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Abstract

In the common Fourier regression model we investigate the optimal design problem
for the estimation of linear combinations of the coefficients, where the explanatory
variable varies in the interval [−π, π]. In a recent paper Dette et. al. (2008) determined
optimal designs for estimating certain pairs of the coefficients in the model. The
optimal design problem corresponds to a linear optimality criterion for a specific matrix
L. In the present paper these results are extended to more general matrices L. By
our results the optimal design problem for a Fourier regression of large degree can be
reduced to a design problem in a model of lower degree, which allows the determination
of L-optimal designs in many important cases. The results are illustrated by several
examples.
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1 Introduction

Consider the common Fourier or trigonometric regression model

(1.1) y = βT f(t) = β0 +
m∑

j=1

β2j−1 sin(jt) +
m∑

j=1

β2j cos(jt) + ε,

where β = (β0, . . . , β2m)T denotes the vector of unknown parameters,

f(t) = (f0(t), . . . , f2m(t))T = (1, sin t, cos t, . . . , sin(mt), cos(mt))T .

is the vector of regression functions. The explanatory variable t varies in the compact

interval [−π, π] and observations under different experimental conditions are assumed to be

independent. An approximate design is defined as a probability measure ξ on the design

space [−π, π] with finite support [see Kiefer (1974)]. The support points of the design ξ

give the locations, where observations are taken, while the weights give the corresponding

proportions of the total number of observations to be taken at these points. If the designs

ξ puts masses ξi at the points ti (i = 1, . . . , k) and N uncorrelated observations can be

taken, then the quantities ξiN are rounded to integers such that
∑k

i=1 ni = N [for an

rounding procedure - see e.g. Pukelsheim and Rieder (1992)] and the experimenter takes ni

observations at each ti (i = 1, . . . , k). In this case the covariance matrix of the least squares

estimator for the parameter β in the trigonometric regression model (1.1) is approximately

given by σ2

N
M−1(ξ), where

(1.2) M(ξ) =

(∫ π

−π

f(t)fT (t)dξ(t)

)
∈ R2m+1×2m+1

denotes the information matrix of the design ξ. An optimal design maximizes a statistical

meaningful (concave) function of the information and numerous criteria have been proposed

in the literature [see Silvey (1980), Pázman (1986), Pukelsheim (1993)]. Because the choice

of an appropriate design can improve the efficiency of the statistical analysis substantially

optimal design problems for trigonometric regression model have been discussed by numerous

authors [see e.g. Karlin and Studden (1966), page 347, Hill (1978) or Wu (2002), Pukelsheim

(1993), p. 241, Lau and Studden (1985), Biedermann, Dette Hoffmann (2007), Dette and

Haller (1998) and Zen and Tsai (2004) among others]. More recent work discussed the

problem of construction optimal designs for the estimation of particular coefficients in the

Fourier regression model (1.1) [see Dette and Melas (2003), Dette et. al. (2007) and Dette

et. al. (2008)].

In the last named reference optimal designs have been determined, which minimize tr(LM−1(ξ)),

where the (2m + 1)× (2m + 1) matrix L is given by

L(2bm
2 c−1,4bm

2 c−1) = e2bm
2 c−1e

T
2bm

2 c−1
+ e4bm

2 c−1e
T
4bm

2 c−1
(1.3)

L(2bm
2 c, 4bm

2 c) = e2bm
2 ce

T
2bm

2 c + e4bm
2 ce

T
4bm

2 c(1.4)
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and ej denote the (j+1)th unit vector in R2m+1. L-optimal designs for the matrices defined in

(1.3) and (1.4) allow a precise estimation of a specific pair of coefficients {β2bm
2 c−1, β4bm

2 c−1}
and {β2bm

2 c, β4bm
2 c}, respectively. Dette et. al. (2008) also determined L-optimal for es-

timating one of the pairs of the coefficients {β2k−1, β4k−1}, {β2k−1, β6k−1}, {β4k−1, β6k−1},
{β0, β2k}, {β0, β4k}, {β0, β6k}, {β2k, β4k}, {β2k, β6k} or {β4k, β6k} in a Fourier regression

model (1.1) of degree m = 3k and one pair of the coefficients {β2k−1, β4k−1}, {β2k−1, β6k−1},
{β2k−1, β8k−1}, {β4k−1, β6k−1}, {β4k−1, β8k−1}, {β6k−1, β8k−1}, {β0, β2k} , {β0, β4k}, {β0, β6k},
{β0, β8k}, {β2k, β4k}, {β2k, β6k}, {β2k, β8k}, {β4k, β6k}, {β4k, β8k}, {β6k, β8k} in the model of

degree m = 4k. These authors also demonstrated that the uniform designs are optimal for

