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1 Introduction

Fourier regression models of the form

(1.1) y = β0 +
m∑

j=1

β2j−1 sin(jt) +
m∑

j=1

β2j cos(jt) + ε, t ∈ [−π, π].

are widely used in applications to describe periodic phenomena. Typical subject areas in-

clude engineering [see e.g. McCool (1979)], medicine [see e.g. Kitsos, Titterington and

Torsney (1988)], agronomy [see e.g. Weber and Liebig (1981)] or more generally biology [see

the recent collection of research papers edited by Lestrel (1997)]. Applications of trigono-

metric regression models also appear in two dimensional shape analysis [see e.g. Young

and Ehrlich (1977) and Currie et al. (2000) among many others]. An optimal design can

improve the efficiency of the statistical analysis substantially and therefore the problem of

designing experiments for Fourier regression models has been discussed by several authors.

Optimal designs with respect to Kiefer’s φp-optimality criteria have been studied by Karlin

and Studden (1966), page 347, Hill (1978) or Wu (2002) among others [see also Pukelsheim

(1993), p. 241], while Lau and Studden (1985) discuss the problem of constructing robust

designs if the degree m in model (1.1) is not exactly known. Designs for identifying the de-

gree m have been determined by Biedermann, Dette and Hoffmann (2007), Dette and Haller

(1998) and Zen and Tsai (2004). More recent work discussed the problem of constructing

optimal designs for the estimation of a particular coefficient in the Fourier regression model

(1.1) [see Dette and Melas (2003) and Dette, Melas and Shpilev (2007)]. These authors also

demonstrated that uniform designs are optimal for estimating a subset of the coefficients

{β2i1−1, β2i1 , . . . , β2ir−1, β2ir}, where 1 ≤ i1 < . . . < ir ≤ m, r ∈ {1, . . . ,m}.
The main purpose of the present paper is to obtain further insight into the construction of

optimal designs for estimating parameter subsystems in the Fourier regression model (1.1).

In particular we are interested in the L-optimal design problem for estimating pairs of the

coefficients {β2i1 , β2i2} and {β2j1−1, β2j2−1}, where i1, i2 ∈ {0, . . . , m}, j1, j2 ∈ {1, . . . , m}.
The precise estimation of specific pairs of coefficients is of particular interest because in many

biological applications, such as two dimensional shape analysis, one or two coefficients have

a concrete biological interpretation [see e.g. Young and Ehrlich (1977), Currie et al. (2000)].

In Section 2, we introduce the general notation and state several preliminary results. We

formulate and prove a particular version of the equivalence theorem for L-optimal designs,

which is an important tool for the determination of the optimal designs in Section 3. Here L-

optimal designs are found explicitly for several cases. Finally, several examples are presented

in Section 4 in order to illustrate the theoretical results.
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2 L-optimal designs

Consider the trigonometric regression model (1.1), define β = (β0, β1, ...β2m)T as the vector

of unknown parameters and

f(t) = (f0(t), . . . , f2m(t))T = (1, sin t, cos t, . . . , sin(mt), cos(mt))T .

as the vector of regression functions. Following Kiefer (1974) we call any probability measure

ξ on the design space [−π, π] with finite support an (approximate) design. The support points

of the design ξ give the locations, where observations are taken, while the weights give the

corresponding proportions of the total number of observations to be taken at these points.

If the designs ξ puts masses ξi at the points ti (i = 1, . . . , k) and n uncorrelated observations

can be taken, then the the quantities ξin are rounded to integers such that
∑k

i=1 ni = n [for a

rounding procedure - see e.g. Pukelsheim and Rieder (1992)] and the experimenter takes ni

observations at each ti (i = 1, . . . , k). In this case the covariance matrix of the least squares

estimate for the parameter β in the trigonometric regression model (1.1) is approximately

given by
σ2

n
M−1(ξ),

where

(2.1) M(ξ) =

(∫ π

−π

f(t)fT (t)dξ(t)

)
∈ R2m+1×2m+1

denotes the information matrix of the design ξ [see Pukelsheim (1993)]. Note, that for a

symmetric design ξ after an appropriate permutation P ∈ R2m+1×2m+1 of the order of the

regression functions the information matrix (2.1) will be block diagonal, that is

(2.2) M̃(ξ) = PM(ξ)P =

(
Mc(ξ) 0

0 Ms(ξ)

)

with blocks given by

Mc(ξ) =

(∫ π

−π

cos(it) cos(jt)dξ(t)

)m

i,j=0

,(2.3)

Ms(ξ) =

(∫ π

−π

sin(it) sin(jt)dξ(t)

)m

i,j=1

.(2.4)

For a given matrix

(2.5) L =
k∑

i=0

lil
T
i , k ≤ 2m
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with vectors li ∈ R2m+1 the class ΞL is defined as the set of all approximate designs for

which the linear combinations of the parameters lTi β, i = 0, . . . , k are estimable, that is

li ∈Range(M(ξ)); i = 0, . . . , k. Similarly, the sets Ξs and Ξc are defined as the sets of all

designs for which the matrices Ms(ξ) and Mc(ξ) are nonsingular, respectively. Finally a

designs ξ∗ is called L-optimal if

ξ∗ = arg min
ξ∈ΞL

trLM+(ξ),

where L is a fixed and nonnegative definite matrix and for a given matrix A the matrix A+

is the pseudo-inverse which is characterized by the four conditions

(a) AA+A = A (b) A+AA+ = A+

(c) (AA+)T = AA+ (d) (A+A)T = A+A.

