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Abstract

In this paper the nonparametric quantile regression model is considered in a location-

scale context. The asymptotic properties of the empirical independence process based

on covariates and estimated residuals are investigated. In particular an asymptotic

expansion and weak convergence to a Gaussian process are proved. The results can,

on the one hand, be applied to test for validity of the location-scale model. On the

other hand, they allow to derive various specification tests in conditional quantile

location-scale models. In detail a test for monotonicity of the conditional quantile

curve is investigated. For the test for validity of the location-scale model as well as

for the monotonicity test smooth residual bootstrap versions of Kolmogorov-Smirnov

type test statistics are suggested. We give rigorous proofs for bootstrap versions of the

weak convergence results. The performance of the tests is demonstrated in a simulation

study.
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1 Introduction

Quantile regression was introduced by Koenker and Bassett (1978) as an extension of least

squares methods focusing on the estimation of the conditional mean function. Due to its

many attractive features as robustness with respect to outliers and equivariance under mono-

tonic transformations that are not shared by the mean regression, it has since then become

increasingly popular in many important fields such as medicine, economics and environment

modelling [see Yu et al. (2003) or Koenker (2005)]. Another important feature of quantile

regression is its great flexibility. While mean regression aims at modelling the average be-

haviour of a variable Y given a covariate X = x, quantile regression allows to analyse the

impact of X in different regions of the distribution of Y by estimating several quantile curves

simultaneously. See for example Fitzenberger et al. (2008), who demonstrates that the pres-

ence of certain structures in a company can have different effects on upper and lower wages.

For a more detailed discussion, we refer the interested reader to the recent monograph by

Koenker (2005).

The paper at hand has a twofold aim. On the one hand it proves a weak convergence result

for the empirical independence process of covariates and estimated errors in a nonparametric

local-scale conditional quantile model. On the other hand it suggests a test for monotonicity

of the conditional quantile curve. To the authors’ best knowledge this is the first time that

those problems are treated for the general nonparametric quantile regression model.

The empirical independence process results from the distance of a joint empirical distribution

function and the product of the marginal empirical distribution functions. It can be used

to test for independence; see Hoeffding (1948), Blum et al. (1961) and ch. 3.8 in van der

Vaart and Wellner (1996). When applied to covariates X and estimators of error terms ε =

(Y −q(X))/s(X) it can be used to test for validity of a location-scale model Y = q(X)+s(X)ε

with X and ε independent. Here the conditional distribution of Y , given X = x, allows for

a location-scale representation P (Y ≤ y | X = x) = Fε((y − q(x))/s(x)), where Fε denotes

the error distribution function. To the best of our knowledge, Einmahl and Van Keilegom

(2008a) is the only paper that considers such tests for location-scale models in a very general

setting (mean regression, trimmed mean regression,. . . ). However, the assumptions made

there rule out the quantile regression case, where q is defined via P (Y ≤ q(x) | X = x) = τ

for some τ ∈ (0, 1), ∀x. The first part of our paper can hence be seen as extension and

completion of the results by Einmahl and Van Keilegom (2008a). Plenty of technical effort

was necessary to obtain the weak convergence result in the quantile context (see the proof

of Theorem 3.1 below). Validity of a location-scale means that the covariates have influence

on the trend and on the dispersion of the conditional distribution of Y , but otherwise do not

affect the shape of the conditional distribution (such models are frequently used, see Shim et

al., 2009, and Chen et al., 2005). Contrariwise if the test rejects independence of covariates
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and errors then there is evidence that the influence of the covariates on the response goes

beyond location and scale effects. Note that our results easily can be adapted to test the

validity of location models P (Y ≤ y | X = x) = Fε(y − q(x)); see also Einmahl and Van

Keilegom (2008b) and Neumeyer (2009b) in the mean regression context.

Further if there is some evidence that certain quantile curves might be monotone one should

check by a statistical test, that this assumption is reasonable. Such evidence can e.g. come

from an economic, physical or biological background. In classical mean regression there are

various methods for testing monotonicity. It has already been considered e.g. in Bowman et

al. (1998), Gijbels et al. (2000), Hall and Heckman (2001), Goshal et al. (2000), Durot (2003),

Baraud et al. (2003) or Domı́nguez-Menchero et al. (2005) and Birke and Dette (2007) who

consider an L2-distance of a monotone estimator and an unconstrained one. More recent

work on testing monotonicity is given in Wang and Meyer (2011) who use regression splines

and use the minimum slope in the knots as test criterion and Birke and Neumeyer (2013) who

use empirical process techniques for residuals built from isotonized estimators. While most

of the tests are very conservative and not powerful against alternatives with only a small

deviation from monotonicity the method proposed by Birke and Neumeyer (2013) has in some

situations better power than the other tests and can also detect local alternatives of order

n−1/2. While there are several proposals for monotone estimators of a quantile function (see

e.g. Cryer et al. (1972) or Robertson and Wright (1973) for median regression and Casady

and Cryer (1976) or Abrevaya (2005) for general quantile regression), the problem of testing

whether a given quantile curve is increasing (decreasing) has received nearly no attention

in the literature. Aside from the paper by Duembgen (2002) which deals with the rather

special case of median regression in a location model, the authors - to the best of their

knowledge - are not aware of any tests for monotonicity of conditional quantile curves. The

method, which is introduced here is based on the independence process considered before.

Note that the test is not the same as the one considered by Birke and Neumeyer (2013)

for mean regression adapted to the quantile case. It turned out that in quantile regression

the corresponding statistic would not be suitable for constructing a statistical test (see also

Section 4).

The paper is organized as follows. In Section 2 we present the location-scale model, give

necessary assumptions and define the estimators. In Section 3 we introduce the independence

process, derive asymptotical results and construct a test for validity of the model. Bootstrap

data generation and asymptotic results for a bootstrap version of the independence process

are discussed as well. The results derived there are modified in Section 4 to construct a test

for monotonicity of the quantile function. In Section 5 we present a small simulation study

while we conclude in Section 6. All proofs are deferred to an appendix and supplementary

material.
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2 The location-scale model, estimators and assump-

tions

For some fixed τ ∈ (0, 1), consider the nonparametric quantile regression model of location-

scale type [see e.g. He (1997)],

Yi = qτ (Xi) + s(Xi)εi, i = 1, . . . , n,(2.1)

where qτ (x) = F−1
Y (τ |x) is the τ -th conditional quantile function, (Xi, Yi), i = 1, . . . , n,

is a bivariate sample of i.i.d. observations and FY (·|x) = P (Yi ≤ ·|Xi = x) denotes the

conditional distribution function of Yi given Xi = x. Further, s(x) denotes the median of

|Yi − qτ (Xi)|, given Xi = x. We assume that εi and Xi are independent and, hence, that εi

has τ -quantile zero and |εi| has median one, because

τ = P
(
Yi ≤ qτ (Xi)

∣∣∣ Xi = x
)

= P (εi ≤ 0)

1

2
= P

(
|Yi − qτ (Xi)| ≤ s(Xi)

∣∣∣ Xi = x
)

= P (|εi| ≤ 1).

Denote by Fε the distribution function of εi. Then for the conditional distribution we obtain

a location-scale representation as FY (y|x) = Fε((y−qτ (x))/s(x)), where Fε as well as qτ and

s are unknown.

For example, consider the case τ = 1
2
. Then we have a median regression model, which allows

for heteroscedasticity in the sense, that the conditional median absolute deviation s(Xi) of Yi,

given Xi, may depend on the covariate Xi. Here the median absolute deviation of a random

variable Z is defined as MAD(Z) = median(|Z − median(Z)|) and is the typical measure

of scale (or dispersion), when the median is used as location measure. This heteroscedastic

median regression model is analogous to the popular heteroscedastic mean regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n, where Xi and εi are assumed to be independent,

E[εi] = 0, sd(εi) = 1, and hence, m(x) = E[Yi | Xi = x], σ(x) = sd(Yi | Xi = x) (see among

many others e.g. Efromovich (1999), chapter 4.2 for further details).