estimating a subset of the coefficients {β2i1−1, β2i1 , . . . , β2ir−1, β2ir}, where 1 ≤ i1 < . . . <

ir ≤ m, r ∈ {1, . . . ,m}.
The present paper is devoted to some generalizations of these results. More precisely, we

investigate L-optimal design problems for estimating more general classes of linear combi-

nations of the coefficients. In Section 2, we introduce the basic notation and state several

preliminary results, which are useful for the proof of our main results in Section 3. In

particular, we characterize the structure of the pseudo-inverse of the information matrix of

symmetric L-optimal designs. These results allow us to reduce the optimal design prob-

lem in a trigonometric regression model of large degree to an optimal design problem in a

trigonometric model of relatively small degree. This observation is particularly useful for the

determination of optimal designs, because the reduced optimal design problem can usually

be solved analytically. Finally, several examples and extensions are presented in Section 4

in order to illustrate the theoretical results.

2 L-optimal designs

In this Section we state several results, which turn out to be useful for the calculation of

L-optimal designs in the trigonometric regression model (1.1). Most of the results can be

found in Dette et. al. (2008) or are proved by similar arguments. The proofs of the following

statements are therefore omitted. Recall the definition of the vector f(t) of regression func-

tions in Section 1 and note, that for a symmetric design ξ after an appropriate permutation

P ∈ R2m+1×2m+1 of the order of the regression functions the information matrix (2.1) will

be block diagonal, that is

(2.1) M̃(ξ) = PM(ξ)P =

(
Mc(ξ) 0

0 Ms(ξ)

)
,
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where the blocks are given by

Mc(ξ) =

(∫ π

−π

cos(it) cos(jt)dξ(t)

)m

i,j=0

,(2.2)

Ms(ξ) =

(∫ π

−π

sin(it) sin(jt)dξ(t)

)m

i,j=1

.(2.3)

For a given matrix

(2.4) L =
2m∑
i=0

lil
T
i ,

with vectors li ∈ R2m+1 the class ΞL is defined as the set of all approximate designs for

which linear combinations of the parameters lTi β, i = 0, . . . , 2m are estimable, that is li ∈
Range(M(ξ)); (i = 0, . . . , 2m). We say that an approximate design η belongs to class Ξ∗L if

η ∈ ΞL and for any approximate design ξ the limit

lim
α→0

fT (t)M+(ξα)LM+(ξα)f(t) = fT (t)M+(η)LM+(η)f(t)

exists, where ξα = (1− α)η + αξ, α ∈ [0, 1]. Finally, a design ξ∗ is called L-optimal if

ξ∗ = arg min
ξ∈ΞL

trLM+(ξ),

where L is a fixed and nonnegative definite matrix and for a given matrix A the matrix A+ is

the Moore-Penrose inverse of A [see Rao (1968)]. The following result gives a characterization

of L-optimal designs, which is particularly useful for determining L-optimal designs with a

singular information matrix. The theorem is stated for a general regression model Y =

βT f(t) + ε with 2m + 1 regression functions. The proof can be obtained from standard

arguments of approximate optimal design theory and is therefore omitted.

Theorem 2.1 Let L ∈ R(2m+1)×(2m+1) denote a given and nonnegative definite matrix of the

form (2.4) and assume that there exists an optimal design ξ∗ ∈ Ξ∗L.

1) A design ξ is an element of the class ΞL if and only if

lTi M−(ξ)M(ξ) = lTi , i = 0, . . . , 2m.

2) A design ξ ∈ Ξ∗L is L-optimal if and only if

max
t∈χ

ϕ(t, ξ∗) = trLM+(ξ∗),(2.5)

where ϕ(t, ξ) = fT (t)M+(ξ)LM+(ξ)f(t). Moreover, the equality

ϕ(ti, ξ
∗) = trLM+(ξ∗)(2.6)

holds for any ti ∈ supp(ξ∗).
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3) Assume that a design ξ ∈ ΞL but ξ /∈ Ξ∗L and these exist an interval [x0, b) and a family

of designs {ξ(x)} such that

ξ(x) ∈ Ξ∗L for x ∈ (x0, b),

lim
x→x0

ξ(x) = ξ

and

lim
x→x0

max
t∈χ

ϕ(t, ξ(x)) = trLM+(ξ).

Then the design ξ is L-optimal.

In general an analytical determination of L-optimal designs is very difficult. However, in

the following Section we demonstrate that Theorem 2.1 can be used to check the optimality

of a given design. The present section will be concluded with an example, which gives a

more careful look at the assumption of Theorem 2.1. More precisely, we show that there

exist L-optimal designs which do not belong to the class Ξ∗L and do not satisfy the second

condition of the Theorem 2.1.