[see Rao (1968)]. The following result gives a characterization of L-optimal designs, which

is particularly useful for designs with a singular information matrix. For a nonsingular

information matrix this theorem was formulated and proved in Ermakov and Zhigljavsky

(1987). The theorem is stated for a general regression model y = βT f(t) + ε with 2m + 1

regression functions and a general design space χ.

Theorem 2.1 Let L ∈ R(2m+1)×(2m+1) denote a given and nonnegative definite matrix of the

form (2.5) and assume that the set of information matrices is compact.

1) The design ξ is an element of the class ΞL if and only if

lTi M−(ξ)M(ξ) = lTi , i = 0, . . . , k.

2) The design ξ is L-optimal if and only if

max
t∈χ

ϕ(t, ξ∗) = trLM+(ξ∗),(2.6)

where ϕ(t, ξ) = fT (t)M+(ξ)LM+(ξ)f(t) Moreover, the equality

ϕ(ti, ξ
∗) = trLM+(ξ∗)(2.7)

holds for any ti ∈ supp(ξ∗).

Proof. The first part of this theorem was proved in Rao (1968). For a proof of the second

part we use the following lemma.

Lemma 2.1 If A is a nonnegative definite matrix, then A+A+ ≥ 2A+A and there is equality

if and only only if A = A+A.
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Proof of Lemma 2.1. Let A = BT B, where B ∈ Rn×n. By definition of the pseudo-inverse

matrix we have A+ = B+B+T , so that

A + A+ − 2A+A = BT B + B+B+T − 2B+B+T BT B

= (BT −B+)(B −B+T ) = (B −B+T )T (B −B+T ) ≥ 0 ,

where the third equality is obtained from the identity

B+B+T BT B = B+(BB+)T B = B+BB+B = B+B.

2

Now we return to the proof of Theorem 2.1. In the first part we show that a L-optimal design

satisfies the conditions (2.6) and (2.7) For any α ∈ (0, 1) define ξα = (1− α)ξ∗ + αξt, where

ξt denotes the Dirac measure at the point t and assume that the design ξ∗ is L-optimal. In

this case the inequality

trLM+(ξα) ≥ trLM+(ξ∗)

is satisfied for all α ∈ (0, 1), which implies

∂trLM+(ξα)

∂α
|α=0+≥ 0.

On the other hand we obtain observing the identity

∂LM+(ξα)M(ξα)

∂α
= 0 = L

∂M+(ξα)

∂α
M(ξα) + LM+(ξα)

∂M(ξα)

∂α

the inequality

∂trLM+(ξα)

∂α
|α=0+ = tr

{
L

∂M+(ξα)

∂α

}
|α=0+= tr

{
−LM+(ξα)

∂M(ξα)

∂α
M+(ξα)

}
|α=0+

= trLM+(ξ∗)− trLM+(ξ∗)M(ξt)M
+(ξ∗)

= trLM+(ξ∗)−
∫

fT (s)M+(ξ∗)LM+(ξ∗)f(s)ξt(ds)

= trLM+(ξ∗)− ϕ(t, ξ∗) ≥ 0.

Therefore we have

ϕ(t, ξ∗) ≤ trLM+(ξ∗)

for all t. Moreover, the equality
∫

ϕ(t, ξ)ξ(dt) =

∫
trLM+(ξ)f(t)fT (t)M+(ξ)ξ(dt)

= trLM+(ξ)M(ξ)M+(ξ) = trLM+(ξ)
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is obviously fulfilled for any design ξ ∈ ΞL. It now follows that statements (2.6) and (2.7)

are satisfied.

In order to prove the converse implication we assume that the design ξ∗ satisfies (2.6) but is

not L-optimal. We denote an L-optimal design by ξ1 and define

ξα = (1− α)ξ∗ + αξ1.

In the following discussion we use the notation M(ξα) = Mα, M(ξ1) = M1, M(ξ∗) = M∗
and obtain from Lemma 2.1 the inequality

0 ≤ α(1− α)trL(M1M
+
∗ + M∗M+

1 − 2M1M
+
∗ M∗M+

1 )M+
α

= trL(αM1M
+
∗ − α2M1M

+
∗ + αM∗M+

1 − α2M∗M+
1 )M+

α

+ trL(−2αM1M
+
∗ M∗M+

1 + 2α2M1M
+
∗ M∗M+

1 )M+
α

= trL(αM1M
+
∗ − α2M1M

+
∗ + α2M1M

+
∗ M∗M+

1 )M+
α

+ trL(αM∗M+
1 − α2M∗M+

1 − 2αM1M
+
∗ M∗M+

1 + α2M1M
+
∗ M∗M+

1 )M+
α

= trL(αM1((1− α)M+
∗ + αM+

1 ))M+
α

+ trL(αM∗M+
1 − α2M∗M+

1 − 2αM∗M+
∗ + α2M∗M+

∗ + M∗M+
∗ −M∗M+

∗ )M+
α

= trL(αM1((1− α)M+
∗ + αM+

1 ))M+
α

+ trL((1− α)M∗(αM+
1 + (1− α)M+

∗ )− I)M+
α

= trL((αM+
1 + (1− α)M+

∗ )Mα − I)M+
α = trL(αM+

1 + (1− α)M+
∗ −M+

α ) ,

which implies

trL(M+
α ) ≤ trL(αM+

1 + (1− α)M+
∗ ).