Remark 2.1 Note that assuming |εi| to have median one is not restrictive. More precisely,

if the model Yi = qτ (Xi) + s̃(Xi)ηi with ηi i.i.d. and independent of Xi and some positive

function s̃ holds, the model Yi = qτ (Xi) + s(Xi)εi with s(Xi) := s̃(Xi)F
−1
|η| (1/2), εi :=

ηi/F
−1
|η| (1/2) will also be true, where F|η| denotes the distribution function of |ηi|. Then in

particular P (|εi| ≤ 1) = P (|ηi| ≤ F−1
|η| (1/2)) = 1/2. �

In the literature, several non-parametric quantile estimators have been proposed [see e.g.

Yu and Jones (1997, 1998), Takeuchi et al. (2006) or Dette and Volgushev (2008), among

others]. In this paper we follow the last-named authors who proposed non-crossing estimates
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of quantile curves using a simultaneous inversion and isotonization of an estimate of the

conditional distribution function. To be precise, let

F̂Y (y|x) := (XtWX)−1XtWY(2.2)

with

X =

⎛
⎜⎜⎝

1 (x−X1) ... (x−X1)
p

...
... ...

...

1 (x−Xn) ... (x−Xn)
p

⎞
⎟⎟⎠ , Y :=

(
Ω
(y − Y1

dn

)
, . . . ,Ω

(y − Yn
dn

))t

W = Diag
(
Khn,0(x−X1), ..., Khn,0(x−Xn)

)
,

denote a smoothed local polynomial estimate (of order p ≥ 2) of the conditional distribution

function FY (y|x) where Ω(·) is a smoothed version of the indicator function and we used the

notation Khn,k(x) := K(x/hn)(x/hn)
k. Here K denotes a nonnegative kernel and dn, hn are

bandwidths converging to 0 with increasing sample size. Note that the estimator F̂Y (y|x)
can be represented as weighted average

F̂Y (y|x) =
n∑

i=1

Wi(x)Ω
(y − Yi

dn

)
.(2.3)

Following Dette and Volgushev (2008) we consider a strictly increasing distribution function

G : R → (0, 1), a nonnegative kernel κ and a bandwidth bn, and define the functional

HG,κ,τ,bn(F ) :=
1

bn

∫ 1

0

∫ τ

−∞
κ
(F (G−1(u))− v

bn

)
dvdu.

Note that it is intuitively clear that HG,κ,τ,bn(F̂Y (·|x)), where F̂Y is the estimator of the con-

ditional distribution function defined in (2.2), is a consistent estimate of HG,κ,τ,bn(FY (·|x)).
If bn → 0, this quantity can be approximated as follows

HG,κ,τ,bn(FY (·|x)) ≈
∫
R

I{FY (y|x) ≤ τ}dG(y)

=

∫ 1

0

I{FY (G
−1(v)|x) ≤ τ}dv = G ◦ F−1

Y (τ |x),

and as a consequence an estimate of the conditional quantile function qτ (x) = F−1
Y (τ |x) can

be defined by

q̂τ (x) := G−1(HG,κ,τ,bn(FY (·|x))).
Finally, note that the scale function s is the conditional median of the distribution of |ei|,
given the covariate Xi, where ei = Yi − qτ (Xi) = s(Xi)εi, i = 1, . . . , n. Hence, we apply the

quantile-regression approach to |êi| = |Yi − q̂τ (Xi)|, i = 1, . . . , n, and obtain the estimator

ŝ(x) = G−1
s (HGs,κ,1/2,bn(F̂|e|(·|x))) .(2.4)
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Here Gs : R → (0, 1) is a strictly increasing distribution function and F̂|e|(·|x) denotes the

estimator of the conditional distribution function F|e|(·|x) = P (|ei| ≤ ·|Xi = x) of |ei|,
i = 1, . . . , n, i. e.

F̂|e|(y|x) =
n∑

i=1

Wi(x)I{|êi| ≤ y}(2.5)

with the same weights Wi as in in (2.3).

For a better overview and for later reference, below we collect all the technical assump-

tions concerning the estimators needed throughout the rest of the paper. First, we collect

the assumptions needed for the kernel functions and functions G,Gs used in the construction

of the estimators.

(K1) The function K is a symmetric, positive, Lipschitz-continuous density with support

[−1, 1]. Moreover, the matrix M(K) with entries

(M(K))k,l = μk+l−2(K) :=

∫
uk+l−2K(u)du

is invertible.

(K2) The function K is two times continuously differentiable, K(2) is Lipschitz continuous,

and for m = 0, 1, 2 the set {x|K(m)(x) > 0} is a union of finitely many intervals.

(K3) The function Ω has derivative ω which has support [−1, 1], is a kernel of order pω, and

is two times continuously differentiable with uniformly bounded derivatives.

(K4) The function κ is a symmetric, uniformly bounded, and has one Lipschitz-continuous

derivative.

(K5) The functionG : R → [0, 1] is strictly increasing. Moreover, it is two times continuously

differentiable in a neighborhood of the set Q := {qτ (x)|x ∈ [0, 1]} and its first derivative

is uniformly bounded away from zero on Q.

(K6) The function Gs : R → (0, 1) is strictly increasing. Moreover, it is two times contin-

uously differentiable in a neighborhood of the set S := {s(x)|x ∈ [0, 1]} and its first

derivative is uniformly bounded away from zero on S.

The data-generating process needs to satisfy the following conditions.

(A1) The density fX has support [0,1], is uniformly bounded away from zero and infinity,

and is Lipschitz-continuous.

(A2) The function s is uniformly bounded and infx∈[0,1] s(x) = cs > 0.
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(A3) The partial derivatives ∂jx∂
l
yFY (y|x), ∂kx∂lyFe(y|x) exist and are continuous and uni-

formly bounded on R× [0, 1] for k ∧ l ≤ 2 or k + l ≤ d for some d ≥ 3.

(A4) The errors ε1, . . . , εn are independent and identically distributed with strictly increasing

distribution function Fε (independent of Xi) and density fε, which is continuously

differentiable such that fε(0) > 0, supy∈R |yfε(y)| <∞ and supy∈R |y2f ′
ε(y)| <∞. The

εi have τ -quantile zero and F|ε|(1) = 1/2, that is |ε1| has median one.

(A5) For some α > 0 we have supu,y |y|α(FY (y|u) ∧ (1− FY (y|u)) <∞.

Remark 2.2 Note that by the implicit function theorem, assumptions (A3) and (A4) imply

that x �→ qτ (x) and s(x) are d times continuously differentiable with uniformly bounded

derivatives. �

Finally, we assume that the bandwidth parameters satisfy

(BW)
log n

nhn(hn ∧ dn)4 = o(1),
logn

nh2nb
2
n

= o(1), d2(pω∧d)n + h2((p+1)∧d)
n + b4n = o(n−1),

with pω from (K3), d from (A3) and p the order of the polynomial estimator in (2.2).

Remark 2.3 If for example d = pω = p = 3 and we set dn = hn = n−1/6−β for some

β ∈ (0, 1/30), bn = h
−1/4−α
n such that α + β ∈ (0, 1/12), condition (BW) holds. �

3 The independence process, asymptotic results and

testing for model validity

As estimators for the errors we build residuals

ε̂i =
Yi − q̂τ (Xi)

ŝ(Xi)
, i = 1, . . . , n.(3.1)

In the definition of the process on which test statistics are based we only consider those

observations (Xi, Yi) such that 2hn ≤ Xi ≤ 1 − 2hn in order to avoid boundary problems

of the estimators. For y ∈ R, t ∈ [2hn, 1 − 2hn] we define the joint empirical distribution

function of pairs of covariates and residuals as

F̂X,ε,n(t, y) =
n∑

i=1

I{ε̂i ≤ y}I{2hn < Xi ≤ t} 1∑n
i=1 I{2hn < Xi ≤ 1− 2hn}(3.2)

=
1

n

n∑
i=1

I{ε̂i ≤ y}I{2hn < Xi ≤ t} 1

F̂X,n(1− 2hn)− F̂X,n(2hn)
,
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where F̂X,n denotes the usual empirical distribution function of the covariates X1, . . . , Xn.