Example 2.2. We investigate the problem of constructing the L-optimal design for esti-

mating the pairs of the coefficients β2 and β3 in the trigonometric regression model (1.1)

with m = 3. In this case the matrix L in (2.4) is given by L = eT
3 e3 + eT

4 e4 (all other vectors

in (2.4) vanish. Consider a design ξα of the form

ξα = ξα(x) =

( −π −π + x −x 0 x π − x π
α
4

1−α
4

1−α
4

α
2

1−α
4

1−α
4

α
4

)
,

where α ∈ [0, 1]. A straightforward calculation shows that the information matrix of this

design in the trigonometric regression model (1.1) has the form

(2.7) M(ξα) =




1 0 0 0 m0,4 0 0

0 m1,1 0 0 0 m1,5 0

0 0 m2,2 0 0 0 m2,6

0 0 0 m3,3 0 0 0

m0,4 0 0 0 m4,4 0 0

0 m1,5 0 0 0 m5,5 0

0 0 m2,6 0 0 0 m6,6




,

where the non vanishing elements in this matrix are given by mi,j = 2
∑3

k=0 fi(tk)fj(tk)ωk

and tj, ωj denote the support points and corresponding weights of the design ξα. Note

that the optimal design problem for estimating the coefficients β2 and β3 corresponds to the

minimization of the sum of the elements in the position (2, 2) and (3, 3) of the Moore-Penrose
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inverse M+(ξα). In the following we denote these elements by d2,2 and d3,3, respectively. It

is easy to see that for a symmetric design ξα after an appropriate permutation P ∈ R7×7 the

information matrix M(ξα) will be block diagonal

PM(ξα)P =




m2,2 0 m2,6 0 0 0 0

0 m3,3 0 0 0 0 0

m2,6 0 m6,6 0 0 0 0

0 0 0 1 0 m0,4 0

0 0 0 0 m1,1 0 m1,5

0 0 0 m0,4 0 m4,4 0

0 0 0 0 m1,5 0 m5,5




=

(
M̄(ξα) 0

0 M̄1(ξα)

)

The elements d2,2 and d3,3 depend only on 5 non vanishing elements of the matrix M̄(ξα).

So we can consider this matrix instead of matrix M(ξα), which means that we have to find

a design minimizing the function

trL̄M̄+(ξα), where L̄ =




1 0 0

0 1 0

0 0 0


 .

In our case the matrix M̄(ξα) is given by

M̄(ξα) =




1− 4α + 4 cos(x)2α 0 1− 4α + 4 cos(x) cos(3x)α

0 4 sin(2x)2α 0

1− 4α + 4 cos(x) cos(3x)α 0 1− 4α + 4 cos(3x)2α


 .

For this matrix the Moore-Penrose inverse M+(ξα) has the form

M̄+(ξα) = M̄−1(ξα) =




d1,1 0 d1,3

0 d2,2 0

d1,3 0 d3,3


 ,

where the elements of this matrix are given by

d1,1 =
1− 2α + 2α cos(6x)

−2α(cos(6x)− cos(2x)− 2 cos(4x) + 2)(4α− 1)
,

d1,3 =
1− 4α + 2α cos(4x) + 2α cos(2x)

2α(cos(6x)− cos(2x)− 2 cos(4x) + 2)(4α− 1)
,

d2,2 =
1

4(α sin(2x)2)
,

d3,3 =
1− 2α + 2α cos(2x)

−2α(cos(6x)− cos(2x)− 2 cos(4x) + 2)(4α− 1)
.
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The necessary condition for an extremum permits to find α∗ minimizing the function trL̄M̄+(ξα)

as a root of the equation
∂trL̄M̄+(ξα)

∂α
= 0.

This yields

α∗ = α∗(x) = 1− 2 + 4 cos(4x)− 14 cos(2x)

3− 11 cos(2x) + 7 cos(4x) + cos(6x)
,

and the elements of the corresponding matrix M+(ξα∗) are given by

d1,1 =
−2 cos(8x) + 40 + 32 cos(4x)− 13 cos(6x) + 8 cos(2x)

14 cos(4x) + 33 cos(2x)− cos(6x)− 2 cos(8x) + 20
,

d1,3 =
5 cos(2x) + 2 cos(6x) + 17 cos(4x) + 15

14 cos(4x) + 33 cos(2x)− cos(6x)− 2 cos(8x) + 20
,

d2,2 =
2 cos(4x) + 18 cos(2x) + 6

10 cos(2x)− 2 cos(6x) + 3 cos(4x) + 5
,

d3,3 =
−55 cos(2x)− 4 cos(6x)− 39 cos(4x)− 45

21 cos(2x) + 13 cos(6x)− 2 cos(10x) + cos(8x) + 13 + 18 cos(4x)
.

Denote ξ(x) = ξα∗(x).