In other words, we have proved that the functional ξ → trLM+(ξ) is convex on the set ΞL,

and consequently it follows that

0 > trLM+(ξ1)− trLM+(ξ∗) ≥ ∂trLM+(ξα)

∂α
|α=0+= trLM+(ξ∗)−

∫
ϕ(t, ξ∗)ξ1(dt).

On the other hand, we have by statement (2.6) the inequality trLM+(ξ∗) ≥ ϕ(t, ξ∗), which

yields

trLM+(ξ∗) ≥
∫

ϕ(t, ξ∗)ξ1(dt).

i.e. a contradiction to the previous inequality. Theorem 2.1 is proved.

2

In general an analytical determination of L-optimal designs is very difficult. Theorem 2.1

can be used to check the optimality of a given design numerically. Moreover we will use this

characterization in the following section for an explicit construction of L-optimal designs for

special parameter subsystems in the Fourier regression model (1.1).
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3 Analytical solutions of the L−optimal design prob-

lem

In the present section we develop explicit solutions of the L-optimal design problem in the

Fourier regression model (1.1) for several parameter subsystems. We begin with the problem

of constructing optimal designs for estimating two coefficients corresponding to the sinus- or

cosinus functions. More precisely, define ej ∈ R2m+1 as the jth unit vector and consider the

matrices

L(2bm
2 c−1,4bm

2 c−1) = e2bm
2 c−1e

T
2bm

2 c−1
+ e4bm

2 c−1e
T
4bm

2 c−1

L(2bm
2 c, 4bm

2 c) = e2bm
2 ce

T
2bm

2 c + e4bm
2 ce

T
4bm

2 c
We call an L-optimal design with the matrix L(2bm

2 c−1,4bm
2 c−1) and L(2bm

2 c, 4bm
2 c) L-optimal

design for estimating the pair of coefficients β2bm
2
c−1, β4bm

2
c−1 and β2bm

2
c, β4bm

2
c, respectively.

Theorem 3.1 Consider the trigonometric regression model (1.1) with m > 3.

1) The design

ξ∗
(2bm

2 c−1, 4bm
2 c−1)

=

( −tn −tn−1 . . . −t1 t1 . . . tn
1
2n

1
2n

. . . 1
2n

1
2n

. . . 1
2n

)
,

with

n = 2
⌊m

2

⌋
, ti = 2

⌊
i

2

⌋
π

n
+ (−1)(i−1)x, x =

2 arctan( 4
√

5)

n

is L-optimal for estimating the pair of coefficients β2bm
2
c−1, β4bm

2
c−1.

Moreover,

trLM+(ξ∗
(2bm

2 c−1, 4bm
2 c−1)

) =

√
5

2
+

3

2
.

2) For any α ∈ [0, ωn] the design

ξ∗
(2bm

2 c, 4bm
2 c) =

( −π −tn−1 . . . −t1 0 t1 . . . tn−1 π

ωn − α ωn−1 . . . ω1 ω0 ω1 . . . ωn−1 α

)
,

with

n = 2
⌊m

2

⌋
, ti =

(i− 1)π

n
, i = 2, . . . , n,

ω0 =
√

5ω1, ω1 =

√
5− 1

4n
, ωi = ωi−2, i = 2, . . . , n

is L-optimal for estimating the pair of coefficients β2bm
2
c, β4bm

2
c.
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Moreover,

trLM+(ξ∗
(2bm

2 c, 4bm
2 c)) = trLM+(ξ∗

(0, 2bm
2 c)) =

√
5

2
+

3

2
.

3) The L-optimal design ξ∗
(0, 2bm

2 c) for estimating the pair of coefficients β0,β2bm
2
c coincides

with the design ξ∗
(2bm

2 c, 4bm
2 c) defined in part 2).

Proof. We will only prove the first part of the theorem for the case where the degree m

of the Fourier regression model is even. All other statements of the theorem are treated

similarly. In this case
⌊

m
2

⌋
= m

2
and the design in part 1) of Theorem 2.1 can be rewritten

as

ξ∗(m−1, 2m−1) =

( −tm −tm−1 . . . −t1 t1 . . . tm
1

2m
1

2m
. . . 1

2m
1

2m
. . . 1

2m

)
,

with

ti =

⌊
i

2

⌋
2π

m
+ (−1)(i−1)x, x =

2

m
arctan(

4
√

5).

