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Abstract

In this paper new tests for nonparametric hypotheses in stationary processes are proposed. Our

approach is based on an estimate of the L2-distance between the spectral density matrix and its

best approximation under the null hypothesis. We explain the main idea in the problem of testing

for a constant spectral density matrix and in the problem of comparing the spectral densities of

several correlated stationary time series. The method is based on direct estimation of integrals of

the spectral density matrix and does not require the specification of smoothing parameters. We

show that the limit distribution of the proposed test statistic is normal and investigate the finite

sample properties of the resulting tests by means of a small simulation study.

AMS subject classification: 62M15, 62G10

Keywords and phrases: spectral density, stationary process, goodness-of-fit tests, L2-distance, integrated

periodogram

1 Introduction

The problem of testing hypotheses about the second order properties of a multivariate stationary time

series has found considerable attention in the literature. Many important hypotheses can be expressed

in terms of functionals of the spectral density matrix. Several authors have proposed tests based on
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the integrated periodogram [see Anderson (1993) or Chen and Romano (1999) among others]. Because

on one hand, test statistics based on the integrated periodogram are usually not distribution free and,

on the other hand, the type of hypotheses that can be tested by the integrated periodogram is limited,

alternative methods have been proposed which are based on estimates of the spectral density [see

Taniguchi and Kondo (1993), Taniguchi et al. (1996), Paparoditis (2000), Dette and Spreckelsen (2003),

Eichler (2008) or Dette and Paparoditis (2009), among others]. These methods usually yield a normal

distribution as the asymptotic law of the corresponding test statistics, but require the specification

of a smoothing parameter in order to get consistent estimates of the spectral density matrix. As a

consequence, the outcome of the testing procedure depends sensitively on this regularization. In the

present paper we propose an alternative method for testing nonparametric or semiparametric hypotheses

regarding the second order properties of stationary processes. Our approach is applicable to a broad

class of hypotheses and is based on the estimation of the minimal L2-distance between the spectral

density matrix of a stationary time series and its best approximation in the class of all densities which

satisfy the null hypothesis. As a consequence, it only requires estimates of the integrated spectral

density matrix over the full frequency domain which are easily available by an appropriate summation

of the periodogram. On one hand, this avoids the problem of smoothing the periodogram, and on

the other hand, the limiting distributions [after an appropriate standardization] are asymptotically

normally distributed, where the corresponding variance also contains only integrals of the components

of the spectral density matrix over the full frequency domain and is thus easy to estimate.

In Section 2 we introduce the necessary notation, the basic assumptions and explain the main principle

of our approach in the case of testing the null hypothesis of a white noise process. Section 3 is devoted

to the problem of comparing spectral densities of a multivariate time series [see Eichler (2008) or Dette

and Paparoditis (2009)]. In all cases we show that the proposed test statistic is asymptotically normally

distributed, and a simple goodness-of-fit test for the null hypothesis is proposed, which uses the quantiles

of the standard normal distribution. In Section 4 the finite sample properties of the new test procedures

are investigated by means of a small simulation study, and some conclusions how the results can be

extended to other testing problems are given in Section 5. Some technical details are deferred to an

appendix in Section 6.

2 The main principle: testing for a white noise process

Let {Xt}t∈Z denote an m-dimensional stationary process with values in Rm which has a linear repre-

sentation of the form

Xt = (X1,t, X2,t, . . . , Xm,t)
T =

∞∑
j=−∞

CjZt−j t ∈ Z,(2.1)

where {Zt}t∈Z = {(Z1,t, Z2,t, . . . , Zm,t)
T}t∈Z denotes an m-dimensional Gaussian white noise process

with covariance matrix

Σ = (σr,s)r,s=1,...,m,
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and such that the elements of the matrices Cj = (crsj )r,s=1,...,m ∈ Rm×m (j ∈ Z) satisfy∑
j∈Z

|j||crsj | <∞, r, s = 1, 2, . . . ,m.(2.2)

Throughout this paper we assume that the process {Xt}t∈Z has a spectral density matrix, say f =

(fij)
m
i,j=1, with elements fij which are Hölder continuous of order L > 1/2.

In order to explain the basic principle of our approach we consider the hypothesis that {Xt}t∈Z is a

white noise process, that is

H0 : f(λ) = Σ versus H0 : f(λ) 6= Σ(2.3)

for some (unknown) hermitian matrix Σ ∈ Rm×m. The problem of testing for white noise has a long

history in statistics and econometrics with time series data. The most popular approach has been the

Box-Pierce test [see Box and Pierce (1970)], which investigates the first p autocorrelations. Since this

seminal work numerous authors have proposed alternative procedures for testing for white noise in

stationary processes [see Ljung and Box (1978), Monti (1994) and Peña and Rodriguez (2002) among

many others]. Many authors consider the problem of testing for white noise in an ARMA(p, q) process

[see e.g. Mokkadem (1997) or Dette and Spreckelsen (2000)]. On the contrary, the problem of testing

for white noise against general alternatives is more complicated. The classical approach involves the

standardized cumulative periodogram [see e.g. Bartlett (1955) and Dahlhaus (1985)]. In this section we

propose an alternative test for this problem, which is based on the concept of best L2-approximation.

For the construction of an appropriate test statistic we investigate the problem of approximating the

true spectral density matrix f(λ) by a constant function. A natural distance is given by

M2(Σ) =

∫ π

−π
tr [(f(λ)− Σ)(f(λ)− Σ)∗] dλ

=

∫ π

−π
tr [(f(λ)− Σ0)(f(λ)− Σ0)∗] dλ+

∫ π

−π
tr [(Σ− Σ0)(Σ− Σ0)∗] dλ,

where the matrix Σ0 ∈ Rm×m is defined as

Σ0 =
1

2π

∫ π

−π
f(λ)dλ,

and the identity above follows by a straightforward calculation. Consequently, we obtain for the mini-

mum of the function M2(·) on the set of all hermitian matrices

M2 = min{M2(Σ) | Σ ∈ Rm×m, Σ∗ = Σ} = M2(Σ0)

= tr
{∫ π

−π
f(λ)f ∗(λ)dλ− 1

2π

(∫ π

−π
f(λ)dλ

∫ π

−π
f ∗(λ)dλ

)}
.