The term trL̄M̄+(ξ(x))=trL̄M̄+(ξα∗(x)) reduces to

trL̄M̄+(ξ(x)) =
−2 cos(8x) + 70 + 58 cos(2x)− 11 cos(6x) + 54 cos(4x)

14 cos(4x) + 33 cos(2x)− cos(6x)− 2 cos(8x) + 20
.

It follows from the condition 0 ≤ ωi ≤ 1 that 0 ≤ α∗ ≤ 1, which is satisfied if x ∈
[π
6
, π

2
− 1

2
arccos(

√
65−7
8

)]. It is easy to see that function trL̄M̄+(ξ(x)) is increasing on this

interval. Thus the minimum of this function is achieved at the point x = π
6
.

Now consider the function

ϕ(t, ξ(x)) = f̄T (t)M̄+(ξ(x))L̄M̄+(ξ(x))f̄(t),

where f̄T (t) = (cos(t), sin(2t), cos(3t)). We determine the limit of this function at the point

x = π
6
, which is given by

ϕ̄(t) = lim
x→π

6

ϕ(t, ξ(x)) =
16

9
cos2(t) +

16

27
cos(t) cos(3t) +

16

9
sin2(2t) +

4

81
cos2(3t).

On the other hand, we have

lim
x→π

6

trL̄M̄+(ξ(x)) =
8

3
.

It follows from the equation ϕ̄′(t) = 0 that

max
t∈[−π,π]

ϕ̄(t) = ϕ̄(±π

6
) = ϕ̄(±5π

6
) =

8

3
.
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Now consider a design

ξ̄ = lim
x→π

6

ξ(x) = lim
α→0

lim
x→π

6

ξα(x) =

( −5π/6 −π/6 π/6 5π/6
1
4

1
4

1
4

1
4

)

Due to Theorem 2.1, part 3) this design is L-optimal.

The corresponding information matrix and its Moore-Penrose inverse can be calculated as

M̄(ξ̄) =




3
4

0 0

0 3
4

0

0 0 0


 and M̄+(ξ̄) =




4
3

0 0

0 4
3

0

0 0 0




Note that for the design ξ̄ we have

ϕ(t, ξ̄) = fT (t)M+(ξ̄)LM+(ξ̄)f(t) =
16

9
cos2(t) +

16

9
sin2(2t).

¿From the equation

ϕ′(t, ξ̄) = 0 ⇐⇒ 16

9
(2 sin(4t)− sin(2t)) = 0 ⇐⇒ 64

9
sin(2t)(cos(2t)− 1

4
) = 0

it follows that

max
t∈[−π,π]

ϕ(t, ξ̄) = ϕ(
1

2
arccos(

1

4
)), ξ̄) =

25

9
> trLM+(ξ̄) =

8

3
,

and condition (2.5) in the equivalence Theorem 2.1 is not satisfied.

3 Some solutions of the L−optimal design problem

In this section we state a result which characterizes the structure of the Moore-Penrose

inverse of the information matrix for several symmetric L-optimal designs. The following

theorem can also be very useful for constructing optimal designs for estimating any linear

combination of the parameters in the model. More precisely, we consider the trigonometric

regression model (1.1) of degree m = Nk and the L-optimal design problem for nonnegative

definite matrices L(k) ∈ R(2Nk+1)×(2Nk+1) of the form

L̃(k) = P L(k)P =

(
L

(k)
cos 0

0 L
(k)
sin

)
,(3.1)

where P is the permutation defined by (2.1) and the matrices L
(k)
cos ∈ RNk+1×Nk+1 and

L
(k)
sin ∈ RNk×Nk are matrices with elements L

(k)
cos,ij and L

(k)
sin,ij are given by

L(k)
cos,uv =

{
L

(1)
cos,ij if u = (i− 1)k + 1, v = (j − 1)k + 1

0 else
(3.2)
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(u, v = 1, . . . , Nk + 1; i, j = 1, . . . , N + 1) and

L
(k)
sin,uv =

{
L

(1)
sin,ij if u = ik; v = jk

0 else
(3.3)

(u, v = 1, . . . , Nk), respectively. Here L
(1)
sin = (L

(1)
sin,u,v)

N
u,v=1 and L

(1)
cos = (L

(1)
cos,u,v)

N+1
u,v=1 are given

N × N and (N + 1) × (N + 1) matrices, respectively. As an illustration consider the case

N = 2 and a matrix L
(1)
sin ∈ R2×2 of the form

L
(1)
sin =

(
L

(1)
sin 11 L

(1)
sin 12

L
(1)
sin 12 L

(1)
sin 22

)
,

then we obtain for k = 2 the matrix L
(2)
sin ∈ R4×4

L
(2)
sin =




0 0 0 0

0 L
(1)
sin 11 0 L

(1)
sin 12

0 0 0 0

0 L
(1)
sin 21 0 L

(1)
sin 22


 .