The proof is based on the characterization of L-optimal designs given in Theorem 2.1. Recall

the definition of the matrix Ms = Ms(ξ) ∈ Rm×m in (2.4) and let ms[i,j] = ms[i,j](ξ) denote

the element of the matrix Ms in the position (i, j). We consider the system of equations

ms[j, m
2

] = 0, j = 1, 2, . . . , m, j 6= m

2
,(3.1)

ms[j,m] = 0, j = 1, 2, . . . , m− 1,(3.2)

ms[m
2

, m
2

] = sin2(
m

2
x) ,(3.3)

ms[m,m] = sin2(mx) .(3.4)

We will show below that the design ξ∗(m−1, 2m−1) satisfies these equations. Under this as-

sumption we obtain for the function ϕ(t, ξ∗) in Theorem 2.1 the representation

ϕ(t, ξ∗) = fT (t)M+(ξ∗)LM+(ξ∗)f(t) =
sin2(m

2
t)

sin4(m
2
x)

+
sin2(mt)

sin4(mx)
.

Now a straightforward calculation shows

trLM+(ξ∗) =

√
5

2
+

3

2
,
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and it is easy to prove that the condition (2.6) is satisfied calculating the solution of the

equation∂ϕ(t,ξ∗)
∂t

= 0. Moreover, a similar calculation shows that the equalities

trLM+(ξ∗) = ϕ(ti, ξ
∗) =

1

sin2(m
2
x)

+
1

sin2(mx)
=

√
5

2
+

3

2

are satisfied, and it remains to show the identities (3.1) - (3.4). For a proof of these identities

we note that

ms[j, m
2

] = 2
m∑

k=1

sin(jtk) sin(
m

2
tk)ωk =

1

m

m∑

k=1

sin(jtk) sin(
m

2
tk) ,

and that sin(m
2
tk) = (−1)b k−1

2 c sin(m
2
x). Consequently, we obtain

ms[j, m
2

] =
sin(m

2
x)

m

m∑

k=1

(−1)b k−1
2 c sin(jtk).

Next we prove the identity
∑m

k=1(−1)b k−1
2 c sin(jtk) = 0 if j 6= m

2
. For this purpose we use

the definition of tk and obtain
m∑

k=1

(−1)b k−1
2 c sin(jtk) = sin(jx) + sin

(2πj

m

)
cos(jx)− cos

(2πj

m

)
sin(jx)

+ (−1)
(
sin

(2πj

m

)
cos(jx) + cos

(2πj

m

)
sin(jx)

)
+ . . .

+ (−1)(
m
2
−1)

(
sin

(
(
m

2
− 1)

2πj

m

)
cos(jx) + cos

(
(
m

2
− 1)

2πj

m

)
sin(jx)

)

+ (−1)(j+1)+(m
2
−1) sin(jx)

= sin(jx)
[
2

m
2
−1∑

k=0

(−1)k cos(
2πkj

m
) + (−1)j+m

2 − 1
]
.

Now applying standard trigonometric formulae it is easy to calculate the sum in the last

expression if j 6= m
2
, i.e.

2

m
2
−1∑

k=0

(−1)k cos(
2πkj

m
) =

2

cos( jπ
m

)

m
2
−1∑

k=0

(−1)k cos(
2πkj

m
) cos(

jπ

m
)

=
1

cos( jπ
m

)
((cos(

jπ

m
) + cos(

3jπ

m
))− (cos(

3jπ

m
) + cos(

5jπ

m
)) + . . .

+(−1)
m
2
−1(cos(

(m− 3)jπ

m
) + cos(

(m− 1)jπ

m
)))

= 1 + (−1)j+m
2
−1.
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Therefore we have proved that

m∑

k=1

(−1)b k−1
2 c sin(jtk) = sin(jx)

(
1 + (−1)

m
2
−1+j + (−1)j+m

2 − 1
)

= 0,

which shows that the first equation in (3.1) is satisfied. The equality ms[j,m] = 0 (j 6= m)

follows by similar arguments, that is

ms[j,m] =
1

m

m∑

k=1

sin(jtk) sin(mtk) =
sin(mx)

m

m∑

k=1

(−1)k sin(jtk)

= sin(jx)
(
2

m
2
−1∑

k=0

cos(
2πkj

m
) + (−1)j − 1

)

= sin(jx)
(
1− (−1)j + (−1)j − 1

)

= 0.

Finally we obtain by a direct calculation that

ms[m
2

, m
2

] = sin2(
m

2
x)