The empirical independence process compares the joint empirical distribution with the prod-

uct of the corresponding marginal distributions. We thus define

Sn(t, y) =
√
n
(
F̂X,ε,n(t, y)− F̂X,ε,n(1− 2hn, y)F̂X,ε,n(t,∞)

)
(3.3)

for y ∈ R, t ∈ [2hn, 1 − 2hn], and Sn(t, y) = 0 for y ∈ R, t ∈ [0, 2hn) ∪ (1 − 2hn, 1]. In the

following theorem we state a weak convergence result for the independence process.

Theorem 3.1 Under the location-scale model (2.1) and assumptions (K1)-(K6), (A1)-

(A5) and (BW) we have the asymptotic expansion

Sn(t, y) =
1√
n

n∑
i=1

(
I{εi ≤ y} − Fε(y)− φ(y)

(
I{εi ≤ 0} − τ

)
− ψ(y)

(
I{|εi| ≤ 1} − 1

2

))

×
(
I{Xi ≤ t} − FX(t)

)
+ oP (1)

uniformly with respect to t ∈ [0, 1] and y ∈ R, where

φ(y) =
fε(y)

fε(0)

(
1− y

fε(1)− fε(−1)

f|ε|(1)

)
, ψ(y) =

yfε(y)

f|ε|(1)

and f|ε|(y) = (fε(y)+fε(−y))I[0,∞)(y) is the density of |ε1|. The process Sn converges weakly

in ∞([0, 1]× R) to a centered Gaussian process S with covariance

Cov(S(s, y), S(t, z)) = (FX(s ∧ t)− FX(s)FX(t))

×
[
Fε(y ∧ z)− Fε(y)Fε(z) + φ(y)φ(z)(τ − τ 2) +

1

4
ψ(y)ψ(z)

− φ(y)(Fε(z ∧ 0)− Fε(z)τ)− φ(z)(Fε(y ∧ 0)− Fε(y)τ)

− ψ(y)
(
(Fε(z ∧ 1)− Fε(−1))I{z > −1} − 1

2
Fε(z)

)
− ψ(z)

(
(Fε(y ∧ 1)− Fε(−1))I{y > −1} − 1

2
Fε(y)

)
+ (φ(y)ψ(z) + φ(z)ψ(y))

(
Fε(0)− Fε(−1)− 1

2
τ
)]
.

The proof is given in Appendix A.

Remark 3.2 The result can easily be adapted for location models Yi = qτ (Xi) + εi with

εi and Xi independent. To this end we just set ŝ ≡ 1 in the definition of the estimators.

The asymptotic covariance in Theorem 3.1 then simplifies because the function φ reduces to

φ(y) = fε(y)/fε(0) and ψ(y) ≡ 0. �

In the remainder of this section we discuss how the asymptotic result can be applied to test

for validity of the location-scale model, i. e. testing the null hypothesis of independence of

error εi and covariate Xi in model (2.1).
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Remark 3.3 If the location-scale model is not valid, i. e. Xi and εi are dependent, but all

other assumptions of Theorem 3.1 are valid, then one can show that Sn(t, y)/n
1/2 converges

in probability to P (εi ≤ y,Xi ≤ t)− Fε(y)FX(t), uniformly with respect to y and t. �

Remark 3.4 If the location-scale model is valid for some τ -th quantile regression function

it is valid for every α-th quantile regression function, α ∈ (0, 1). This easily follows from

qα(x) = F−1
ε (α)s(x)+qτ (x) which is a consequence from the representation of the conditional

distribution function FY (y|x) = Fε((y − qτ (x))/s(x)) (compare Remark 2.1). A similar

statement is even true for general location and scale measures, see e. g. Van Keilegom (1998),

Prop. 5.1. Thus for testing the validity of the location-scale model one could restrict oneself

to the median case τ = 0.5, e. g. However, we consider the general case τ ∈ (0, 1) here

because in the next section we will apply our results to test for monotonicity of qτ (x) in x,

a property which is not universal in τ . �

Remark 3.5 Einmahl and Van Keilegom (2008a) consider a process similar to Sn for

general location and scale models. They define q(x) =
∫ 1

0
F−1(s|x)J(s) ds and s2(x) =∫ 1

0
(F−1(s|x))2J(s) ds− q2(x) with score function J , which rules out the quantile case q(x) =

F−1(τ |x). Einmahl and Van Keilegom (2008) show that estimation of the errors has no

influence in their context, i. e. they obtain a scaled completely tucked Brownian sheet as

limit process and thus asymptotically distribution-free tests. This is clearly not the case in

Theorem 3.1. �

To test for the validity of a location-scale model we reject the null hypothesis of inde-

pendence of Xi and εi for large values of, e. g., the Kolmogorov-Smirnov statistic Kn =

supt∈[0,1],y∈R |Sn(t, y)|. From Theorem 3.1 and the Continuous Mapping Theorem we obtain

the following asymptotic distribution,

Kn
d−→ sup

t∈[0,1],y∈R
|S(t, y)| = sup

x∈[0,1],y∈R
|S(F−1

X (x), y)|,

which is independent from the covariate distribution FX , but depends in a complicated

manner on the error distribution Fε. To overcome this problem we suggest a bootstrap

version of the test. To this end let Yn = {(X1, Y1), . . . , (Xn, Yn)} denote the original sample.

We generate bootstrap errors as ε∗i = ε̃∗i + αnZi (i = 1, . . . , n), where αn denotes a positive

smoothing parameter, Z1, . . . , Zn are independent, standard normally distributed random

variables (independent of Yn) and ε̃
∗
1, . . . , ε̃

∗
n are randomly drawn with replacement from the

set of residuals {ε̂j | j ∈ {1, . . . , n}, Xj ∈ (2hn, 1−2hn]}. Conditional on the original sample

Yn the random variables ε∗1, . . . , ε
∗
n are i.i.d. with distribution function

F̃ε(y) =

1
n

∑n
i=1Φ

(
y−ε̂i
αn

)
I{2hn < Xi ≤ 1− 2hn}

F̂X,n(1− 2hn)− F̂X,n(2hn)
,
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where Φ denotes the standard normal distribution function. Note that the bootstrap error’s

τ -quantile is not exactly zero, but vanishes asymptotically. We use a smooth distribution

to generate new bootstrap errors because smoothness of the error distribution is a crucial

assumption for the theory necessary to derive Theorem 3.1; see also Neumeyer (2009a).

Now we build new bootstrap observations,

Y ∗
i = q̂τ (Xi) + ŝ(Xi)ε

∗
i , i = 1, . . . , n.

Let q̂∗τ and ŝ
∗ denote the quantile regression and scale function estimator defined analogously

to q̂τ and ŝ, but based on the bootstrap sample (X1, Y
∗
1 ), . . . , (Xn, Y

∗
n ). Analogously to (3.3)

the bootstrap version of the independence process is defined as

S∗
n(t, y) =

√
n
(
F̂ ∗
X,ε,n(t, y)− F̂ ∗

X,ε,n(1− 4hn, y)F̂
∗
X,ε,n(t,∞)

)
for t ∈ [4hn, 1 − 4hn], y ∈ R, and S∗

n(t, y) = 0 for t ∈ [0, 4hn) ∪ (1 − 4hn, 1], y ∈ R. Here,

similar to (3.2),

F̂ ∗
X,ε,n(t, y) =

1

n

n∑
i=1

I{ε̂∗i ≤ y}I{4hn < Xi ≤ t} 1

F̂X,n(1− 4hn)− F̂X,n(4hn)
,

with ε̂∗i = (Y ∗
i − q̂∗τ (Xi))/ŝ

∗(Xi), i = 1, . . . , n.

