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Abstract

For a sample of n independent identically distributed p-dimensional centered random
vectors with covariance matrix Σn let S̃n denote the usual sample covariance (centered
by the mean) and Sn the non-centered sample covariance matrix (i.e. the matrix of
second moment estimates), where p > n. In this paper, we provide the limiting spectral
distribution and central limit theorem for linear spectral statistics of the Moore-Penrose
inverse of Sn and S̃n. We consider the large dimensional asymptotics when the number
of variables p → ∞ and the sample size n → ∞ such that p/n → c ∈ (1,+∞). We
present a Marchenko-Pastur law for both types of matrices, which shows that the limiting
spectral distributions for both sample covariance matrices are the same. On the other
hand, we demonstrate that the asymptotic distribution of linear spectral statistics of the
Moore-Penrose inverse of S̃n differs in the mean from that of Sn.
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1 Introduction

Many statistical, financial and genetic problems require estimates of the inverse population
covariance matrix which are often constructed by inverting the sample covariance matrix.
Nowadays, the modern scientific data sets involve the large number of sample points which
is often less than the dimension (number of features) and so the sample covariance matrix is
not invertible. For example, stock markets include a large number of companies which is often
larger than the number of available time points; or the DNA can contain a fairly large number
of genes in comparison to a small number of patients. In such situations, the Moore-Penrose
inverse or pseusoinverse of the sample covariance matrix can be used as an estimator for the
precision matrix [see, e.g., Srivastava (2007), Kubokawa and Srivastava (2008), Hoyle (2011),
Bodnar et al. (2015)].
In order to better understand the statistical properties of estimators and tests based on the
Moore-Penrose inverse in high-dimensional settings, it is of interest to study the asymptotic
spectral properties of the Moore-Penrose inverse, for example convergence of its linear spectral
statistics (LSS). This information is of great interest for high-dimensional statistics because
more efficient estimators and tests, which do not suffer from the “curse of dimensionality” and
do not reduce the number of dimensions, may be constructed and applied in practice. Most
of the classical multivariate procedures are based on the central limit theorems assuming that
the dimension p is fixed and the sample size n increases. However, it has been pointed out by
numerous authors that this assumption does not yield precise distributional approximations for
commonly used statistics, and that better approximations can be obtained considering scenarios
where the dimension tends to infinity as well [see, e.g., Bai and Silverstein (2004) and references
therein]. More precisely, under the high-dimensional asymptotics we understand the case when
the sample size n and the dimension p tend to infinity, such that their ratio p/n converges
to some positive constant c. Under this condition the well-known Marchenko-Pastur equation
as well as Marchenko-Pastur law were derived [see, Marčenko and Pastur (1967), Silverstein
(1995)].
While most authors in random matrix theory investigate spectral properties of the sample
covariance matrix Sn = 1

n

∑n
i=1 yiy

′
i (here y1, . . . ,yn denotes a sample of i.i.d. p-dimensional

random vectors with mean 0 and variance Σn), Pan (2014) studies the differences occurring
if Sn is replaced by its centered version S̃n = 1

n

∑n
i=1(yi − ȳ)(yi − ȳ)′ (here ȳ denotes the

mean of y1, . . . ,yn). Corresponding (asymptotic) spectral properties for the inverse of Sn have
been recently derived by Zheng et al. (2013) in the case p < n, which correspond to the case
c < 1. The aim of the present paper is to close a gap in the literature and focussing on
the case c ∈ (1,∞). We investigate the differences in the asymptotic spectral properties of
Moore-Penrose inverses of centered and non-centered sample covariance matrices. In particular
we provide the limiting spectral distribution and the central limit theorem (CLT) for linear
spectral statistics of the Moore-Penrose inverse of the sample covariance matrix.
In Section 2 we present the Marchenko-Pastur equation together with a Marchenko-Pastur law
for the Moore-Penrose inverse of the sample covariance matrix. Section 3 is divided into two
parts: the first one is dedicated to the CLT for the LSS of the pseusoinverse of the non-centered
sample covariance matrix while the second part covers the case when the sample covariance
matrix is a centered one. While the limiting spectral distributions for both sample covariance
matrices are the same, it is shown that the asymptotic distribution of LLS of the Moore-Penrose
inverse of Sn and S̃n differ. Finally, some technical details are given in Section 4.

2



2 Preliminaries and the Marchenko-Pastur equation

Throughout this paper we use the following notations and assumptions:

• For a symmetric matrix A we denote by λ1(A) ≥ . . . ≥ λp(A) its ordered eigenvalues
and by FA(t) the corresponding empirical distribution function (e.d.f.), that is

FA(t) =
1

p

p∑
i=1

1{λi(A) ≤ t},

where 1{·} is the indicator function.

• (A1) Let Xn be a p×n matrix which consists of independent and identically distributed
(i.i.d.) real random variables with zero mean and unit variance.

• (A2) For the latter matrix Xn = (Xij)
j=1,...,n
i=1,...,p we assume additionally that E(X4+δ

11 ) <∞
for some δ > 0.

• By

Yn = Σ
1
2
nXn .

we define a p×n observation matrix with independent columns with mean 0 and covariance

matrix Σn. 1 It is further assumed that neither Σ
1
2
n nor Xn are observable.

• The centered and non-centered sample covariance matrix are denoted by

S̃n =
1

n
(Yn − ȳ1′)(Yn − ȳ1′)′ =

1

n
YnY

′
n − ȳȳ′

Sn =
1

n
YnY

′
n =

1

n
Σ

1
2
nXnX

′
nΣ

1
2
n ,

where 1 denotes the n-dimensional vector of ones and ȳ = 1
n

∑n
i=1 yi. The corresponding

e.d.f.’s are given by F S̃n and FSn , respectively.

