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1. Introduction

Consider the common linear regression model

y(x) = θ1f1(x) + . . .+ θmfm(x) + ε(x) , (1)

where f1(x), . . . , fm(x) are linearly independent, continuous functions, ε(x)
denotes a random error process or field, θ1, . . . , θm are unknown parameters
and x is the explanatory variable, which varies in a compact design space
X ⊂ Rd. We assume that N observations, say y1, . . . , yN , can be taken at
experimental conditions x1, . . . , xN to estimate the parameters in the linear
regression model (1). Suppose that ε(x) is a stochastic process with

E[ε(x)] = 0, E[ε(x)ε(x′)] = K(x, x′) , x ∈ X ⊂ Rd . (2)

Throughout this paper we call the function K(x, x′) covariance kernel. An
important case appears when the error process is stationary and the covari-
ance kernel is of the form K(x, x′) = σ2ρ(x − x′), where ρ(0) = 1. The
function ρ(·) is called the correlation function.

If N observations, say y = (y1, . . . , yN)T , are available at experimen-
tal conditions x1, . . . , xN and the covariance kernel is known, then the vec-
tor of parameters can be estimated by the weighted least squares method,
that is, by θ̂ = (XTΣ−1X)−1XTΣ−1y where X = (fi(xj))

i=1,...,m
j=1,...,N and Σ =

(K(xi, xj))i,j=1,...,N . The variance-covariance matrix of this estimate is given
by

Var(θ̂) = (XTΣ−1X)−1 .

If the correlation structure of the process is not known, one usually uses the
ordinary least squares estimate θ̃ = (XTX)−1XTy, which has the covariance
matrix

Var(θ̃) = (XTX)−1XTΣX(XTX)−1. (3)

An exact experimental design {x1, . . . , xN} is a collection of N points
from the design space X , which defines the time points or experimental con-
ditions where observations are taken. Optimal designs for weighted or ordi-
nary least squares estimation minimize a functional of the covariance matrix
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of the weighted or ordinary least squares estimate, respectively, and numer-
ous optimality criteria have been proposed in the literature to discriminate
between competing designs [see Pukelsheim (2006)].

Exact optimal designs for specific linear models have been investigated
in Dette et al. (2008b); Kisělák and Stehĺık (2008); Harman and Štulajter
(2010). Because even in simple models exact optimal designs are difficult
to find, most authors use asymptotic arguments to determine efficient de-
signs for the estimation of the model parameters [see Sacks and Ylvisaker
(1966, 1968), Bickel and Herzberg (1979) or Zhigljavsky et al. (2010)]. Sacks
and Ylvisaker (1966, 1968) and Näther (1985), Chapter 4, assumed that the
design points {x1, . . . , xN} are generated by the quantiles of a distribution
function; that is, xi = a((i − 1)/(N − 1)), i = 1, . . . , N, where the func-
tion a : [0, 1] → X is the inverse of a distribution function. Let ξN denote
a normalized design supported at N points {x1, . . . , xN} with the weight
1/N assigned to each point. Then the covariance matrix of the least squares
estimate θ̃ given in (3) can be represented as

Var(θ̃) = D(ξN) = M−1(ξN)B(ξN , ξN)M−1(ξN), (4)

where the matrices M(ξN) and B(ξN , ξN) are defined by

M(ξN) =

∫
X
f(u)fT (u)ξN(du), (5)

B(ξN , ξN) =

∫
X

∫
X
K(u, v)f(u)fT (v)ξN(du)ξN(dv), (6)

respectively, and f(u) =
(
f1(u), . . . , fm(u)

)T
denotes the vector of regression

functions. Following Kiefer (1974) we call any probability measure ξ on X
an approximate design or simply design. The definitions of the matrices
M(ξ) and B(ξ, ξ) can be extended to an arbitrary design ξ, provided that
the corresponding integrals exist. The matrix

D(ξ) = M−1(ξ)B(ξ, ξ)M−1(ξ), (7)

is called the covariance matrix for the design ξ and can be defined for any
probability measure ξ supported on the design space X such that the matrices
B(ξ, ξ) and M−1(ξ) are well-defined. This set will be denoted by Ξ.

