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Abstract

In this paper we develop a method to investigate the e�ciency of two-stage adaptive designs from

a theoretical point of view. Our approach is based on an explicit expansion of the information matrix

for an adaptive design. The results enables one to compare the performance of adaptive designs

with non-adaptive designs, without having to rely on extensive simulation studies. We demonstrate

that their relative e�ciency depends sensitively on the statistical problem under investigation and

derive some general conclusions when to prefer an adaptive or a non-adaptive design. In particular,

we show that in nonlinear regression models with moderate or large variances the �rst stage sample

size of an adaptive design should be chosen su�ciently large in order to address variability in the

interim parameter estimates. We illustrate the methodology with several examples.

Keywords and phrases: mean squared error, optimal design, maximum likelihood estimation, nonlinear

regression

1 Introduction

It is well known that optimal designs can substantially improve the e�ciency of statistical analyses.

Numerous authors have worked on the problem of constructing optimal designs for regressions models.

However, optimal designs for nonlinear regression models usually depend on the unknown parameter,

leading to so-called locally optimal designs [Cherno� (1953); see also Ford et al. (1992), He et al.

(1996), Fang and Hedayat (2008) or Yang (2010) among many others]. Locally optimal designs require
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an upfront speci�cation of the unknown parameter and might thus be sensitive with respect to an initial

misspeci�cation of that parameter. More advanced design strategies have been developed instead to

overcome this sensitivity, such as Bayesian or other robust designs [see Chaloner and Verdinelli (1995),

Dette (1997), Müller and Pázman (1998) or Wiens (2009) among others].

An attractive alternative are sequential designs, which update the information about the unknown

parameter sequentially after each observation [see e.g. Ford and Silvey (1980) for an early reference].

Several authors have proved e�ciency of sequentially optimal designs in the sense that sequential designs

converge asymptotically to the locally optimal designs and the corresponding parameter estimates are

asymptotically e�cient [see Roy et al. (2008) or Chang and Ying (2009) among others]. However, these

results usually refer to speci�c models and fully sequential designs are often not feasible in practice due

to logistic restrictions.

Response-adaptive designs with several cohorts of subjects (adaptive designs, in short) are often used

instead: After each stage the accumulated data of the ongoing study are used to update the initial

guess of the underlying model parameters [Zhu and Wong (1998), Haines et al. (2003), Montepiedra

and Yeh (2004)]. These designs continue to gain popularity in biopharmaceutical applications. For

example, in clinical studies addressing dose �nding objectives, trial designs that enable adaptations

based on accrued data of an ongoing trial are perceived to be more e�cient than non-adaptive designs

(Bornkamp et al., 2007). Several adaptive designs have been introduced in the recent past; see, for

example, Miller et al. (2007), Dragalin et al. (2007), or Bornkamp et al. (2010) for approaches in

the context of dose �nding clinical trials. In order to investigate the operating characteristics of a

given adaptive design, in particular in comparison with a traditional, non-adaptive design, extensive

simulations are typically necessary [see Dragalin et al. (2011)]. Theoretical comparisons often fail short

because of the complicated structure in the data generating process of adaptive (or sequential) designs.

In this paper we propose a new method to investigate the asymptotic e�ciency of adaptive designs

compared to non-adaptive designs from a theoretical point of view. We focus on two-stage adaptive

designs and derive an explicit expression for the (asymptotic) Fisher information of these designs. These

results are used for a theoretical comparison of the variances of the maximum likelihood estimates (MLE)

obtained from adaptive and non-adaptive designs. We illustrate the methodology with several examples

and demonstrate that the approximations derived by the asymptotic theory are accurate for realistic

samples sizes. Moreover, we show that in nonlinear regression models with a moderate variance of

the responses the �rst stage sample size of an adaptive design should be chosen su�ciently large in

order to address variability in the interim parameter estimate. In particular, we demonstrate that the

superiority of an adaptive or a non-adaptive design depends sensitively on the statistical problem under

investigation.
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2 Theoretical background

2.1 Notation

We consider models where a random variable Y with density f(y, x, θ) (with respect to the Lebesgue

or counting measure) is observed at experimental condition x ∈ X . Here, θ ∈ Θ ⊂ Rd denotes the

unknown parameter vector and the explanatory variable x varies in the design space X . We assume

thatN independent observations Y1, . . . , YN at experimental conditions x1, . . . , xN ∈ X are available and

denote by θ̂ the MLE based on the full sample (x1, Y1), . . . , (xN , YN). A design is de�ned as a probability

measure ξ on the design space X with �nite support which speci�es the di�erent experimental conditions

(Pukelsheim, 2006). That is, if N observations can be made in total and the design ξ has mass wi at

xi, i = 1, . . . , k, the quantities wiN are rounded to integers ni, such that
∑k

i=1 ni = N , and the

experimenter takes ni observations at each condition xi, i = 1, . . . , k. It is well known (see also the

derivations in the Appendix) that � under certain regularity assumptions � the statistic
√
N(θ̂ − θ) is

asymptotically normal distributed with mean 0 and covariance matrix M−1(ξ, θ), where

M(ξ, θ) =

∫ ∫ (
∂

∂θ
log f(y, x, θ)

)T (
∂

∂θ
log f(y, x, θ)

)
f(y, x, θ)dydξ(x) (2.1)

denotes the information matrix of the given design ξ. A locally optimal design maximizes an appropriate

functional of this matrix, the so-called optimality criterion [see Atkinson et al. (2007) or Pukelsheim

(2006) among others]. Throughout this paper let ξθ = {xi(θ), wi(θ)}ki=1 denote a locally optimal design

and assume that the weights wi(θ) and support points xi(θ) are continuously di�erentiable functions of

the parameter θ. We de�ne the mapping

I :

 Θ×Θ −→ Rd×d

(θ, τ) −→ I(θ, τ) := M(ξτ , θ).
(2.2)

and note that I(θ, τ) is the information matrix of the locally optimal design ξτ for the parameter τ ∈ Θ,

if the �true� parameter is given by θ. In the following we consider two standard examples, a nonlinear

regression and a binary response model, that will be referred to in Section 4.