• The Moore-Penrose inverse of a p× p matrix A is denoted by A+ and from its definition
must satisfy the following four criteria [see, e.g., Horn and Johnsohn (1985)]

(i) AA+A = A,

(ii) A+AA+ = A+,

(iii) AA+ is symmetric,

(iv) A+A is symmetric.

It is worth pointing out that the generalized inverse considered recently by Bodnar et al.
(2015) does not satisfy the conditions (iii) and (iv) presented above. If the matrix A
has a full column rank then the matrix A′A is invertible and the Moore-Penrose inverse
obeys a simple representation given by

A+ = (A′A)−1A′ . (2.1)

1 We could easily include the population mean vector into the model but it will only make the formulas for
weak convergence more complex not the analysis itself.
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• For a function G : R→ R of bounded variation we introduce the Stieltjes transform

mG(z) =

+∞∫
−∞

1

λ− z
dG(λ); z ∈ C+ .

Remark 1. Although assumption (A2) requires the existence of moments of order 4 + δ, we
suspect that the results of this paper also hold under the existence of moments of order 4. For
a proof one would have to use truncation techniques as provided by Bai et al. (2007) for the
matrix 1/nY′nYn. These extremely technical details are omitted for the sake of brevity and
transparency.

In this paper we are interested in the asymptotic properties of the empirical distribution function
and linear spectral statistics of the eigenvalues of the Moore-Penrose inverse of the matrices
S̃n and Sn. Actually, the limiting spectral distribution of both matrices coincide because they
differ only by a rank one perturbation. This is shown in the following Lemma 2.1.

Lemma 2.1. Let S̃+
n and S+

n be the Moore-Penrose inverses of centered and non-centered sample
covariance matrices, respectively, then

||F S̃+
n − FS+

n ||∞ ≤
2

p
, (2.2)

where ||g||∞ is the usual supremum norm of a function g : R→ R.

Proof. We obtain for the rank one update of the Moore-Penrose inverse [see Meyer (1973)]

S̃+
n = (Sn − ȳȳ′)+ = S+

n −
S+
n ȳȳ′(S+

n )2 + (S+
n )2ȳȳ′(S+

n )

ȳ′(S+
n )2ȳ

+
ȳ′(S+

n )3ȳ

(ȳ′(S+
n )2ȳ)2

S+
n ȳȳ′S+

n . (2.3)

With the notation u = S+
n ȳ and v = (S+

n )2ȳ the difference of the Moore-Penrose inverses can
therefore be rewritten as follows

S+
n − S̃+

n =
uv′ + vu′

u′u
− u′v

(u′u)2
uu′

=
1

u′u

(u′u

u′v
vv′ −

([u′v
u′u

]1/2
u− v

[u′u
u′v

]1/2)([u′v
u′u

]1/2
u− v

[u′u
u′v

]1/2)′)
=

1

u′v
vv′ − 1

u′u
ww′, (2.4)

where

w =

[
u′v

u′u

]1/2
u− v

[
u′u

u′v

]1/2
.

Thus, the difference S+
n − S̃+

n is a matrix at most of rank 2 and the rank inequality in Theorem
A.43 of Bai and Silverstein (2010) yields the estimate (2.2). 2

We now study the asymptotic properties of the e.d.f. of the spectrum of the Moore-Penrose
inverse of the sample covariance matrices S̃n and Sn. As a consequence of Lemma 2.1 and
equality (2.1) the asymptotic properties of the e.d.f. of both Moore-Penrose inverses can be
studied concentrating on the matrix

S+
n = (1/nYnY

′
n)+ =

[
(1/
√
nYn)+

]′
(1/
√
nYn)+ = 1/nYn(1/nY′nYn)−2Y′n

together with the corresponding e.d.f. FS+
n . Indeed, because mF 1/nY′nYn (z) tends almost surely

to the solution of the Marchenko-Pastur equation we obtain the following result.
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Theorem 2.1. Assume that (A1) holds, p
n
→ c ∈ (1,∞) as n → ∞ and that FΣn converges

weakly to a cumulative distribution function (c.d.f.) H. Then the e.d.f. FS+
n converges weakly

almost surely to some deterministic c.d.f. P whose Stieltjes transformation mP satisfies the
following equation

mP (z) = −1

z

(
2− c−1 +

+∞∫
−∞

dH(τ)

zτc(zmP (z) + 1)− 1

)
.

Proof. Let Sn = UnDnU
′
n be the eigenvalue decomposition of the matrix Sn, then

m
FS+

n
(z) =

1

p
tr
[(

(UnDnU
′
n)+ − zI

)−1]
=

1

p
tr
[(

D+
n − zI

)−1]
=

p− n
p

(
−1

z

)
+
n

p

1

n

n∑
i=1

1

λi((1/nY′nYn)−1)− z

=

(
1− n

p

)(
−1

z

)
+
n

p
mF (1/nY′nYn)−1 (z) . (2.5)

The last two equalities follow from the fact that the spectrum of the matrix S+
n differs from that

of (1/nY′nYn)−1 by exactly p−n zero eigenvalues. For the Stieltjes transform mF (1/nY′nYn)−1 (z)
in this expression we get

mF (1/nY′nYn)−1 (z) =
1

n

n∑
i=1

1

λ−1i (1/nY′nYn)− z

= − 1

nz

n∑
i=1

λi(1/nY′nYn)

λi(1/nY′nYn)− 1
z

= −1

z
− 1

z2
1

n

n∑
i=1

1

λi(1/nY′nYn)− 1
z

= −1

z
− 1

z2
mF 1/nY′nYn

(
1

z

)
. (2.6)

Combining the identities (2.5) and (2.6) provides an equation which relates the Stieltjes trans-

forms of FS+
n and F 1/nY′nYn , that is

m
FS+

n
(z) = −1

z
− n

p

1

z2
mF 1/nY′nYn (1/z) . (2.7)

It now follows from Bai and Silverstein (2010) that as p/n → c > 1 the e.d.f.’s F 1/nY′nYn and
F 1/nYnY′n converge weakly almost surely to non-generate distribution functions F and F with
corresponding Stieltjes transforms satisfying the equation

mF (z) = −1− c
z

+ cmF (z) .