In order to estimate the minimal distance M2, consider the periodogram

In(λj) = Jn(λj)J
∗
n(λj), Jn(λj) =

1√
n

n∑
t=1

Xte
−itλj ,(2.4)
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at the Fourier frequency λj = 2πj
n
∈ [−π, π] for any j = −bn−1

2
c, . . . , bn

2
c and define the statistic

Tn =
1

2π
tr
(
Tn,2 − Tn,1T ∗n,1

)
,(2.5)

where the random variables Tn,1 and Tn,2 are given by

Tn,1 =
1

n

bn
2
c∑

k=1

(
In(λk) + In(λk)

)
,

Tn,2 =
2

n

bn
2
c∑

k=1

In(λk)I
∗
n(λk−1).

Intuitively this makes sense, as we have with E[In(λk)ij] ≈ 2πfij(λk) [note also that f(λ) = f(−λ) =

fT (λ) and corresponding relations for the periodograms hold]

E[Tn,1] ≈ 2π

n

bn
2
c∑

k=1

(f(λk) + f(λk)) =
2π

n

bn
2
c∑

k=1

(f(λk) + f(−λk)) ≈
∫ π

−π
f(λ)dλ,

E[Tn,2] ≈ 2

n

bn
2
c∑

k=1

E[In(λk)]E[I∗n(λk−1)] ≈ 8π2

n

bn
2
c∑

k=1

f(λk)f
∗(λk) ≈ 4π

∫ π

0

f(λ)f ∗(λ)dλ.

Using the relation

2

∫ π

0

tr f(λ)f ∗(λ)dλ =

∫ π

−π
tr f(λ)f ∗(λ)dλ

this calculation motivates (heuristically) the approximation E[Tn] ≈ M2 and indicates that Tn is a

consistent estimate of the minimal distance M2. Our first main result makes this heuristic argument

rigorous and specifies the asymptotic distribution of Tn under the null hypothesis and the alternative.

Theorem 2.1 If {Xt}t∈Z denotes a stationary process satisfying (2.1) and (2.2) with Hölder continuous

spectral density matrix of order L > 1/2, then as n→∞
√
n(Tn −M2)

D−→N (0, τ 2
M2),

where the asymptotic variance is given by

τ 2
M2 = 4π

∫ π

−π

{
4 tr (f 4(λ)) +

(
tr (f 2(λ))

)2}
dλ− 16

∫ π

−π

∫ π

−π
tr
(
f 3(λ)f(µ)

)
dλdµ

+
4

π

∫ π

−π

∫ π

−π

∫ π

−π
tr
(
f(µ)f(λ)f(ν)f(λ)

)
dµdνdλ
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Remark 2.2 Under the null hypothesis of a constant spectral density f(λ) = Σ = (σi,j)
m
i,j=1 this term

simplifies to

τ 2
M2,H0

= 8π2(tr Σ2)2.

In the special case m = 1 we obtain

τ 2
M2 = 20π

∫ π

−π
f 4(λ)dλ− 16

∫ π

−π
f(λ)dλ

∫ π

−π
f 3(λ)dλ+

4

π

(∫ π

−π
f(λ)dλ

)2
∫ π

−π
f 2(λ)dλ

in general and τ 2
M2,H0

= 8π2Σ4 under the null hypothesis.

Proof. For the sake of a transparent representation we present the proof in the case m = 1 only. The

general case follows by exactly the same arguments with an additional amount of notation. In this

situation we put σ2 = Σ and ψj = c11
j for j ∈ Z, so condition (2.2) can be rewritten as∑

j∈Z

|j||ψj| <∞,(2.6)

and by symmetry of both the spectal density function and the periodogram the test statistic in (2.5)

reduces to

Tn =
1

2π

(
Tn,2 − T 2

n,1

)
=

1

2π

( 2

n

bn
2
c∑

k=1

In(λk)In(λk−1)−
( 2

n

bn
2
c∑

k=1

In(λk)
)2)

.

We will show below that an appropriately standardized version of the vector (Tn,1, Tn,2)T converges

weakly to a normal distribution, that is

(2.7)
√
n

((
Tn,1

Tn,2

)
−

( ∫ π
−π f(λ)dλ

2π
∫ π
−π f

2(λ)dλ

))
→ N(0, A),

where the asymptotic covariance matrix is given by

A =

(
4π
∫ π
−π f

2(λ)dλ 16π2
∫ π
−π f

3(λ)dλ

16π2
∫ π
−π f

3(λ)dλ 80π3
∫ π
−π f

4(λ)dλ

)
.

The assertion then follows by a straightforward application of the Delta method to the function g(x, y) =
1

2π
(y − x2). In order to prove (2.7) we use the approximations

∣∣∣ 1√
n

bn
2
c∑

k=1

In(λk)−
1√
n

bn
2
c∑

k=1

Ĩn(λk)
∣∣∣ = oP (1),(2.8)

∣∣∣ 1√
n

bn
2
c∑

k=1

In(λk)In(λk−1)− 1√
n

bn
2
c∑

k=1

Ĩn(λk)Ĩn(λk−1)
∣∣∣ = oP (1),(2.9)
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where each quantity Ĩn(λk) is defined by

Ĩn(λk) =
∣∣ψ(e−iλk)

∣∣2 In,z(λk) =
2π

σ2
f(λk)In,z(λk).(2.10)

Here, ψ(z) =
∑

j∈Z ψjz
j and In,z(λ) denotes the periodogram of the process {Zt}t∈Z. The proof of (2.8)

and (2.9) is complicated and therefore deferred to the appendix in Section 6. From these estimates it

follows that it is sufficient to prove assertion (2.7) for the vector

(
T̃n,1, T̃n,2

)T
=
( 2

n

bn
2
c∑

k=1

Ĩn(λk),
2

n

bn
2
c∑

k=1

Ĩn(λk)Ĩn(λk−1)
)T
.

Because {Zt}t∈Z is a Gaussian white noise process with variance σ2, the random variables Ĩn(λk) are

independent and exponentially distributed for 0 < k < n
2
, that is

Ĩn(λk) =
2π

σ2
f(λk) In,z(λk) ∼ exp

(
1

2πf(λk)

)
.