Optimal designs for regression models with dependent data have been
investigated mainly for the location scale model. The difficulties in a general
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development of the optimal design theory for correlated observations can be
explained by the different structure of the covariance of the least squares
estimator in model (1), which is of the form M−1BM−1. As a consequence,
the corresponding design problems are in general not convex (except for the
location scale model where m = 1 and f1(u) ≡ 1). Recently, Dette et al.
(2011) derived universally optimal designs for regression models of arbitrary
dimension if the corresponding regression functions are eigenfunctions of an
integral operator defined by the covariance kernel of the error process. On the
other hand there are many situations where this assumption is not satisfied
and in these cases there does not exist a universally optimal design.

The present paper is devoted to the numerical construction of ‘nearly’ uni-
versally optimal designs for regression models in such situations. This means
that we consider the model (1) with m > 1 parameters in the case where a
universally optimal design does not exist. In Section 2 we introduce a new
optimality criterion which reflects the distance between a given design and an
ideal, universally optimal design. A necessary conditions for the optimality
of a given design is established in Section 3 and an algorithm for its numerical
determination is proposed in Section 4. Finally, some illustrative examples
are given in Section 5, where we calculate ‘nearly’ universally optimal designs
for a quadratic regression model and a nonlinear model with various correla-
tion functions. The results indicate that the new ‘nearly’ universally optimal
designs have good efficiencies with respect to common optimality criteria.

2. A new optimality criterion - g-optimal designs

Throughout this paper we assume that the kernel K in (6) is continuous at
all points (x, x′) ∈ X ×X except possibly the diagonal points (x, x). We also
assume that K(x, x′) 6= 0 for at least one pair (x, x′) with x 6= x′. Singular
kernels appear naturally if the approach in Bickel and Herzberg (1979) for
the approximation of the covariance matrix in (3) is extended such that the
variance of the observations also depends on the sample size [see Zhigljavsky
et al. (2010) for details and Dette et al. (2011) for an application]. Because in
this paper we are interested in designs maximizing functionals of the matrix
D(ξ) (independently from the type of approximation which has been used to
derive it), we will also consider singular kernels in the following discussion.

An (approximate) optimal design minimizes some functional of the co-
variance matrix D(ξ) over the set Ξ and a universally optimal design ξ∗ (if
it exists) minimizes the matrix D(ξ) with respect to the Loewner ordering,
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that is
D(ξ∗) ≤ D(ξ) for all ξ ∈ Ξ.

Universally optimal designs are attractive as they are optimal with respect
to all monotone optimality criteria. Note that the design ξ∗ is universally
optimal if and only if the design ξ∗ is c-optimal for all c ∈ Rm\{0}.

Unfortunately universally optimality designs exist only in rare circum-
stances and in this paper we make an attempt to find designs which have
similar properties as ideal universally optimal designs. As a consequence we
expect the designs derived by the method proposed here to have high effi-
ciencies for many commonly used optimality criteria. To be precise we follow
Dette et al. (2011) and introduce for a given design ξ the vector-valued func-
tion

gξ(x) =

∫
K(x, u)f(u)ξ(du)−B(ξ, ξ)M−1(ξ)f(x) , x ∈ X .

This function satisfies the equality
∫
gξ(x)fT (x)ξ(dx) = 0. Also, as the vector

of regression functions f is continuous on X , the function gξ is continuous
too. In what follows we shall use the notation Λξ = B(ξ, ξ)M−1(ξ) and
Qξ(x) =

∫
K(x, u)f(u)ξ(du).With this notation we obtain the representation

gξ(x) = Qξ(x)− Λξf(x).

