y ≤ T}.
Proving (A.9) implies that F is a Donsker class and hence the weak convergence of the

given process is ensured by pages 81-82 of van der Vaart and Wellner’s book. First,

the functions x → (1 − F 0
ε (y))γ0(y|x) are bounded uniformly in y as well as their first

derivatives since supx,y |yḣ0
ε(y|x)| < ∞ and supx,y |yḣ0

ε1(y|x)| < ∞. By Corollary 2.7.2 of

the aforementioned book, their bracketing number is O(exp(Kλ−1)). Since ζ(z, δ|x) is uni-

formly bounded, the bracketing number of the first term of χθ0(x, z, δ, y) is O(exp(Kλ−1)).

Next, the second term of χθ0(x, z, δ, y) is divided into D terms corresponding to each term

of the scalar product ρ′(x, z, δ, θ0)
∂σθ0

(x)

∂ϑ
. Each term can therefore be written

ρd(x, z, δ, θ0)(1− F 0
ε (y))[

∫
(σ0(u))−1∂σθ0(u)

∂ϑd

γ0(y|u)dFX(u)],

for d = 1 . . . , D, which is immediately treated since it is factorized in a (uniformly

bounded) function independent of y and a uniformly bounded function only depend-

ing on y. This concludes the proof since the integration in (A.9) can be restricted to the

interval [0, 2M ], since |χθ0(x, z, δ, y)| ≤ M (for a specific choice of M), for all x, z, δ and

y (for λ > 2M, we take N[](λ,F , L2(P )) = 1).
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Proof of Corollary 3.3. The convergence of TKS follows directly from the weak conver-

gence of the process Ŵ (y) and the continuous mapping Theorem. For TCM , write

∫ T

−∞
Ŵ 2(y)dF̂ 0

ε (y)−
∫ T

−∞
W 2(y)dF 0

ε (y)

≤
∫ T

−∞
(Ŵ 2(y)−W 2(y))dF̂ 0

ε (y) +
∫ T

−∞
W 2(y)d(F̂ 0

ε (y)− F 0
ε (y)).

For the first term on the right hand side of the above inequality, we apply the Skoro-

hod construction (see Serfling, 1980) to the process Ŵ (y) such that sup−∞<y≤T |Ŵ (y)−
W (y)| → 0, a.s. The second term is jointly treated by the Skorohod construction applied

to the process n1/2(F̂ 0
ε (y)− F 0

ε (y)) and the Helly-Bray Theorem (see p. 97 in Rao, 1965)

applied to each of the trajectories of W (y). Finally, we use Corollary 3.2 of VKA (1999)

to treat the difference

1

F̂ 0
ε (T )

∫ T

−∞
W 2(y)dF 0

ε (y)− 1

F 0
ε (T )

∫ T

−∞
W 2(y)dF 0

ε (y).
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