1

m

m∑

k=1

(−1)2b k−1
2 c = sin2(

m

2
x),

ms[m,m] = sin2(mx)
1

m

m∑

k=1

(−1)2k = sin2(mx),

which completes the proof of Theorem 3.1. 2

Remark 3.1 Note that Theorem 3.1 is only correct for trigonometric regression models of

degree m > 3. For example, if m = 2 the L-optimal design ξ∗(1,3) is given by

ξ∗(1,3) =

( −π + x −x x π − x
1
4

1
4

1
4

1
4

)
,

where x = arctan( 4
√

5), and trLM−1
s (ξ∗(1,3)) =

√
5

2
+ 3

2
. For any α ∈

[
0, 5−√5

8

]
the L-optimal

design ξ∗(0,2) is given by

ξ∗(0,2) =

(
−π −π

2
0 π

2
π

5−√5
8

− α
√

5−1
8

5−√5
8

√
5−1
8

α

)
,

and trLM−1
c (ξ∗(0,2)) =

√
5

2
+ 3

2
. If m = 3 the L-optimal design ξ∗(1,3) is given by

ξ∗(1,3) =

( −π + x −x x π − x
1
4

1
4

1
4

1
4

)
,

10



where x = arctan( 4
√

5) and trLM+
s (ξ∗) = 3+

√
5

2
, while the L-optimal design ξ∗(0,2) is given by

ξ∗(0,2) =

( −π −π + x −x 0 x π − x π
1
4
− z − α z z 1

4
− z z z α

)
,

for any α ∈ [
0, 1

4
− z

]
, where z ≈ 0.15195067, x ≈ 0.932928804 and trLM−1

c (ξ∗(0,2)) ≈
2.77004565. The optimality of the designs can be easily checked by an application of Theorem

2.1.

Remark 3.2 Note that by Theorem 3.1 the sum of variances of the estimates for the cor-

responding coefficients in a Fourier regression model of degree m > 3 is given by
√

5
2

+ 3
2

for the L-optimal design, while the D-optimal design yields 4 for this sum. Thus the sum

of variances obtained by the L-optimal design is approximately 65% smaller than the sum

obtained by the D-optimal design.

There are two other cases, where L-optimal designs for the trigonometric regression model

(1.1) can be constructed explicitly. They are stated in the following two theorems. For the

sake of brevity only a proof of Theorem 3.3 is given here.

Theorem 3.2 Consider the trigonometric regression model (1.1) with m = 3k. The design

ξ∗ =

( −tm −tm−1 . . . −t1 t1 . . . tm
ωm ωm−1 . . . ω1 ω1 . . . ωm

)
,

with

t1 =
π

2k
− x

k
, t2 =

π

2k
, t3 =

π

2k
+

x

k
, ti = ti−3 +

π

k
, i = 4, 5 . . . ,m,

ω1 =
z

k
, ω2 =

1− 4z

2k
, ω3 =

z

k
, ωi = ωi−3, i = 4, 5 . . . , m

is L-optimal for estimating one of the pairs of the coefficients {β2k−1, β4k−1}, {β2k−1, β6k−1},
{β4k−1, β6k−1}. Here only the values x and z depend on the particular pair under considera-

tion and are defined as the solution of the system

∂trLM−1
c (ξ∗)

∂x
= 0

(3.5)

∂trLM−1
c (ξ∗)

∂z
= 0 .

Similarly, for any α ∈ [0, ωm] the design

ξ∗ =

( −π −tm−1 . . . −t1 0 t1 . . . tm−1 π

ωm − α ωm−1 . . . ω1 ω0 ω1 . . . ωm−1 α

)
,

11



m = 3k {2k − 1, 4k − 1} {2k − 1, 6k − 1} {4k − 1, 6k − 1}
x π/3 0.6476 3π/10

z 1/4 0.14 (3−√5)/4

trLM−1
s 8/3 2.7044 (

√
5 + 3)/2

Table 1: The solutions of x and z of the the system (3.5). The L-optimal design for esti-

mating the specific pair of coefficients in the Fourier regression model (1.1) is specified in

the first part of Theorem 3.2.

m = 3k {0, 2k} {0, 4k} {0, 6k} {2k, 4k} {2k, 6k} {4k, 6k}
x 0.9329 π/2 π/3 1.1177 0.9232 1.1668

z 0.1519 1/4 1/6 0.1258 0.14 0.1478

trLM−1
c 2.77 2 2 3.4826 2.7044 (

√
5 + 3)/2

Table 2: The solutions of x and z of the the system (3.6). The L-optimal design for esti-

mating the specific pair of coefficients in the Fourier regression model (1.1) is specified in

the second part of Theorem 3.2.

with

t0 = 0, t1 =
x

k
, t2 =

π − x

k
, ti = ti−3 +

π

k
, i = 3, 4 . . . ,m− 1,

ω0 =
1− 4z

2k
, ω1 =

z

k
, ω2 =

z

k
, ωi = ωi−3, i = 3, 4 . . . ,m

is L-optimal for estimating one of the pairs {β0, β2k}, {β0, β4k}, {β0, β6k}, {β2k, β4k}, {β2k, β6k},
{β4k, β6k}. Here only the values x and z depend on the particular pair under consideration

and are defined as the solution of the system

∂trLM−1
s (ξ∗)

∂x
= 0

(3.6)

∂trLM−1
s (ξ∗)

∂z
= 0.

Note that Theorem 3.2 shows that all designs for estimating one of the considered pairs

have the same structure. Only the values x and z depend on the particular pair under

consideration. Some numerical values for the parameters x and z in Theorem 3.2. the

Tables 1 and 2.