Therefore a straightforward calculation shows

E[T̃n,1] =

∫ π

−π
f(λ)dλ+ o(n−1/2),

E[T̃n,2] = 2π

∫ π

−π
f 2(λ)dλ+ o(n−1/2),

where we have used the Hölder continuity of the spectral density matrix. The assertion now follows

by an application of the central limit theorem for m-dependent random variables [see Orey (1958)]

and a calculation of the corresponding variances and covariances using the properties of an exponential

distribution. Ignoring the boundary terms, we obtain for example for the covariance of the random

variables T̃n,1 and T̃n,2

lim
n→∞

nCov(T̃n,1, T̃n,2) = lim
n→∞

n
4

n2

bn
2
c∑

k1,k2=1

(
E(Ĩn(λk1)Ĩn(λk2)Ĩn(λk2−1))− E(Ĩn(λk1))E(Ĩn(λk2)Ĩn(λk2−1))

)

= lim
n→∞

8

n

bn
2
c∑

k=1

(2π)f(λk−1)(2π)2f 2(λk) = lim
n→∞

64π3

n

bn
2
c∑

k=1

f 3(λk)

= 16π2

∫ π

−π
f 3(λ)dλ.

A similar calculation for the variances of T̃n,1 and T̃n,2 yields the assertion of the theorem. 2

Theorem 2.1 provides a simple test for the hypotheses (2.3). To be precise, recall that under the null

hypothesis H0 : f(λ) = Σ the asymptotic variance in Theorem 2.1 simplifies to τ 2
M2,H0

= 8π2(trΣ2)2.
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Consequently, if τ̂ 2
M2,H0

is a consistent estimate of τ 2
M2,H0

it follows from Theorem 2.1 that a consistent

asymptotic level α test is obtained by rejecting the null hypothesis if

√
n

Tn
τ̂M2,H0

> u1−α(2.11)

where u1−α denotes the (1− α) quantile of the standard normal distribution. Observing the represen-

tation

Σ0 =
1

2π

∫ π

−π
f(λ)dλ

for the parameter corresponding to the best L2-approximation of the spectral density matrix f by a

constant matrix, it follows from the proof of Theorem 2.1 that under the null hypothesis

Σ̂ =
1

2π
Tn,1(2.12)

converges in probability to Σ. Therefore τ̂ 2
M2,H0

= 8π2(tr Σ̂2)2 is consistent for τ 2
M2,H0

as well. The finite

sample performance of the corresponding test will be studied in Section 4.

3 Comparing spectral densities

In this section we continue illustrating our approach in a further example comparing the spectral

densities of the different components of {Xt}t∈Z. This problem has also found considerable attention in

the literature. On one hand, it is closely related to cluster and discriminant analysis [see e.g. Zhang and

Taniguchi (1994) or Kakizawa et al. (1998)]. On the other hand, a comparison of the spectral densities

can be of own interest [see for example Carmona and Wang (1996), who analyzed Lagrangian velocities

of drifters at the surface of the ocean by a comparison of spectra]. Coates and Diggle (1986) compared

the spectral densities of two independent time series using periodogram based test statistics and used

this method for analyzing wheat price and British gas data. Swanepoel and van Wyk (1986) considered

two independent stationary autoregressive processes. Diggle and Fisher (1991) proposed graphical

devices to compare periodograms, and a more recent reference is Dette and Paparoditis (2009), who

proposed a bootstrap test for the problem of testing for equal spectral densities of m [not necessarily

uncorrelated] time series {Xj,t}t∈Z (j = 1, . . . ,m), that is

(3.1) H0 : f11(λ) = . . . = fmm(λ)

versus

H1 : frr(λ) 6= fss(λ) for at least one pair (r, s), r 6= s.

For the construction of an alternative test statistic for the problem (3.1) we investigate the L2-approximation

problem

D2 = min
{∫ π

−π
tr((f(λ)− g(λ))(f(λ)− g(λ))∗)dλ | g ∈ FH0

}
,
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where FH0 denotes the set of all spectral density matrices g = (gij)
m
i,j=1 with equal (real) diagonal

elements. A similar calculation as in the previous section yields for g ∈ FH0∫ π

−π
tr((f(λ)− g(λ))(f(λ)− g(λ))∗dλ =

m∑
i,j=1

∫ π

−π
|fij(λ)− gij(λ)|2dλ(3.2)

≥
m∑
i=1

∫ π

−π
|fii(λ)− g11(λ)|2dλ =

m∑
i=1

∫ π

−π
|fii(λ)− h(λ) + h(λ)− g11(λ)|2dλ

≥
m∑
i=1

∫ π

−π
|fii(λ)− h(λ)|2dλ+ 2

m∑
i=1

∫ π

−π
(fii(λ)− h(λ))(h(λ)− g11(λ))dλ

=
m∑
i=1

∫ π

−π
|fii(λ)− h(λ)|2dλ =

1

m

{
(m− 1)

m∑
i=1

∫ π

−π
f 2
ii(λ)dλ− 2

∑
1≤i<j≤m

∫ π

−π
fii(λ)fjj(λ)dλ

}
with h(λ) = 1

m

∑m
i=1 fii(λ), and there is equality in (3.2) for g(λ) = ((1− δij)fij(λ) + δijh(λ))mi,j=1 [here

δij denotes the Kronecker symbol]. Therefore we consider the L2 distance

D2 =
∑

1≤i<j≤m

∫ π

−π
(fii(λ)− fjj(λ))2dλ

= (m− 1)
m∑
i=1

∫ π

−π
f 2
ii(λ)dλ− 2

∑
1≤i<j≤m

∫ π

−π
fii(λ)fjj(λ)dλ,

which obviously vanishes if and only if the null hypothesis is satisfied. In order estimate the quantity

D2 we define

T (ij)
n =

2

n

bn
2
c∑

k=1

In,ii(λk)In,jj(λk−1); 1 ≤ i ≤ j ≤ m,(3.3)

where In,ii denotes the ith diagonal element of the periodogram In defined in (2.4) for any i = 1, . . . ,m.

We consider the test statistic

Dn =
m− 1

2π

m∑
i=1

T (ii)
n − 1

π

∑
1≤i<j≤m

T (ij)
n .(3.4)

The following result specifies the asymptotic distribution of the statistic Dn under the null hypothesis

and alternative.