Similarly, if the matrix

L(1)
cos =




L
(1)
cos 11 L

(1)
cos 12 L

(1)
cos 13

L
(1)
cos 12 L

(1)
cos 22 L

(1)
cos 23

L
(1)
cos 13 L

(1)
cos 23 L

(1)
cos 33


 ∈ R3×3

is the given matrix L
(2)
cos is obtained as

L(2)
cos =




L
(1)
cos 11 0 L

(1)
cos 12 0 L

(1)
cos 13

0 0 0 0 0

L
(1)
cos 12 0 L

(1)
cos 22 0 L

(1)
cos 23

0 0 0 0 0

L
(1)
cos 13 0 L

(1)
cos 23 0 L

(1)
cos 33




.

Theorem 3.1 Consider trigonometric regression model (1.1) with m = Nk, N, k ∈ N,

N ≥ 2, and let L be given by (3.1) with blocks L
(k)
cos and L

(k)
sin defined by (3.2) and (3.3),

respectively.

1) Define the design

(3.4) ξsin
m =

( −tm −tm−1 . . . −t1 t1 . . . tm
ωm ωm−1 . . . ω1 ω1 . . . ωm

)
,

9



where

t1 =
x1

k
, . . . , tN

2
=

xN
2

k
, tN

2
+1 =

π − xN
2

k
, . . . , tN =

π − x1

k
,

ti = ti−N +
π

k
, i = N + 1, . . . , m,

ω1 =
z1

k
, . . . , ωN

2
−1 =

zN
2
−1

k
, ωN

2
=

zN
2

k
, ωN

2
+1 =

zN
2

k
, . . . , ωN =

z1

k
,

N
2∑

j=1

zj =
1

4
,

ωi = ωi−N , i = N + 1, . . . , m

if N is even , and

t1 =
x1

k
, . . . , tN−1

2
=

xN−1
2

k
, tN+1

2
=

π

2k
, tN+3

2
=

π − xN−1
2

k
, . . . , tN =

π − x1

k
,

ti = ti−N +
π

k
, i = N + 1, . . . , m,

ω1 =
z1

k
, . . . , ωN−1

2
=

zN−1
2

k
, ωN+1

2
=

1

2k
− 2

N−1
2∑

j=1

zj

k
, ωN+3

2
=

zN−1
2

k
, . . . , ωN =

z1

k
,

ωi = ωi−N , i = N + 1, . . . , m

if N is odd. If the matrix L is of the form (3.1) with L
(k)
cos = 0, then for the design ξsin

n

the quantities trL
(k)
sinM+

s (ξsin
n ) and the coefficients of the function

ϕ(t, ξsin
n ) = fT

s (t)M+
s (ξsin

n )L
(k)
sinM+

s (ξsin
n )fs(t)

are independent of the value k for any matrix L
(k)
sin ∈ Rm×m.

2) Define the design

(3.5) ξcos
n =

( −π −tn−1 . . . −t1 0 t1 . . . tn−1 π

ωn − α ωn−1 . . . ω1 ω0 ω1 . . . ωn−1 α

)
,

where α ∈ [0, ωn], n = (N + 1)k and

t0 = 0, t1 =
x1

k
, . . . , tN

2
=

xN
2

k
, tN

2
+1 =

π − xN
2

k
, . . . , tN =

π − x1

k
,

ti+1 = ti−N +
π

k
, i = N, . . . , n− 1,

ω0 =
1− 4

∑N
2
i=1 zi

2k
, ω1 =

z1

k
, . . . , ωN

2
−1 =

zN
2
−1

k
, ωN

2
=

zN
2

k
,

ωN
2

+1 =
zN

2

k
, . . . , ωN =

z1

k
, ωi+1 = ωi−N , i = N, . . . , n− 1
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if N is even , and

t0 = 0, t1 =
x1

k
, . . . , tN−1

2
=

xN−1
2

k
, tN+1

2
=

π

2k
, tN+3

2
=

π − xN−1
2

k
, . . . , tN =

π − x1

k
,

ti+1 = ti−N +
π

k
, i = N, . . . , n− 1,

ω0 = z0, ω1 = z1, . . . , ωN−1
2

= zN−1
2

, ωN+1
2

=
1

2k
−

N−1
2∑

j=0

zj

k
, ωN+3

2
= zN−1

2
, . . . , ωN = z1,

ωi+1 = ωi−N , i = N, . . . ,m

if N is odd . If the matrix L is of the form (3.1) with L
(k)
sin = 0, then for the design ξcos

n

the quantities trL
(k)
cosM+

c (ξcos
n ) and the coefficients of the function

ϕ(t, ξcos
n ) = fT

c (t)M+
c (ξcos

n )L(k)
cosM

+
c (ξcos

n )fc(t)

are independent on the value k for any matrix L
(k)
cos ∈ Rm+1×m+1.