Consequently, we have from (2.7) almost surely

m
FS+

n
(z) −→ mP (z) := −1

z
− c−1 1

z2
(z(c− 1) + cmF (1/z))

= −2− c−1

z
− mF (1/z)

z2

5



as n→∞, where mF (1/z) is the Stieltjes transform of the limiting distribution F of the e.d.f.
of Sn, which satisfies the equation (see, Silverstein (1995))

mF (1/z) =

+∞∫
−∞

dH(τ)

τ(1− c− cmF (1/z)
z

)− 1
z

. (2.8)

Thus, z(c−1 − 2− zmP (z)) = mF (1/z) must satisfy the same equation (2.8) which implies

z(c−1 − 2− zmP (z)) =

+∞∫
−∞

dH(τ)

τ(1− c− c z(c−1−2−zmP (z))
z

)− 1
z

.

After some simplification the result follows. 2

Corollary 2.1. If Σn = σ2In and the assumptions of Theorem 2.1 are satisfied, then the e.d.f.
of Sn converges weakly almost surely to a deterministic distribution function P with Stieltjes
transform

mP (z) = −1

z

(
1 +
−1/z + (c− 1)σ2 +

√
(1/z − cσ2 + σ2)2 − 4/zσ2

2σ2c

)
.

Moreover, the limiting distribution is given by

F = (1− c−1)δ0 + ν(x)dx

where δa denotes the Dirac measure at the point a ∈ R and

ν(x) =


c−1

√
(λ−1+ − 1/x)(1/x− λ−1− )

2πσ2x
, x ∈ [λ−1+ , λ−1− ]

0, otherwise,

with λ+ = σ2(1 +
√
c)2 and λ− = σ2(1−

√
c)2.

3 CLT for linear spectral statistics

For a (random) symmetric matrix A with spectrum λ1(A), . . . , λp(A) we consider the linear
spectral statistic

FA(g) =

+∞∫
−∞

g(x)dFA(x) =
1

p

p∑
i=1

g(λi(A))

where g : R → R is a given test function. In the next two sections we will investigate the
asymptotic properties of FS+

n and F S̃+
n

n .

3.1 Linear spectral statistics of S+
n

In the following discussion we consider the random function

Gn(x) = p(FS+
n − P ∗n)(x) ,

where P ∗n is a finite sample proxy of the limiting spectral distribution of S+
n , namely P . Note

that the function P ∗n is constructed simply by substituting p/n for c and Hn = FΣn for H into
the limiting distribution P .
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Theorem 3.1. Assume that

(i) (A1) and (A2) hold.

(ii)
p

n
→ c ∈ (1,∞) as n→∞.

(iii) The population covariance matrix Σn is nonrandom symmetric and positive definite with
a bounded spectral norm and the e.d.f. Hn = FΣn converges weakly to a nonrandom
distribution function H with a support bounded away from zero.

(iv) g1, . . . , gk are functions on R analytic on an open region D of the complex plane, which
contains the real interval [

0, lim sup
n→∞

λmax(Σ
−1
n )/(1−

√
c)2
]

(v) Let ei denote a p-dimensional vector with the i-th element 1 and others 0, and define

κi(z) = e′iΣ
1/2
n (mF (1/z)Σn + I)−1Σ1/2

n ei,

χi(z) = e′iΣ
1/2
n (mF (1/z)Σn + I)−2Σ1/2

n ei

as the ith diagonal elements of the matrices

Σ1/2
n (mF (1/z)Σn + I)−1Σ1/2

n , Σ1/2
n (mF (1/z)Σn + I)−2Σ1/2

n ,

respectively. The population covariance matrix Σn satisfies

lim
n→∞

1

n

n∑
i=1

κi(z1)κi(z2) = h1(z1, z2)

lim
n→∞

1

n

n∑
i=1

κi(z)χi(z) = h2(z)

then  +∞∫
−∞

g1(x)dGn(x), . . . ,

+∞∫
−∞

gk(x)dGn(x)

′ D−→ (Xg1 , . . . , Xgk)′ ,

where (Xg1 , . . . , Xgk)′ is a Gaussian vector with mean

E(Xg) =
1

2πi

∮
g(z)

z2

c
+∞∫
−∞

t2(mF (1/z))3

(1+tmF (1/z))3
dH(t)(

1− c
+∞∫
−∞

t2(mF (1/z))2

(1+tmF (1/z))2
dH(t)

)2dz
+

E(X4
11)− 3

2πi

∮
g(z)

z2
c(mF (1/z))3h2(z)

1− c
+∞∫
−∞

t2(mF (1/z))2

(1+tmF (1/z))2
dH(t)

dz (3.1)

and covariance function

Cov(Xg1 , Xg2) = − 1

2π2

∮ ∮
g(z1)g(z2)

z21z
2
2

m′F (1/z1)m
′
F (1/z2)(

mF (1/z1)−mF (1/z2)
)2dz1dz2

− E(X4
11)− 3

4π2

∮ ∮
g(z1)g(z2)

z21z
2
2

[
mF (1/z1)mF (1/z2)h1(z1, z2)

]′′
dz1dz2 . (3.2)
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The contours in (3.1) and (3.2) are both contained in the analytic region for the functions
g1, . . . , gk and both enclose the support of P ∗n for sufficiently large n. Moreover, the contours in
(3.2) are disjoint.