Example 2.1 Consider the common nonlinear regression model Y = η(x, θ)+ε, where the expectation

of a real valued response Y under experimental condition x is given by E[Y |x] = η(x, θ) with a normally

distributed homoscedastic error such that E[ε] = 0 and Var(ε) = σ2, i.e.

f(y, x, θ) =
1√

2πσ2
exp

(
− 1

2σ2
(y − η(x, θ))2

)
.

From the identities

∂

∂θ
log f(y, x, θ) =

1

σ2

∂

∂θ
η(x, θ)(y − η(x, θ)) =

1

σ2

∂

∂θ
η(x, θ)ε,

∂2

∂2θ
log f(y, x, θ) =

1

σ2

{
∂2

∂2θ
η(x, θ)(y − η(x, θ))−

(
∂

∂θ
η(x, θ)

)T
∂

∂θ
η(x, θ)

}
,
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it follows by straightforward calculation that

M(ξ, θ) =
1

σ2

∫ (
∂

∂θ
η(x, θ)

)T (
∂

∂θ
η(x, θ)

)
dξ(x). (2.3)

Example 2.2 Consider a binary response model, where the probability of success is given by P (Y =

1|x) = p(x, θ). In this case we obtain

f(y, x, θ) = (p(x, θ))y(1− p(x, θ))1−y ,

and the Fisher information matrix of a design ξ is given by

M(ξ, θ) =

∫ (
∂
∂θ
p(x, θ)

)T ( ∂
∂θ
p(x, θ)

)
p(x, θ)(1− p(x, θ))

dξ(x). (2.4)

2.2 Main results

We now introduce two design strategies: A traditional, non-adaptive design ξA, where observations

are taken at �xed experimental conditions, and a two-stage adaptive design ξB, where after the �rst

stage the accrued data is used to determine the second stage design. In the following, let θ0 denote a

preliminary guess for the unknown parameter θ. In many biopharmaceutical applications, such as the

dose �nding clinical trials mentioned in Section 1, preliminary information from previous trials (animal

studies, proof-of-concept studies, etc.) is available to generate a best guess θ0.

(A) Non-adaptive design ξA: Take all N observations according to the locally optimal design ξθ0 based

on the best guess θ0. The resulting estimate of θ is denoted by θ̂A.

(B) Two-stage adaptive design ξB: Split the total sample N in two parts and proceed as follows.

• Take N0 observations according to the locally optimal design ξθ0 . For the asymptotic con-

siderations below we assume that p0 = N0

N
, where limN→∞N0/N ∈ (0, 1) is a �xed constant.

• Estimate the parameter θ by MLE from these N0 observations. The resulting estimate of θ

is denoted by θ̂1.

• Take N1 = N −N0 observations according to the locally optimal design ξθ̂1 and estimate the

parameter θ by MLE from all N = N0 + N1 observations. The �nal estimate is denoted by

θ̂B. We let p1 = N1

N
and note that p0 + p1 = 1.

In the following we provide an analytical comparison of the two design strategies. Note that under

standard assumptions in nonlinear regression (see the Appendix for details) the variance of the MLE

is of order O(1/N) while the squared bias is of order O(1/N2) [see Box (1971)], which implies that the
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mean squared error is dominated by the variance. Therefore we approximate the mean squared error

of the MLE by its variance, i.e.

MSE(θ̂) = E[(θ̂ − θ)(θ̂ − θ)T ] ≈ Var(θ̂). (2.5)

We aim at deriving asymptotic expansions for the variances Var(θ̂A) and Var(θ̂B) in order to compare

the two design options ξA and ξB for a given statistical problem. Our �rst result to this end speci�es the

asymptotic properties of the MLE θ̂1 and θ̂B obtained with the two-stage adaptive design. Through-

out this paper let Id ∈ Rd×d denote the identity matrix and Nd(0, Id) the d-variate standard normal

distribution. The proof of the following result is in the Appendix.