In Theorem 3.3 in Dette et al. (2011) it is established that a design ξ is
universally optimal if and only if the condition

gξ(x) = 0

holds for all x ∈ X . Consequently, we can expect that the design ξ would
resemble the properties of the universally optimal design (despite it may not
exist) if ‖gξ(x)‖ is small for all x, where ‖ · ‖ denotes the euclidean norm on
Rm. Moreover, Dette et al. (2011) pointed out that for a universally optimal
design the corresponding LSE gives exactly the same asymptotic covariance
matrix as the BLUE and the optimal design for the BLUE. Therefore we
may also expect that in this case the covariance matrices of the LSE and
BLUE estimators are very similar. These considerations have motivated us
to measure the size of the function x → gξ(x) by an L2-norm and to find a
design minimizing this norm. To be precise we call the optimality criterion

Φ(ξ) =

∫
X
‖gξ(x)‖2dx =

∫
X
gTξ (x)gξ(x)dx (8)
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g-optimality criterion, and a design ξ∗g minimizing Φ will be called g-optimal.
In particular, a design ξ∗ is universally optimal if and only if Φ(ξ∗) = 0.

3. Necessary condition for optimality

In the case of correlated observations optimality criteria are generally
not convex, see Zhigljavsky et al. (2010). Therefore, standard optimality
theorems do not give full characterizations of optimal designs. These results
only provide necessary conditions for the optimality of a design. Theorem
1 below is not an exception and only gives a necessary conditions for g-
optimality.

Theorem 1. If the design ξ∗ is g-optimal for the linear regression model (1)
then

ϕ(x, ξ∗) ≥ Φ(ξ∗) for all x ∈ X ,

where the function ϕ is defined by

ϕ(x, ξ)=

∫
gTξ (t)

(
K(t, x)f(x)−

[
gξ(x)fT (x)+f(x)QT

ξ (x)
]
M−1(ξ)f(t)

)
dt. (9)

Proof. Using standard arguments of optimal design theory the neces-
sary condition for the g-optimality of the design ξ is the fullfilment of the
inequality

φ(ν, ξ) ≥ 0

for all ν, where φ(ν, ξ) = ∂
∂α

Φ(ξα)
∣∣
α=0

and ξα = (1 − α)ξ + αν. Let us now
compute the directional derivative φ(ν, ξ) at ξ in the direction of ν. First,
we note that

∂

∂α
M−1(ξα)

∣∣∣
α=0

= M−1(ξ)−M−1(ξ)M(ν)M−1(ξ)

and

∂

∂α
B(ξα, ξα)

∣∣∣
α=0

= B(ξ, ν) +B(ν, ξ)− 2B(ξ, ξ).
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Then the explicit form for Aν,ξ := ∂
∂α

Λξα

∣∣∣
α=0

is

Aν,ξ =
[
B(ξ, ν) +B(ν, ξ)− 2B(ξ, ξ)

]
M−1(ξ)

+B(ξ, ξ)
[
M−1(ξ)−M−1(ξ)M(ν)M−1(ξ)

]
=

[
B(ξ, ν)+B(ν, ξ)

]
M−1(ξ)−B(ξ, ξ)

[
M−1(ξ)+M−1(ξ)M(ν)M−1(ξ)

]
=

[
B(ξ, ν) +B(ν, ξ)−B(ξ, ξ)− ΛξM(ν)

]
M−1(ξ) .

Therefore

φ(ν, ξ) =

∫ [(
Qν−ξ(x)− Aν,ξf(x)

)T
gξ(x) + gTξ (x)

(
Qν−ξ(x)− Aν,ξf(x)

)]
dx.

Since φ(ν, ξ) is a scalar function we have

φ(ν, ξ) = 2

∫
gTξ (x)

(
Qν−ξ(x)− Aν,ξf(x)

)
dx.