Proof. The proof of this theorem follows combining arguments from the proof of Lemma 1.1
of Bai and Silverstein (2004) and Theorem 1 of Pan (2014). To be precise, we note first that
mF 1/nY′nYn (z) converges almost surely with limit, say mF (z). We also observe that the CLT of
p(m

FS+
n

(z) − mP (z)) is the same as of − n
z2

(mF 1/nY′nYn (1/z) − mF (1/z)) and proceeds in two
steps

(i) Assume first that E(X4
11) = 3. By Lemma 1.1 of Bai and Silverstein (2004) we get that

the process

− n
z2

(mF 1/nY′nYn (1/z)−mF (1/z))

defined on an arbitrary positively oriented contour C which contains the support of P ∗n
for sufficiently larger n converges weakly to a Gaussian process with mean

− 1

z2

c
+∞∫
−∞

t2(mF (1/z))3

(1+tmF (1/z))3
dH(t)(

1− c
+∞∫
−∞

t2(mF (1/z))2

(1+tmF (1/z))2
dH(t)

)2
and covariance

1

z21z
2
2

m′F (1/z1)m
′
F (1/z2)

(mF (1/z2)−mF (1/z1))
2 −

1

(z1 − z2)2
.

In order to obtain the assertion of Theorem 3.1 we use again the argument made at the
beginning of the proof and the following identity

∞∫
−∞

g(x)dGn(x) = − 1

2πi

∮
g(z)mGn(z)dz , (3.3)

which is valid with probability one for any analytic function g defined on an open set
containing the support of Gn if n is sufficiently large. The complex integral on the
RHS of (3.3) is over certain positively oriented contour enclosing G on which the func-
tion g is analytic [see the discussion in Bai and Silverstein (2004) following Lemma
1.1)]. Further, following the proof of Theorem 1.1 in Bai and Silverstein (2004) we
obtain that

(∫
g1(x)dGn(x), . . . ,

∫
gk(x)dGn(x)

)′
converges weakly to a Gaussian vector

(Xg1 , . . . , Xgk)′.

(ii) In the case E(X4
11) 6= 3 we will use a result proved in Pan and Zhou (2008), more precisely

Theorem 1.4 of this reference. Here we find out that in the case E(X4
11) 6= 3 there appears

an additional summand in the asymptotic mean and covariance which involve the limiting
functions h1(z1, z2) and h2(z) from assumption (v), namely for the mean we obtain the
additional term

E(X4
11)− 3

z2
c(mF (1/z))3h2(z)

1− c
+∞∫
−∞

t2(mF (1/z))2

(1+tmF (1/z))2
dH(t)

and for the covariance

E(X4
11)− 3

z21z
2
2

[mF (1/z1)mF (1/z2)h1(z1, z2)]
′′ .
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These new summands arise by studying the limits of products of E(X4
11)−3 and the diag-

onal elements of the matrix (Sn − 1/zI)−1 [see, Pan and Zhou (2008), proof of Theorem
1.4]. Imposing the assumption (v) we basically assure that these limits are the same.

The assertion is now obtained by the same arguments as given in part (i) of this proof.

2

A version of Theorem 3.1 has been proved in Zheng et al. (2013) for the usual inverse of the
sample covariance matrix S−1n . It is also not hard to verify the CLT for linear spectral statistics
of S̃−1n in the case c < 1 with the same limit distribution. Theorem 3.1 shows that in the
case c ≥ 1 there appear additional terms in the asymptotic mean and covariance of the linear
spectral statistics corresponding to S+

n .
In general, as we can see, the results on the limiting spectral distribution as well as the CLT
for linear spectral statistics of S+

n follow more or less from the already known findings which
correspond to the matrix 1/nY′nYn. In the next section we will show that the general CLT for
LSS of the random matrix S̃+

n is different from that of S+
n .

3.2 CLT for linear spectral statistics of S̃+
n .

The goal of this section is to show that the CLT for linear spectral statistics of the Moore-
Penrose inverse S̃+

n differs from that of S+
n . In order to show why these two CLTs are different

consider again the identity (2.3), that is

S̃+
n = (Sn − ȳȳ′)+ = S+

n −
S+
n ȳȳ′(S+

n )2 + (S+
n )2ȳȳ′(S+

n )

ȳ′(S+
n )2ȳ

+
ȳ′(S+

n )3ȳ

(ȳ′(S+
n )2ȳ)2

S+
n ȳȳ′S+

n .

We emphasize here the difference to the well known Sherman-Morrison identity for the inverse
of a non-singular matrix S̃n, that is

S̃−1n = (Sn − ȳȳ′)−1 = S−1n +
S−1n ȳȳ′S−1n
1− ȳ′S−1n ȳ

(3.4)

[see, Sherman and Morrison (1950)]. Note that it follows from the identity

1− ȳ′S+
n ȳ = 1− 1

n2
1′Y′(1/

√
n)Y(1/nY′Y)−2(1/

√
n)Y′Y1 = 1− 1′1

n
= 0 ,

that the right-hand side of the formula (3.4) is not defined for the Moore-Penrose inverse in
the case p > n.
Now consider the resolvent of S̃+

n , namely

R(z) =
(
S̃+
n − zI

)−1
=
(

[Sn − ȳȳ′]
+ − zI

)−1
=

(
S+
n −

S+
n ȳȳ′(S+

n )2 + (S+
n )2ȳȳ′(S+

n )