Theorem 2.1 Assume that the mapping (2.2) is di�erentiable with respect to τ and that the regularity

conditions speci�ed in the Appendix are satis�ed. Then

θ̂1 = θ̃1 +Op(
1

N0

) ,

where

θ̃1 = θ +
1√
N0

I−1/2(θ, θ0)Z0,N0 (2.6)

and

Z0,N0 =
1√
N0

I−1/2(θ, θ0)

N0∑
i=1

∂

∂θ
log f(Yi, xi(θ0), θ)

D−→ Nd(0, Id). (2.7)

Moreover,
√
N(θ̂B − θ) = γ̂B +Op(

1√
N

) ,

where

γ̂B =
(
p0I(θ, θ0) + p1I(θ, θ̃1)

)−1 (√
p0I

1/2(θ, θ0)Z0,N0 +
√
p1I

1/2(θ, θ̃1)Z1,N1

)
,

and the random variable Z1,N1 is de�ned by

Z1,N1 =
1√
N1

I−1/2(θ, θ̃1)

N0+N1∑
i=N0+1

∂

∂θ
log f(Yi, xi(θ̃1), θ). (2.8)

By Theorem 2.1, it is reasonable to approximate the variance of the estimate θ̂B by the variance of the

random variable γ̂B, which can be calculated using the variance decomposition formula

Var(γ̂B) = E[Var(γ̂B | Y1, . . . , YN0)] + Var(E[γ̂B | Y1, . . . , YN0 ]). (2.9)

From Theorem 2.1 we obtain for the conditional expectation and variance of γ̂B given Y1, . . . , YN0

E[γ̂B | Y1, . . . , YN0 ] =
(
p0I(θ, θ0) + p1I(θ, θ̃1)

)−1√
p0I

1/2(θ, θ0)Z0,N0 , (2.10)
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Var(γ̂B | Y1, . . . , YN0) = p1

(
p0I(θ, θ0) + p1I(θ, θ̃1)

)−1
I(θ, θ̃1)

(
p0I(θ, θ0) + p1I(θ, θ̃1)

)−1
. (2.11)

Here, we used the fact that E[Z1,N1 |Y1, . . . , YN0 ] = 0, Var(Z1,N1|Y1, . . . , YN0) = Id and that θ̃1 depends

only on Y1, . . . , YN0 . The following result provides a further simpli�cation by eliminating θ̃1 from the

expressions (2.10) and (2.11).

Corollary 2.1 Under the assumptions of Theorem 2.1 we obtain for the conditional expectation and

variance of γ̂B =
√
N(θ̂B − θ) +Op(1/

√
N)

E[γ̂B | Y1, . . . , YN0 ] = H−1(θ, θ0)
{
Id − p1R(θ, Z0,N0)H

−1(θ, θ0) + p21S(θ, Z0,N)
}

(2.12)

×√p0I1/2(θ, θ0)Z0,N0 + op(
1

N
),

Var [γ̂B | Y1, . . . , YN0 ] = p1H
−1(θ, θ0){Id−p1R(θ, Z0,N0)H

−1(θ, θ0)+p
2
1S(θ, Z0,N)}{I(θ, θ)+R(θ, Z0,N0)}

× {Id − p1R(θ, Z0,N0)H
−1(θ, θ0) + p21S(θ, Z0,N)}TH−1(θ, θ0) + op(

1

N
), (2.13)

respectively. Here, we have introduced the notation

H(θ, θ0) = p0I(θ, θ0) + p1I(θ, θ) , (2.14)

the matrices R(θ, Z0,N0) and S(θ, Z0,N0) are de�ned by

R(θ, Z0,N0) =
1√
N0

D1(θ, Z0,N0) +
1

2N0

D2(θ, Z0,N0), (2.15)

S(θ, Z0,N0) =
1

N0

D1(θ, Z0,N0)H
−1(θ, θ0)D1(θ, Z0,N)H−1(θ, θ0), (2.16)

respectively, the matrices D1 and D2 are given by

D1(θ, Z0,N0) =
(
∇(I(θ, θ))ijI

−1/2(θ, θ0)Z0,N0

)d
i,j=1

,

D2(θ, Z0,N0) =
(
ZT

0,N0
I−1/2(θ, θ0)∇2(I(θ, θ))i,jI

−1/2(θ, θ0)Z0,N0

)d
i,j=1

, (2.17)

respectively, ∇g and ∇2g denote the gradient and the Hessian matrix of a real valued function g. Finally,

the random variable Z0,N0 is de�ned in (2.7).

In general, the explicit calculation of the dominating terms of the variance of γ̂B using (2.9) and

Corollary 2.1 for a given non-linear model is very cumbersome. However, its general structure becomes
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clear with the arguments above and can be calculated using computer algebra systems as Mathematica

or Matlab. Roughly speaking, we obtain from (2.12) and (2.13)

Var(E[γ̂B | Y1, . . . , YN0 ]) ≈ p0H
−1(θ, θ0)I(θ, θ0)H

−1(θ, θ0) +
1√
N0

A1(θ, θ0) +
1

N0

A2(θ, θ0),

E[Var(γ̂B | Y1, . . . , YN0)] ≈ p1H
−1(θ, θ0)I(θ, θ)H−1(θ, θ0) +

1√
N0

A3(θ, θ0) +
1

N0

A4(θ, θ0),

which implies

Var(γ̂B) ≈ H−1(θ, θ0) +
1√
N0

A5(θ, θ0) +
1

N0

A6(θ, θ0)

with appropriate matrices Ai(θ, θ0), i = 1, . . . , 6. These matrices depend on the speci�c model under

investigation. In particular, we obtain for the information matrix M(ξB, θ) of the design ξB

M(ξB, θ) ≈ H(θ, θ0) +
1√
N0

K(θ, θ0) +
1

N0

L(θ, θ0) + o(
1

N0

), (2.18)

where the matrix H(θ, θ0) is de�ned in (2.14), and the matrices K and L depend on the speci�c model

under consideration as well as the initial guess θ0 for the unknown parameter θ. Note that the matrix

H(θ, θ0) is a weighted average of the information matrices corresponding to the locally optimal designs

ξθ0 and ξθ. Therefore, this matrix can be interpreted as a mixture of information matrices corresponding

to two locally optimal designs: One for the �true� parameter θ and another one for the preliminary guess

θ0. The weights p0 and p1 in this mixture correspond to the relative proportions of subjects treated in

the �rst and second stage, respectively. Consequently, for �small� values of p0 the dominating term in

(2.18) becomes �close� to the Fisher information matrix of the locally optimal design ξθ. Similarly, the

adaptive design ξB is approximately given by ξB ≈ p0ξθ0 + p1ξθ and the remainder corresponds to the

error in these approximations.

