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Abstract

In this paper we define distributions on moment spaces corresponding to measures on

the real line with an unbounded support. We identify these distributions as limiting distri-

butions of random moment vectors defined on compact moment spaces and as distributions

corresponding to random spectral measures associated with the Jacobi, Laguerre and Her-

mite ensemble from random matrix theory. For random vectors on the unbounded moment

spaces we prove a central limit theorem where the centering vectors correspond to the

moments of the Marchenko-Pastur distribution and Wigner’s semi-circle law.
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1 Introduction

For a set T ⊂ R let P(T ) denote the set of all probability measures on the Borel field of T with

existing moments. For a measure µ ∈ P(T ) we denote by

mk(µ) =

∫
T

xkµ(dx) ; k = 0, 1, 2, . . .
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the k-th moment and define

M(T ) =
{
m(µ) = (m1(µ),m2(µ), . . . )T | µ ∈ P(T )

}
⊂ RN.(1.1)

as the set of all moment sequences. We denote by Πn (n ∈ N) the canonical projection onto the

first n coordinates and call

Mn(T ) = Πn (M(T )) ⊂ Rn.(1.2)

the n-th moment space. Moment spaces of the form (1.1) and (1.2) have found considerable

interest in the literature [see Karlin and Studden (1966)]. Most authors concentrate on the

“classical” moment space corresponding to measures on the interval [0, 1] [see Karlin and Shapeley

(1953), Krein and Nudelman (1977), among others]. Chang et al. (1993) equipped the n-th

moment spaceMn([0, 1]) with a uniform distribution in order to understand more fully its shape

and the structure. In particular, these authors proved asymptotic normality of an appropriately

standardized version of a projection Πk(mn) of a uniformly distributed vector mn onMn([0, 1]).

Since this seminal paper, several authors have extended these investigations in various directions.

Gamboa and Lozada-Chang (2004) considered large deviation principles for random moment

sequences on the spaceMn([0, 1]), while Lozada-Chang (2005) investigated similar problems for

moment spaces corresponding to more general functions defined on a bounded set. More recently,

Gamboa and Rouault (2009) discussed random spectral measures related to moment spaces of

measures on the interval [0, 1] and moment spaces related to measures defined on the unit circle.

The present paper is devoted to the problem of defining probability distributions on unbounded

moment spaces. We will investigate these distributions from several perspectives. In Section 2

we introduce a class of general distributions on the moment space corresponding to measures

defined on a compact interval. By a limiting argument we will derive canonical distributions

on the moment spaces corresponding to measures on the unbounded intervals [0,∞) and R,

respectively. In Section 3 we show that these distributions appear naturally in the study of

random spectral measures of the classical Jacobi, Laguerre and Gaussian ensemble. Finally, in

Section 4 we consider random moment sequences distributed according to the new probability

distributions on the unbounded moment spaces. In particular, we prove weak convergence of a

centered random moment vector, where the centering vector corresponds to the moments of the

Marchenko-Pastur law (in the case of the moment space M([0,∞))) and to the semi-circle law

(for the moment space M(R)).

2 Distributions on unbounded moment spaces

2.1 Canonical moments and recurrence coefficients of orthogonal poly-

nomials

Chang et al. (1993) considered random vectors on the moment space Mn([0, 1]) governed by a
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uniform distribution. In the present section we will define a class of more general distributions on

the n-th moment space Mn([a, b]) corresponding to the set P([a, b]) of all probability measures

on the interval [a, b]. The motivation for considering this class is twofold. One the one hand

we want introduce distributions on the moment space Mk([a, b]), which are different from the

uniform distribution. On the other hand we want to define distributions on unbounded moment

spaces as limits of distributions on Mk([a, b]), when b − a → ∞. For these purposes we will

make extensive use of the theory of canonical moments, which is briefly defined here for the sake

of a self contained presentation. For details we refer to the monograph of Dette and Studden

(1997). Let mk−1 =(m1, . . . ,mk−1)
T ∈Mk−1([a, b]) be a given vector of moments of a probability

measure on the interval [a, b], then these first k−1 moments impose bounds on the k-th moment

mk such that the moment vector mk = (m1, . . . ,mk−1,mk)
T is an element of the k-th moment

space Mk([a, b]). More precisely, define for mk−1 ∈Mk−1([a, b])

m−k = min

{
mk(µ)

∣∣∣∣µ ∈ P([a, b]) with

∫ b

a

tidµ(t) = mi for i = 1, . . . , k − 1

}
,

m+
k = max

{
mk(µ)

∣∣∣∣µ ∈ P([a, b]) with

∫ b

a

tidµ(t) = mi for i = 1, . . . , k − 1

}
,

then it follows that mk = (m1, . . . ,mk)
T ∈ IntMk([a, b]) if and only if m−k < mk < m+

k , where

IntC denotes the interior of a set C ∈ Rk. Consequently, we define for a point mk ∈ IntMk([a, b])

the canonical moment of order l = 1, . . . , k as

pl = pl(mk) =
ml −m−l
m+
l −m

−
l

; l = 1, . . . , k.(2.1)

Note that for mk ∈ IntMk([a, b]) we have pl ∈ (0, 1); l = 1, . . . , k; and that pk describes the

relative position of the moment mk in the set of all possible k-th moments with fixed moments

m1, . . . ,mk−1. It can also be shown that the canonical moments do not depend on the interval

[a, b], that is they are invariant under linear transformations of the measure [see Dette and

Studden (1997)]. Moreover, the definition (2.1) defines a one-to one mapping

ϕn :

{
IntM[a,b]

n −→ (0, 1)n

mn 7→ pn = (p1, . . . , pn)T
(2.2)

from the interior of the moment space M[a,b]
n onto the open cube (0, 1)n. It can be shown that

for a point (m1, . . . ,m2n−1) ∈ IntM2n−1([a, b]) the canonical moments appear in the three-term

recurrence relation

xPk(x) = Pk+1(x) + bk+1Pk(x) + akPk−1(x) k = 1, . . . , n− 1,(2.3)

(P0(x) = 1, P1(x) = x− b1) of the monic orthogonal polynomials

Pk(x) =

∣∣∣∣∣∣∣
m0 · · · mk−1 1
...

. . .
...

...

mm · · · m2k−1 xk

∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣

m0 · · · mk−1
...