Proof of Theorem 3.1. We will only prove the first part of Theorem 3.1 for even N , the

case of a odd N and the second part of the Theorem are treated similarly. The idea of the

proof is to show that for fixed N the information matrix Ms(ξ
sin
kN ) has a particular structure

such that many of the elements of its Moore-Penrose inverse vanish. More precisely, if

m+
s[i,j](ξ) denotes the element of the matrix M+

s (ξ) ∈ Rm×m in the i-th row and j-th column,

we will show that for any k the identities

ms[ki,kj](ξ
sin
kN ) = ms[i,j](ξ

sin
N ), i, j = 1, 2, . . . , N,(3.6)

ms[ik,j] = 0, i = 1, 2, . . . , N, j = 1, 2 . . . , Nk − 1,(3.7)

j 6= k, 2k, . . . , (N − 1)k

for the elements ms[i,j](ξ
sin
kN) of the matrix Ms(ξ

sin
kN ) are satisfied. We begin proving the

identity (3.6). By the definition of information matrix Ms(ξn) we have

ms[i,j](ξn) =

{
0 if (i + j)is odd,

2
∑n

l=1 sin(itl) sin(jtl))ωl otherwise.

By the well-known trigonometric formula it follows

ms[ki,kj](ξ
sin
kN ) = 2

kN∑

l=1

sin(kitl) sin(kjtl))ωl =
kN∑

l=1

(cos(k(i− j)tl − cos(k(i + j)tl)))ωl

=
N∑

l=1

(cos((i− j)(ktl)− cos((i + j)(ktl))))(kωl) = ms[i,j](ξ
sin
N ).
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Now we check the second identity (3.7). If ki + j is even we have

2
Nk∑

l=1

sin(kitl) sin(jtl)ωl = 2
N−1∑
p=0

k∑

l=1

sin(kitlN−p) sin(jtlN−p)ωlN−p

= 2

N
2
−1∑

p=0

zp+1

k
sin(

xp+1

k
)

k∑

l=1

(−1)i(l−1)
(
sin(jtlN−p) + sin(jtlN−p−N/2)

)

= 2

N
2
−1∑

p=0

zp+1

k
sin(

xp+1

k
)

k∑

l=1

(−1)i(l−1)

×
(

sin

(
j(

π(l − 1)

k
+

zp

k
)

)
+ sin

(
j(

πl

k
− zp

k
)

))

= 4(−1)i

N
2
−1∑

p=0

zp+1

k
sin(

xp+1

k
)

k∑

l=1

(−1)(l−1)

× sin

(
j

k
(πl − π

2
)

)
cos

(
j

k
(zp − π

2
)

)

= 4(−1)i

N
2
−1∑

p=0

zp+1

k
sin(

xp+1

k
) cos

(
j

k
(zp − π

2
)

)

×
k∑

l=1

(−1)(l−1) sin

(
j

k
(πl − π

2
)

)

= 2(−1)i

N
2
−1∑

p=0

zp+1

k
sin(

xp+1

k
) cos

(
j

k
(zp − π

2
)

)

×(−1)k+j−1 sin( jπ
2k

)− sin( jπ
2k

)

cos( jπ
k

) + 1

= 0,

which proves the second identity and completes the proof of the Theorem. 2

Note that the designs in (3.4) and (3.5) are determined by the parameters x1, x2, . . . and

z1, z2, . . ., which usually have to be found numerically. Theorem 3.1 is a very useful instru-

ment for finding L-optimal designs, because it allows to reduce the optimal design problem

for the trigonometric regression model (1.1) to a design problem in a model of substantially

smaller degree. As a consequence the L-optimal design problem simplifies sufficiently. We

will now illustrate its application in a concrete example..

Example 3.2. L-optimal design for estimating the coefficients of sin(40t) and sin(50t) in

the Fourier regression model of degree m = 50.
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We consider the trigonometric regression model (1.1) of degree m = Nk and use Theorem

3.1 to determine the L-optimal design for estimating the pair of coefficients β2(N−1)k−1 and

β2Nk−1, which correspond to the coefficients of the terms sin((N − 1)kt) and sin(Nkt)).

Exemplarily we will consider the case m = 50, N = 5, k = 10. Theorem 3.1 allows to

reduce the problem of constructing L-optimal design for estimating the pair of coefficients

β79 and β99 for the model degree m = 50 to the problem of constructing L-optimal design

for estimating the pair of coefficients β7 and β9 for the model degree m = 5. Now we can

find this L-optimal design as a solution of the system





∂trL
(1)
sinM+

s (ξsin
5 )

∂xi
= 0

∂trL
(1)
sinM+

s (ξsin
5 )

∂zi
= 0

,

where ξsin
5 is a design with a structure is defined in Theorem 3.1. Thus we have

ξsin
5 =

( −π + x1 −π + x2 −π
2

−x2 −x1 x1 x2
π
2

π − x2 π − x1

z1 z2
1−4z1−4z2

2
z2 z1 z1 z2

1−4z1−4z2

2
z2 z1

)
,

where x1 = 0.3519978036, x2 = 1.020599385, z1 = 0.1112542423, z2 = 0.09865639359.