Let δt be the delta-measure supported at a point t. Then M(δt) =
f(t)fT (t), B(ξ, δt) = BT (δt, ξ) = Qξ(t)f

T (t),

Qδt−ξ(x) = K(x, t)f(t)−Qξ(x) (10)

and

Aδt,ξ =
[
Qξ(t)f

T (t) + f(t)QT
ξ (t)

]
M−1(ξ)

−B(ξ, ξ)
[
M−1(ξ) +M−1(ξ)f(t)fT (t)M−1(ξ)

]
=

[
Qξ(t)f

T (t) + f(t)QT
ξ (t)− Λξf(t)fT (t)

]
M−1(ξ)−B(ξ, ξ)M−1(ξ)

=
[
gξ(t)f

T (t) + f(t)QT
ξ (t)

]
M−1(ξ)− Λξ . (11)

We can now write

φ(t, ξ) = φ(δt, ξ) = 2

∫
gTξ (x)

(
Qδt−ξ(x)− Aδt,ξf(x)

)
dx = 2(ϕ(t, ξ)− χ(ξ))

where ϕ(t, ξ) is defined in (9) and χ(ξ) takes into account the last terms in
(10) and in (11), that is

χ(ξ) =

∫
gTξ (x)

(
Qξ(x)− Λξf(x)

)
dx = Φ(ξ).

�
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Remark 1. The following expression for the function ϕ(x, ξ) defined in (9)
may look more appealing:

ϕ(x, ξ)= fT (x)

∫
K(x, t)gξ(t)dt− Tr(AξBξ),

where the matrices Aξ and Bξ are given by

Aξ=
[
gξ(x)fT (x)+f(x)gTξ (x)

]
M−1(ξ)+f(x)fT (x)D(ξ), Bξ=

∫
f(t)gTξ (t)dt .

4. An algorithm for construction of optimal designs

The fact that the optimality theorems only give a necessary condition
for design optimality does not usually create additional problems for the
algorithms of construction of designs. Numerical computation of optimal
designs for the common linear regression model (1) with given correlation
function can be performed by an extension of the multiplicative algorithm
proposed by Dette et al. (2008c) for the case of non-correlated observations
[see also Yu (2010) for some extensions]. Note that the proposed algorithm
constructs a discrete design which can be considered as an approximation
to a design satisfying the necessary conditions for optimality in Theorem
1. By choosing a fine discretization {x1, . . . , xn} of the design space X and
running the algorithm long enough, the accuracy of approximation can be
made arbitrarily small. Numerical experiments show that the convergence is
always achieved.

Denote by ξ(r) = {xi;w(r)
i }ni=1 the design at the iteration r. We propose

the following updating rule for the weights

w
(r+1)
i = w

(r)
i

ψr(xi, ξ
(r))∑n

j=1w
(r)
j ψr(xj, ξ(r))

, i = 1, . . . , n, (12)

where

ψr(x, ξ) = 1 + βr
(
Φ(ξ)− ϕ(x, ξ)

)
+

= 1 + βr max
{

0,Φ(ξ)− ϕ(x, ξ)
}

and βr is chosen to ensure the decrease of the optimality criterion (βr is small

positive). Note that the initial weights w
(0)
1 , . . . , w

(0)
n should be nonzero, for

example, w
(0)
i = 1/n for i = 1, . . . , n.
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We write the algorithm for computing the g-optimal design in the follow-
ing form.

Algorithm.

1. Set w
(0)
1 = 1/n, . . . , w

(0)
n = 1/n, β0 = 1, ε = 10−4 and r = 0.

2. For i = 1, . . . , n compute w
(r+1)
i according to (12).

3. If
Φ
(
{xi;w(r+1)

i }ni=1

)
< Φ

(
{xi;w(r)

i }ni=1

)
,

then set βr+1 = βr. Otherwise, redefine w
(r+1)
i = w

(r)
i and set βr+1 =

βr/2.