12



Theorem 3.3 Consider the trigonometric regression model (1.1) with m = 4k. The design

ξ∗ =

( −tm −tm−1 . . . −t1 t1 . . . tm
ωm ωm−1 . . . ω1 ω1 . . . ωm

)
,

with

t1 =
x1

k
, t2 =

x2

k
, t3 =

π − x2

k
, t4 =

π − x1

k
, ti = ti−4 +

π

k
, i = 5, 6 . . . , m,

ω1 =
z1

k
, ω2 =

1− 4z1

m
, ω3 =

1− 4z1

m
, ω4 =

z1

k
, ωi = ωi−4, i = 5, 6 . . . , m

is L-optimal for estimating one of the pairs of coefficients {β2k−1, β4k−1}, {β2k−1, β6k−1},
{β2k−1, β8k−1}, {β4k−1, β6k−1}, {β4k−1, β8k−1}, {β6k−1, β8k−1}. Here only the values x1, x2

and z1 depend on the particular pair under consideration and are defined as the solution of

the system

∂trLM−1
s (ξ∗)

∂x1

= 0 ,
∂trLM−1

s (ξ∗)
∂x2

= 0

(3.7)

∂trLM−1
s (ξ∗)

∂z1

= 0

Similarly, if n = 5m
4

then for any α ∈ [0, ωn] the design

ξ∗ =

( −π −tn−1 . . . −t1 0 t1 . . . tn−1 π

ωn − α ωn−1 . . . ω1 ω0 ω1 . . . ωn−1 α

)
, ,

with

t0 = 0, t1 =
x1

k
, t2 =

x2

k
, t3 =

π − x2

k
, t4 =

π − x1

k
, ti = ti−5 +

π

k
, i = 5, 6 . . . , n− 1,

ω0 =
1− 4z1 − 4z2

2k
, ω1 = ω4 =

z1

k
, ω2 = ω3 =

z2

k
, ωi = ωi−5, i = 5, 6, . . . , n

is optimal for estimating any of the pairs of the coefficients {β0, β4k}, {β0, β6k}, {β0, β8k},
{β2k, β4k}, {β2k, β6k}, {β2k, β8k}, {β4k, β6k}, {β4k, β8k}, {β6k, β8k}. Here only the values x1,

x2, z1 and z2 depend on the particular pair under consideration and are defined as the solution

of the system

∂trLM−1
c (ξ∗)

∂x1

= 0 ,
∂trLM−1

c (ξ∗)
∂x2

= 0

(3.8)

∂trLM−1
c (ξ∗)

∂z1

= 0 ,
∂trLM−1

c (ξ∗)
∂z2

= 0.

The numerical values of the quantities x1, x2, z1 and z2 are listed in the Table 3 and 4.
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m = 4k {2k − 1, 4k − 1} {2k − 1, 6k − 1} {2k − 1, 8k − 1}
x1 π/4 0.6476 0.4845

x2 π/2 π/2 1.1912

z1 (6−√6)/20 0.14 0.0909

trLM−1
s (7 + 2

√
6)/4 2.7044 2.731

m = 4k {4k − 1, 6k − 1} {4k − 1, 8k − 1} {6k − 1, 8k − 1}
x1 0.7338 arctan( 4

√
5)/2 0.4523

x2 1.3884 (π − arctan( 4
√

5))/2 1.2566

z1 0.168 1/8 0.1417

trLM−1
s 2.96 (

√
5 + 3)/2 (

√
5 + 3)/2

Table 3: The solutions x1, x2 and z1 of the the system (3.7). The L-optimal design for

estimating the specific pair of coefficients in the Fourier regression model (1.1) is specified

in the first part of Theorem 3.3.

m = 4k {0,4k} {0,6k} {0,8k} {2k,4k} {2k,6k}
x1 π/4 π/3 π/4 π/4 0.9232

x2 π/2 π/3 π/2 π/2 0.9232

z1 0.0863 1/6 1/8 2
√

2−1
28

0.07

z2 0.0773 1/6 1/8 4−√2
28

0.07

trLM−1
c (

√
5 + 3)/2 2 2

√
2 + 9/4 2.7044

m = 4k {2k,8k} {4k,6k} {4k,8k} {6k,8k}
x1 0.7132 1.0157 π/4 0.8814

x2 π/2 π/2 π/2 π/2

z1 0.033 0.0708 0.0863 0.0477

z2 0.14 0.093 0.0773 0.1297

trLM−1
c 2.731 3.1149 (

√
5 + 3)/2 (

√
5 + 3)/2

Table 4: The solutions of x1, x2, z1 and z2 of the the system (3.8). The L-optimal design for

estimating the specific pair of coefficients in the Fourier regression model (1.1) is specified

in the second part of Theorem 3.3.
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Proof of Theorem 3.3. We will only prove the first part of Theorem 3.3, the second part

is treated similarly. We begin with the case k = 1, i.e. m = 4, for which it is easy to

check by direct calculations that the design ξ∗ defined in the first part of Theorem 3.3 is

L-optimal. The corresponding numerical values of the quantities x1, x2 and z1 can be found

as the solution of the system of equations defined by (3.7). Now let k ≥ 2 and m = 4k. We

consider the system of equations

(3.9)





ms[k,j] = 0, j = 1, 2, . . . , 4k, j 6= k, j 6= 3k

ms[4k,j] = 0, j = 1, 2, . . . , 4k − 1, j 6= 2k,

ms[k,k] = 4
(
z1 sin2(x1) + (1/4− z1) sin2(x2)