. . .
...

mk−1 · · · m2k−2

∣∣∣∣∣∣∣ ; k = 1, . . . , n(2.4)
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associated with the vector (m1, . . . ,m2n−1) [see Chihara (1978)]. These polynomials are orthogo-

nal with respect to every measure with first moments m1, . . . ,m2n−1 and the recursion coefficients

in (2.3) are given by

bk+1 = a+ (b− a)((1− p2k−1) p2k + (1− p2k) p2k+1) ; k = 0, . . . , n− 1(2.5)

ak = (b− a)2(1− p2k−2) p2k−1 (1− p2k−1) p2k ; k = 1, . . . , n− 1(2.6)

where we put p−1 = p0 = 0 (note that ak > 0; k = 1, . . . , n). In the case T = [0,∞) the upper

bound m+
k does not exist, but we can still define for a point mk−1 ∈ IntMk−1([0,∞)) the lower

bound

m−k = min

{
mk(µ)

∣∣∣∣µ ∈ P([0,∞)) with

∫ ∞
0

tidµ(t) = mi for i = 1, . . . , k − 1

}
,

where mk = (m1, . . . ,mk)
T ∈ IntMk([0,∞)) if and only if mk > m−k . In this case, the analogues

of the canonical moments are defined by the quantities

zl =
ml −m−l

ml−1 −m−l−1
l = 1, . . . , k(2.7)

(with m−0 = 0) and related to the coefficients in the three-term recurrence relation (2.3) for the

monic orthogonal polynomials by

ak = z2k−1z2k,(2.8)

bk = z2k−2 + z2k−1.(2.9)

Note that (2.7) defines a one to one mapping

ψn :

{
IntMn([0,∞)) −→ (0,∞)n

mn 7→ zn = (z1, . . . , zn)T
(2.10)

from the interior of the moment spaceMn([0,∞)) onto (R+)n. Finally in the case T = R neither

m−k nor m+
k can be defined. Nevertheless, there exists also a one to one mapping

ξn :

{
IntM2n−1(R) −→ (R× R+)

n−1 × R
m2n−1 7→ (b1, a1, . . . , an−1, bn)T .

(2.11)

from the interior of the (2n− 1)th moment space onto the space of coefficients in the three term

recurrence relation (2.3), which can be considered as the analogue of (2.10) and is defined by∫
R
xkPk(x)dµ(x) = a1 . . . ak k = 1, . . . , n− 1,(2.12) ∫

R
xk+1Pk(x)dµ(x) = a1 . . . ak(b1 + · · ·+ bk+1) k = 0, . . . , n− 1,(2.13)
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[see for example Wall (1948)]. It should be mentioned that the relations for the coefficients in

the three term recurrence relation (2.3) could be read backwards, because any measure with

support on an interval [a, b] or on the interval [0,∞) is also a measure on the real line. In

other words, a measure on the real line is supported on the interval [0,∞) if and only if the

coefficients in the recurrence relation (2.3) for the corresponding monic orthogonal polynomials

allow a representation of the form (2.8) and (2.9) with non-negative values zk. Similarly, the

measure is supported on a compact interval if and only if a representation of the form (2.5) and

(2.6) holds, where the quantities pk vary in the interval [0, 1]. In the following sections we will

use the canonical moments and corresponding quantities on the interval [0,∞) and the real line

for the definition of distributions on the corresponding moment spaces.

2.2 Distributions on unbounded moment spaces

In Section 4 we will show that some of the results of Chang et al. (1993) and Gamboa and Lozada-

Chang (2004) hold for a rather broad class of distributions on the moment spaceMn([a, b]). For

the definition of this class, let for k ≥ 1

fk : (0, 1) −→ R

be a non-negative integrable function with
∫ 1

0
fk(x)dx > 0, then a distribution on the interior of

the moment space Mn([a, b]) is defined by

fn(mn) =
n∏
k=1

ck,nfk(pk(mn))1{m−
k <mk<m

+
k }
,(2.14)

where pk(mn) is the k-th canonical moment defined in (2.1) and

ck,n =
(

(b− a)n(n+1)/2

∫ 1

0

fk(x)(x− x2)n−kdx
)−1

(k = 1, . . . , n)

are normalizing constants such that fn is a density on Mn([a, b]) (see the proof of the following

Theorem 2.1). Our first Theorem gives the distribution of the canonical moments corresponding

to the random vector mn with density fn defined in (2.14).

Theorem 2.1. Suppose that mn is a random vector on the moment spaceMn([a, b]) with density

fn defined in (2.14). Then the canonical moments p1(mn), . . . , pn(mn) are independent and

pk(mn) has the density

ck,n(b− a)n(n+1)/2fk(x)(x− x2)n−k1{0<x<1}

for 1 ≤ k ≤ n.
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Proof: The k-th canonical moment pk depends only on the first k moments m1, . . . ,mk, which

implies for the Jacobian determinant of the mapping ϕn defined in (2.2)

∣∣∣ ∂ϕn
∂mn

∣∣∣ =
n∏
k=1

∂pk(mn)

∂mk

=
n∏
k=1

(m+
k −m

−
k )−1 =

n∏
k=1

(b− a)−k
k−1∏
i=1

(pi(1− pi))−1,(2.15)

where we have used Theorem 1.4.9 and equation (1.3.6) in Dette and Studden (1997) for the last

equality. Therefore, the Jacobian determinant in (2.15) simplifies as

∣∣∣ ∂ϕn
∂mn

∣∣∣ =
n∏
k=1

(
(b− a)k

k−1∏
i=1

pi(1− pi)
)−1

= (b− a)−n(n+1)/2

n∏
k=1

(
pk(1− pk)

)−(n−k)
considering the product structure of fn, this gives the asserted distribution. 2

In Section 4 we will show that the first k components of a random vector with density (2.14)

converge weakly (after appropriate standardization) to a normal distribution. This generalizes

the results of Chang et al. (1993), who considered the case fk ≡ 1 for all k ≥ 1. For the

construction of distributions on the unbounded moment spaceMn([0,∞)), a special case will be

of particular interest, that is fk(x) = xγk(1− x)δk , where γ = (γk)k∈N, δ = (δk)k∈N are sequences

of real parameters, such that γk, δk > −1 for all k ≥ 1. In this case the density on the moment

space Mn([a, b]) is given by

f (γ,δ)
n (mn) = c[a,b]n

n∏
k=1

(
mk −m−k
m+
k −m

−
k

)γk (m+
k −mk

m+
k −m

−
k

)δk
1{m−

k <mk<m
+
k }
,(2.16)

where

c[a,b]n =
{

(b− a)n(n+1)/2

∫ 1

0

xn−k+γk(1− x)n−k+δkdx
}−1

(2.17)

is the normalizing constant. The choice of the density (2.16) is motivated by results of Dette and

Studden (1995) who showed that the empirical distribution of the (appropriately normalized)

roots of the Jacobi polynomials P
(γk,δk)
k (x) converges weakly to a distribution with unbounded

support if γk → ∞ or δk → ∞. Note that for the density f
(γ,δ)
n the canonical moment pk has a

Beta distribution Beta(γk + n− k + 1, δk + n− k + 1). In the following we use densities of the

form (2.16) to construct a distribution on the unbounded moment space

Mn([0,∞)) =
{
mn(µ) = (m1(µ), . . . ,mn(µ))T |µ ∈ P([0,∞))

}
.(2.18)

For this purpose, recall that the relation (2.7) defines a one to one mapping between the moment

space IntMn([0,∞)) and (R+)n.
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Theorem 2.2. Let f
(γ(d),δ(d))
n denote the density defined in (2.16) on the moment spaceMn([0, d])

corresponding to the probability measures on the interval [0, d], where the parameter sequences

γ(d) = (γ
(d)
k )k∈N, δ

(d) = (δ
(d)
k )k∈N depend on length d and satisfy

γ
(d)
k −−−→

d→∞
γk > −1,

δ
(d)
k

d
−−−→
d→∞

δk ∈ R+

for all k ≥ 1. Then for d→∞ the density f
(γ(d),δ(d))
n converges point-wise to the function

g(γ,δ)n (mn) = c[0,∞)
n

n∏
k=1

(
mk −m−k

mk−1 −m−k−1

)γk
exp

(
−δk

mk −m−k
mk−1 −m−k−1

)
1{mk>m

−
k }

(2.19)

= c[0,∞)
n

n∏
k=1

zk(mn)γk exp(−δkzk(mn))1{zk(mn)>0},

where the constant c
[0,∞)
n is given by

c[0,∞)
n =

n∏
k=1

δγk+n−k+1
k

Γ(γk + n− k + 1)
.