To obtain the conditional weak convergence we need the following additional assumptions.

(B1) We have for some δ > 0

nh2nα
2
n

log h−1
n log n

→ ∞,
nαnhn
logn

→ ∞,
hn
log n

= O(α8δ/3
n ), nα4

n = o(1)

and there exists a κ > 0 such that

nh
1+ 1

κ
n α

2+ 2
κ

n

log h−1
n (logn)1/κ

→ ∞.

(B2) Let E[|ε1|max(υ,2κ)] <∞ for some υ > 1+2/δ and with δ and κ from assumption (B1).

Here, (B2) can be relaxed to E[|ε1|2κ] < ∞ if the process is only considered for y ∈ [−c, c]
for some c > 0 instead of for y ∈ R.

Theorem 3.6 Under the location-scale model (2.1) and assumptions (K1)-(K6), (A1)-

(A5), (BW) and (B1)-(B2) conditionally on Yn, the process S
∗
n converges weakly in ∞([0, 1]×

R) to the Gaussian process S defined in Theorem 3.1, in probability.

The proof is given in Appendix B.
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Remark 3.7 Let the Kolmogorov-Smirnov test statistic be defined as Kn = supt,y |Sn(t, y)|
and its bootstrap version as K∗

n = supt,y |S∗
n(t, y)|. Let the critical value k∗n,1−α be obtained

from

P (K∗
n ≥ k∗n,1−α | Yn) = 1− α,

and reject the location-scale model if Kn ≥ k∗n,1−α. Then from Theorems 3.1 and 3.6 it

follows that the test has asymptotic level α. Moreover if the location-scale model is not

valid by Remark 3.3 we have Kn → ∞ in probability, whereas with the same methods as

in the proof of Theorem 3.6 it can be shown that k∗n,1−α converges to a constant. Thus the

power of the test converges to one. The finite sample performance of the bootstrap version

of the Kolmogorov-Smirnov test is studied in Section 6. �

Remark 3.8 Recently, Sun (2006) and Feng, He and Hu (2011) proposed to use wild boot-

strap in the setting of quantile regression. To follow the approach of the last-named authors,

one would define ε∗i = viε̂i such that P ∗(viε̂i ≤ 0|Xi) = τ , e. g.

vi = ±1 with probability

⎧⎨
⎩

1−τ
τ

if ε̂i ≥ 0
τ

1−τ
if ε̂i < 0.

However, then when calculating the conditional asymptotic covariance (following the proof

in Appendix B), instead of F̃ε(y) the following term appears

1

n

n∑
i=1

P (viε̂i ≤ y | Yn)
n→∞−→ (1− τ)(Fε(y)− Fε(−y)) + τ.

One obtains Fε(y) (needed to obtain the same covariance as in Theorem 3.1) only for y = 0

or for median regression (τ = 0.5) with symmetric error distributions, but not in general.

Hence, wild bootstrap cannot be applied in the general context of procedures using empirical

processes in quantile regression. �

Remark 3.9 Under assumption of the location-scale model model (2.1) the result of Theo-

rem 3.1 can be applied to test for more specific model assumptions (e. g. testing goodness-of

fit of a parametric model for the quantile regression function). The general approach is to

build residuals ε̂i,0 that only under H0 consistently estimate the errors (e. g. using a paramet-

ric estimator for the conditional quantile function). Recall the definition of F̂X,ε,n in (3.2)

and define analgously F̂X,ε0,n by using the residuals ε̂i,0. Then, analogously to (3.3), define

Sn,0(t, y) =
√
n
(
F̂X,ε0,n(t, y)− F̂X,ε,n(1− 2hn, y)F̂X,ε,n(t,∞)

)
for y ∈ R, t ∈ [2hn, 1 − 2hn], and Sn,0(t, y) = 0 for y ∈ R, t ∈ [0, 2hn) ∪ (1 − 2hn, 1]. With

this process the discrepancy from the null hypothesis can be measured. This approach is

11



considered in detail for the problem of testing monotonicity of conditional quantile functions

in the next section.

A related approach, which however does not assume the location-scale model, is suggested to

test for significance of covariables in quantile regression models by Volgushev et al. (2013).

�

4 Testing for monotonicity of conditional quantile curves

In this section, we consider a test for the hypothesis

H0 : qτ (x) is increasing in x.

To this end we define an increasing estimator q̂τ,I , which consistently estimates qτ if the

hypothesis H0 is valid, and consistently estimates some increasing function qτ,I �= qτ under

the alternative that qτ is not increasing. For any function h : [0, 1] → R define the increasing

rearrangement hI as the generalized inverse of h−1
I , i. e.

hI(x) = inf{z ∈ R|h−1
I (z) ≥ x},

where

h−1
I (z) =

∫ 1

0

I{h(t) ≤ z} dt.

Note that if h is increasing, then h−1 is the generalized inverse of h and we have hI = h. See

Anevski and Fougères (2007) and Neumeyer (2007) who consider increasing rearrangements

of curve estimators for the sake of obtaining monotone versions of unconstrained estimators

[and also Dette, Neumeyer and Pilz (2006) or Birke and Dette (2008) for a smooth version of

the increasing rearrangements in the regression context]. We define the increasing estimator

q̂τ,I as increasing rearrangement of the unconstrained estimator q̂τ of qτ that was defined in

Section 2. The quantity q̂τ,I estimates the increasing rearrangement qτ,I of qτ . Only under

the hypothesis H0 of an increasing regression function we have qτ = qτ,I . In Figure 1 (right

part) a non-increasing function qτ and its increasing rearrangement qτ,I are displayed.

Now we build (pseudo-) residuals

ε̂i,I =
Yi − q̂τ,I(Xi)

ŝ(Xi)
,(4.1)

which estimate pseudo-errors εi,I = (Yi − qτ,I(Xi))/s(Xi) that coincide with the true errors

εi = (Yi − qτ (Xi))/s(Xi) (i = 1, . . . , n) in general only under H0. Let further ε̂i denote the

unconstrained residuals as defined in (3.1). The idea for the test statistic we suggest is the

12
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Figure 1: Left part: True nonincreasing function qτ for τ = 0.25 with scatter-plot of a typical

sample. Right part: qτ (solid line) and increasing rearrangement qτ,I (dotted line).

following. Compared to the true errors ε1, . . . , εn, which are assumed to be i.i.d., the pseudo-

errors ε1,I , . . . , εn,I behave differently. If the true function qτ is not increasing (e.g. like

in Figure 1) and we calculate the pseudo-errors from qτ,I , they are no longer identically

distributed. This effect is demonstrated in Figure 2 for a τ = 0.25-quantile curve. Consider

for instance the interval [t, 1], where there are about 25% negative errors (left part) and

in comparison too many negative pseudo-errors (right part). To detect such discrepancies

from the null hypothesis, we estimate the pseudo-error distribution up to every t ∈ [0, 1]

(i. e. for the covariate values Xi ≤ t) and compare with what is expected under H0. To

this end recall the definition of F̂X,ε,n in (3.2) and define F̂X,εI ,n analogously, but using the

constrained residuals ε̂i,I , i = 1, . . . , n. Analogously to (3.3) define the process

Sn,I(t, y) =
√
n
(
F̂X,εI ,n(t, y)− F̂X,ε,n(1− 2hn, y)F̂X,ε,n(t,∞)

)
(4.2)

for y ∈ R, t ∈ [2hn, 1 − 2hn], and Sn,I(t, y) = 0 for y ∈ R, t ∈ [0, 2hn) ∪ (1 − 2hn, 1]. For

each fixed t ∈ [0, 1], y ∈ R, for hn → 0 the statistic n−1/2Sn,I(t, y) consistently estimates the

expectation

E[I{εi,I < y}I{Xi ≤ t}]− Fε(y)FX(t)

= E
[
I
{
εi < y +

(qτ,I − qτ )(Xi)

s(Xi)

}
I{Xi ≤ t}

]
− Fε(y)FX(t)

=

∫ t

0

(
Fε

(
y +

(qτ,I − qτ )(x)

s(x)

)
− Fε(y)

)
fX(x) dx.