4. If ∣∣Φ({xi;w(r+1)
i }ni=1

)
− Φ

(
{xi;w(r)

i }ni=1

)∣∣ < ε and |βr+1 − βr| < ε,

then terminate the algorithm.

5. Set r = r + 1 and return to step 2.

Note that the necessary condition of optimality takes the form ψr(x, ξ
∗) ≤

1 for all x ∈ X . Therefore, the rule (12) means that at the next iteration the
weight of a point x = xj increases if the necessary condition does not hold
at this point.

A measure ξ∗ is a fixed point of the iteration (12) if and only if ψr(x, ξ∗)=1
for all x. Thus, the design ξ∗ is a fixed point of the iteration (12) if and only
if it satisfies the optimality condition of Theorem 1. We were not able to
theoretically prove the convergence of the algorithm to the design satisfying
the optimality condition of Theorem 1 but we observed the convergence in
all numerical studies. In particular, for the cases where we could derive the
optimal designs explicitly, we observed the convergence of the algorithm to
the optimal design.
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5. Examples

In this section, we provide some numerical results which we have received
applying Algorithm described in Section 4 for the calcualtion of g-optimal
designs in several regression models. In the tables below we shall use the
following notation for the D-efficiency, A-efficiency and g-efficiency of a de-
sign ξ:

EffD(ξ) =

(
detD(ξ∗D)

detD(ξ)

)1/m

, EffA(ξ) =
Tr(D(ξ∗A))

Tr(D(ξ))
,

and

Effg(ξ) =

(∫
gTξ∗g (x)gξ∗g (x)dx∫
gTξ (x)gξ(x)dx

)1/2

.

Here ξ∗D is the D-optimal design, ξ∗A is the A-optimal design, ξ∗g is the g-
optimal design and m is the number of unknown parameters. We will also
use the notation ξu for the uniform design of X and ξa for the arcsine design
on the interval [−1, 1]; this is the design with density

p(x) = 1/(π
√

1− x2), x ∈ [−1, 1].

5.1. Approximating the logarithmic kernel

Consider the quadratic regression model (that is m = 3 and f(x) =
(1, x, x2)T ) on the interval X = [−1, 1] and the covariance functionKδ(u, v) =
ρδ(u− v) where

ρδ(t) = 2− 1

δ
log
( |t+ δ|t+δ

|t− δ|t−δ
)
. (13)

The functions ρδ(t) converge to the logarithmic kernel ρ(t) = − log(t)2 as
δ → 0, for all t 6= 0.

In Figure 1 we display the g-optimal designs (constructed numerically
by the application of the multiplicative algorithm) for δ =0.02, 0.05 and
0.1. As one can see, for small δ these designs are very close to the arcsine
design, which is the universally optimal design for the quadratic model and
the logarithmic kernel, as proved in Dette et al. (2011). We also note that
gξa(x) ≡ 0 for δ = 0 while Φ(ξ∗g(δ)) equals 0.00182, 0.0292 and 0.0562 for
δ = 0.02, 0.05, 0.1, respectively.

Note that for δ = 0.02, 0.05 and 0.1 we have Φ(ξa) = 0.0342, Φ(ξa) =
0.0742 and Φ(ξa) = 0.132, respectively. In Table 1 we show D-, A- and g-
efficiencies of the designs ξ∗D, ξ∗A, ξ∗g , ξa and ξu. We can observe that the
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Figure 1: The g-optimal designs for the quadratic model with covariance kernel (13), where
δ = 0.02 (left), δ = 0.05 (middle) and δ = 0.1 (right). The dotted line corresponds to the
arcsine density.

g-optimal design has very high D- and A-efficiencies but the g-efficiency of
ξ∗D and ξ∗A is only about 0.8. The arcsine and the uniform design are less
efficient, in particular with respect to the g-optimality criterion.