ȳ′(S+
n )2ȳ

+
ȳ′(S+

n )3ȳ

(ȳ′(S+
n )2ȳ)2

S+
n ȳȳ′S+

n − zI
)−1

=

(
A(z)− 1

u′v
vv′ +

1

u′u
ww′

)−1
,

where we use (2.4) and the notations u = S+
n ȳ, v = (S+

n )2ȳ and A(z) = S+
n − zI and

w =

[
u′v

u′u

]1/2
u− v

[
u′u

u′v

]1/2
9



to obtain the last identity. A twofold application of the Sherman-Morrison formula yields the
representation

R(z) =

(
A(z)− 1

u′v
vv′
)−1
−
(
A(z)− 1

u′vvv′
)−1 ww′

u′u

(
A(z)− 1

u′vvv′
)−1

1 + 1
u′uw′

(
A(z)− 1

u′vvv′
)−1

w

= A−1(z) +
1

u′vA−1(z)vv′A−1(z)

1− 1
u′vv′A−1(z)v

−
(
A(z)− 1

u′vvv′
)−1 ww′

u′u

(
A(z)− 1

u′vvv′
)−1

1 + 1
u′uw′

(
A(z)− 1

u′vvv′
)−1

w
. (3.5)

Taking the trace of both sides of (3.5) we obtain the identity

pm
F S̃+

n
(z) = tr(R(z)) = pm

FS+
n

(z)

+
v′A−2(z)v

u′v − v′A−1(z)v
−

w′
(
A−1(z) + A−1(z)vv′A−1(z)

u′v−v′A−1(z)v

)2
w

u′u + w′A−1(z)w + (w′A−1(z)v)2

u′v−v′A−1(z)v

, (3.6)

which indicates that the CLTs for linear spectral statistics of Moore-Penrose sample covariance
matrices of S+

n and S̃+
n might differ. In fact, the following result shows that the last two terms

on the right-hand side of (3.6) are asymptotically not negligible.

Theorem 3.2. Let G̃n(x) = p(F S̃+
n (g)− P ∗n(g)) and suppose that the assumptions of Theorem

3.1 are satisfied, then

( +∞∫
−∞

g1(x)dG̃n(x), . . . ,

+∞∫
−∞

gk(x)dG̃n(x)
)′ D−→ (Xg1 , . . . , Xgk)′ ,

where (Xg1 , . . . , Xgk)′ is a Gaussian vector with mean

E(Xg) = − 1

2πi

∮
g(z)

z2

c
+∞∫
−∞

t2(mF (1/z))3

(1+tmF (1/z))3 dH(t)

(
1− c

+∞∫
−∞

t2(mF (1/z))2

(1+tmF (1/z))2 dH(t)
)2 dz − E(X4

11)− 3

2πi

∮
g(z)c(mF (1/z))3h2(z)

1− c
+∞∫
−∞

t2(mF (1/z))2

(1+tmF (1/z))2 dH(t)

dz

− 1

2πi

∮
g(z)

z2
m′F (1/z)

mF (1/z)
dz (3.7)

and covariance function

Cov(Xg1 , Xg2) = − 1

2π2

∮ ∮
g(z1)g(z2)

z21z
2
2

m′F (1/z1)m
′
F (1/z2)(

mF (1/z2)
)2 dz1dz2

− E(X4
11)− 3

4π2

∮ ∮
g(z1)g(z2)

z21z
2
2

[
mF (1/z1)mF (1/z2)h1(z1, z2)

]′′
dz1dz2 . (3.8)

The contours in (3.7) and (3.8) are both contained in the analytic region for the functions
g1, . . . , gk and both enclose the support of P ∗n for sufficiently large n. Moreover, the contours in
(3.8) are disjoint.

Before we provide the proof of this result we emphasize the existence of the extra summand in
the asymptotic mean. It has a very simple structure and can be calculated without much effort
in practice. Indeed, the last integral in (3.7) can be rewritten using integration by parts in the
following way (see, Section 4.1 for detailed derivation)

− 1

2πi

∮
g(z)

z2
m′F (1/z)

mF (1/z)
dz = − 1

π

b∫
a

g′(x) arg[mF (1/x)]dx , (3.9)
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where mF (1/x) ≡ lim
z→x

mF (1/z) for x ∈ R and the interval (a, b) contains the support of P .

On the other hand, the asymptotic variances of the linear spectral statistics for centered and
non-centered sample covariance matrices coincide. For a discussion of assumption (v) we refer
to Pan (2014), Remark 2, and other references therein.

Proof of Theorem 3.2. The proof of Theorem 3.2 is based on the Stieltjes transform method
and consists of a combination of arguments similar to those given by Bai and Silverstein (2004)
and Pan (2014). First, by the analyticity of the functions g1, . . . , gk and (3.3) it is sufficient to
consider the Stieltjes transforms of the spectral e.d.f. of sample covariance matrices. Further-
more, recall from (3.6) that the Stieltjes transform of the e.d.f. of S̃+

n can be decomposed as
the sum of the Stieltjes transform of the e.d.f. of S+

n and the additional term

ξn(z) =
v′A−2(z)v

u′v − v′A−1(z)v
−

w′
(
A−1(z) + A−1(z)vv′A−1(z)

u′v−v′A−1(z)v

)2
w

u′u + w′A−1(z)w + (w′A−1(z)v)2

u′v−v′A−1(z)v

(3.10)

involving sample mean ȳ and S+
n . Thus, it is sufficient to show that this random variable

converges almost surely on C+ = {z ∈ C : =z > 0} to a nonrandom quantity as p/n → c > 1
and to determine its limit. As a result, Theorem 3.2 follows from Slutsky’s theorem, the
continuous mapping theorem and the results in Bai and Silverstein (2004) and Pan and Zhou
(2008).
It is shown in Section 4.2 that the function ξn in (3.10) can be represented as