Moreover, g
(γ,δ)
n defines a density on the unbounded moment space Mn([0,∞)).

Proof: The fact that g
(γ,δ)
n is a density is evident from the transformation in the proof of Theorem

2.3 below, we prove here only the convergence. For a fixed point mn ∈Mn([0,∞)), there exists

a d0 ∈ N with mn ∈ Mn([0, d]) for all d ≥ d0. Let pn(mn) denote the vector of canonical

moments corresponding to the vector mn in the moment space Mn([0, d]). We will show at the

end of this proof that

pk(mn) =
zk(mn)

d
(1 + o(1)), k = 1, . . . , n,(2.20)

where the quantities zk(mn) are defined in (2.7). Observing this representation and the definition

(2.16), it follows for d→∞

f (γ(d),δ(d))
n (mn) = c[0,d]n

n∏
k=1

(
zk(mn)

d

)γ(d)k
(

1− zk(mn)

d

)δ(d)k

(1 + o(1))

= d−(γ
(d)
1 +···+γ(d)n )c[0,d]n

n∏
k=1

zk(mn)γk exp(−δkzk(mn))(1 + o(1)).

Finally, we obtain from (2.17) for the normalizing constant

d−(γ
(d)
1 +···+γ(d)n )c[0,d]n = d−n(n+1)/2−(γ(d)1 +···+γ(d)n )

n∏
k=1

Γ(γ
(d)
k + δ

(d)
k + 2n− 2k + 2)

Γ(γ
(d)
k + n− k + 1)Γ(δ

(d)
k + n− k + 1)

= d−n(n+1)/2−(γ(d)1 +···+γ(d)n )

n∏
k=1

(δ
(d)
k )γk+n−k+1

Γ(γk + n− k + 1)
(1 + o(1))

= c[0,∞)
n (1 + o(1)),

7



which proves the assertion of the Theorem. For the remaining proof of the representation (2.20),

let µ be a measure on the interval [0, d] with first moments given by mn and let ν denote the

measure on the interval [0, 1] obtained from µ by the linear transformation x 7→ x/d. We write

pk(µ) for pk(mn) and zk(µ) for zk(mn). Invariance of the canonical moments under linear trans-

formations yields pk(µ) = pk(ν). The recursion variables of the measure ν can be decomposed

as

zk(ν) = (1− pk−1(ν))pk(ν).(2.21)

The Stieltjes-transform of µ has a continued fraction expansion∫ d

0

dµ(x)

ζ − x
=

1

ζ − z1(µ)
− z1(µ)z2(µ)

ζ − (z2(µ) + z3(µ))
− z3(µ)z4(µ)

ζ − (z4(µ) + z5(µ))
− . . .(2.22)

for ζ ∈ C \ [0, d]. Since the measure µ is obtained from ν by linear transformation, the contin-

ued fraction expansion of the Stieltjes-transform of µ can be written in terms of the recursion

coefficients of ν,∫ d

0

dµ(x)

ζ − x
=

1

ζ − dz1(ν)
− d2z1(ν)z2(ν)

ζ − d(z2(ν) + z3(ν))
− d2z3(ν)z4(ν)

ζ − d(z4(ν) + z5(ν))
− . . .

[see Theorem 3.3.3 in Dette and Studden (1997)]. A continued fraction expansion as in (2.22) is

unique, which yields dzk(ν) = zk(µ). With equation (2.21) we obtain

pk(µ) = pk(ν) =
zk(ν)

1− pk−1(ν)
=

1

d

zk(µ)

1− pk−1(µ)

for k > 1. The first canonical moment is given by

p1(mn) =
m1 −m−1
m+

1 −m−1
=
m1

d
=
z1(mn)

d
.

and equation (2.20) follows by an induction argument. 2

The following Theorem is essential for the asymptotic investigations in Section 4 and gives the

distribution of the the vector zn = (z1, . . . , zn)T corresponding to a random vector point on the

moment space Mn([0,∞)).

Theorem 2.3. Let mn ∈Mn([0,∞)) be governed by a law with density g
(γ,δ)
n , then the recursion

variables zn = ψn(mn) defined by (2.7) are independent and gamma distributed, that is

zk ∼ Gamma(γk + n− k + 1, δk) k = 1, . . . , n.
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Proof: By its definition in (2.7), the random variable zk depends only on the momentm1, . . . ,mk,

therefore the Jacobi matrix of the mapping ψn is a lower triangular matrix. We obtain for the

Jacobian determinant∣∣∣∣∂mn

∂zn

∣∣∣∣ =
n∏
k=1

∣∣∣∣∂mk

∂zk

∣∣∣∣ =
n∏
k=1

(mk−1 −m−k−1) =
n∏
k=2

z1 . . . zk−1 =
n∏
k=1

zn−kk ,

where the third identity follows from the definition of the zi in (2.7). Considering the second

representation of the density in (2.19), this yields the claimed distribution. 2

We will show in Section 3 that densities of the form (2.16) arise naturally as distributions of

moments corresponding to random spectral measures. We conclude this section with a discussion

of distributions on the moments space corresponding to measures on R. For the sake of brevity

we restrict ourselves to moment spaces of odd dimension, that is

M2n−1(R) =
{
m2n−1(µ) = (m1(µ), . . . ,m2n−1(µ))T | µ ∈ P(R)

}
.

To derive a class of distributions on M2n−1(R) we consider the moment space M2n−1([−s, s])
with s→∞ and a density of the form (2.16) with parameters varying with s. The proof of the

following result is similar to the proof of Theorem 2.2 and therefore omitted.

Theorem 2.4. Denote by f
(γ(s),δ(s))
2n−1 the density defined in (2.16) on the moment spaceM2n−1([−s, s]),

where the parameters satisfy

γ
(s)
2k−1 = δ2k−1s

2 + o(1), δs2k−1 = δ2k−1s
2 + o(1),

γ
(s)
2k = γk + o(1), δ

(s)
2k = δ2ks

2 + o(s2)

with γk > −1, δk > 0. Then f
(γ(s),δ(s))
2n−1 converges point-wise to the function

h
(γ,δ)
2n−1(m2n−1) =

n∏
k=1

√
δ2k−1
π

exp
(
−δ2k−1b2k(m2n−1)

)
(2.23)

×
n−1∏
k=1

δ2k
γk+2n−2k

Γ(γk + 2n− 2k)
aγkk (m2n−1) exp (−δ2kak(m2n−1))1{ak(m2n−1)>0}.