13
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Figure 2: Left part: True nonincreasing function qτ for τ = 0.25 and errors for the sample

shown in Figure 1. Right part: Increasing rearrangement qτ,I and pseudo-errors. (Positive

errors are marked by solid points and solid lines, negative errors marked by circles and dashed

lines.)

If this term is zero for all t ∈ [0, 1] and all y ∈ R, then also

sup
t∈[0,1]

∣∣∣ ∫ t

0

(
Fε

((qτ,I − qτ )(x)

s(x)

)
− Fε(0)

)
fX(x) dx

∣∣∣ = 0

and from this it follows that qτ,I = qτ is valid FX -a. s. by the strict monotonicity of Fε. We

therefore use the Kolmogorov-Smirnov type statistic Kn = supy∈R,t∈[0,1] |Sn,I(t, y)| to obtain

a consistent testing procedure, which rejects the null hypothesis for large values of Kn.

In the following theorem we state a weak convergence result for the process Sn,I defined in

(4.2).

Theorem 4.1 Under model (2.1) and assumptions (K1)-(K6), (A1)-(A5) and (BW),

under the null hypothesis H0 and the assumption infx∈[0,1] q′τ (x) > 0 the process Sn,I converges

weakly in ∞([0, 1]× R) to the Gaussian process S defined in Theorem 3.1.

The proof is given in Appendix A. For the application of the test for monotonicity we suggest

a bootstrap version of the test analogously to the one considered in Section 3, but applying

the increasing estimator to build new observations, i. e. Y ∗
i = q̂τ,I(Xi)+ ŝ(Xi)ε

∗
i , i = 1, . . . , n.

We have the following theoretical result.

Theorem 4.2 Under the assumptions of Theorem 4.1 and (B1)–(B2) the process S∗
n,I,

conditionally on Yn, converges weakly in ∞([0, 1]×R) to the Gaussian process S defined in

Theorem 3.1, in probability.
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The proof is given in Appendix B. A consistent asymptotic level-α test is constructed as in

Remark 3.7.

Remark 4.3 In the context of testing for monotonicity of mean regression curves Birke and

Neumeyer (2013) based their tests on the observation that too many of the pseudo-errors are

positive (see solid lines in Figure 2) on some subintervals of [0, 1] and too many are negative

(see dashed lines) on other subintervals. Transferring this idea to the quantile regression

model, one would consider a stochastic process

S̃n(t, 0) =
1√
n

n∑
i=1

(
I{ε̂i,I ≤ 0}I{2hn < Xi ≤ t} − F̂X,ε,n(1− 2hn, 0)I{2hn < Xi ≤ t}

)

or alternatively (because F̂X,ε,n(1− 2hn, 0) estimates the known Fε(0) = τ)

Rn(t) =
1√
n

n∑
i=1

(
I{ε̂i,I ≤ 0}I{Xi ≤ t} − τI{Xi ≤ t}

)

where t ∈ [0, 1]. For every t ∈ [2hn, 1− 2hn] the processes count how many pseudo-residuals

are positive up to covariates ≤ t. This term is then centered with respect to the estimated

expectation under H0 and scaled with n−1/2. However, as can be seen from Theorem 4.1 the

limit is degenerate for y = 0, and hence we have under H0 that

sup
t

|S̃n(t, 0)| = oP (1).(4.3)

Also, supt∈[0,1] |Rn(t)| = oP (1) can be shown analogously. Hence, no critical values can

be obtained for the Kolmogorov-Smirnov test statistics, and those test statistics are not

suitable for our testing purpose. To explain the negligibility (4.3) heuristically, consider

the case t = 1 (now ignoring the truncation of covariates for simplicity of explanation).

Then, under H0, n
−1

∑n
i=1 I{ε̂i,I ≤ 0} estimates Fε(0) = τ . But the information that εi

has τ -quantile zero was already applied to estimate the τ -quantile function qτ . Hence, one

obtains n−1
∑n

i=1 I{ε̂i,I ≤ 0} − τ = oP (n
−1/2). This observation is in accordance to the fact

that n−1
∑n

i=1 ε̂i = oP (n
−1/2), when residuals are built from a mean regression model with

centered errors [see Müller et al. (2004) and Kiwitt et al. (2008)].

Finally, consider the process

S̃n(1− 2hn, y) =
1√
n

n∑
i=1

(
I{ε̂i,I ≤ y}I{2hn < Xi ≤ 1− 2hn}

− F̂X,ε,n(1− 2hn, y)I{2hn < Xi ≤ 1− 2hn}
)

i. e. the difference between the estimated distribution functions of pseudo-residuals ε̂i,I and

unconstrained residuals ε̂i (i = 1, . . . , n), respectively, scaled with n1/2. An analogous process
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has been considered by Van Keilegom et al. (2008) for testing for parametric classes of mean

regression functions. However, as can be seen from Theorem 4.1, in our case of testing

for monotonicity the limit again is degenerate, i. e. Var(S(1, y)) = 0 for all y, and hence

supy∈R |S̃n(1, y)| = oP (1). Similar observations can be made when typical distance based

tests from lack-of-fit literature [for instance L2-tests or residual process based procedures by

Härdle and Mammen (1993) and Stute (1997), respectively] are considered in the problem of

testing monotonicity of regression function, see Birke and Neumeyer (2013). The reason is

that under H0 the unconstrained and constrained estimators, q̂τ and q̂τ,I , typically are first

order asymptotically equivalent. This for estimation purposes very desirable property limits

the possibilities to apply the estimator q̂τ,I for hypotheses testing. �

5 Simulation results

In this section we show some simulation results for the bootstrap based tests introduced in

this paper. If available we compare the results to already existing methods. Throughout

the whole section we choose the bandwidths according to condition (BW) as dn = hn =

2(σ̂/n)1/7, bn = (σ̂/n)2/7 and σ̂ is the difference estimator proposed in Rice (1984) [see Yu

and Jones (1997) for a related approach]. The degree of the local polynomial estimators

of location and scale [see equation (2.2)] was chosen to be 3, the Kernel K is the Gauss

Kernel while κ was chosen to be the Epanechnikov Kernel. The function Ω was defined

through Ω(t) =
∫ t

−∞ ω(x)dx where ω(x) := (15/32)(3 − 10x2 + 7x4)I{|x| ≤ 1}, which is a

kernel of order 4 [see Gasser et al. (1985)]. For the choice of the distribution functions G

and Gs, we follow the procedure described in Dette and Volgushev (2008) who suggested

a normal distribution such that the 5% and 95% quantiles coincide with the corresponding

empirical quantities of the sample Y1, ..., Yn. Finally, the parameter αn for generating the

bootstrap residuals was chosen as αn =
√
2n−1/4median(|ε̂1|, ..., |ε̂n|). In each of the 1000

simulation runs the quantiles of the test statistics were estimated as empirical quantiles from

the bootstrap samples of 99 bootstrap repetitions.