Theorem 3.1 If {Xt}t∈Z is a stationary process satisfying assumptions (2.1) and (2.2) with Hölder

continuous spectral density matrix of order L > 1/2, then we have for the statistic Dn from (3.4)

√
n
(
Dn −D2

)
→ N(0, τ 2

D2),
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where the asymptotic variance is given by

τ 2
D2 = π

(
4(m− 1)2

∑
1≤i,j≤m

∫ π

−π

{
f 2
ij(λ)f 2

ji(λ) + 4fii(λ)fij(λ)fji(λ)fjj(λ)
}
dλ

−16(m− 1)
m∑
k=1

∑
1≤i<j≤m

∫ π

−π

{
2fkk(λ)fki(λ)fik(λ)fjj(λ) + 2fkk(λ)fkj(λ)fjk(λ)fii(λ)

+fki(λ)fik(λ)fkj(λ)fjk(λ)
}
dλ

+16
∑

1≤k<l≤m

∑
1≤i<j≤m

∫ π

−π

{
2fkk(λ)fll(λ)fij(λ)fji(λ) + fkk(λ)fii(λ)flj(λ)fjl(λ)

+fll(λ)fjj(λ)fik(λ)fki(λ) + fki(λ)fik(λ)flj(λ)fjl(λ)
}
dλ
)
.

Remark 3.2 If the null hypothesis (3.1) is satisfied, we have

√
nDn → N(0, τ 2

D2,H0
),

and the asymptotic variance τ 2
D2,H0

is given by

τ 2
D2,H0

= π
(4m(m− 1)(11−m)

3

∫ π

−π
f 4

11(λ)dλ+ 8(m− 1)2
∑

1≤i<j≤m

∫ π

−π
f 2
ij(λ)f 2

ji(λ)dλ

+
∑

1≤i<j≤m

(
32(j(i− 1) + (m− i)(m− j)) + 16(m− 1)(3m− 8)

)∫ π

−π
f 2

11(λ)fij(λ)fji(λ)dλ

+32
∑

1≤i<j≤m

m∑
k=i+1

m∑
l=j+1

∫ π

−π
fik(λ)fki(λ)fjl(λ)flj(λ)dλ

−16(m− 1)
∑

1≤i 6=j 6=k 6=i≤m

∫ π

−π

{
2fkk(λ)fki(λ)fik(λ)fjj(λ) + 2fkk(λ)fkj(λ)fjk(λ)fii(λ)

+fki(λ)fik(λ)fkj(λ)fjk(λ)
}
dλ.

Remark 3.3 In the case of comparing the spectral densities of two samples (m = 2) the asymptotic

variance in Theorem 3.1 becomes

τ 2
D2 = 20π

∫ π

−π
f 4

11(λ)dλ− 32π

∫ π

−π
f 3

11(λ)f22(λ)dλ− 48π

∫ π

−π
f 2

11(λ)f12(λ)f21(λ)dλ(3.5)

+48π

∫ π

−π
f 2

11(λ)f 2
22(λ)dλ+ 64π

∫ π

−π
f11(λ)f12(λ)f21(λ)f22(λ)dλ+ 8π

∫ π

−π
f 2

12(λ)f 2
21(λ)dλ

−48π

∫ π

−π
f 2

22(λ)f12(λ)f21(λ)dλ− 32π

∫ π

−π
f11(λ)f 3

22(λ)dλ+ 20π

∫ π

−π
f 4

22(λ)dλ.
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which yields under the null hypothesis

τ 2
D2,H0

= 24π

∫ π

−π
f 4

11(λ)dλ− 32π

∫ π

−π
f 2

11(λ)f12(λ)f21(λ)dλ+ 8π

∫ π

−π
f 2

12(λ)f 2
21(λ)dλ.(3.6)

A consistent estimator of this quantity is given by

τ̂ 2
D2,H0

=
6

nπ2

bn
2
c∑

k=1

In,11(λk)In,11(λk−1)In,11(λk−2)In,11(λk−3)(3.7)

− 8

nπ2

bn
2
c∑

k=1

In,11(λk)In,11(λk−1)In,12(λk−2)In,21(λk−3)

+
2

nπ2

bn
2
c∑

k=1

In,12(λk)In,12(λk−1)In,21(λk−2)In,21(λk−3),

and similar estimates can be derived for the variance under the null hypothesis in Theorem 3.1 in the

case m > 2. Thus the null hypothesis (3.1) is rejected whenever

√
n

Dn

τ̂D2,H0

> u1−α,(3.8)

where u1−α denotes the (1− α) quantile of the standard normal distribution.

Proof of Theorem 3.1. For the sake of brevity we restrict ourselves to proving the result in the case

of two samples. The general assertion follows by exactly the same arguments with an additional amount

of notation. For the case m = 2 we recall the definition of the estimates in (3.3) and show the weak

convergence of the vector (T
(11)
n , T

(12)
n , T

(22)
n )T , that is

(3.9)
√
n


T

(11)
n

T
(12)
n

T
(22)
n

−
 2π

∫ π
−π f

2
11(λ)dλ

2π
∫ π
−π f11(λ)f22(λ)dλ

2π
∫ π
−π f

2
22(λ)dλ


→ N(0,Λ)

where the elements of the (symmetric) matrix Λ = (λij)
3
i,j=1 are given by

λ11 = 80π3

∫ π

−π
f 4

11(λ)dλ,

λ12 = 16π3
(

2

∫ π

−π
f 3

11(λ)f22(λ)dλ+ 3

∫ π

−π
f 2

11(λ)f12(λ)f21(λ)dλ
)
,

λ13 = 16π3
(∫ π

−π
f 2

12(λ)f 2
21(λ)dλ+ 4

∫ π

−π
f11(λ)f12(λ)f21(λ)f22(λ)dλ,

λ22 = 16π3
(

3

∫ π

−π
f 2

11(λ)f 2
22(λ)dλ+ 2

∫ π

−π
f11(λ)f12(λ)f21(λ)f22(λ)dλ

)
,

λ23 = 16π3
(

2

∫ π

−π
f11(λ)f 3

22(λ)dλ+ 3

∫ π

−π
f 2

22(λ)f12(λ)f21(λ)dλ
)
,

λ33 = 80π3

∫ π

−π
f 4

22(λ)dλ.