Moreover, the function h
(γ,δ)
2n−1 defines a density on the moment space M2n−1(R).

The following result is the analogue of Theorem 2.3.

Theorem 2.5. Let m2n−1 ∈M2n−1(R) be a random vector with density h
(γ,δ)
2n−1 defined in (2.23).

Then the random recursion coefficients (b1, a1 . . . , an−1, bn)T = ξ2n−1(m2n−1) in the recurrence

relation (2.3) for the orthogonal polynomials associated with m2n−1 by (2.4) are independent and

bk ∼ N (0, 1
2δ2k−1

),

ak ∼ Gamma(γk + 2n− 2k, δ2k).
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Proof: Suppose µ is a measure with first moments given by m2n−1 and let P1(x), . . . , Pn(x) de-

note the corresponding monic polynomials. The recursion coefficients can be calculated by (2.12)

and (2.13). This implies that the coefficient bk depends only on the moments m1, . . . ,m2k−1, while

ak depends only on m1, . . . ,m2k. Consequently, the Jacobi matrix of ξ2n−1 is a lower triangular

matrix. From (2.12) we obtain

∂m2k

∂ak
=

∂

∂ak

∫
R
xkPk(x)dµ(x) = a1 . . . ak−1

and by the identity (2.13) it follows

∂m2k−1

∂bk
=

∂

∂bk

∫
R
xkPk−1(x)dµ(x) = a1 . . . ak−1.

The Jacobian determinant is therefore given by∣∣∣∣ ∂m2n−1

∂ξ2n−1(m2n−1)

∣∣∣∣ =

∣∣∣∣∣(
n−1∏
k=1

∂m2k−1

∂bk

∂m2k

∂ak

)∂m2n−1

∂bn

∣∣∣∣∣
=
(n−1∏
k=2

(a1 . . . ak−1)
2
)

(a1 . . . ak−1) =
n−1∏
k=1

a2n−2k−1k .

Considering the product structure in the density h
(γ,δ)
2n−1 in terms of the recursion coefficients, the

assertion of the theorem follows. 2

3 Random spectral measures

Let A be a linear, self-adjoint operator on a n-dimensional Hilbert space H with inner product

〈·, ·〉 and cyclic vector e1 ∈ H (i.e., e1, Ae1, . . . , A
n−1e1 are linearly independent). The spectral

Theorem yields the existence of a unique probability measure µ on the real Borel field, such that

〈e1, Ane1〉 = mn(µ)(3.1)

for all n ≥ 1 [see Dunford and Schwartz (1963)]. This measure defines the unitarily equivalent

L2-space in which the operator A is represented by the multiplication f(x) 7→ xf(x). We call µ

spectral measure of the matrix A. If λ1, . . . , λn denote the eigenvalues of A and u1, . . . , un is a

corresponding system of orthonormal eigenvectors, the spectral measure can be written as

µ =
n∑
i=1

wiδλi(3.2)

where the weights are given by wi = |〈ui, e1〉|2 and δx denotes the Dirac measure in the point

x. The identity (3.2) follows easily from the fact that the matrix with columns u1, . . . , un
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diagonalizes A. If the eigenvalues are distinct, lie in the interior of T ∈ {[a, b], [0,∞),R} and the

vector of weights (w1, . . . , wn)T is contained in the simplex

Simn =
{

(w1, . . . , wn)T ∈ Rn
∣∣∣wi > 0,

n∑
i=1

wi = 1
}

then the first 2n − 1 moments of the spectral measure satisfy m2n−1(µ) ∈ IntM2n−1(T ) which

follows by an application of Theorem 1.4.1 in Dette and Studden (1997).

We consider in this section random spectral measures associated with three central distributions

in random matrix theory: the Hermite (or Gaussian), the Laguerre and the Jacobi ensemble.

These classical ensembles are distributions on the space of self-adjoint matrices A ∈ Kn×n with

real (K = R), complex (K = C) or quaternion entries (K = H). The Hermite ensemble arises in

physics and is the distribution of the matrix

A =
1√
2

(X +X∗),

where all real entries in X ∈ Kn×n are independent and standardnormal distributed and X∗

denotes the adjoint of X. The eigenvalues of the Hermite ensemble have the joint density

fG(λ) = cG|∆(λ)|β
n∏
i=1

e−λ
2
i /2(3.3)

where β = dimR K, ∆(λ) =
∏

i<j(λj−λi) is the Vandermonde determinant and cG is a normaliz-

ing constant [see Mehta (2004)]. The Laguerre ensemble appears in the study of singular values

of a Gaussian matrix, it has the eigenvalue density

fL(λ) = caL|∆(λ)|β
n∏
i=1

λai e
−λi1{λi>0},(3.4)

with parameter a > 1 and a normalizing constant caL. Finally, the Jacobi ensemble is motivated

by multivariate analysis of variance [MANOVA; see Muirhead (1982)] and is defined by the

eigenvalue density

fJ(λ) = ca,bJ |∆(λ)|β
n∏
i=1

λai (1− λi)b1{0<λi<1}.(3.5)

with a, b > −1 and a normalizing constant ca,bJ . It is a common feature of all three classical

ensembles that the matrix of the orthonormal eigenvectors is Haar distributed on the group

of orthogonal (unitary/symplectic) matrices and independent from the eigenvalues [see Dawid

(1977)]. As a consequence, the matrix distribution is uniquely determined by the eigenvalue

density. Since the eigenvector matrix is Haar distributed, the first row of the matrix is Haar

11



distributed on the unit sphere in Kn and the weights w1, . . . , wn follow a Dirichlet distribution

with density

Γ(nβ
2

)

Γ(β
2
)n
w
β/2−1
1 . . . wβ/2−1n 1{w∈Simn}.(3.6)

The identity for the spectral measure in (3.2) motivates the following definition of distributions

on the set of probability measures.

Definition 3.1. Let

µ = w1δλ1 + · · ·+ wnδλn

denote a probability measure with random support points λ = (λ1, . . . , λn) and random weights

with w1, . . . , wn with Dirichlet density (3.6), where the weights and (random) support points are

independent.

(i) If the density of λ is given by (3.3), we call µ random spectral measure of the Gaussian

ensemble, i.e. µ ∼ GβEn.

(ii) If the density of λ is given by (3.4), we call µ random spectral measure of the Laguerre

ensemble, i.e. µ ∼ LβEn(a).

(iii) If the density of λ is given by (3.5), we call µ random spectral measure of the Jacobi

ensemble, i.e. µ ∼ JβEn(a, b).

Note that these distributions are well defined for all β > 0. If β ∈ {1, 2, 4}, we obtain the

spectral measures of matrices from the classical ensembles. The results in this section show that

there is a connection between classical ensembles and the distributions on moment spaces as

given in Section 2. More precisely, the moments (3.1) of the spectral measures are distributed

according to the densities defined onMn([0, 1]) and obtained on the unbounded moment spaces

by Theorem 2.2 and Theorem 2.4. Our first Theorem considers the spectral measure of the

Jacobi ensemble. The proof relies on a tridiagonal matrix model for the JβEn(a, b) distribution

for all values of β > 0, which was proved in a recent paper by Killip and Nenciu (2004).