Note that the expansion (2.18) refers to an asymptotic analysis where we assume the �rst stage sample

size N0 to be of the same order as the total sample size N → ∞, i.e. limN→∞N0/N ∈ (0, 1). The

information matrix of the non-adaptive design ξA using the locally optimal design ξθ0 is given by

M(ξA, θ) ≈
1

I(θ, θ0)
+

1√
N0

L̄(θ, θ0) +
1

N0

K̄(θ, θ0) + o(
1

N0

) (2.19)

with appropriate matrices L̄, K̄. In general, the matrices K, K̄ and L, L̄ in (2.18) and (2.19) are neither

positive nor negative de�nite and therefore it is not clear whether for �nite sample sizes the matrix

M(ξB, θ) is smaller (with respect to the Loewner ordering) thanM(ξA, θ) corresponding to the locally

optimal design ξθ. Because H(θ, θ0) ≥ I(θ, θ0), however, it follows that asymptotically the adaptive

design ξB is always better than the non-adaptive design ξA. For �nite sample sizes the correction terms

of order 1/
√
N0 and 1/N0 have to be factored in and the relationship is not obvious anymore.

The arguments above remain valid for any di�erentiable optimality criterion φ. To be precise, assume

that a (locally) φ-optimal design minimizes φ(M(ξ, θ)) in the class of all designs. When comparing the
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e�ciency of the two designs ξA and ξB from Section 2.2, this gives

e�φ(ξA, ξB) =
φ(M(ξA, θ))

φ(M(ξB, θ))
≈ φ(I(θ, θ0))

φ(p0I(θ, θ0) + p1I(θ, θ))
+

c√
N0

+
d

N0

(2.20)

for the φ-e�ciency of the non-adaptive design ξA with respect to the adaptive design ξB, where no

information regarding the sign of the constants c and d is available in general. A common application

is the problem of estimating a function of the unknown parameter θ, say Ψ(θ). For example, a fre-

quent problem in dose response analyzes is the estimation of relevant target doses as a function of the

parameters of a regression model [see Dette et al. (2008, 2010) among others]. In such situations the

asymptotic variance of the canonical estimate ψ̂ = ψ(θ̂B) from a two-stage design ξB is given by

Var(ψ̂) ≈ ∇Ψ(θ)M−1(ξB, θ)(∇ψ(θ))T

≈ ∇ψ(θ)H−1(θ, θ0)(∇Ψ(θ))T +
1√
N0

K̃(θ, θ0) +
1

N0

L̃(θ, θ0)

with appropriate constants K̃, L̃ and (2.20) can be extended accordingly.

3 Asymptotic variances in one-parameter models

If the parameter θ in the nonlinear regression model from Section 2.1 satis�es θ ∈ Θ ⊂ R, the information

matrix of a given design ξ is one-dimensional and an optimal design maximizes this matrix (or minimizes

its inverse). Assume that for each θ ∈ Θ a one-point design, say ξθ, maximizesM(ξ, θ) in the class of all

designs on the design space X . Let x(θ) denote the corresponding support point of the locally optimal

design ξθ, which is assumed to be an interior point of the design space X ⊂ R. Consequently, it follows
from (2.1) that for each θ ∈ Θ the point x(θ) is a solution of the equation

∂

∂x

∫
f(y, x, θ)

(
∂

∂θ
log f(y, x, θ)

)2

dy = 0. (3.1)

We are now in a position to give an explicit expression for the asymptotic variance of the MLE θ̂B

obtained from the two-stage adaptive design ξB.

Theorem 3.1 Assume d = 1 and that for each θ ∈ Θ the locally optimal design is a one-point design.

Under the assumptions of Theorem 2.1, it follows

Var(γ̂B) ≈ 1

H(θ, θ0)
− g(θ)p1(5p0I(θ, θ0) + p1I(θ, θ))

2N0H3(θ, θ0)I(θ, θ0)
.

With the result from Theorem 3.1 we can now express the e�ciency of a non-adaptive design ξA

compared to an adaptive design ξB as the ratio of the asymptotic variances Var(θ̂A) and Var(θ̂B).
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Because the mean squared error is dominated by the variance, it follows from (2.5) and Theorem 3.1

that

e�(ξA, ξB) =
MSE(θ̂A)

MSE(θ̂B)
≈ Var(θ̂A)

Var(θ̂B)
≈
{
I(θ, θ0)

H(θ, θ0)
− p1

g(θ)(5p0I(θ, θ0) + p1I(θ, θ)

2N0H3(θ, θ0)

}−1
. (3.2)

If e�(ξA, ξB) < 1, the design ξA is preferable as it yields smaller MSEs for the MLE. If e�(ξA, ξB) > 1,

the opposite is true and the design ξB is preferable. In general, a conclusion about the superiority of

a design depends on the underlying regression model, see Section 4 for examples. Note again that in

(3.2) the dominating term I(θ, θ0)/H(θ, θ0) < 1, because H(θ, θ0) = p0I(θ, θ0) + p1I(θ, θ) ≥ I(θ, θ0).