)

ms[k,3k] = 4 (z1 sin(x1) sin(3x1) + (1/4− z1) sin(x2) sin(3x2))

ms[4k,2k] = 4 (z1 sin(2x1) sin(4x1) + (1/4− z1) sin(2x2) sin(4x2))

ms[4k,4k] = 4
(
z1 sin2(4x1) + (1/4− z1) sin2(4x2)

)

where ms[i,j] = ms[i,j](ξ
∗) is the element of the matrix Ms(ξ

∗) ∈ Rm×m in the i-th row and

j-th column. We will prove below that these equalities are satisfied for the design ξ∗. In

this case it follows that the quantities trLM−1
s (ξ∗) and ϕ(t, ξ∗) = fT (t)M+(ξ∗)LM+(ξ∗)f(t)

in Theorem 2.1 are independent of the value k (note that the matrix L is a given diagonal

matrix where the non vanishing entries depend on the particular pair of parameters under

consideration). Consequently it is sufficient to prove Theorem 3.3 in the case k = 1, which

has been done in the previous paragraph

In order to prove that the equalities (3.9) are satisfied we note that for i = 1, . . . , 4k−1, i 6=
k, 2k, 3k we have

ms[k,i] = 2
4k∑

j=1

sin(ktj) sin(itj)ωj

= 2
k∑

j=1

(sin(kt4j−3) sin(it4j−3)ω4j−3 + sin(kt4j−2) sin(it4j−2)ω4j−2))

+ 2
k∑

j=1

(sin(kt4j−1) sin(it4j−1)ω4j−1 + sin(kt4j) sin(it4j)ω4j)

= 2 sin(x1)
z1

k

k∑
j=1

(−1)j−1 (sin(it4j−3) + sin(it4j))

+ 2 sin(x2)
(1

4
− z1

)1

k

k∑
j=1

(−1)j−1 (sin(it4j−2) + sin(it4j−1)) .

15



For the first sum in the last line we obtain

k∑
j=1

(−1)j−1 (sin(it4j−3) + sin(it4j))

=
k∑

j=1

(−1)j−1
(
sin

( i

k
(x1 + (s− 1)π)

)
+ sin

( i

k
(π − x1 + (s− 1)π)

))

=
(−1)k

2 sin
(

iπ
k

)
(
cos

(ix1 − iπ

k
− iπ

)− cos
( ix1 − iπ

k
+ iπ

))

+
(−1)k

2 sin
(

iπ
k

)
(
cos

(ix1

k
+ iπ

)− cos
(ix1

k
− iπ

))
= 0.

Similarly, it follows (substituting x1 for x2) that the second sum also vanishes, which implies

ms[k,i] = 0, for i = 1, . . . , 4k − 1, i 6= k, 2k, 3k.

For the element ms[4k,i] we find for i = 1, . . . , 4k − 1, i 6= k, 2k, 3k

ms[4k,i] = 2
k∑

j=1

(sin(kt4j−3) sin(it4j−3)ω4j−3 + sin(kt4j−2) sin(it4j−2)ω4j−2))

+ 2
k∑

j=1

(sin(kt4j−1) sin(it4j−1)ω4j−1 + sin(kt4j) sin(it4j)ω4j)

= 2 sin(x1)
z1

k

k∑
j=1

(sin(it4j−3)− sin(it4j))

+ 2 sin(x2)
(1

4
− z1

)1

k

k∑
j=1

(
sin(it4j−2)− sin(it4j−1)

)
.

A straightforward calculation now yields

k∑
j=1

(sin(it4j−3)− sin(it4j))

=
k∑

j=1

(
sin

( i

k
(x1 + (s− 1)π)

)− sin
( i

k
(π − x1 + (s− 1)π)

))

=

(
cos

(
ix1−iπ

k
− iπ

)− cos
(

ix1−iπ
k

+ iπ
)

+ cos
(

ix1

k
− iπ

)− cos
(

ix1

k
+ iπ

))

2 sin
(

iπ
k

) = 0,

and the same arguments show that the second sum also vanishes, which implies ms[4k,i] = 0.

To conclude the proof it remains to calculate the quantities ms[ik,jk], i, j = 1, . . . , 4 , for

16



which we obtain

ms[ik,jk] = 2
k∑

r=1

(sin(ikt4r−3) sin(jkt4r−3)ω4r−3 + sin(ikt4r−2) sin(jkt4r−2)ω4r−2))

+ 2
k∑

r=1

(sin(ikt4r−1) sin(jkt4r−1)ω4r−1 + sin(ikt4r) sin(jkt4r)ω4r)

=
2z1

k

k∑
r=1

(sin(i(x1 + (r − 1)π)) sin(j(x1 + (r − 1)π))

+ sin(i(−x1 + rπ)) sin(j(−x1 + rπ)))

+
(1

4
− z1

)2 sin(ix2) sin(jx2)

k

k∑
r=1

(
(−1)(i+j)(r−1) + (−1)(i+j)r

)

=
(2 sin(ix1) sin(jx1)z1

k
+

(1

4
− z1

)2 sin(ix2) sin(jx2)

k

)

×
k∑

r=1

(
(−1)(i+j)(r−1) + (−1)(i+j)r

)
.