ξn(z) = −1

z
− ȳ′ȳ + 2zθn(z) + z2θ′n(z)

1 + zȳ′ȳ + z2θn(z)
, (3.11)

where the functions θn is given by

θn(z) = −1

z
ȳ′ȳ +

1

z

1

n
1′n((1/nY′nYn)−1 − zI)−11n. (3.12)

As a consequence, the asymptotic properties of ξn can be obtained analyzing the quantity

ηn(z) =
1

n
1′n((1/nY′nYn)−1 − zI)−11n

= −1

z
tr
[
(1/nY′nYn)(1/nY′nYn − 1/zI)−11/n1n1

′
n

]
= −1

z
− 1

z2
tr
[
(1/nY′nYn − 1/zI)−1Θn

]
,

where we use the notation Θn = 1/n1n1
′
n. It now follows from Theorem 1 in Rubio and Mestre

(2011) that ∣∣tr [(1/nY′nYn − 1/zI)−1Θn

]
− xn(1/z)

∣∣ −→ 0 a.s. ,

where xn(1/z) is a unique solution in C+ of the equation

1 + 1/zxn(1/z)

xn(1/z)
=
c

p
tr
(
xn(1/z)I + Σ−1n

)−1
.

Note that tr (Θn) = 1 and that Theorem 1 in Rubio and Mestre (2011) is originally proven
assuming the existence of moments of order 8 + δ. However, it is shown in Bodnar et al. (2015)
that only the existence of moments of order 4 + δ is required for this statement.
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In order to see how xn(1/z) relates to mF (1/z) we note that due to assumption (iii) Hn
D→ H

as n→∞ and, thus, xn(1/z)→ x(1/z). This implies

1

xn(1/z)
+ 1/z =

c

p
tr
(
xn(1/z)I + Σ−1n

)−1
= c

∞∫
−∞

τdHn(τ)

xn(1/z)τ + 1
−→ c

∞∫
−∞

τdH(τ)

x(1/z)τ + 1
,

which leads to

x(1/z) = −
(

1/z − c
∞∫

−∞

τ

x(1/z)τ + 1
dH(τ)

)−1
.

The last equation is the well-known Marchenko-Pastur equation for the Stieltjes transformation
mF (1/z) of the limiting distribution F . Because the solution of this equation is unique we obtain

x(1/z) = mF (1/z) .

As a result we get the following asymptotics for 1 + zȳ′ȳ + z2θn(z) as n→∞

1 + zȳ′ȳ + z2θn(z) −→ −
mF (1/z)

z
a.s. ,

which ensures that

ξn(z) −→ −1

z
−

(
−mF (1/z)

z

)′
−mF (1/z)

z

= −1

z
− z
−m′F (1/z)

z3
− mF (1/z)

z2

mF (1/z)
=

1

z2
m′F (1/z)

mF (1/z)
a.s. (3.13)

for p/n → c ∈ (1,+∞) as n → ∞. The assertion of Theorem 3.2 now follows taking into
account the argument made at the beginning of the proof and (3.13). 2

4 Appendix

4.1 Derivation of (3.9)

We select the contour to be a rectangle with sides parallel to the axes. It intersects the real
axis at the points a 6= 0 and b such that the interval (a, b) contains the support of P . The
horizontal sides are taken as a distance y0 > 0 from the real axis. More precisely, the contour
C is given by

C =
{
a+ iy : |y| ≤ y0

}
∪
{
x+ iy0 : x ∈ [a, b]

}
∪
{
b+ iy : |y| ≤ y0

}
∪
{
x− iy0 : x ∈ [a, b]

}
(4.1)

so that (a, b) contains
[
0, lim supn→∞ λmax(Σ

−1
n )/(1 −

√
c)2
]

and is enclosed in the analytic
region of function g. We calculate the four parts of the contour integral and then let y0 tend
to zero. First, we note that

d

dz
log(mF (1/z)) = − 1

z2
m′F (1/z)

mF (1/z)
.

Then using integration by parts the last integral in (3.7) becomes

− 1

2πi

∮
g(z)

z2
m′F (1/z)

mF (1/z)
dz =

1

2πi

∮
g(z)d(logmF (1/z))

= − 1

2πi

∮
g′(z) logmF (1/z)dz

= − 1

2πi

∮
g′(z) (log |mF (1/z)|+ i arg(mF (1/z))) dz , (4.2)
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where any branch of the logarithm may be taken. Naturally extending the Stieltjes transform
on the negative imaginary axis and using z = x+ iy we get

∣∣mF (1/z)
∣∣ =

∣∣∣∣∣∣
∞∫

−∞

dF (λ)

λ− 1/z

∣∣∣∣∣∣ ≤
∞∫

−∞

dF (λ)

|λ− 1/z|
=

∞∫
−∞

dF (λ)√
(λ− x

|z|2 )2 + y2

|z|4

≤ x2 + y2

|y|
. (4.3)

Next we note that any portion of the integral (4.2) which involves the vertical side can be
neglected. Indeed, using (4.3), the fact that |g′(z)| ≤ K and (5.1) in Bai and Silverstein (2004)
for the left vertical side we have∣∣∣∣∣∣ 1

2πi

y0∫
−y0

g′(a+ iy) logmF (1/(a+ iy))dy

∣∣∣∣∣∣
≤ K

2π

y0∫
−y0

(
log
∣∣mF (1/(a+ iy))