10



Theorem 3.1 then follows again by the Delta method, observing that

Dn = g(T
(11)
n,2 , T

(12)
n,1 , T

(22)
n,2 ) =

1

2π
T

(11)
n,1 −

1

π
T

(12)
n,1 +

1

2π
T

(22)
n,2 ,

where the function g is defined by g(x, y, z) = 1
2π
x− 1

π
y + 1

2π
z. In order to prove (3.9), we note that a

similar reasoning as for (2.8) and (2.9) (see Section 6) yields the estimate

∣∣∣ 1√
n

bn
2
c∑

k=1

In,ii(λk)In,jj(λk−1)− 1√
n

bn
2
c∑

k=1

Ĩn,ii(λk)Ĩn,jj(λk−1)
∣∣∣ = oP (1)(3.10)

for arbitrary 1 ≤ i, j ≤ 2, where Ĩn,ij(λk) denotes the element in the position (i, j) of the matrix

Ĩn(λk) = 2πf 1/2(λk)Σ
−1/2In,z(λk)Σ

−1/2(f 1/2(λk))
∗.

The claim in (3.9) thus follows, if a corresponding statement for the vector (T̃
(11)
n , T̃

(12)
n , T̃

(22)
n )T can be

established, where the statistics T̃
(ij)
n are defined by

T̃ (ij)
n =

2

n

bn
2
c∑

k=1

Ĩn,ii(λk)Ĩn,jj(λk−1).

The assertions now are a consequence of the central limit theorem in Orey (1958) [note that the terms

in the sum are 1-dependent], where the elements in the covariance are obtained by a careful calculation

observing

E
(
Ĩn,ij(λk)Ĩn,rs(λk)

)
= (2π)2

(
fij(λk)frs(λk) + fis(λk)frj(λk)

)
for λk ∈ (0, π) and any 1 ≤ i, j, r, s ≤ 2 [see Hannan (1970)]. 2

4 Finite sample properties

In this section we will present a small simulation study to investigate the finite sample properties of

the proposed test statistic. We will consider the problems of testing for a constant spectral density and

comparing the spectral densities of two time series separately. All presented results are based on 1000

simulation runs.

Example 4.1: Testing for a constant spectral density. In order to investigate the testing problem

(2.3) we consider the models

Xt = Zt(4.1)

Xt = Zt +
1

5
Zt+1,(4.2)

corresponding to null hypothesis and alternative, respectively. Here {Zt}t∈Z is a Gaussian white

noise process with variance σ2 = 1. Note that for model (4.2) the spectral density is given by

11



f(λ) = 1
2π

(
26
25

+ 2
5

cos(λ)
)
. In Table 1 we show the rejection probabilities of the test (2.11) for var-

ious sample sizes, where the asymptotic variance has been estimated by (2.12). We observe a rather

accurate approximation of the nominal level and reasonable rejection probabilities under the alternative.

Simulations of other scenarios showed a similar picture and are not displayed for the sake of brevity.

(4.1) (4.2)

α = 5% α = 10% α = 15% α = 5% α = 10% α = 15%

n = 128 0.073 0.098 0.125 0.249 0.296 0.338

n = 256 0.066 0.105 0.125 0.289 0.359 0.422

n = 512 0.062 0.093 0.139 0.389 0.487 0.557

n = 1024 0.056 0.099 0.141 0.569 0.650 0.709

Table 1: Rejection probabilities of the test (2.11) for the hypothesis of a constant spectral density under

the null hypothesis and alternative.

Example 4.2: Comparing spectral densities of stationary time series. In this example we study

the testing problem (3.1) in the case m = 2, where the stationary time series is given by {(X1,t, X2,t)}t∈Z
with

X1,t = Z1,t − β1Z1,t−1 − β2Z1,t−2

X2,t = Z2,t − β1Z2,t−1

Here β1 = 0.8, and {(Z1,t, Z2,t)
T}t∈Z is an independent centered stationary Gaussian process with

covariance matrix

Σ =

(
1 ρ

ρ 1

)
,

and the choice β2 corresponds to either the null hypothesis of equal spectral densities (β2 = 0) or to

the alternative (β2 6= 0). In Table 2 we present the rejection probabilities of the test (3.8) for various

sample sizes where we used the variance estimate (3.7). We observe again that the nominal level is well

approximated and that the alternatives are clearly detected in all cases. It is interesting to note that

the power of the test is increasing with the correlation ρ of the Gaussian process. A similar observation

was also made by Dette and Paparoditis (2009) for a test based on a kernel estimate of the spectral

density matrix.

In the present situation the empirical observations can be explained by the asymptotic theory presented

in Section 3. First, note that under the alternative the probability of rejecting the null hypothesis of

equal spectral densities by the test (3.8) is approximately given by

(4.3) P
(√

n
Dn

τ̂D,H0

> u1−α

)
≈ Φ

(√
n
D2

τD2

− u1−α
τD2,H0

τD2

)
≈ Φ

(√
n
D2

τD2

)
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ρ = 0.1 ρ = 0.5 ρ = 0.8

β2 = 0 α = 5% α = 10% α = 15% α = 5% α = 10% α = 15% α = 5% α = 10% α = 15%

n = 128 0.074 0.112 0.153 0.078 0.125 0.172 0.054 0.084 0.121

n = 256 0.057 0.115 0.159 0.053 0.096 0.153 0.052 0.096 0.140

n = 512 0.046 0.095 0.143 0.044 0.090 0.128 0.042 0.083 0.127

n = 1024 0.059 0.109 0.156 0.049 0.099 0.146 0.043 0.085 0.131

β2 = 0.5 α = 5% α = 10% α = 15% α = 5% α = 10% α = 15% α = 5% α = 10% α = 15%

n = 128 0.155 0.270 0.355 0.202 0.297 0.382 0.194 0.352 0.455

n = 256 0.216 0.347 0.431 0.231 0.366 0.452 0.343 0.497 0.613

n = 512 0.293 0.455 0.552 0.379 0.543 0.635 0.568 0.712 0.813

n = 1024 0.477 0.638 0.737 0.556 0.706 0.794 0.824 0.908 0.942

Table 2: Simulated rejection probabilities of the test (3.8) for the hypothesis (3.1) of equal spectral

densities.

where Φ denotes the distribution function of the standard normal distribution and τ 2
D,H0

and τ 2
D are the

asymptotic variances under the null hypothesis and alternative, respectively [see equations (3.5) and

(3.6)]. This shows that the power is increasing with the ratio D2/τD2 . In Figure 1 we display the ratio

ρ→ p(ρ) =
D2(ρ)

τD(ρ)
(4.4)

as a function of ρ ∈ [−1, 1] and we observe that the asymptotic power (4.3) is an increasing function of

|ρ|. This confirms our empirical observations in Table 2.