From this representation it is obvious that the quantities ms[ik,jk], i, j = 1, . . . , 4 have the

values specified by the system of equations and the theorem has been proved. 2

Remark 3.3 Note that for any k with m/2 < k ≤ m and for any β ∈ [0, 1
2k

] the design

ξ∗(0,2k) =

( −π −π + π
k

... −π + 2k−1
k

π π
1
2k
− β 1

2k
... 1

2k
β

)

is L-optimal for estimating the pair of coefficients {β0, β2k}. Moreover, in this case it follows

that

trLM−1
c (ξ∗(0,2k)) = 2

[see Dette and Melas (2003), Lemma 2.3]

4 Examples

In this section we present several examples, which illustrate the theoretical results obtained

in Section 3.
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4.1 L-optimal design for estimating the coefficients of sin(2t) and

sin(4t) in the Fourier regression model of degree 4.

In this example we present the L-optimal design for estimating the coefficients β3, β7 (i.e.

the coefficients at sin(2t) and sin(4t)) in the trigonometric regression model of degree 4. The

L-optimal design is directly obtained from Theorem 3.1 and given by

ξ∗(3,7) =

( −π − x −π
2
− x −π

2
+ x −x x π

2
− x π

2
+ x π − x

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

)
,

where x = 1
2
arctan

(
4
√

5
) ≈ 0.49068. The corresponding support points of the design ξ∗(3,7)

are depicted in Figure 1.

6

-
u0.491

u1.08u2.062

u2.651

u−0.491

u−1.08
u−2.062

u−2.651

Figure 1: Support points of the L-optimal design for estimating the coefficients β3, β7 in the

Fourier regression model of degree 4.

The matrices Ms(ξ
∗
(3,7)) and M−1

s (ξ∗(3,7)) for this design are given by

Ms(ξ
∗
(3,7)) =




1
2

0 3−√5
4

0

0 5−√5
4

0 0
3−√5

4
0 1

2
0

0 0 0 3
√

5−5
2


 , M−1

s (ξ∗(3,7)) =




5+3
√

5
5

0 −2
√

5
5

0

0 5+
√

5
5

0 0

−2
√

5
5

0 5+3
√

5
5

0

0 0 0 5+3
√

5
10


 ,

respectively. The matrix corresponding to the cosine terms is of no interest, but is readily

seen that (using an appropriate permutation of the regression functions)

M+(ξ∗(3,7)) =

(
M+

c (ξ∗(3,7)) 0

0 M−1
s (ξ∗(3,7))

)
.
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A straightforward calculation shows that the matrix M+(ξ∗(3,7))LM+(ξ∗(3,7)) is given by

M+(ξ∗(3,7))LM+(ξ∗(3,7)) =

(
0 0

0 M−1
s (ξ∗(3,7))LsM

−1
s (ξ∗(3,7))

)
,

where Ls is the corresponding block of the matrix L. Therefore the function ϕ(t, ξ∗(3,7)) is

given explicitly by

ϕ(t, ξ∗(3,7)) = fT (t)M+(ξ∗(3,7))LM+(ξ∗(3,7))f(t) =
(1 +

√
5)2

5
sin2(2t) +

(3 +
√

5)2

20
sin2(4t) .

The equalities (2.7) are checked by a direct calculation and the function ϕ(t, ξ∗(3,7)) is depicted

in Figure 2.

Figure 2: The function ϕ(t, ξ∗(3,7)) defined in Example 4.1.

4.2 L-optimal design for estimating the coefficients of cos(2t) and

cos(3t) in the Fourier regression model of degree m = 4.

We consider again the trigonometric regression model of degree m = 4 and use Theorem 3.3

to determine the L-optimal design for estimating the pair of coefficients β4 and β6, which

correspond to the terms cos(2t) and cos(3t). The L-optimal design for estimating these

coefficients is given by

ξ∗(4,6) =

( −π −2.13 −π
2

−1.02 0 1.02 π
2

2.13 π

0.175− α 0.09 0.145 0.09 0.175 0.09 0.145 0.09 α

)
,

and the support points of the optimal design are depicted in Figure 3. We finally note that

a straightforward calculation yields for the function ϕ(t, ξ∗(4,6)) in Theorem 2.1 ϕ(t, ξ∗(4,6)) =

19



fT (t)M+(ξ∗(4,6))LM+(ξ∗(4,6))f(t) =

= 2.851− 0.262 cos(2t) + 0.116 cos(4t) + 0.262 cos(6t) + 0.147 cos(8t).

This function is depicted in Figure 4.

6

-u0

u1.02uπ
2u2.13

uπ−π

u−1.02u−π
2

u−2.13

Figure 3: The support points of the L-optimal design for estimating pair of coefficients β4,

β6 in the Fourier regression model of degree m = 4.

Figure 4: The function ϕ(t, ξ∗(4,6)) defined in Example 4.2.
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