In Figure 2 we depict the components g1, g2, and g3 of the vector-valued
function gξ(x) for designs ξ∗g , ξ

∗
D and ξa in the case δ = 0.05. We can see that

gξ∗g (x) has smaller absolute values than gξ∗D(x) and gξa(x). For these designs
we have Φ(ξ∗g) = 0.0292, Φ(ξ∗D) = 0.0442, Φ(ξa) = 0.0742 (here δ = 0.05).
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Figure 2: The components of the vector-valued function gξ(x) = (g1(x), g2(x), g3(x))T for
the quadratic model with covariance kernel (13) (with δ = 0.05) for the g-optimal design
(left), the D-optimal design (middle) and the arcsine design (right).

5.2. The exponential correlation function

Consider the quadratic model with stationary error process having the
exponential correlation function K(u, u+ t) = ρ(t) = e−λ|t|. In this case the
existence of a universally optimal design is an open problem, but we can use
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Table 1: D-, A- and g-Efficiencies of the designs ξ∗D, ξ∗A, ξ∗g , ξa and ξu for the quadratic
model and the covariance kernel (13) with δ = 0.02, 0.05, 0.1.

δ = 0.02 δ = 0.05 δ = 0.1
ξ EffD(ξ) EffA(ξ) Effg(ξ) EffD(ξ) EffA(ξ) Effg(ξ) EffD(ξ) EffA(ξ) Effg(ξ)
ξ∗D 1 0.999 0.878 1 0.999 0.842 1 0.999 0.702
ξ∗A 0.999 1 0.746 0.999 1 0.783 0.999 1 0.586
ξ∗g 0.999 0.999 1 0.992 0.992 1 0.987 0.988 1
ξu 0.91 0.90 0.12 0.87 0.86 0.13 0.83 0.81 0.23
ξa 0.99 0.99 0.41 0.97 0.97 0.42 0.94 0.94 0.43

the algorithm described in Section 4 to provide a design with similar prop-
erties. In Figure 3 we display the densities corresponding to the g-optimal
designs. The values of Φ(ξ∗g(λ)) are equal to 0.00252, 0.00432 and 0.00192 for
λ = 1, 4, 8, respectively. The corresponding efficiencies of various designs are
shown in Table 2 for the cases λ = 1, λ = 4 and λ = 8, respectively, and we
observe a similar pattern as described in the previous example. In particular
the D- and A-optimal design have a rather low g-efficiency.
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Figure 3: The g-optimal designs for the quadratic model with exponential covariance func-
tion ρ(t) = e−λ|t|, where λ = 1 (left), λ = 4 (middle) and λ = 8 (right).

5.3. Optimal designs for a nonlinear model

In this section we extend the methodology to the case of nonlinear models.
Exemplarily, we consider the compartmental model with first-order absorp-
tion,

η(x, θ) =
θ1

θ1 − θ2
(e−θ2x − e−θ1x) (14)
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Figure 4: The components of the vector-valued function gξ(x) = (g1(x), g2(x), g3(x))T for
the quadratic model with exponential correlation function ρ(t) = e−λ|t| (λ = 1) for the
g-optimal design (left), the D-optimal design (middle) and the arcsine design (right). If
λ = 1 we have for these designs Φ(ξ∗g) = 0.00252, Φ(ξ∗D) = 0.00782, Φ(ξa) = 0.0262.

Table 2: D-, A- and g-Efficiency of the designs ξ∗D, ξ∗A, ξ∗g , ξ∗a and ξu for the quadratic

model and the exponential correlation function ρ(t) = e−λ|t| with λ = 1, 4, 8.