5 Conclusions

In this paper we have illustrated an alternative concept for constructing tests for nonparametric hy-

potheses in stationary time series with a linear representation of the form (2.1). Our approach is based

on an estimate of the L2-distance between the spectral density matrix and its best approximation under

the null hypothesis and does not require the specification of a smoothing parameter. The test statistic is

constructed from simple estimates of integrated components of the spectral density matrix and follows

an asymptotic normal distribution. For the sake of a clear presentation and brevity we have restricted

ourselves to the problem of testing for a constant spectral density matrix and to the comparison of the

spectral densities of several correlated time series.

We conclude this paper with a few remarks on generalizations of our approach. First, the generalization

of the approach to other hypotheses is obvious, if we consider the minimal distance

M2 = min
{∫ π

−π
tr{(f(λ)− g(λ))(f(λ)− g(λ))∗}dλ | g ∈ FH0

}
,(5.1)
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Figure 1: The function p(ρ) defined in (4.4) for various values of ρ

where FH0 denotes the set of all spectral densities satisfying the null hypothesis under consideration. In

most cases this minimal distance can be given explicitly in terms of integrals of elements of the spectral

density matrix over the full frequency domain [−π, π]. Typical examples include the problem of no

correlation and separability. The first problem corresponds to the hypothesis

H0 : fij(λ) = 0, 1 ≤ i < j ≤ m

in the frequency domain. In this case, it is easy to see that the minimum in (5.1) is given by

M2 = 2
∑

1≤i<j≤m

∫ π

−π
|fij(λ)|2dλ

which can be estimated easily using the approach described in Sections 2 and 3. The (appropriately

standardized) test statistic is asymptotically normal distributed and it only remains to estimate the

asymptotic variance under the null hypothesis. The second example corresponds to the hypothesis of

separability

H0 : f(λ) = Σf0(λ)

[see e.g. Matsuda and Yajima (2004)], where Σ denotes a positive definite matrix and f0(λ) is a real-

valued function which is integrable on [−π, π]. Without loss of generality one can take Σ to be the

variance of the process {Xt}t∈Z, which gives

f0(λ) =
1

m
tr
(
f(λ)V −1

Σ

)
=

1

m

m∑
i=1

fii(λ)∫ π
−π fii(λ)dλ

with VΣ = diag(σ2
1, . . . , σ

2
m) being the diagonal matrix whose entries are the variances of Xt,i [see also

Eichler (2008)]. Using the same approach as in Section 2 it can be shown that the distance in (5.1)
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becomes minimal for

Σ0 =

∫ π
−π f(λ)f0(λ)dλ∫ π
−π f

2
0 (λ)dλ

,

which gives

M2 =

∫ π

−π
tr(f(λ)f ∗(λ))dλ−

tr((
∫ π
−π f(λ)f0(λ)dλ)(

∫ π
−π f(λ)f0(λ)dλ)∗)∫ π

−π f
2
0 (λ)dλ

.

This quantity can also be estimated easily by the methods described in the previous paragraphs. Other

hypotheses can be treated similarly, and the concept presented here is applicable as soon as the minimal

distance can be represented as a functional of the spectral density matrix.

Second, the restriction to Gaussian innovations was made throughout this paper in order to keep the

arguments simple. In fact, similar results can be derived for arbitrary linear processes of the form (2.1),

as long as the sequence of innovations {Zt}t∈Z is independent identically distributed with E[Zt] = 0 and

existing moments of eighth order. Note however that the simple form of the variances τ 2
M2 and τ 2

D2 in

both theorems is due to special properties of the normal distribution and that cumulants of higher orders

show up in general. For example, if we are in the situation of Theorem 2.1 (and in the one-dimensional

case m = 1), we obtain a central limit theorem
√
n(Tn −M2)

D−→N (0, τ 2
M2) with variance

τ 2
M2 = 20π

∫ π

−π
f 4(λ)dλ− 16

∫ π

−π
f(λ)dλ

∫ π

−π
f 3(λ)dλ+

4

π

(∫ π

−π
f(λ)dλ

)2
∫ π

−π
f 2(λ)dλ(5.2)

+q
( 1

π

(∫ π

−π
f(λ)dλ

)2

− 2

∫ π

−π
f 2(λ)dλ

)2

,

where q = κ4/σ
4 and κ4 = E[Z4

t ]−3σ2 denotes the fourth cumulant of Zt. This term coincides with τ 2
M2

if Zt is normally distributed, as we have κ4 = 0 in this case. Moreover, under the null hypothesis of a

constant spectral density the asymptotic variance in (5.2) does also not depend on the fourth cumulant.

A similar phenomenon can be observed for the tests proposed by Eichler (2008) for a general class of

hypotheses [see Dette and Hildebrandt (2010)].