Therefore, for a large �rst stage sample sizes N0, we have e�(ξA, ξB) > 1 and expect the adaptive design

ξB to be more e�cient than the non-adaptive design ξA. However, the second term in (3.2) is positive

[note that g(θ) is negative because it is the second derivative at the optimal point maximizing M(ξ, θ)]

and this contribution may be substantial for �nite sample sizes as illustrated with examples in the

following section.

4 Examples

In this section we illustrate the asymptotic theory with three examples by considering an exponential,

a logistic and a Poisson regression model.

4.1 Exponential regression model

We consider the one-parameter exponential regression model with homoscedastic errors, that is

E[Y |x] = η(x, θ) = e−θx, Var (Y |x) = σ2 > 0, (4.1)

where X = [0,∞) and θ > 0. In this case, we have ∂
∂θ
η(x, θ) = −xe−θx and the Fisher information

matrix at the point x is obtained form (2.3). Optimal design problems for this model have been

considered by numerous authors (Dette and Neugebauer, 1996). In particular, the local D-optimal

design is a one-point design with x(θ) = 1/θ. Consequently,

I(θ, θ) =
1

σ2
(eθ)−2, I(θ, θ0) =

1

σ2
(eθ/θ0 θ0)

−2, and g(θ) = − 2

σ2
(θ2e)−2 .

Therefore, it follows from (3.2) that

e�(ξA, ξB) ≈ r(ξA, ξB) =

{
1

p0 + p1{(θe)2(eθ/θ0θ0)−4}−1
+

σ2p1
e2N0θ4

5p0(e
θ/θ0θ0)

−4 + p1
(θe)2

[p0(eθ/θ0θ0)−4 + p1{(θe)2}−1]3

}−1
(4.2)

In the following we investigate the accuracy of this approximation in several concrete �nite sample

scenarios. In Figure 1 we plot the approximation r(ξA, ξB) from (4.2) as function of p0 (solid line) for
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di�erent con�gurations of σ, θ0 and θ, where the total sample size is N = 100. A ratio larger (smaller)

than 1 means that the adaptive design ξB yields smaller (larger) MSEs and is therefore better (worse)

than the non-adaptive design ξA.

The �rst row in Figure 1 shows the results when the true parameter value is θ = 1, while the parameter

used for the calculation of the non-adaptive design (and also for the initial design of the adaptive

design) was misspeci�ed by 100%, i.e. θ0 = 2. In the second row we display the results for a stronger

misspeci�cation of 200%, i.e. θ0 = 3. Finally, the third row shows the results when θ = 2 and θ0 = 3.

The three columns correspond to three di�erent variances in the error distribution, i.e. σ2 = 1, 0.1, 0.01.

In order to investigate the accuracy of the asymptotic results for �nite sample sizes we have also

performed simulations to calculate the MSE ratio for the MLEs obtained from the designs ξA and ξB

(dashed lines in Figure 1; based on 20000 simulation runs). We observe a rather precise approximation

of the simulated MSE ratios by the asymptotic theory. Note that the asymptotic approximation is

better for smaller variances, because this variance also appears in the remainder of (4.2).

Comparing the two designs ξA and ξB reveals that for large variances the non-adaptive design ξA has

a competitive, if not even better performance for a broad range of p0 values. This observation can be

nicely explained by the fact that the term of order 1/N0 in the approximation (4.2) is increasing with

σ2 and decreasing with p0. Heuristically, a large error variance leads to a highly variable �rst stage

estimate θ̂1 if the initial sample size N0 is not su�ciently large. Therefore the corresponding design ξθ̂1
used in the second stage may not be e�cient in some cases. On the other hand, for small variances or

large �rst stage sample sizes, the parameter θ can be estimated rather precisely from the data collected

in the �rst stage. Consequently, updating the initial parameter guess θ0 based on the �rst stage data

will lead to a better second stage design and to an overall better performance for most p0 values. Note

also that the degree of initial mispeci�cation of the parameter θ (through θ0) has only little impact

when the variance is large. Overall, the di�erences between the designs ξA and ξB are small for the

situations considered here, except in the case of a very small variances σ2 and where the initial guess

θ0 deviates substantially from θ.

4.2 Logistic regression

Consider a logistic regression model, where the responses are independent Bernoulli random variables

with probability of success

p(x, θ) = E[Y |x] =
1

1 + ex−θ
,

and X = R. This model is sometimes called one-parameter Rasch model and is used to model the item

characteristic curve in item response theory (Rasch, 1960). Sequential optimal designs for the Rasch

model have recently been discussed by Chang and Ying (2009). It follows from (2.4) that the Fisher

information matrix for a one-point design δx at the point x is given by

M(δx, θ) =
ex−θ

(1 + ex−θ)2
.
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Figure 1: Plot of the approximation r(ξA, ξB) de�ned in (4.2) for the MSE ratio (solid line) and cor-

responding simulation results (dashed line) as function of p0 under the exponential model (4.1) for

N = 100 and di�erent con�gurations of σ, θ0 and θ. From left to right: σ2 = 1, 0.1, 0.01; from top to

bottom: (θ0, θ) = (2, 1), (3, 1), (3, 2).
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Figure 2: Plot of the approximation r(ξA, ξB) de�ned by (4.3) for the MSE ratio (solid line) and cor-

responding simulation results (dashed line) as a function of p0 under the logistic model for di�erent

con�gurations of θ, θ0, and N .