λ = 1 λ = 4 λ = 8
ξ EffD(ξ) EffA(ξ) Effg(ξ) EffD(ξ) EffA(ξ) Effg(ξ) EffD(ξ) EffA(ξ) Effg(ξ)
ξ∗D 1 0.997 0.387 1 0.999 0.57 1 0.99 0.710
ξ∗A 0.998 1 0.341 0.999 1 0.40 0.999 1 0.468
ξ∗g 0.996 0.993 1 0.998 0.996 1 0.999 0.998 1
ξu 0.82 0.83 0.09 0.85 0.82 0.12 0.91 0.88 0.09
ξa 0.93 0.94 0.10 0.97 0.96 0.22 0.98 0.98 0.09
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Figure 5: The components of the vector-valued function gξ(x) = (g1(x), g2(x), g3(x))T for
the quadratic model with exponential correlation function ρ(t) = e−λ|t| (λ = 4) for the
g-optimal design (left), the D-optimal design (middle) and the arcsine design (right). If
λ = 4 we have for these designs Φ(ξ∗g) = 0.00432, Φ(ξ∗D) = 0.00762, Φ(ξa) = 0.0202.

The model (14) is a special case of the Bateman function, defined in the
introduction [see Garrett (1994)], and has found considerable attention in
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chemical sciences, toxicology and pharmacokinetics [see, for example, Gibaldi
and Perrier (1982)]. The optimal design problem in the compartmental model
with uncorrelated observations has been studied by numerous authors [see,
for example, Box and Lucas (1959), Atkinson et al. (1993), Dette and O’Brien
(1999), Biedermann et al. (2004) among others].

We now consider optimal design problems in the case of correlated ob-
servations and determine locally optimal designs in the sense of Chernoff
(1953), which require a specification of the unknown parameters. There are
many situations where such preliminary knowledge is available, such that
the application of locally optimal designs is well justified [see Dette et al.
(2008a)]. However, the most important application of locally optimal designs
is their use as benchmarks for commonly proposed designs. Moreover, they
are the basis for more sophisticated design strategies, which require less pre-
cise knowledge about the model parameters, such as sequential, Bayesian or
standardized maximin optimality criteria [see Chaloner and Verdinelli (1995)
and Dette (1997) among others].

Note that the gradient of the function η(t, θ) with respect to θ is given
by

f(x, θ) =

(
θ2(e

−θ1x − e−θ2x) + (θ21x− θ1θ2x)e−θ1x

(θ1 − θ2)2
,

θ1(e
−θ1x − e−θ2x) + (θ21x− θ1θ2x)e−θ2x

(θ1 − θ2)2

)T
which corresponds to the vector f of regression functions in the previous
section. In order to illustrate the methodology of asymptotic optimal designs,
we assume that θ = (1, 0.5)T , the correlation function of errors is ρ(t) = e−λ|t|

with λ = 0.5 and the design space is given by the interval X = [0, 10]. In
general, the D-optimality criterion is typically chosen for the construction
of an efficient design for the estimation of all parameters. However, in some
bioavailability studies, the aim of experiments is the estimation of the area
under curve

AUC =

∫ ∞
0

η(x, θ) dx.

For the compartmental model (14), we obtain AUC = 1/b2. It can be shown
that the (locally) AUC-optimal design for the model (14) minimizes the vari-
ance of the nonlinear least squares estimate for the parameter β2. This vari-
ance is approximately proportional to eT2D(ξ)e2, where e2 = (0, 1)T , which
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corresponds to the c-optimality criterion with c = e2. In addition, we study
the g-optimal design for the model (14).

In Figure 6 we show the g-optimal design (left), the D-optimal design
(middle) and the AUC-optimal design (right). The function gξ(x) for these
designs is depicted in Figure 7. We observe that the D-optimal design put
more weight near 1 and g-optimal design has some weight at the point t = 0.
Moreover the g-optimal design has also larger masses at the right boundary
x = 10 of the design space.
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Figure 6: The g-optimal design (left), the D-optimal design (middle) and the AUC-optimal
design (right) for the nonlinear model (14) with exponential covariance function ρ(t) =
e−λ|t| with λ = 0.5.
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Figure 7: The components of the vector-valued function gξ(x) = (g1(x), g2(x))T for the
nonlinear model (14) with exponential correlation function ρ(t) = e−λ|t| (λ = 0.5) for
the g-optimal design (left), the D-optimal design (middle) and the AUC-optimal design
(right). For these designs, Φ(ξ∗g) = 0.0152, Φ(ξ∗D) = 0.0252, Φ(ξ∗AUC) = 0.0232.