∣∣+
∣∣ arg(mF (1/(a+ iy)))

∣∣) dy
≤ K

2π

y0∫
−y0

(
log

a2 + y2

|y|
+ π

)
dy

=
K

π

y0∫
0

log
a2 + y2

y
dy +Ky0

=
K

π

(
y0 log

y20 + a2

y0
− y0 + 2a arctan(y0/a)

)
+Ky0 , (4.4)

which converges to zero as y0 → 0. A similar argument can be used for the right vertical side.
Consequently, only the remaining terms

− 1

2π

b∫
a

= [g′(x+ iy0)] log |mF (1/(x+ iy0))|dx−
1

2π

b∫
a

< [g′(x+ iy0)] arg
[
mF (1/(x+ iy0))

]
dx

− 1

2π

b∫
a

= [g′(x− iy0)] log |mF (1/(x− iy0))|dx−
1

2π

b∫
a

< [g′(x− iy0)] arg
[
mF (1/(x− iy0))

]
dx

have to be considered in the limit of the integral (4.2). Similarly, using the fact that

sup
x∈[a,b]

|=h(x+ iy)| ≤ K|y| . (4.5)

for any real-valued analytic function h on the bounded interval [a, b] [see equation (5.6) in Bai
and Silverstein (2004)], we obtain that the first and the third integrals are bounded in absolute
value by O(y0 log y−10 ) and, thus, can be neglected. As a result the dominated convergence
theorem leads to

− 1

2πi

∮
g′(z) (log |mF (1/z)|+ i arg(mF (1/z))) dz −→

y0→0
− 1

π

b∫
a

g′(x) arg
[
mF (1/x)

]
dx , (4.6)

which proves (3.9).
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4.2 Proof of the representations (3.11) and (3.12)

For a proof of (3.11) we introduce the notations

a =
1

(u′v)1/2
v , b =

(u′v)1/2

u′u
u .

Then 1
(u′u)1/2

w = b− a, and we obtain for (3.10)

ξn(z) =
a′A−2(z)a

1− a′A−1(z)a

−
(b− a)′

(
A−2(z) +

A−2(z)aa′A−1(z) + A−1(z)aa′A−2(z)

1− a′A−1(z)a
+

a′A−2(z)a(A−1(z)aa′A−1(z))

(1− a′A−1(z)a)2

)
(b− a)

1 + (b− a)′A−1(z)(b− a) +
((b− a)′A−1(z)a)2

1− a′A−1(z)a

.

A tedious but straightforward calculation now gives

ξn(z) =
a′A−2(z)a + a′A−2(z)a(b− a)′A−1(z)(b− a) + a′A−2(z)a((b−a)′A−1(z)a)2

1−a′A−1(z)a

1− a′A−1(z)a + (1− a′A−1(z)a)(b− a)′A−1(z)(b− a) + ((b− a)′A−1(z)a)2

− (1− a′A−1(z)a)(b− a)′A−2(z)(b− a)

1− a′A−1(z)a + (1− a′A−1(z)a)(b− a)′A−1(z)(b− a) + ((b− a)′A−1(z)a)2

−
2(b− a)′A−2(z)a(b− a)′A−1(z)a + a′A−2(z)a((b−a)′A−1(z)a)2

1−a′A−1(z)a

1− a′A−1(z)a + (1− a′A−1(z)a)(b− a)′A−1(z)(b− a) + ((b− a)′A−1(z)a)2

=
a′A−2(z)a[b′A−1(z)b]− b′A−2(z)b + 2a′A−2(z)b

1 + b′A−1(z)b− 2a′A−1(z)b− a′A−1(z)a[b′A−1(z)b] + (a′A−1(z)b)2

+
a′A−1(z)a[b′A−2(z)b]− 2a′A−2(z)b[a′A−1(z)b]

1 + b′A−1(z)b− 2a′A−1(z)b− a′A−1(z)a[b′A−1(z)b] + (a′A−1(z)b)2

=
a′A−2(z)a[b′A−1(z)b]− b′A−2(z)b[1− a′A−1(z)a] + 2a′A−2(z)b[1− a′A−1(z)b]

[a′A−1(z)b− 1]2 + b′A−1(z)b[1− a′A−1(z)a]
. (4.7)

Now note that ξn(z) is a non-linear function of the quantities a′A−1(z)a, a′A−2(z)a, b′A−1(z)b,
b′A−2(z)b, a′A−1(z)b and a′A−2(z)b, which can easily be expressed in term of ȳ and S+

n . For
example, we have

a′A−1(z)a =
1

ȳ′(S+
n )3ȳ

ȳ′(S+
n )2(S+

n − zI)−1(S+
n )2ȳ

=
1

ȳ′(S+
n )3ȳ

(
ȳ′S+

n (S+
n − zI + zI)(S+

n − zI)−1(S+
n )2ȳ

)
=

1

ȳ′(S+
n )3ȳ

(
ȳ′(S+

n )3ȳ + zȳ′(S+
n − zI + zI)(S+

n − zI)−1(S+
n )2ȳ

)
=

1

ȳ′(S+
n )3ȳ

(
ȳ′(S+

n )3ȳ + zȳ′(S+
n )2ȳ + z2ȳ′(S+

n − zI)−1(S+
n − zI + zI)S+

n ȳ
)

=
1

ȳ′(S+
n )3ȳ

(
ȳ′(S+

n )3ȳ + zȳ′(S+
n )2ȳ + z2ȳ′S+

n ȳ + z3ȳ′(S+
n − zI)−1(S+

n − zI + zI)ȳ
)