Standard calculation shows that the design concentrating its mass at the point x(θ) = θ is locally

optimal. Therefore we obtain

I(θ, τ) =
eτ−θ

(1 + eτ−θ)2
,

which implies

I(θ, θ) =
1

4
, g(θ) = −1

8
, and H(θ, θ0) = p0

eθ0−θ

(1 + eθ0−θ)2
+ p1

1

4
.

Consequently, it follows from (3.2) that

e�(ξA, ξB) ≈ r(ξA, ξB) =

{(
p0 +

p1(1 + eγ)2

4eγ

)−1
+ p1

(20p0e
γ + p1(1 + eγ)2)(1 + eγ)4

N0(4p0eγ + p1(1 + eγ)2)3

}−1
, (4.3)

where γ = θ0 − θ denotes the degree of initial misspeci�cation of θ through θ0. In Figure 2 we plot the

approximation r(ξA, ξB) de�ned in (4.3) together with the corresponding simulation results as function

12



of p0 for di�erent values of θ0, θ and N . Again the approximation obtained by the asymptotic theory is

very accurate.

We observe that in most situations the adaptive design shows a better performance, although the

improvement remains small, except for large values of |γ| and N . Only for very small sample sizes the

non-adaptive design ξA performs better than the adaptive design ξB. These results can be explained

by the fact that the variance in the logistic regression model is relatively small. For example, if θ0 −
θ = −1 the variance of individual observations in the �rst stage is p(θ0, θ)(1 − p(θ0, θ)) = 0.197. As

a consequence, the parameter estimate θ̂1 obtained from the �rst stage is rather accurate and the

corresponding design ξθ̂1 is already close to the locally optimal design. If θ0 − θ = −2 the variance of

the observations from the �rst stage is even smaller (roughly 0.105), which explains the superiority of

the adaptive design in this case.

4.3 Poisson regression model

In our �nal example we consider the Poisson regression model

P (Y = k|x) =
(eθx)k

k!
e−e

θx

for x ∈ R. A straightforward calculation shows that the Fisher information at the point x is x2eθx. A

locally optimal design based on the initial �rst guess θ0 advises the experimenter to take all observations

at the point x(θ0) = −2/θ0. Consequently,

g(θ) = − 8

θ4e2
, I(θ, θ0) =

4

θ20
e−2θ/θ0

and it follows from (3.2) that for γ = θ/θ0

e�(ξA, ξB) ≈ r(ξA, ξB) =

{
eγ

p0eγ + p1γ−2
+

p1e
2(5p0e

γγ2 + p1)

4θ4N0(p0eγγ2 + p1)3

}−1
. (4.4)

In Figure 3 we plot the MSE ratio as function of p0 for two parameter speci�cations: θ0 = 1.5, θ = 1

and θ0 = −0.1, θ = 0.1. In the �rst case rather large sample sizes were chosen, to avoid situations

where the interim MLE θ̂1 = 0 and the optimal design point for the second stage cannot be calculated.

The plots for the di�erent scenarios show that the superiority or inferiority of the adaptive design

depends sensitively on the parameter constellation. In the �rst case (θ0 = 1.5, θ = 1) the adaptive

design performs nearly uniformly better over the full range of p0, although the advantages are small

(e�ciency gain less than 10%). Only for very small p0 values the non-adaptive designs yields a smaller

mean squared error. On the other hand, it follows from the second row in Figure 3 that the non-

adaptive design yields a substantially smaller mean squared error if the sign of the unknown parameter

is misspeci�ed. In this case there exists no situation, where the adaptive design is more e�cient than

the non-adaptive design and in many cases the di�erence is substantial. In this example, θ0 = −0.1,
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Figure 3: Plot of the asymptotic MSE ratio (solid line) and corresponding simulation results (dashed

line) as a function of p0 under the Poisson model for di�erent con�gurations of θ, θ0, and N .

θ = 0.1 and the MSE of the estimate from the non-adaptive design is roughly 100p0% of the MSE of

the estimate from the adaptive design. Again the simulated MSE ratio is approximated well by the

asymptotic theory.

5 Conclusions

Amajor motivation for this work was the observation from simulation studies that the bene�t of adaptive

designs in terms of estimation e�ciency is sometimes less in magnitude than intuitively expected, and

crucially depends on the underlaying models and assumptions (Dragalin et al., 2011). This paper

provides a theoretical con�rmation of these empirical results in a well controllable situation, taking

aside possible additional in�uence factors. We derive analytic expansions for the mean squared error

of the MLE based on an adaptive design, which enables the analytical comparison of adaptive with

non-adaptive designs.

One main result of this paper is that one can theoretically expect a bene�t of adaptive designs for
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su�ciently large sample sizes for a broad class of nonlinear regression models. When the sample size

is small, however, the remainder in (2.20) is non-negligible. This can lead to situations, where the

non-adaptive design outperforms the adaptive design, as illustrated with three practical examples. In

some applications, further general conclusions can be derived. For example, the e�ciency ratio (4.2)

reveals that adaptive designs are always more e�cient than non-adaptive designs for su�ciently small

variances.