It follows from Theorem 3.1 that the L-optimal design for estimating coefficients β2(N−1)k−1

and β2Nk−1 (i.e. β79 and β99 in our case) is given by

ξsin
Nk = ξsin

50 =

( −t50 −t49 . . . −t1 t1 . . . t50

ω50 ω49 . . . ω1 ω1 . . . ω50

)
,

t1 =
x1

10
, t2 =

x2

10
, t3 =

π

20
, t4 =

π − x2

10
, t5 =

π − x1

10
,

ti = ti−5 +
π

10
, i = 6, . . . , 50,

ω1 =
z1

10
, ω2 =

z2

10
, ω3 =

1

20
− z1

5
− z2

5
, ω4 =

z2

10
, ω5 =

z1

10
,

ωi = ωi−N , i = N + 1, . . . , m

Where x1, x2, z1, z2 is defined above. We finally note that a straightforward calculation yields

for the function ϕ(t, ξ∗79,99) in the equivalence Theorem 2.1

ϕ(t, ξ∗79,99) = fT (t)M+(ξ∗79,99)LM+(ξ∗79,99)f(t) =

= 0.2 sin2(30t)− 1.047213603 sin(50t) sin(30t)

+1.370820397 sin2(50t) + 2.094427187 sin2(40t),

which is depicted in Figure 1.
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Figure 1: The function ϕ(t, ξ∗79,99) defined in the equivalence Theorem 2.1 for the L-optimal

design problem discussed in Example 3.1.

4 Further results

In this section we present several further applications of Theorem 3.1. In particular we derive

optimal designs for estimating linear combinations for estimating pairs of the coefficients in

the Fourier regression model of degree m = 3k (Theorem 4.1) and more general linear

combinations in the model of degree m = 4k (Theorem 4.2). In a recent paper Dette et. al.

(2008) showed that the designs specified in (3.4) and (3.5) are optimal for estimating certain

pairs of the coefficients in the trigonometric regression model (1.1) of degree m = 3k and

m = 4k. The following theorems extend these results in a non trivial manner.

Theorem 4.1 Consider trigonometric regression model (1.1) with m = 3k.

(1) The design ξ∗1 = ξsin
3k defined in (3.4) is L-optimal for estimating any pair of the coeffi-

cients {β0, β2k−1}, {β0, β4k−1}, {β0, β6k−1}, {β2k−1, β4k−1}, {β2k−1, β4k}, {β2k−1, β6k−1},
{β2k, β6k−1}, {β4k−1, β4k}, {β4k−1, β6k−1}, {β4k, β6k−1}.

(2) The design ξ∗2 = ξ∗1 = ξcos
4k defined in (3.5) is L-optimal for estimating any pair of

the coefficients {β0, β2k}, {β0, β4k}, {β0, β6k}, {β2k−1, β6k}, {β2k, β4k−1}, {β2k, β4k},
{β2k, β6k}, {β4k−1, β6k}, {β4k, β6k}.

(3) The design ξ∗3 = ξsin
4k defined in (3.4) is L-optimal for estimating the pair of the co-

efficients {β2k−1, β2k} and the design ξ∗4 = ξ∗1 = ξcos
5k defined in (3.5) is L-optimal for

estimating the pair of the coefficients {β6k−1, β6k}.
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In the designs ξ∗1 ,ξ
∗
2 and ξ∗3 only the values x1, x2, z1 and z2 depend on the particular pair of

coefficients under consideration and are determined as the unique solution of the system

∂trLM+(ξ∗)
∂xi

= 0
∂trLM+(ξ∗)

∂zi

= 0 .(3.8)

The parameters determined by (3.8) are given in Table 1.