Theorem 3.2. Let µ ∼ JβEn(γ0, δ0) denote a random spectral measure of the Jacobi ensemble,

then the distribution of the corresponding random moment vector m2n−1(µ) on M2n−1([0, 1]) is

absolute continuous with density f
(γ,δ)
2n−1 defined in (2.16) where the parameters of the density are

given by

γ2k−1 = (β
2
− 2)(n− k) + γ0 ; δ2k−1 = (β

2
− 2)(n− k) + δ0

for 1 ≤ k ≤ n and

γ2k = (β
2
− 2)(n− k) ; δ2k = (β

2
− 2)(n− k − 1) + γ0 + δ0

for 1 ≤ k ≤ n− 1.

12



Proof: It follows from Theorem 2.2 and Proposition 5.3 in Killip and Nenciu (2004) that µ is

the spectral measure of the tridiagonal matrix

Jn =


d1 c1

c1 d2
. . .

. . . . . . cn−1
cn−1 dn

 ,

where the entries are given by

dk =p2k−2(1− p2k−3) + p2k−1(1− p2k−2)

ck =
√
p2k−1(1− p2k−2)p2k(1− p2k−1)

with p−1 = p0 = 0 and p1, . . . , p2n−1 are independent random variables distributed as

pk ∼

{
Beta

(
2n−k

4
β, 2n−k−2

4
β + γ0 + δ0 + 2

)
, k even,

Beta
(
2n−k−1

4
β + γ0 + 1, 2n−k−1

4
β + δ0 + 1

)
, k odd.

Note that Killip and Nenciu (2004) define the Jacobi ensemble by the eigenvalue density

c|∆(λ)|β
n∏
i=1

(2− λi)γ0(2 + λi)
δ01{−2<λi<2}

and therefore the matrix found in their paper is the transformed matrix 4Jn−2In. Additionally,

they work with a beta distribution on the interval [−1, 1] which is obtained from the usual beta

distribution on [0, 1] by the transformation x 7→ 1− 2x.

The tridiagonal matrix Jn defines monic polynomials P1(x), . . . , Pn(x) via a recursion (2.3) with

recursion coefficients

bk = dk (1 ≤ k ≤ n), ak = c2k (1 ≤ k ≤ n− 1).

Indeed, the polynomial Pk(x) is the characteristic polynomial of the upper left (k×k)-subblock of

the matrix Jn. The orthogonality measure of these polynomials is precisely the spectral measure

µ [see Deift (2000) for the corresponding statement for orthonormal polynomials]. Therefore,

the recursion coefficients in the recursion (2.3) of the monic polynomials orthogonal with respect

to the measure µ are given by

bk =p2k−2(1− p2k−3) + p2k−1(1− p2k−2) ; k = 1, . . . , n,

ak =p2k−1(1− p2k−2)p2k(1− p2k−1) ; k = 1, . . . , n− 1.
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By identity (2.5) and (2.6), p2n−1 = (p1, . . . , p2n−1)
T is exactly the vector of canonical moments

of the spectral measure µ and by definition, their joint density is given by

fp(p2n−1) =c
n∏
k=1

p
(2n−(2k−1)−1)β/4+γ0
2k−1 (1− p2k−1)(2n−(2k−1)−1)β/4+δ0

×
n−1∏
k=1

p
(2n−2k)β/4−1
2k (1− p2k)(2n−2k−2)β/4+γ0+δ0+1

=c
n∏
k=1

p
(n−k)β/2+γ0
2k−1 (1− p2k−1)(n−k)β/2+δ0

×
n−1∏
k=1

p
(n−k)β/2−1
2k (1− p2k)(n−k−1)β/2+γ0+δ0+1.

Since the eigenvalues of the matrix Jn are contained in the interval (0, 1), the moments m2n−1(µ) =

ϕ−12n−1(p2n−1) of the spectral measure are in the interior of the moment spaceM2n−1([0, 1]). The

Jacobian of the transformation ϕ−12n−1 is given by
∏n

k=1(pk(1 − pk))
2n−1−k, which gives for the

density of the random moments m2n−1(µ)

fm(m2n−1) =c
n∏
k=1

p2k−1(m2n−1)
(n−k)β/2−(2n−2k)+γ0(1− p2k−1(m2n−1))

(n−k)β/2−(2n−2k)+δ0

×
n−1∏
k=1

p2k(m2n−1)
(n−k)β/2−(2n−2k−1)−1(1− p2k(m2n−1))

(n−k−1)β/2−(2n−2k−1)+γ0+δ0+1

=c
n∏
k=1

p2k−1(m2n−1)
(β/2−2)(n−k)+γ0(1− p2k−1(m2n−1))

(β/2−2)(n−k)+δ0

×
n−1∏
k=1

p2k(m2n−1)
(β/2−2)(n−k)(1− p2k(m2n−1))

(β/2−2)(n−k−1)+γ0+δ0 .

This is a density as in (2.16) with the asserted parameters. 2

An interesting case is obtained by the choice β = 4. Here the parameters γk, δk of the density

f
(γ,δ)
2n−1 do not depend on k. If additionally γ0 = δ0 = 0, the vector of moments m2n−1 is uniformly

distributed on M2n−1([0, 1]). In other words, starting from a moment vector m2n−1 drawn

uniformly from the moment space, we obtain a random measure

µ =
n∑
k=1

wkδλk

with first moments given by m2n−1 and with support points distributed according to the density

fλ(λ) = |∆(λ)|41{0≤λk≤1 ∀k}.(3.7)
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The roots of the n-th orthogonal polynomial Pn(x) with respect to the measure µ are precisely

the support points λ1, . . . , λn. Consequently the roots of the n-th random orthogonal polynomial

Pn(x) associated with m2n−1. are distributed according to the density (3.7) [see also Birke and

Dette (2009)].

The following results show that the spectral measures of the Laguerre ensemble and Hermite en-

semble have moments distributed according to the density obtained in Theorem 2.2 and Theorem

2.4, respectively. The proofs are analogous to the proof of Theorem 3.2 and use the tridiago-

nal matrix models for the Laguerre and Hermite ensemble provided by Dumitriu and Edelman

(2002).

Theorem 3.3. Let µ ∼ LβEn(γ0) denote a random spectral measure of the Laguerre ensemble,

then the distribution of the corresponding random moment vector m2n−1(µ) on M2n−1([0,∞)) is

absolute continuous with density g
(γ,δ)
n defined by (2.19), where the parameters of the density are

given by δk = −1 for 1 ≤ k ≤ 2n− 1 and

γ2k−1 =(β
2
− 2)(n− k) + γ0 1 ≤ k ≤ n,

γ2k =(β
2
− 2)(n− k) 1 ≤ k ≤ n− 1.