5.1 Testing for location-scale models

The problem of testing the validity of location-scale models has previously been considered

by Einmahl and van Keilegom (2008a), and we therefore compare the properties of our test

statistic with theirs. To this end, we consider the following three models from Einmahl and

van Keilegom (2008a)

(model 1) Y |X = x ∼ (x− 0.5x2) +
2 + x

10
N (0, 1), X ∼ U [0, 1]

16



(model 2) Y |X = x ∼ (x− 0.5x2) +
(2 + x

10

)χ2
1/bx − 1/(bx)√

2/(bx)
, X ∼ U [0, 1]

(model 3) Y |X = x ∼ (x− 0.5x2) +
(2 + x

10

)√
1− (cx)1/4t2/(cx)1/4 , X ∼ U [0, 1]

Observe that model 1 corresponds to a location-scale model while models 2 and 3 are not of

location-scale type. The simulation results corresponding to different models and parameter

setting are collected in Table 1. Model 1 corresponds to the null hypothesis, and we see that

the test holds its level well. Models 2 and 3 represent alternatives. In model 2, our test

outperforms all the tests in Einmahl and Van Keilegom (2008a), while in model 3 the power

of the test is very low. An intuitive explanation of those differences is that Einmahl and

Van Keilegom (2008a) scale their residuals to have the same variances while our residuals

are scaled to have the same median absolute deviation. Under various alternative distribu-

tions, this leads to different power curves. In particular, the scaling with median absolute

deviation leads to distribution functions whose supremum distance is large for chi-squared

distributions but small for t-distributions with different parameters.

Please insert Table 1 here

5.2 Testing for monotonicity of quantile curves in a location-scale

setting

Next, we considered the test for monotonicity of quantile curves that is introduced in Section

4. Here, we simulated the following two models that are both of location-scale type

(model 4) Y |X = x ∼ 1 + x− βe−50(x−0.5)2 + 0.2N (0, 1), X ∼ U [0, 1]

(model 5) Y |X = x ∼ x

2
+ 2(0.1− (x− 0.5)2)N (0, 1), X ∼ U [0, 1].

The results for models 4 and 5 are reported in Table 2 and Table 3, respectively. In model

4, all quantile curves are parallel and so all quantile curves have a similar monotonicity be-

havior. In particular, the parameter value β = 0 corresponds to strictly increasing quantile

curves, for β = 0.15 the curves have a flat spot, and for β > 0.15 the curves have a small

decreasing bump that gets larger for larger values of β. We simulated two different quantile

(τ = 0.25 and τ = 0.5) values and see that in both cases the test has an increasing power for

increasing values of β and sample size. In particular, for a sample size of n = 100 the flat

function corresponding to β = 0.15 are recognized as alternatives. Note that this is not in

contradiction with our theory since all the results under H0 require that the quantile curves

be strictly increasing.

In model 5, the median is a strictly increasing function while the outer quantile curves are
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not increasing. In table 3, we report the simulation results for three different quantile values

(τ = 0.25, τ = 0.5 and τ = 0.75) and two sample sizes n = 50 and n = 100. For n = 50, the

observed rejection probabilities are slightly above the nominal critical values (for τ = 0.5),

and the cases τ = 0.25 and τ = 0.75 are recognized as alternatives. For n = 100, the test

holds its level for τ = 0.5 and also shows a slow increase in power at the other quantiles.

Overall, we can conclude that the proposed test shows a satisfactory behavior.

Please insert Tables 2 and 3 here

6 Conclusion

The paper at hand considered location-scale models in the context of nonparametric quan-

tile regression. For the first time a test for model validity was investigated. It is based

on the empirical independence process of covariates and residuals built from nonparametric

estimators for the location and scale functions. The process converges weakly to a Gaus-

sian process. A bootstrap version of the test was investigated in theory and by means of

a simulation study. The theoretical results open a new toolbox to test for various model

hypotheses in location-scale quantile models. As example we considered in detail the test-

ing for monotonicity of a conditional quantile function in theory as well as in simulations.

Similarly other structural assumptions on the location or the scale function can be tested.

All weak convergence results are proved in the appendix and supplementary material in a

detailed manner. A small simulation study demonstrated that the proposed method works

well.
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model 1

n = 50 n = 100

α 0.05 0.1 0.2 0.05 0.1 0.2

0.04 0.085 0.173 0.037 0.08 0.176

model 2

n = 50 n = 100

b = 1 0.084 0.145 0.267 0.146 0.255 0.41

b = 2.5 0.275 0.383 0.542 0.643 0.743 0.851

b = 5 0.408 0.539 0.689 0.823 0.888 0.945

b = 10 0.459 0.602 0.726 0.796 0.872 0.935

model 3

n = 50 n = 100

c = 0.2 0.045 0.094 0.171 0.052 0.089 0.169

c = 1 0.061 0.102 0.215 0.052 0.103 0.221

Table 1: Rejection probabilities for testing validity of the location-scale hypothesis [see Section

3] in models 1-3.
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τ = 0.25 τ = 0.5

n = 50 n = 100 n = 50 n = 100

α 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

β = 0 0.029 0.059 0.145 0.04 0.072 0.152 0.022 0.057 0.139 0.042 0.085 0.175

β = 0.15 0.049 0.088 0.187 0.076 0.143 0.261 0.055 0.099 0.191 0.079 0.153 0.281

β = 0.25 0.059 0.118 0.226 0.139 0.242 0.401 0.073 0.118 0.240 0.131 0.229 0.391

β = 0.45 0.132 0.216 0.389 0.279 0.442 0.644 0.117 0.213 0.365 0.201 0.315 0.510

Table 2: Rejection probabilities for the test for monotonicity of quantile curves in model 4.

n = 50 n = 100

α 0.05 0.1 0.2 0.05 0.1 0.2

τ = 0.25 0.213 0.277 0.390 0.246 0.32 0.449

τ = 0.5 0.083 0.138 0.239 0.054 0.1 0.192

τ = 0.75 0.149 0.235 0.364 0.212 0.316 0.437

Table 3: Rejection probabilities for the test for monotonicity of quantile curves in model 5.

Different rows correspond to the 0.25, 0.5 and 0.75 quantile curves, respectively.

20



A Proof of weak convergence results

Before beginning with the proof, we give a brief overview of the results. The proofs of the

main Theorems (Theorem 3.1 and 4.1) and the bootstrap versions (Theorems 3.6 and 4.2)

are contained in Appendixes A and B, respectively. Technical details needed in the proofs

of those results can be found in Appendix C.1 (in the supplementary material). Finally,

Appendix C.2 (as well in the supplement) contains basic results on linearized versions and

differentiability of the quantile estimator q̂τ , scale estimator ŝ and the corresponding boot-

strap versions.

Proof of Theorem 3.1. For the joint empirical distribution function defined in (3.2)

we have

F̂X,ε,n(t, y) =
1

n

n∑
i=1

I
{
εi ≤ y

ŝ(Xi)

s(Xi)
+
q̂τ (Xi)− qτ (Xi)

s(Xi)

}
I{2hn < Xi ≤ t}.

Note that by Lemma C.1 without changing the asymptotic distribution of the process the

residuals ε̂i can be replaced by their versions obtained from linearized estimators q̂τ,L, ŝL

instead of q̂τ , ŝ (see Appendix C.2 for the definitions). Thus we have

F̂X,ε,n(t, y) =
1

n

n∑
i=1

I
{
εi ≤ y

ŝL(Xi)

s(Xi)
+
q̂τ,L(Xi)− qτ (Xi)

s(Xi)

}
I{2hn < Xi ≤ t}+ op(

1√
n
).

From this we obtain the expansion

F̂X,ε,n(t, y) =
1

n

n∑
i=1

I{εi ≤ y}I{2hn < Xi ≤ t}

+

∫ 1−2hn

2hn

(
Fε

(
y
ŝL(x)

s(x)
+
q̂τ,L(x)− qτ (x)

s(x)

)
− Fε(y)

)
I{x ≤ t}fX(x) dx(A.1)

+ op(
1√
n
)

uniformly with respect to t ∈ [2hn, 1 − 2hn] and y ∈ R by the following argumentation.