Proof of Theorem 4.1. We will only prove the first part of Theorem 4.1 for the pair

{β0, β2k−1} the other cases are treated similarly. We begin with the case k = 1, for which

the design ξ∗1 is given by

(3.9) ξ∗1 = ξsin
3 =

( −π + x1 −π
2

−x1 x1
π
2

π − x1

z1
1−4z1

2
z1 z1

1−4z1

2
z1

)

and the corresponding information matrix M(ξsin
3 ) has the form (2.7). We interested in the

optimal design for estimating the pair of the coefficients {β0, β1}, which minimizes the sum

of the elements in the position (1, 1) and (2, 2) of the Moore-Penrose inverse M+(ξsin
3 ). It

is easy to see that these elements depend only on 6 non vanishing elements of the matrix

M(ξsin
3 ). Thus we can consider the matrix

M̄(ξsin
3 ) =




1 0 m0,4 0

0 m1,1 0 m1,5

m0,4 0 m4,4 0

0 m1,5 0 m5,5




instead of matrix M(ξsin
3 ). By a direct calculation we find that the optimal design for esti-

mating the coefficients β0 and β1, is given by (3.9), where x1 = 0.6379 and z1 = 0.1520. The

Moore-Penrose inverse of the corresponding information matrix can be calculated as

M̄+(ξ∗1) =




1.1169 0 0.5424 0

0 1.6532 0 0.0911

0.5425 0 2.5178 0

0 0.0911 0 1.0788




and coincides with inverse matrix M̄−1(ξ∗1). Consequently the design ξ∗1 belongs to class Ξ∗L.

Thus we can use Theorem 2.1 for checking the optimality of this design. A straightforward

calculation yields for the function ϕ1(t, ξ
∗
1)

(3.10) ϕ1(t, ξ
∗
1) = fT (t)M+(ξ∗1)LM+(ξ∗1)f(t) =

2.7652− 0.0042 cos(2t)− 0.0035 cos(4t)− 0.0042 cos(6t) ≤ trL(1)M̄+(ξsin
3 ),
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m = 3k {0, 2k − 1} {0, 2k} {0, 4k − 1} {0, 4k}
x1 0.6379 0.93293 π

4
π
2

z1 0.152 0.152 1
4

1
8

trLM+ 2.77 2.77 2 2

m = 3k {0, 6k − 1} {0, 6k} {2k − 1, 2k} {2k − 1, 4k − 1}
x1

π
6

π
3

x1 ∈[0,π
6
] π

3

x2 − − arccos( −1
2 cos(2x)

)

2
−

z1
1
6

1
6

1
4+8 cos2(2x)

1
4

trLM+ 2 2 4 8
3

m = 3k {2k − 1, 4k} {2k − 1, 6k − 1} {2k − 1, 6k} {2k, 4k − 1}
x1 0.4531 0.6476 π

3
π
6

z1 0.12579 0.14 1
5

1
4

trLM+ 3.4826 2.7044 25
9

8
3

m = 3k {2k, 4k} {2k, 6k − 1} {2k, 6k} {4k − 1, 4k}
x1 1.1177 π

6
0.9232 π

6

z1 0.12579 1
5

0.14 1
6

trLM+ 3.4826 25
9

2.7044 4

m = 3k {4k − 1, 6k − 1} {4k − 1, 6k} {4k, 6k − 1} {4k, 6k} | {6k, 6k − 1}
x1

π
5

0.94248 0.40397 1.16682 | π
4

z1
3−√5

4
3−√5

4
0.14784 0.14784 | 1

8

z2 − − − − | 1
8

trLM+ 3+
√

5
2

3+
√

5
2

3+
√

5
2

3+
√

5
2

| 4

Table 1: The solutions of x1, x2, z1 and z2 of the the system (3.8). The L-optimal design

for estimating the specific pair is specified in Theorem 4.1.

for all t ∈ [−π, π], where L(1) = e1e
T
1 + e2e

T
2 ∈ R2m+1×2m+1. We now apply Theorem 3.1 and

obtain for the design ξsin
3k and L(k) = e1e

T
1 + e2ke

T
2k ∈ R2m+1×2m+1

trL(k)M+(ξsin
3k ) = trL(1)M̄+(ξsin

3 ),

ϕk(t, ξ
sin
3k ) = fT (t)M+(ξsin

3k )L(k)M+(ξsin
3k )f(t) = ϕ1(kt, ξsin

3k ),

where the function ϕ1(t, ξ
sin
3k ) is defined in (3.10). Consequently ϕk(t, ξ

sin
3k ) ≤ trL(k)M+(ξsin

3k )

and it follows from Theorem 2.1 that the design ξsin
3k is L-optimal for estimating the pair of

the coefficients {β0, β2k−1} for any k ≥ 1. 2

Our final result refers to L-optimal designs for estimating the coefficients in the Fourier

regression model of degree m = 4k. It shows that the designs given in Theorem 3.1 are also
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L-optimal design for estimating other linear combinations of the coefficients in the model

(1.1). The proof is obtained by similar arguments as given in the proof of Theorem 4.1 and

therefore omitted.

Theorem 4.2 Consider trigonometric regression model (1.1) with m = 4k. The design

ξ∗ = ξcos
4k is L-optimal for estimating the coefficients {β0, β2k−1, β4k, β6k−1 β8k}, where the

parameters are given by x1 = 0.71686, z1 = 0.112 and z2 = 0.1084 and are determined as

the unique solution of the system (3.8)
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