Theorem 3.4. Suppose µ ∼ GβEn is a random spectral measure of the Gaussian ensemble,

then the distribution of the corresponding random moment vector m2n−1(µ) on the moment space

M2n−1(R) is absolute continuous with density h
(γ,δ)
2n−1 defined by (2.23) where the parameters of

the density are given by

δ2k−1 = 1
2

(1 ≤ k ≤ n), δ2k =1 (1 ≤ k ≤ n− 1),

and γk = (β
2
− 2)(n− k)− 1 (1 ≤ k ≤ n).

4 Weak convergence of random moments

In this section we study the probabilistic properties of random vector on the moment spaces

Mn([a, b]),Mn([0,∞)) andMn(R) distributed according to the measures introduced in Section

2. We begin with random moments defined on the moment space corresponding to probability

measures on a compact interval. Chang et al. (1993) and Gamboa and Lozada-Chang (2004)

investigated the uniform distribution onMn([a, b]), and we first demonstrate that weak conver-

gence of random moment vectors can be established for a rather broad class of distributions on

Mn([a, b]). An important role in the discussion of moment spaces corresponding to probability

measures with bounded support [a, b] plays the arcsine distribution ν with density

dν(x) =
1

π
√

(x− a)(b− x)
1{a<x<b}dx.
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The canonical moments of the arcsine distribution are given by 1/2 [see Dette and Studden

(1997)] and therefore its sequence of moments could be considered as the center of the moment

space M([a, b]). The following statements establish the asymptotic properties of the (random)

canonical moments corresponding to distributions on the moment space Mn([a, b]) defined in

(2.14). The only assumption necessary to obtain almost sure convergence is that for all ε > 0∫ 1
2
+ε

1
2
−ε

fk(x)dx > 0.(4.1)

Throughout this paper the symbol
D−→ stands for weak convergence.

Theorem 4.1. Suppose that the distribution of the random moment vector mn ∈ Mn([a, b]) is

absolute continuous with density fn defined in (2.14), where the functions fk satisfy for all ε > 0

condition (4.1), and denote by p
(n)
k the k-th canonical moment of mn (k = 1, . . . , n).

(a) If n→∞, then almost surely for any k ≥ 1

p
(n)
k −−−→n→∞

1

2
.

(b) If additionally the function fk in the density (2.14) is continous at 1
2

and fk(
1
2
) > 0, then

the k-th canonical moment corresponding to mn satisfies
√

8n(p
(n)
k − 1

2
)

D−−−→
n→∞

N (0, 1).

Proof: For notational convenience, we consider only the case [a, b] = [0, 1]. We introduce the

random variable q
(n)
k = p

(n)
k − 1

2
with density

ck,nfk(x+ 1
2
)(1

4
− x2)n−k1{−1/2<x<1/2}

and show q
(n)
k → 0, which proves the first assertion of the Theorem. For 0 < ε < 1

4
, let

U(ε) = [−ε, ε], then clearly,

1 = ck,n

∫
U(ε)

fk(x+ 1
2
)(1

4
− x2)n−kdx+ ck,n

∫
U(ε)C

fk(x+ 1
2
)(1

4
− x2)n−kdx,

and we obtain(
ck,n

∫
U(ε)C

fk(x+ 1
2
)(1

4
− x2)n−kdx

)−1
= 1 +

∫
U(ε)

fk(x+ 1
2
)(1

4
− x2)n−kdx∫

U(ε)C
fk(x+ 1

2
)(1

4
− x2)n−kdx

≥

∫
U(

ε
2
)
fk(x+ 1

2
)(1

4
− x2)n−kdx∫

U(ε)C
fk(x+ 1

2
)(1

4
− x2)n−kdx

≥
(1
4
− ε2

4
)n−k

∫
U(

ε
2
)
fk(x+ 1

2
)dx

(1
4
− ε2)n−k

∫
U(ε)C

fk(x+ 1
2
)dx
≥
(

1− ε2

1− 4ε2

)n−k
cε,f ,
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where cε,f is a positive constant by condition (4.1) and independent of n. This yields

P
(
q
(n)
k ∈ U(ε)C

)
= ck,n

∫
U(ε)C

fk(x+ 1
2
)(1

4
− x2)n−kdx ≤

(
1− ε2

1− 4ε2

)k−n
c−1ε,f ,

which implies

∞∑
n=k

P
(
q
(n)
k ∈ U(ε)C

)
≤ c−1ε,f

∞∑
n=k

(
1− ε2

1− 4ε2

)k−n
<∞.

By the Borel-Cantelli Lemma, q
(n)
k converges to 0 almost surely, which proves the first part of

the Theorem.

For a proof of part (b) we note that the rescaled canonical moment
√

8n(p
(n)
k − 1

2
) has the density

ck,n
1√
8n

2−2(n−k)fk(
1
2

+ x√
8n

)

(
1− x2

2n

)n−k
1{−

√
2n<x<

√
2n},(4.2)

and the assertion follows from the convergence of the density (4.2) to the density of the standard

normal distribution [see the convergence Theorem by Scheffé (1947)]. Clearly,

fk(
1
2

+ x√
8n

)

(
1− x2

2n

)n−k
1{−

√
2n<x<

√
2n} −−−→n→∞

f(1
2
)e−x

2/2,

while the factors in (4.2) not depending on x have the integral representation(
ck,n

1√
8n

2−2(n−k)
)−1

=

∫ √2n
−
√
2n

fk(
1
2

+ x√
8n

)

(
1− x2

2n

)n−k
dx =: In.

With the definitions

I :=

∫
R
f(1

2
)e−x

2/2dx, I ′n :=

∫ √2n
−
√
2n

fk(
1
2
)

(
1− x2

2n

)n−k
dx,

we have the inequality

|In − I| ≤ |In − I ′n|+ |I ′n − I|,(4.3)

and we need to show that the right hand side converges to 0. Obviously |I ′n − I| converges to 0

by theorem of dominated convergence. For the first term on the right hand side of (4.3) we have

for n sufficiently large

|In − I ′n| ≤ 2

∫ √2n
−
√
2n

|fk(12)− fk(12 + x√
8n

)|e−x2/2dx =

∫ 1

−1
|fk(12)− fk(12 + x

2
)|
√

2ne−nx
2

dx.
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For given ε > 0 we choose δ > 0, such that |fk(12)− fk(12 + x
2
)| < ε for all x ∈ (−δ, δ) then

|In − I ′n| ≤ε
∫
(−δ,δ)

√
2ne−nx

2

dx+

∫
(−δ,δ)C

|fk(12)− fk(12 + x
2
)|
√

2ne−nx
2

dx

≤ε
∫
e−x

2/2dx+

∫
(−δ,δ)C

|fk(12)− fk(12 + x
2
)|
√

2ne−nx
2

dx

and the second integral converges to 0 by the theorem of monotone convergence. 2

The weak convergence of the canonical moments was shown by Chang et al. (1993) for a uniform

distribution on Mn([0, 1]) (i.e., fk ≡ 1). These authors showed weak convergence of the vector

m
(n)
k of the first k components of a uniformly distributed moment vector mn = (m1, . . . ,mn) on

the moment space Mn([0, 1]), that is

√
8nA−1(m

(n)
k −mk(ν))

D−−−→
n→∞

N (0, Ik),(4.4)

where mk(ν) denotes the vector of the first k moments of the arcsine distribution and A is a

k × k lower triangular matrix with entries

ai,j = 2−2i+2

(
2i

i− j

)
j ≤ i.