Consider the empirical process

Gn(ϕ) =
1√
n

n∑
i=1

(
ϕ(Xi, εi)−E[ϕ(Xi, εi)]

)
, ϕ ∈ F ,

indexed by the following class of functions,

F =
{
(X, ε) �→ I{ε ≤ yd2(X) + d1(X)}I{h < X}I{X ≤ t} − I{ε ≤ y}I{h < X}I{X ≤ t}∣∣∣ y ∈ R, h, t ∈ [0, 1], d1 ∈ C1+δ

1 [0, 1], d2 ∈ C̃1+δ
2 [0, 1]

}
,
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for some arbitrary δ ∈ (0, 1), where the function class C1+δ
c [0, 1] is defined as the set of

differentiable functions g : [0, 1] → R with derivatives g′ such that

max
{

sup
x∈[0,1]

|g(x)|, sup
x∈[0,1]

|g′(x)|
}
+ sup

x,z∈[0,1]

|g′(x)− g′(z)|
|x− z|δ ≤ c

[see van der Vaart and Wellner (1996, p. 154)]. We further by slight abuse of notation

define the subset C̃1+δ
2 ([0, 1]) of C1+δ

1 ([0, 1]) by the additional constraint infx∈[0,1] g(x) ≥ 1/2.

Now F is a product of the uniformly bounded Donsker classes {(X, ε) �→ I{h < X}I{X ≤
t}|h, t ∈ [0, 1]} and {(X, ε) �→ I{ε ≤ yd2(X)+d1(X)}−I{ε ≤ y}|y ∈ R, d1 ∈ C1+δ

1 [0, 1], d2 ∈
C̃1+δ

2 [0, 1]} [the Donsker property for the second class is shown in Lemma 1 by Akritas and

Van Keilegom (2001)] and is therefore Donsker as well (Ex. 2.10.8, van der Vaart and Wellner

(1996), p. 192). The remaining part of the proof for equality (A.1) follows exactly the lines

of the end of the proof of Lemma 1, Akritas and Van Keilegom (2001), p. 567, using the

inequality

Var
(
I{ε1 ≤ yd2(X1) + d1(X1)}I{h < X1}I{X1 ≤ s} − I{ε1 ≤ y}I{h < X1}I{X1 ≤ s}

)
≤ E

[(
I{ε1 ≤ yd2(X1) + d1(X1)} − I{ε1 ≤ y}

)2]
and applying Lemmata C.3 and C.4 below. For ϕ = ϕh,t,y,d1,d2 we obtain

sup
y∈R,

t∈[2hn,1−2hn]

∣∣∣Gn

(
ϕ
2hn,t,y,

q̂τ,L−qτ

s
,
ŝL
s

)∣∣∣ = oP (1)

and thus (A.1).

Further, by a Taylor expansion we obtain from (A.1) together with assumption (A4) that

F̂X,ε,n(t, y) =
1

n

n∑
i=1

I{εi ≤ y}I{2hn < Xi ≤ t}+ yfε(y)

∫ 1−2hn

2hn

ŝL(x)− s(x)

s(x)
I{x ≤ t}fX(x) dx

+ fε(y)

∫ 1−2hn

2hn

q̂τ,L(x)− qτ (x)

s(x)
I{x ≤ t}fX(x) dx+ oP (

1√
n
)

uniformly with respect to t ∈ [2hn, 1−2hn] and y ∈ R. Applying Lemma C.2 below it follows

that

F̂X,ε,n(t, y) =
1

n

n∑
i=1

I{εi ≤ y}I{2hn < Xi ≤ t} − φ(y)
1

n

n∑
i=1

(I{εi ≤ 0} − τ)I{2hn < Xi ≤ t}

− ψ(y)
1

n

n∑
i=1

(
I{|εi| ≤ 1} − 1

2

)
I{2hn < Xi ≤ t}+ oP (

1√
n
),

where φ and ψ are defined in the assertion of the theorem. Thus noting that F̂X,n(1−2hn)−
F̂X,n(2hn) = FX(1−2hn)−FX(2hn)+ oP (1) = 1+ oP (1), from the definition (3.3) we obtain
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by Slutsky’s lemma that

Sn(t, y) =
1√
n

n∑
i=1

(
I{εi ≤ y} − Fε(y)− φ(y)(I{εi ≤ 0} − τ)− ψ(y)

(
I{|εi| ≤ 1} − 1

2

))

×
(
I{2hn < Xi ≤ t} − I{2hn < Xi ≤ 1− 2hn} F̂X,n(t)− F̂X,n(2hn)

F̂X,n(1− 2hn)− F̂X,n(2hn)

)
+ oP (1).

uniformly with respect to t ∈ [2hn, 1 − 2hn] and y ∈ R. Note that the dominating part

of this process vanishes in the boundary points t = 2hn and t = 1 − 2hn. Further, from

F̂X,n(t) = FX(t) + Op(n
−1/2) uniformly in t ∈ [0, 1] and FX(2hn) → 0, FX(1− 2hn) → 1 we

have

Sn(t, y) = Sn,1(t, y) + oP (1),

uniformly with respect to t ∈ [0, 1], y ∈ R, where Sn,1(t, y) = 0 for t ∈ [0, 2hn) ∪ (1− 2hn, 1]

and

Sn,1(t, y) =
1√
n

n∑
i=1

g(εi, y)
(
I{2hn < Xi ≤ t} − I{2hn < Xi ≤ 1− 2hn}FX(t)

)

for t ∈ [2hn, 1− 2hn] and y ∈ R, where g(εi, y) = I{εi ≤ y}− Fε(y)− φ(y)(I{εi ≤ 0} − τ)−
ψ(y)(I{|εi| ≤ 1} − 1

2
) is centered and independent of Xi. The first assertion of the theorem

now follows if we show that for

Sn,2(t, y) =
1√
n

n∑
i=1

g(εi, y)
(
I{Xi ≤ t} − FX(t)

)
, t ∈ [0, 1], y ∈ R,

we have supt∈[0,1],y∈R |Sn,1(t, y)− Sn,2(t, y)| = oP (1), which is equivalent to

sup
t∈[2hn,1−2hn],y∈R

|Sn,1(t, y)− Sn,2(t, y)| = oP (1)(A.2)

together with

sup
t∈[0,2hn)∪(1−2hn,1],y∈R

|Sn,2(t, y)| = oP (1).(A.3)

We will only show (A.2); (A.3) follows by similar arguments. Note that Sn,1(t, y)−Sn,2(t, y) =

Gn(hn, t, y) for t ∈ [2hn, 1− 2hn], y ∈ R, where the process

Gn(h, t, y) =
−1√
n

n∑
i=1

g(εi, y)(I{Xi ≤ t} − FX(t))I{Xi ∈ [0, 2h) ∪ (1− 2h, 1]}

23



indexed in h ∈ [0, 1
4
], t ∈ [0, 1], y ∈ R, converges weakly to a centered Gaussian process G

with asymptotic variance

Var(G(h, t, y)) = E[g2(ε1, y)]
(
(FX(t ∧ 2h) + FX(t)− FX(t ∧ (1− 2h)))(1− 2FX(t))

+ F 2
X(t)(FX(2h) + 1− FX(1− 2h))

)
.

For h = hn → 0 this asymptotic variance vanishes uniformly with respect to y and t. From

asymptotic equicontinuity ofGn (confer van der Vaart and Wellner, 1996, p. 89/90), using the

asymptotic variance as semi-metric, with Gn(0, t, y) ≡ 0 it follows that supt,y |Gn(hn, t, y)| =
oP (1) and thus (A.2).

Hence, we have shown the first assertion of the theorem, i. e. Sn = Sn,2 + oP (1) uniformly.