In Table 3 we show D-, A- and g-efficiencies of the designs ξ∗D, ξ∗A, ξ∗g and
ξu. We can observe that D- and A-efficiencies of the g-optimal design are
about 0.8 but the g-efficiency of ξ∗D and ξ∗A is 0.6 and 0.5, respectively. Note
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that the AUC-efficiency of the g-optimal design is 0.98 while the g-efficiency
of the AUC-optimal design is 0.65.

Table 3: D-, A-, AUC- and g-Efficiency of the designs ξ∗D, ξ∗A, ξ∗AUC , ξ∗g , and ξu for the

nonlinear model (14) with exponential correlation function ρ(t) = e−λ|t|, where λ = 0.5.

ξ EffD(ξ) EffA(ξ) EffAUC(ξ) Effg(ξ)
ξ∗D 1 0.998 0.998 0.615
ξ∗A 0.987 1 0.967 0.488
ξ∗AUC 0.998 0.998 1 0.651
ξ∗g 0.856 0.781 0.988 1
ξu 0.836 0.805 0.937 0.430

5.4. Comparison of covariance matrices of BLUE for different designs

Numerical analysis shows that the covariance matrix of the BLUE on the
basis of an n-point design obtained from the (asymptotic) g-optimal design
seem to be ‘smaller’ than the covariance matrix of the BLUE on the basis of
an n-point design obtained from the (asymptotic) D-optimal design.

Consider the quadratic model with exponential correlation function ρ(t) =
e−|t|. The 8-point design obtained from the (asymptotic) g-optimal design
is approximately ξ8,g = {−1,−0.98,−0.97,−0.45, 0.45, 0.97, 0.98, 1}; for this
design, the covariance matrix of the BLUE is

Var(θ̂|ξ8,g) ∼=

 0.88 0 −0.51
0 0.43 0

−0.51 0 0.72

 .

The 8-point design obtained from the (asymptotic) D-optimal design is ap-
proximately ξ8,D = {−1,−0.98,−0.97,−0.68, 0.68, 0.97, 0.98, 1} and the cor-
responding covariance matrix of the BLUE estimate is given by

Var(θ̂|ξ8,D) ∼=

 1.13 0 −0.77
0 0.43 0

−0.77 0 0.98

 .

Similar calculation for 12-point designs give

Var(θ̂|ξ12,g)∼=

 0.82 0 −0.46
0 0.43 0

−0.46 0 0.66

 , Var(θ̂|ξ12,D)∼=

 0.89 0 −0.53
0 0.43 0

−0.53 0 0.74

 .
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For these covariance matrices one can easily see that Var(θ̂|ξ12,g)≤Var(θ̂|ξ12,D)
(with respect to the Loewner ordering) and the same relation holds approx-
imately for the 8-point designs.

Very similar results are observed for the quadratic model with Gaussian
correlation function. However, the covariance matrices of the BLUE are
nearly equal for the g-optimal and D-optimal designs in the quadratic model
with logarithmic correlation function; this is a consequence of the fact that
the designs themselves are very similar.

For the nonlinear model (14) with parameter setting considered above,
we have

Var(θ̂|ξ8,g) ∼=
(

7.02 −0.43
−0.43 1.70

)
, Var(θ̂|ξ8,D) ∼=

(
7.21 −0.31
−0.31 1.80

)
.

Despite the difference Var(θ̂|ξ8,D) − Var(θ̂|ξ8,g) is not non-negative definite,

the matrix Var(θ̂|ξ8,g) should normally be preferred to Var(θ̂|ξ8,D).
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