By part (b) of Theorem 4.1, it is easy to see that the weak convergence in (4.4) holds for the more

general densities fn on Mn([0, 1]). We conclude this paper with a discussion of corresponding

results for distributions on the non compact moment spaces Mn([0,∞)) and Mn(R). In this

case the analogs of the arcsine distribution in this context are the Marchenko-Pastur distribution

defined by

dη(x) =

√
x(4− x)

2πx
1{0<x<4}dx

and Wigners semicircle distribution on the interval [−2, 2], that is

dρ(x) =
1

2π

√
4− x21{−2<x<2}dx(4.5)

(see Nica and Speicher (2006)). The moments of the Marchenko-Pastur law η are the Catalan

numbers cn defined by

mn(η) = cn =
1

n+ 1

(
2n

n

)
n ∈ N,(4.6)

and the moments of the semicircle law ρ are given by

mn(ρ) =

{
1

m+1

(
2m
m

)
if n = 2m

0 if n = 2m− 1.
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Our next results establish the asymptotic properties of the quantities zk corresponding to a

random vector on the moment space Mn([0,∞)) with density g
(γ,δ)
n defined in (2.19). The

following result is a well known consequence of the asymptotic behavior of the density of the

Gamma distribution and the proof therefore omitted.

Theorem 4.2. Suppose mn is a random vector of moments on the moment space Mn([0,∞))

with density g
(γ,δ)
n , where the γk are fixed, δ1 = · · · = δn = n, and let z

(n)
k denote the k-th

component of the vector zn = (z
(n)
1 , . . . , z

(n)
n ). Then the standardized random variable z

(n)
k is

asymptotically normal distributed, that is

√
n(z

(n)
k − 1)

D−−−→
n→∞

N (0, 1).

By Theorem 4.2 the vector

√
n(z

(n)
k − 1 ) =

√
n((z

(n)
1 , . . . , z

(n)
k )T − (1, . . . , 1)T )

is asymptotically multivariate normal distributed. In order to derive a corresponding statement

of the random vector m
(n)
k = ψ−1k (z

(n)
k ) we will use the Delta method and study first the image

of the vector (1, . . . , 1)T under the mapping ψ−1k .

Lemma 4.3. Let (cn)n≥1 denote the sequence of Catalan numbers defined in (4.6), then

ψn(c1, . . . , cn) = (1, . . . , 1)T .

Proof: The proof presented here relies on the combinatorical interpretation of the Catalan

numbers and a recursive algorithm given in Skibinsky (1968) to calculate the moments in terms

of the variables zk. The k-th Catalan number counts the paths in N × N starting in (0, 0) and

ending in (2k, 0), where one is only allowed to make steps in the direction (1, 1) or (1,−1).

Skibinsky (1968) defines the triangular array {gi,j}i,j≥0 by gi,j = 0 for i > j, g0,j = 1 and the

recursion

gi,j = gi,j−1 + zj−i+1gi−1,j, 1 ≤ i ≤ j.(4.7)

He showed that gk,k = mk. Consequently, if zi = 1 (i = 1, 2, . . . ) the quantity gk,k is the number

of paths through the lattice {(i, j)}i,j≥0, starting in (k, k) and ending in (0, 0), where in each

vertex we can only make steps upward or to the left and where we are not allowed to cross the

diagonal {(i, i)}. This number is exactly the k-th Catalan number ck. 2

Theorem 4.4. If the vector of random moments mn ∈ Mn([0,∞)) is governed by a law with

density g
(γ,δ)
n , where δ1 = · · · = δn = n and the γk are fixed, then the projection m

(n)
k = Πn

k(mn)

of mn onto the first k coordinates satisfies

√
nC−1(m

(n)
k −mk(η))

D−−−→
n→∞

Nk(0, Ik),
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where the vector mk(η) = (c1, . . . , ck)
T contains the first k moments of the Marchenko-Pastur

distribution and C is a lower triangular matrix with entries c1,1 = · · · = ck,k = 1, and

ci,j =

(
2i

i− j

)
−
(

2i

i− j − 1

)
j < i.

Proof: It suffices to calculate the Jacobi matrix

C =
∂ψ−1k
∂zk

(z 0
k )

of the mapping ψ−1k at z 0
k = (1, . . . , 1)T , then the independence of the recursion variables zk and

Theorem 4.2 yield the convergence

√
n(m

(n)
k −mk(η)) =

√
nC(z

(n)
k − z 0

k ) + oP (1)
D−−−→

n→∞
Nk(0, CCT ).

Note that the moment mi depends only on z1, . . . , zi and consequently C is a lower triangular

matrix. To identify the entries of the matrix C we consider the triangular array {gi,j}i,j≥0 defined

in (4.7). For a fixed r with 1 ≤ r ≤ k we introduce the notation

ui,j =
∂gi,j
∂zr

(z 0
k ),

and obtain a new triangular array {ui,j}i,j≥0. Obviously we have ui,j = 0 for i > j and the other

values of ui,j are determined by the initial condition u0,j = 0 and the recursion

ui,j = ui,j−1 + ui−1,j + δr,j−i+1g
0
i−1,j, 1 ≤ i ≤ j,(4.8)

were δi,j denotes the Kronecker symbol and g0i,j is the coefficient in the recursion (4.8), if all zi
are equal to 1, that is

g0i,j =

(
i+ j

i

)
−
(
i+ j

i− 1

)
.

The numbers g0i,j are sometimes called generalized Catalan numbers [see Finucan (1976)]. At the

end of this proof we will show that the entries in the new triangular array are given by

ui,j =

{(
i+j
i−1

)
−
(
i+j
i−r−1

)
if j − i ≥ r,(

i+j
j−r

)
−
(
i+j
i−r−1

)
if 0 ≤ j − i < r.

(4.9)

With this identity we obtain for the entries of the matrix C

ci,r =
∂mi

∂zr
(z 0
k ) = ui,i =

(
2i

i− r

)
−
(

2i

i− r − 1

)
for 1 ≤ r ≤ i, which proves the assertion of the Theorem.
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The proof of (4.9) follows by an induction argument for the row number i. Obviously we have

u0,j = 0 and therefore u1,j = 0 as long as j < r. The value of u1,r is equal to g00,r = 1 and for

j > r we have u1,j = 1. These values are also given by the formula (4.9). In the induction step

i− 1→ i we perform an induction for j and have to distinguish between five cases with different

recursion for ui,j. The scheme in (4.10) illustrates these cases in the i-th row.