In practice more complex models than considered in this paper are often used. The methodology

presented in this paper remains applicable when using computer algebra systems. Moreover, the results

enable us to understand the relationship of key factors impacting the relative e�cacy of adaptive designs

compared to non-adaptive designs. For example, in the logistic regression example from Section 4.2 the

relative e�ciency depends only on three factors: the unknown degree of misspeci�cation γ and the two

design parameters p0 and N0. Using analytical methods, closed form expressions can be derived for the

relationship of these factors, giving insight into their impact on e�ciency performance. By contrast,

simulation studies, even if performed comprehensively, do not provide theoretical explanations and are

mainly used to provide empirical evidence.

6 Appendix

6.1 Assumptions

We consider independent observations (x1, Y1), . . . , (xN , YN) at experimental conditions x1, . . . , xn and

de�ne by f(Yi, xi, θ) the density of Yi at experimental condition xi (i = 1, . . . , N). Let d denote the

number of unknown model parameters. We assume that the approximate locally optimal design ξτ has

at least k ≥ d support points, such that the matrix M(ξτ , θ) is positive de�nite for all θ, τ ∈ Θ. We

assume further that the density f is three times continuously di�erentiable with respect to the parameter

θ (for all x, y), continuously di�erentiable with respect to the variable x and that all derivatives of the

integral ∫
f(y, x, θ)dy

can be obtained by di�erentiating under the integral sign. Suppose that for each x ∈ X and θ =

(ϑ1, . . . , ϑd)
T ∈ Θ there exists an open neighbourhood Uθ, such that for all i, j ∈ {1, . . . , d} there exist

functions M2(y, x, θ),M3(y, x, θ), such that for all τ ∈ Uθ∣∣∣ ∂2

∂ϑi∂ϑj
log f(y, x, θ)

∣∣∣ ≤M2(y, x, θ)

∣∣∣ ∂3

∂ϑi∂ϑj∂ϑk
log f(y, x, θ)

∣∣∣
θ=τ

∣∣∣ ≤M3(y, x, θ)

and ∫
Mj(y, x, θ)f(y, x, θ)dy <∞; j = 2, 3.
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Additionally, we assume that for i = 1, 2, 3 the random variables ∂i

∂iθ
log f(Yi, x, θ) have bounded second

and third absolute moments uniformly with respect to x ∈ X .

6.2 Proof of Theorem 2.1

A) Asymptotic distribution of
√
N0(θ̂1 − θ): The following calculations are standard but included

here, because a good understanding of the �classical� case turns out to be helpful for the situation of

an adaptive design. The MLE θ̂1 based on the observations (x1, Y1), . . . , (xN0 , YN0) is a solution of the

equation

0 =

N0∑
i=1

∂

∂θ
log f(Yi, xi, θ̂1). (6.1)

Assume that the observations are taken according to a design ξ with a k ≥ d di�erent experimental

conditions, say t1, . . . , tk, with positive weights w1, . . . , wk. Because N0wi →∞ (i = 1, . . . , k) it follows

by the strong law of large numbers that

1

N0

N0∑
i=1

∂2

∂2θ
log f(Yi, xi, θ) −→ −M(ξ, θ) :=

∫ ∫
∂2

∂2θ
log f(y, x, θ)f(y, x, θ)dy dξ(x),

and a standard argument shows that

M(ξ, θ) =

∫ ∫ (
∂

∂θ
log f(y, x, θ)

)T (
∂

∂θ
log f(y, x, θ)

)
dy dξ(x).

Therefore a Taylor expansion yields for (6.1)

0 =
√
N0(θ̂1 − θ)

1

N0

N0∑
i=1

∂2

∂2θ
log f(Yi, xi, θ) +

1√
N0

N0∑
i=1

∂

∂θ
log f(Yi, xi, θ) +Op(

1√
N0

).

This gives for any design ξ with positive masses at k ≥ d points

√
N0(θ̂1 − θ) = M−1(ξ, θ)

1√
N0

N0∑
i=1

∂

∂θ
log f(Yi, xi, θ) +Op(

1√
N0

).

Now the sum on the right hand side is a sum of independent random variables, and the central limit

theorem shows that the random variable

1√
N0

N0∑
i=1

∂

∂θ
log f(Yi, xi, θ)

has an asymptotic (d-dimensional) normal distribution with mean 0 and covariance matrix M(ξ, θ).

Therefore the �rst assertion of Theorem 2.1 follows using the locally optimal design ξθ0 and observing

the de�nition of the matrix I in (2.2) .
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B) Asymptotic representation of
√
N(θ̂B − θ): The MLE θ̂B from the total sample satis�es

0 =

N0∑
i=1

∂

∂θ
log f(Yi, xi(θ0), θ̂B) +

N0+N1∑
i=n0+1

∂

∂θ
log f(Yi, xi(θ̂1), θ̂B)

where xN0+1(θ̂1), . . . , xN0+N1(θ̂1) are the design points from the second step (which depend on the

parameter estimate θ̂1 = θ̃1 + Op(
1
N0

) obtained in the �rst stage). The same argument as in the

�rst part of the proof yields

0 =
1

N

N0∑
i=1

∂2

∂2θ
log f(Yi, xi(θ0), θ)

√
N(θ̂B − θ) +

1√
N

N0∑
i=1

∂

∂θ
log f(Yi, xi(θ0), θ) +Op(

1√
N

)

+
1

N

N0+N1∑
i=N0+1

∂2

∂2θ
log f(Yi, xi(θ̂1), θ)