6 Appendix: some technical details

In this section, we show the estimates (2.8) and (2.9) which are the main ingredients for the proof of

both Theorem 2.1 and 3.1. To this end, let Rn(λk) = In(λk) − Ĩn(λk) denote the differences in (2.8),

which by a standard argument [see Brockwell and Davis (1991), p. 347] can be represented as

Rn(λk) = ψ(e−iλk)Jn,z(λk)Yn(λk) + ψ(e−iλk) Jn,z(λk)Yn(λk) + |Yn(λk)|2(6.1)

= Rn,1(λk) +Rn,2(λk) + |Yn(λk)|2,
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where we have used the notation

ψ(e−iλ) =
∞∑

j=−∞

ψje
−iλj

Un,j(λ) =

n−j∑
t=1−j

Zte
−iλt −

n∑
t=1

Zte
−iλt

Yn(λ) =
1√
n

∞∑
j=−∞

ψje
−iλjUn,j(λ)(6.2)

and the quantities Rn,1 and Rn,2 are defined in an obvious way. Using the symmetry of the periodogram

[and ignoring boundary effects] it is our aim to show

∣∣∣ 1√
n

bn
2
c∑

k=−bn−1
2
c

Rn(λk)
∣∣∣ = oP (1)(6.3)

in order to obtain (2.8). It is well known [see Brockwell and Davis (1991)] that

E|Yn(λk)|2 ≤ E(|Yn(λk)|4)
1
2 = O(n−1),(6.4)

which yields the assertion for the third term in (6.1). The remaining two terms can be treated similarly,

so for the sake of brevity only Rn,1(λk) is considered here. This quantity can be decomposed as follows:

First we set

Yn(λk) =
1√
n

−1∑
l=−∞

ψle
−iλklUn,l(λk) +

1√
n

∞∑
l=0

ψle
−iλklUn,l(λk)(6.5)

= H−n (λk) +H+
n (λk),

where the last identity defines the expressions H−n and H+
n . By definition we have λk = 2πk

n
, so a

straightforward calculation yields the representation

H+
n (λk) =

1√
n

∞∑
l=0

l∑
r=1

ψl(Zr−l − Zn+r−l)e
−iλkr,(6.6)

H−n (λk) =
1√
n

−1∑
l=−∞

0∑
r=1+l

ψl(Zn+r−l − Zr−l)e−iλkr.

Setting

R+
n,1 =

bn
2
c∑

k=−bn−1
2
c

ψ(e−iλk)Jn,z(λk)H+
n (λk)

=
1

n

bn
2
c∑

k=−bn−1
2
c

∞∑
j=−∞

∞∑
l=0

l∑
r=1

n∑
t=1

ψjψlZt(Zr−l − Zn+r−l)e
−iλk(j+t−r)
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and similarly

R−n,1 =

bn
2
c∑

k=−bn−1
2
c

ψ(e−iλk)Jn,z(λk)H−n (λk)

we are left to show that both n−1/2E|R+
n,1| and n−1/2E|R−n,1| converge to zero, and we restrict ourselves

to the proof of the first claim. Note for any fixed two integers j and r that the relation

bn
2
c∑

k=−bn−1
2
c

e−iλk(j+t−r) =

{
n, t = r − j mod n

0, otherwise
(6.7)

holds, from which we conclude

R+
n,1 =

∞∑
j=−∞

∞∑
l=0

l∑
r=1

ψjψlZt∗(Zr−l − Zn+r−l),

where t∗ = t(r, j) is the unique t ∈ {1, . . . , n}, such that t = r − j mod n holds. Therefore

E|R+
n,1| ≤ 2σ2

∞∑
j=−∞

∞∑
l=0

l∑
r=1

|ψj||ψl| ≤ 2σ2

∞∑
j=−∞

|ψj|
∞∑

l=−∞

|l| |ψl| = O(1),

where we have used condition (2.6) for the last estimate. Analogously, the estimate E|R−n,1| = O(1)

follows, and a similar argument for the sum involving Rn,2(λk) yields assertion (2.8).

We now turn to the proof of estimate (2.9). From (6.3), the Cauchy-Schwarz inequality and the

symmetry of the periodogram we have

E
∣∣∣ 1√
n

bn
2
c∑

k=1

(
In(λk)In(λk−1)− Ĩn(λk)Ĩn(λk−1)

)∣∣∣(6.8)

= E
∣∣∣ 1

2
√
n

bn
2
c∑

k=−bn−1
2
c

(
In(λk)In(λk−1)− Ĩn(λk)Ĩn(λk−1)

)∣∣∣+ o(1)

= E
∣∣∣ 1

2
√
n

bn
2
c∑

k=−bn−1
2
c

Ĩn(λk)Rn(λk−1) +
1

2
√
n

bn
2
c∑

k=−bn−1
2
c

Ĩn(λk−1)Rn(λk)
∣∣∣+ o(1).

Once we have shown the claim

E
( 1√

n

bn
2
c∑

k=−bn−1
2
c

Ĩn(λk)Rn(λk−1)
)2

= o(1)(6.9)

and an analogous estimate with λk replaced by λk−1 and vice versa, (2.9) follows.
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A proof of (6.9) is quite delicate. Note first from a simple calculation that

E|Ĩn(λk)|p < Cp <∞(6.10)

uniformly in k, for any p > 0 and some generic constants Cp > 0. Now recall the decomposition (6.1)

for the remainder term Rn(λk). We have

E
( 1√

n

bn
2
c∑

k=−bn−1
2
c

Ĩn(λk)Rn(λk−1)
)2

=
1

n

bn
2
c∑

j=−bn−1
2
c

bn
2
c∑

k=−bn−1
2
c

E
(
Ĩn(λj)Rn(λj−1)Ĩn(λk)Rn(λk−1)

)
,

and therefore we require very accurate estimates for the terms in the decomposition

Rn(λj−1)Rn(λk−1) = ψ(e−iλj−1)Jn,z(λj−1)Yn(−λj−1)ψ(e−iλk−1)Jn,z(λk−1)Yn(−λk−1)(6.11)

+ψ(e−iλj−1)Jn,z(λj−1)Yn(−λj−1)ψ(eiλk−1)Jn,z(−λk−1)Yn(λk−1)

+ψ(eiλj−1)Jn,z(−λj−1)Yn(λj−1)ψ(e−iλk−1)Jn,z(λk−1)Yn(−λk−1)

+ψ(eiλj−1)Jn,z(−λj−1)Yn(λj−1)ψ(eiλk−1)Jn,z(−λk−1)Yn(λk−1)

+ψ(e−iλj−1)Jn,z(λj−1)Yn(−λj−1)|Yn(λk−1)|2

+ψ(eiλj−1)Jn,z(−λj−1)Yn(λj−1)|Yn(λk−1)|2

+ψ(e−iλk−1)Jn,z(λk−1)Yn(−λk−1)|Yn(λj−1)|2

+ψ(eiλk−1)Jn,z(−λk−1)Yn(λk−1)|Yn(λj−1)|2

+|Yn(λj−1)|2|Yn(λk−1)|2.