. . . (i, i)︸︷︷︸
(1)

. . . (i, i+ 1) . . . (i, i+ r − 2)︸ ︷︷ ︸
(2)

. . . (i, i+ r − 1)︸ ︷︷ ︸
(3)

. . . (i, i+ r)︸ ︷︷ ︸
(4)

. . . (i, i+ r + 1) . . .︸ ︷︷ ︸
(5)

(4.10)

(1) j = i: First consider r = 1, Then case (1) is identical to case (3) and

ui,i =ui−1,i + g0i−1,i =
(
2i−1
i−2

)
−
(
2i−1
i−3

)
+
(
2i−1
i−1

)
−
(
2i−1
i−2

)
=
(

2i
i−1

)
−
(
2i−1
i−2

)
−
(
2i−1
i−3

)
=
(

2i
i−1

)
−
(

2i
i−2

)
.

For r > 1 it is

ui,i = ui−1,i =
(
2i−1
i−r

)
−
(

2i−1
i−r−2

)
=
(

2i
i−r

)
−
(

2i−1
i−r−1

)
−
(

2i−1
i−r−2

)
=
(

2i
i−r

)
−
(

2i
i−r−1

)
.

(2) i < j < i+ r − 1:

ui,j = ui,j−1 + ui−1,j =
(
i+j−1
j−1−r

)
−
(
i+j−1
i−r−1

)
+
(
i+j−1
j−r

)
−
(
i+j−1
i−r−2

)
=
(
i+j
j−r

)
−
(
i+j
i−r−1

)
(3) j = i+ r − 1: The case r = 1 was considered in (1), for r > 1 we have

ui,j = ui,j−1 + ui−1,j + g0i−1,j

=
(
i+j−1
j−1−r

)
−
(
i+j−1
i−r−1

)
+
(
i+j−1
i−2

)
−
(
i+j−1
i−r−2

)
+
(
i+j−1
i−1

)
−
(
i+j−1
i−2

)
=

(
i+j−1
j−1−r

)
−
(
i+j
i−r−1

)
+
(
i+j−1
j−r

)
=
(
i+j
j−r

)
−
(
i+j
i−r−1

)
.

(4) j = i+ r:

ui,j =ui,j−1 + ui−1,j =
(
i+j−1
j−1−r

)
−
(
i+j−1
i−r−1

)
+
(
i+j−1
i−2

)
−
(
i+j−1
i−r−2

)
=
(
i+j−1
j−r−1

)
+
(
i+j−1
j−r−2

)
−
(
i+j
i−r−1

)
=
(

i+j
j−r−1

)
−
(
i+j
i−r−1

)
=
(
i+j
i−1

)
−
(
i+j
i−r−1

)
(5) j > i+ r:

ui,j = ui,j−1 + ui−1,j =
(
i+j−1
i−1

)
−
(
i+j−1
i−r−1

)
+
(
i+j−1
i−2

)
−
(
i+j−1
i−r−2

)
=
(
i+j
i−1

)
−
(
i+j
i−r−1

)
2

We conclude the discussion of random moments considering the moment space M2n−1(R).

Recall the bijective mapping (2.11) from the interior of the moment space M2n−1(R) onto
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(R× R+)
n−1 × R corresponding to the range for coefficients in the recursive relation of the

orthogonal polynomials (2.3). The following results give the weak asymptotics of random recur-

sion coefficients and moments and correspond to Theorem 4.2 and 4.4. The proof of Theorem 4.6

follows by similar arguments as presented in the proof of Theorem 4.4 and is therefore omitted.

Theorem 4.5. Let the random vector m2n−1 ∈ M2n−1(R) be governed by a law with density

h
(γ,δ)
2n−1 where γk > −1 is fixed and δk = n (k = 1, . . . , n). For fixed k denote by b

(n)
k and by

a
(n)
k the (2k− 1)-th component of the vector ξ2n−1(m2n−1) and the 2k-th component, respectively.

Then
√

2nb
(n)
k ∼ N (0, 1),

√
2n(a

(n)
k − 1)

D−−−→
n→∞

N (0, 1).

Theorem 4.6. Let the vector of random moments m2n−1 ∈ M2n−1(R) be governed by a law

with density h
(γ,δ)
2n−1 where δk = n (k = 1, . . . , n). For k ∈ N denote by m

(n)
k = Πn

k(m2n−1) the

projection onto the first k coordinates and by mk(ρ) = Πk(0, c1, 0, c2, . . . ) the vector of the first

k moments of the semicircle law defined in (4.5). Then

√
2nD−1(m

(n)
k −mk(ρ))

D−−−→
n→∞

Nk(0, Ik),

where D is a k× k lower triangular matrix with di,j = 0 if i+ j is odd and the remaining entries

are given by

di,j =

(
i
i−j
2

)
−
(

i
i−j
2
− 1

)
.

By the results in Section 3, the moment density of the three classical ensembles is the moment

density investigated asymptotically in this Section. Although for the random matrix ensembles

the parameters γk, δk depend on n, only minor changes are necessary to obtain a weak convergence

result for the first k moments. In the case of the Jacobi ensemble, the canonical moment p
(n)
k

follows a Beta distribution with parameters behaving like β
2
n and therefore,√

4βn(p
(n)
k − 1

2
)

D−−−→
n→∞

N (0, 1)

and we obtain easily the right scaling for the ordinary moments in the following Corollary.

Corollary 4.7. Let µn ∼ JβEn(γ0, δ0) be a spectral measure of the Jacobi ensemble, then the

first k moments mk(µn) of µn satisfy√
4βnA−1(mk(µn)−mk(ν))

D−−−→
n→∞

Nk(0, Ik),

where mk(ν) is the moment vector of the arcsine measure and A is the k × k matrix in (4.4).
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In particular, the moment convergence implies the weak convergence of the spectral measure to

the arcsine measure. This is also a consequence of the well-known convergence of the emprical

eigenvalue distribution to the arcsine measure, since the (unscaled) moments of the spectral mea-

sure have the same asymptotic behaviour as the moments of the empirical eigenvalue distribution.

By Corollary 4.7, the fluctuations around this limit in terms of the moments are Gaussian. A

corresponding result holds for the Laguerre ensemble with rescaled eigenvalue density

fL(λ) = cγ0L |∆(λ)|β
n∏
i=1

λγ0i e
−βnλi/21{λi>0}.

For the first k moments of a spectral measure µn with this eigenvalue density we obtain from

Theorem 3.3 together with Theorem 2.3 the asymptotic√
βn/2C−1(mk(µn)−mk(η))

D−−−→
n→∞

Nk(0, Ik).

From Theorem 3.4 and Theorem 2.5 we can deduce for a spectral measure µn of the rescaled

Gaussian Ensemble with eigenvalue density

fG(λ) = cG|∆(λ)|β
n∏
i=1

e−βnλ
2
i /4.

the weak convergence of the first k moments√
βn/2D−1(mk(µn)−mk(ρ))

D−−−→
n→∞

Nk(0, Ik).

The different scaling in these two cases comes from the scaling necessary to obtain weak con-

vergence of the recursion parameters zk and the recursion coefficients ak, bk, respectively. Again,

this convergence results can be related to the convergence of the empirical eigenvalue density to

the Marchenko-Pastur law and the semicircle distribution and give the fluctuations around the

limit distribution.
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