=
1

ȳ′(S+
n )3ȳ

(
ȳ′(S+

n )3ȳ + zȳ′(S+
n )2ȳ + z2 + z3ȳ′ȳ + z4ȳ′(S+

n − zI)−1ȳ
)
,
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where the last equality follows from the fact that ȳ′S+
n ȳ = 1. In a similar way, namely adding

and subtracting zI from S+
n in a sequel we obtain representations for the remaining quantities

of interest

a′A−2(z)a =
1

ȳ′(S+
n )3ȳ

(
ȳ′(S+

n )2ȳ + 2z + 3z2ȳ′ȳ + 4z3ȳ′(S+
n − zI)−1ȳ + z4ȳ′(S+

n − zI)−2ȳ
)

b′A−1(z)b =
ȳ′(S+

n )3ȳ

(ȳ′(S+
n )2ȳ)2

(
1 + zȳ′ȳ + z2ȳ′(S+

n − zI)−1ȳ
)

b′A−2(z)b =
ȳ′(S+

n )3ȳ

(ȳ′(S+
n )2ȳ)2

(
ȳ′ȳ + 2zȳ′(S+

n − zI)−1ȳ + z2ȳ′(S+
n − zI)−2ȳ

)
a′A−1(z)b =

1

ȳ′(S+
n )2ȳ

(
ȳ′(S+

n )2ȳ + z + z2ȳ′ȳ + z3ȳ′(S+
n − zI)−1ȳ

)
a′A−2(z)b =

1

ȳ′(S+
n )2ȳ

(
1 + 2zȳ′ȳ + 3z2ȳ′(S+

n − zI)−1ȳ + z3ȳ′(S+
n − zI)−2ȳ

)
.

In the next step we substitute these results in (4.7). More precisely introducing the notations

θn(z) = ȳ′(S+
n − zI)−1ȳ, αn = 1/ȳ′(S+

n )2ȳ,

we have θ′n(z) = ∂
∂z
θn(z) = ȳ′(S+

n − zI)−2ȳ and obtain for ξn(z) the following representation

ξn(z) =
α2
n(α−1n + 2z + 3z2ȳ′ȳ + 4z3θn(z) + z4θ′n(z))(1 + zȳ′ȳ + z2θn(z))

α2
nz

2(1 + zȳ′ȳ + z2θn(z))2 − α2
nz(α

−1
n + z + z2ȳ′ȳ + z3θn(z))(1 + zȳ′ȳ + z2θn(z))

+
α2
nz(ȳ

′ȳ + 2zθn(z) + z2θ′n(z))(α−1n + z + z2ȳ′ȳ + z3θn(z))

α2
nz

2(1 + zȳ′ȳ + z2θn(z))2 − α2
nz(α

−1
n + z + z2ȳ′ȳ + z3θn(z))(1 + zȳ′ȳ + z2θn(z))

− 2α2
nz(1 + 2zȳ′ȳ + 3z2θn(z) + z3θ′n(z))(1 + zȳ′ȳ + z2θn(z))

α2
nz

2(1 + zȳ′ȳ + z2θn(z))2 − α2
nz(α

−1
n + z + z2ȳ′ȳ + z3θn(z))(1 + zȳ′ȳ + z2θn(z))

=
α2
n

(
(1 + zȳ′ȳ + z2θn(z))(α−1n − z2(ȳ′ȳ + 2zθn(z) + z2θ′n(z)))

)
−αnz(1 + zȳ′ȳ + z2θn(z))

+
α2
nz(ȳ

′ȳ + 2zθn(z) + z2θ′n(z))(α−1n + z(1 + zȳ′ȳ + z2θn(z)))

−αnz(1 + zȳ′ȳ + z2θn(z))
.

In order to simplify the following calculations we introduce the quantities

ψn(z) = 1 + zȳ′ȳ + z2θn(z); ψ′n(z) = ȳ′ȳ + 2zθn(z) + z2θ′n(z) ,

which lead to

ξn(z) =
α2
nψn(z)(α−1n − z2ψ′n(z)) + α2

nzψ
′
n(z)(α−1n + zψn(z))

−αnzψn(z)

=
α2
nα
−1
n (ψn(z) + zψ′n(z))

−αnzψn(z)
= −ψn(z) + zψ′n(z)

zψn(z)

= − 1

z
− ψ′n(z)

ψn(z)
= −1

z
− ȳ′ȳ + 2zθn(z) + z2θ′n(z)

1 + zȳ′ȳ + z2θn(z)
.

Finally, we derive the representation (3.12) θn(z) using Woodbary matrix inversion lemma [see,
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e.g., Horn and Johnsohn (1985)]:

θn(z) = ȳ′(S+
n − zI)−1ȳ

= ȳ′
(
1/nYn(1/nY′nYn)−2Y′n − zI

)−1
ȳ

= ȳ′
(
−1

z
I− 1

z2
1/nYn(Y′nYn)−1(I− 1

z
(Y′nYn)−1)−1(Y′nYn)−1Y′n

)
ȳ

= −1

z
ȳ′ȳ − 1

z2
ȳ′1/nYn(1/nY′nYn)−1(I− 1

z
(1/nY′nYn)−1)−1(1/nY′nYn)−1Y′nȳ

= −1

z
ȳ′ȳ − 1

z2
1

n
1′n(1/nY′nYn)(1/nY′nYn)−1(I− 1

z
(1/nY′nYn)−1)−1(1/nY′nYn)−1(1/nY′nYn)1n

= −1

z
ȳ′ȳ − 1

z2
1

n
1′n(I− 1

z
(1/nY′nYn)−1)−11n

= −1

z
ȳ′ȳ +

1

z

1

n
1′n((1/nY′nYn)−1 − zI)−11n.
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