For the sake of brevity we only discuss three cases in detail, as all other terms in (6.11) can be estimated

by similar calculations. Following a straightforward but tedious argument [observing the representation

of Yn(λk) in (6.2) and the independence of the random variables Zt] we have

E|Yn(λk)|8 ≤
1

n4

( ∞∑
j=−∞

|ψj|
(
a1|j|E|Z1|8 + a2|j|2E|Z1|6E|Z1|2

+a3|j|3(E|Z1|4)2 + a4|j|3E|Z1|4(E|Z1|2)2 + a5|j|4(E|Z1|2)4
) 1

8

)8

= O(n−4)

with appropriate constants a1, . . . , a5. This yields by (6.10) and Hölder’s inequality

1

n

∑
j

∑
k

E
(
Ĩn(λj)Ĩn(λk)|Yn(λj−1)|2|Yn(λk−1)|2

)
= O(n−1)

for the sum corresponding to the last term in (6.11). A similar calculation gives for the sum corre-

sponding to the fifth term in (6.11)

1

n

∑
j

∑
k

E
(∣∣∣Ĩn(λj)Ĩn(λk)Ψ(e−iλj−1)Jn,z(λj−1)Yn(−λj−1)|Yn(λk−1)|2

∣∣∣)
≤ 1

n

∑
j

∑
k

(
E|Ĩn(λj)|4

) 1
4
(
E|Ĩn(λk)|4

) 1
4 |Ψ(e−iλj−1)|

(
E(Jn,z(λj−1)Yn(−λj−1))4

) 1
4
(
E|Yn(λk−1)|8

) 1
4

= O(n−
1
2 ),
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where we have used the estimate(
E
(
Jn,z(λj−1)Yn(−λj−1)

)4
) 1

4 ≤
(
E(Jn,z(λj−1))8

) 1
8
(
E|Yn(−λj−1)|8

) 1
8 = O(n−

1
2 )

in the last step. The sums corresponding to the sixth, seventh and eighth term can be treated similarly.

For a treatment of the sums corresponding to the first four terms in (6.11) we consider exemplarily the

first one and use the decomposition (6.5). Since similar estimates hold for the other quantities as well,

we only discuss terms involving H+
n as before. Thus our focus lies on

Bn =
1

n

∑
j

∑
k

Ĩn(λj)Ĩn(λk)Ψ(e−iλj−1)Jn,z(λj−1)H+
n (−λj−1)Ψ(e−iλk−1)Jn,z(λk−1)H+

n (−λk−1).

Using (2.10) and (6.6) we have

Bn =
1

n3

∞∑
c=−∞

∞∑
d=−∞

n∑
u=1

n∑
v=1

∞∑
m=−∞

n∑
t=1

∞∑
l=0

l∑
r=1

∞∑
f=−∞

∞∑
g=−∞

n∑
a=1

n∑
b=1

∞∑
p=−∞

n∑
s=1

∞∑
q=0

q∑
w=1

ψcψdψmψlψfψgψpψq

×E
(
ZuZvZt(Zr−l − Zn+r−l)ZaZbZs(Zw−q − Zn+w−q)

)
× 1

n2

∑
j

∑
k

e−iλj(c−d+u−v+t+m−r)e−iλk(f−g+a−b+s+p−w)eiλ1(t+m−r+s+p−w).

Because of the independence of the random variables Zt, most of the terms in this sum will vanish. The

dominating term is the sum obtained for the case where there are four different pairs of equal indices,

and we will show in the following that this sum is of order O(n−1). All other combinations will lead to

terms which are of smaller order.

Let us discuss the two cases

u = v, t = n+ r − l, a = b, s = n+ w − q

and

u = v, t = b, a = s, r − l = w − q
only, as the main principle is already visible in these two situations. The corresponding term within Bn

will be called Bn,1 and Bn,2, and we have

E[Bn,1] ≤ Cσ8 1

n

∞∑
c=−∞

∞∑
d=−∞

∞∑
m=−∞

∞∑
f=−∞

∞∑
g=−∞

∞∑
p=−∞

∞∑
l=0

l∑
r=1

∞∑
q=0

q∑
w=1

ψcψdψmψlψfψgψpψq

n∑
t=1

n∑
s=1

1

n2

(∑
j

e−iλj(c−d+t+m−r)
)(∑

k

e−iλk(f−g+s+p−w)
)
eiλ1(t+m−r+s+p−w)

as well as

E[Bn,2] ≤ Cσ8 1

n2

∞∑
c=−∞

∞∑
d=−∞

∞∑
m=−∞

∞∑
f=−∞

∞∑
g=−∞

∞∑
p=−∞

∞∑
l=0

l∑
r=1

∞∑
q=0

q∑
w=1

ψcψdψmψlψfψgψpψq

n∑
t=1

n∑
s=1

1

n2

(∑
j

e−iλj(c−d+t+m−r)
)(∑

k

e−iλk(f−g+2s−t+p−w)
)
eiλ1(t+m−r+s+p−w).
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Since both 1 ≤ t ≤ n and (6.7) hold, we conclude as in the previous proof that there is actually only

one index t that gives a non-zero term in E[Bn,1]. Similar derivations for s and Bn,2 plus the same

argument as in (6.8) yield

|E[Bn,1]| ≤ C
σ8

n

∞∑
c=−∞

∞∑
d=−∞

∞∑
m=−∞

∞∑
f=−∞

∞∑
g=−∞

∞∑
p=−∞

∞∑
l=0

l∑
r=1

∞∑
q=0

q∑
w=1

∣∣∣ψcψdψmψlψfψgψpψq∣∣∣ = O(n−1)

as well as |E[Bn,2]| = O(n−2). Putting things together, we obtain |E[Bn]| = O(n−1), and a similar cal-

culation for the sum corresponding to the remaining terms in (6.11) yields (6.9) and therefore assertion

(2.9).

In the multivariate case, related arguments yield

∣∣∣ 1√
n

bn
2
c∑

k=1

In,ij(λk)In,ji(λk−1)− 1√
n

bn
2
c∑

k=1

Ĩn,ij(λk)Ĩn,ji(λk−1)
∣∣∣ = oP (1)

as an analogue of (2.9) plus the claim in (3.10) for arbitrary i and j. Note in particular that the

symmetry argument from (6.8) works in this context as well. 2
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