√
N(θ̂B − θ) +

1√
N

N0+N1∑
i=N0+1

∂

∂θ
log f(Yi, xi(θ̂1), θ) +Op(

1√
N

)

= −(p0 I(θ, θ0) + p1 I(θ, θ̃1))
√
N(θ̂B − θ) +

√
p0 I

1/2(θ, θ0)Z0,N0 +
√
p1 I

1/2(θ, θ̃1)Z1,N1 +Op(
1√
N

),

where Z0,N0 and Z1,N1 are de�ned in (2.7) and (2.8), and we have used the fact that the design points

xi(θ) and the density f of the locally optimal design are continuously di�erentiable with respect to θ

and x, respectively. This gives

√
N(θ̂B − θ) = (p0I(θ, θ0) + p1I(θ, θ̃1)

−1(
√
p0I

1/2(θ, θ0)Z0,N +
√
p1I

1/2(θ, θ̃1)Z1,N1) +Op(
1√
N

). (6.2)

and proves the second assertion of Theorem 2.1.

6.3 Proof of Corollary 2.1

Recall the de�nition of θ̃1 in (2.6). We consider a Taylor expansion of the function I(θ, θ̃1) de�ned in

(2.2), which gives for the element in the position (i, j) of the matrix I(θ, θ + τ)

(I(θ, θ + τ))ij = (I(θ, θ))ij +∇ (I(θ, θ))ij τ +
1

2
τT∇2 (I(θ, θ))ij τ + o(τ 2) , (6.3)

where the derivatives are taken with respect to the second argument of the matrix I(θ, τ) and evaluated

at τ = θ. Writing the expansion (6.3) in matrix form and using the notation τ = 1√
N0
I−1/2(θ, θ0)Z0,N0

[see Theorem 2.1] yields

I(θ, θ̃1) = I(θ, θ) +
1√
N0

D1(θ, Z0,N0) +
1

2N0

D2(θ, Z0,N0) + op(
1

N0

) = I(θ, θ) +R(θ, Z0,N0) + op(
1

N0

),

where the matrices R(θ, Z0,N0), D1(θ, Z0,N0) and D2(θ, Z0,N0) are de�ned in (2.15) - (2.17), respectively.

Assuming A,B ∈ Rd×d with detA 6= 0 and letting ε→ 0, we use the expansion

(A+ εB)−1 = (Id + εA−1B)−1A−1 = A−1(Id − εBA−1 + ε2BA−1BA−1) + o(ε2)

and obtain from (2.10) and (2.11) the representations (2.12) and (2.13). 2
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6.4 Proof of Theorem 3.1

Note that the mapping de�ned in (2.2) can be rewritten as

I(θ, τ) =

∫ (
∂

∂θ
log f(y, x(τ), θ)

)2

f(y, x(τ), θ)dy, (6.4)

where we have used the fact that ξτ is a one-point design supported at the point x(τ). This yields for

the derivative of the �rst order in (6.3)

∇I(θ, τ)

∣∣∣∣
τ=θ

=
∂

∂x

∫
f(y, x, θ)

(
∂

∂θ
log f(y, x, θ)

)2

dy

∣∣∣∣
x=x(θ)

· ∂
∂τ
x(τ)

∣∣∣∣
τ=θ

= 0,

where the last identity follows from (3.1). Similarly, we obtain for the second derivative

g(θ) := ∇2I(θ, τ)

∣∣∣∣
τ=θ

=
∂2

∂2x

∫
f(y, x, θ)

(
∂

∂θ
log f(y, x, θ)

)2

dy

∣∣∣∣
x=x(θ)

·
(
∂

∂τ
x(τ)

∣∣∣∣
τ=θ

)2

,

where g(θ) < 0, because x(θ) maximizes the function in (6.4). Consequently, we have D1(θ, Z0,N0) =

0, S(θ, Z0,N0) = 0 and obtain for the matrix R(θ, Z0,N0) de�ned by (2.15)

R(θ, Z0) =
1

2N0

g(θ)Z2
0,N0

I(θ, θ0)
,

which, together with (2.12) and (2.13), yields as approximation for the variance of

Var(γ̂B) = Var(E[γ̂B | Y1, . . . , YN0 ]) + E[Var(γ̂B | Y1, . . . , YN0)]

≈ E

[
p0Z

2
0,N0

I(θ, θ0)

H2(θ, θ0)

(
1−

p1g(θ)Z2
0,N0

2N0I(θ, θ0)H(θ, θ0)

)2 ]
+p1E

[
1

H2(θ, θ0)

(
1−

p1g(θ)Z2
0,N0

2N0I(θ, θ0)H(θ, θ0)

)2(
I(θ, θ) +

Z2
0,N0

g(θ)

2N0I(θ, θ0)

)]
=

p0I(θ, θ0)

H2(θ, θ0)

(
1− 3p1g(θ)

N0I(θ, θ0)H(θ, θ0)

)
+
p1I(θ, θ)

H2(θ, θ0)

{
1 +

g(θ)(p0I(θ, θ0)− p1I(θ, θ))

2N0I(θ, θ0)H(θ, θ0)I(θ, θ)

}
=

1

H(θ, θ0)
− g(θ)p1(5p0I(θ, θ0) + p1I(θ, θ))

2N0H3(θ, θ0)I(θ, θ0)
.

This proves the assertion. 2
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