Weak convergence of Sn,2 (and thus of Sn) to a centered Gaussian process with the asserted

covariance structure follows by standard arguments. �

Proof of Theorem 4.1. Note that the process Sn,I as defined in (4.2) reduces to Sn

defined in (3.3) when pseudo-residuals are replaced by unconstrained residuals, i. e. when

q̂τ,I is replaced by q̂τ in the definition (4.1). Now let c = infx∈[0,1] q′τ (x) and note that by our

assumptions c > 0 and by Lemmata C.3 and C.4 we have P (supx∈[0,1] |q̂′τ (x)−q′τ (x)| > c
2
) → 0

for n→ ∞. For every ε > 0 it follows that

P
(

sup
t∈[0,1],y∈R

|Sn(t, y)− Sn,I(t, y)| > ε
)

≤ P
(

sup
t∈[0,1],y∈R

|Sn(t, y)− Sn,I(t, y)| > ε , sup
x∈[0,1]

|q̂′τ (x)− q′τ (x)| ≤
c

2

)
+ o(1)

≤ P
(

sup
t∈[0,1],y∈R

|Sn(t, y)− Sn,I(t, y)| > ε , inf
x∈[0,1]

q̂′τ (x) > 0
)
+ o(1)(A.4)

= o(1).

Here the last equality is due to the following argumentation. If infx∈[0,1] q̂′τ (x) > 0, then

q̂τ is strictly increasing, and for any increasing function q̂τ the increasing rearrangement,

here q̂τ,I , equals the original function function, i. e. q̂τ,I = q̂τ (see Section 4). But then,

Sn(t, y) = Sn,I(t, y) for all t, y and the probability in (A.4) is zero. Hence, we have shown

that uniformly with respect to t ∈ [0, 1] and y ∈ R, Sn(t, y) = Sn,I(t, y)+oP (1) and therefore

the assertion follows from Theorem 3.1. �
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B Validity of bootstrap

Proof of Theorem 3.6.

In Lemma C.1 it is shown that in the process F̂ ∗
X,ε,n the residuals ε̂∗i can be replaced by

the linearized versions ε̂∗i,L (see Appendix C.2 for the definitions). Now let f̃ε denote the

density corresponding to F̃ε. Then note that under assumptions (B1) and (B2), Lemma 2

and Proposition 4 in Neumeyer (2009a) are valid as well as

sup
y∈R

|f̃ε(y)− fε(y)| = o((
hn
logn

)1/2), sup
y∈R

|yf̃ε(y)− yfε(y)| = o(1)(B.1)

almost surely, where those two additional results can be shown analogously to the first part

of Lemma 2 in the aforementioned paper. The second result in (B.1) will also play an

important role in the proof of Lemma C.2. Using this as well as Lemma C.3 (instead of

Lemma 3 in the reference) we obtain analogously to the proofs of Lemma 1(i) and Theorem

2 in Neumeyer (2009a) that

F̂ ∗
X,ε,n(t, y)

=
1

n

n∑
i=1

I{ε̂∗i,L ≤ y}I{4hn < Xi ≤ 1− 4hn}+ oP (
1√
n
)

=
1

n

n∑
i=1

I{ε∗i ≤ y}I{4hn < Xi ≤ t}

+

∫ (
F̃ε

(
y
ŝ∗L(x)
ŝL(x)

+
q̂∗τ,L(x)− q̂τ,L(x)

ŝL(x)

)
− F̃ε(y)

)
I{4hn < x ≤ t}fX(x) dx

+ oP (
1√
n
)

uniformly with respect to t ∈ (4hn, 1 − 4hn], y ∈ R. By a Taylor expansion for F̃ε and due

to Lemma C.2 we obtain

F̂ ∗
X,ε,n(t, y) =

1

n

n∑
i=1

I{4hn < Xi ≤ t}
(
I{ε∗i ≤ y} − ψ̃n(y)

(
I{|ε∗i | ≤ 1} − 1

2

)

− φ̃n(y)
(
I{ε∗i ≤ 0} − τ

))
+ oP (

1√
n
)

uniformly with respect to t ∈ (4hn, 1− 4hn], y ∈ R, where

ψ̃n(y) =
yf̃ε(y)

f|ε|(1)
, φ̃n(y) =

f̃ε(y)

fε(0)

(
1− y

fε(1)− fε(−1)

f|ε|(1)

)
.
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By the definition of the process S∗
n one now directly has

S∗
n(t, y)

=
1√
n

n∑
i=1

(
I{ε∗i ≤ y} − ψ̃n(y)

(
I{|ε∗i | ≤ 1} − 1

2

)
− φ̃n(y)

(
I{ε∗i ≤ 0} − τ

))

×
(
I{4hn < Xi ≤ t} − I{4hn < Xi ≤ 1− 4hn} F̂X,n(t)− F̂X,n(4hn)

F̂X,n(1− 4hn)− F̂X,n(4hn)

)
+ oP (1)

=
1√
n

n∑
i=1

gn(ε
∗
i , y)

(
I{4hn < Xi ≤ t} − I{4hn < Xi ≤ 1− 4hn} F̂X,n(t)− F̂X,n(4hn)

F̂X,n(1− 4hn)− F̂X,n(4hn)

)
+ oP (1)

uniformly with respect to t ∈ (4hn, 1− 4hn], y ∈ R, with

gn(ε
∗
i , y)

= I{ε∗i ≤ y} − F̃ε(y)− φ̃n(y)
(
I{ε∗i ≤ 0} − F̃ε(0)

)
− ψ̃n(y)

(
I{|ε∗i | ≤ 1} − F̃ε(1) + F̃ε(−1)

)
.

Note that E[gn(ε
∗
i , y) | Yn] = 0 and the dominating part of the process S∗

n vanishes in the

boundary points t = 4hn and t = 1 − 4hn, for all y ∈ R. Similarly to the corresponding

arguments in the proof of Theorem 3.1 (but with more technical effort) it can be shown

that this process is equivalent in terms of conditional weak convergence in ∞([0, 1]× R) in

probability to the process

S∗
n,2(t, y) =

1√
n

n∑
i=1

gn(ε
∗
i , y)

(
I{Xi ≤ t} − F̂X,n(t)

)
, t ∈ [0, 1], y ∈ R.

Details are omitted for the sake of brevity.

It is easy to see that the conditional covariances Cov(S∗
n,2(s, y), S

∗
n,2(t, z) | Yn) converge

almost surely to Cov(S(s, y), S(t, z)) as defined in Theorem 3.1. Thus it remains to show

conditional tightness and conditional fidi convergence of S∗
n,2. To obtain the latter we use

Cramér-Wold’s device. Let k ∈ N, (y1, t1), . . . , (yk, tk) ∈ R × [0, 1], a1, . . . , ak ∈ R and

Zn =
∑k

j=1 ajS
∗
n,2(yj, tj) = n−1/2

∑n
i=1 zn,i. Note that for some constant c, |gn(ε∗i , y)(I{Xi ≤

t} − F̂X,n(t))| ≤ 1+ c(1 + y)f̃ε(y), which converges almost surely to 1+ c(1 + y)fε(y) due to

(B.1) and thus is almost surely bounded. From this the validity of the conditional Lindeberg

condition easily follows, i. e.

Ln(δ) =
1

n

n∑
i=1

E[z2n,iI{|zn,i| > n1/2δ} | Yn] → 0 almost surely, for all δ > 0.

Finally, to prove conditional tightness we apply the quantile transformation F−1
ε to be able

to consider the process in ∞([0, 1]2) and use the decomposition S∗
n,2(F

−1
ε (s), t) = Un(s, t)−
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φ̃n(F
−1
ε (s))Vn,1(t)− ψ̃n(F

−1
ε (s))Vn,2(t)− F̂X,n(t)Wn(s), where

Un(s, t) =
1√
n

n∑
i=1

(
I{ε∗i ≤ F−1

ε (s)} − F̃ε(F
−1
ε (s))

)
I{Xi ≤ t}

Vn,1(t) =
1√
n

n∑
i=1

(
I{ε∗i ≤ 0} − F̃ε(0)

)(
I{Xi ≤ t} − F̂X,n(t)

)

Vn,2(t) =
1√
n

n∑
i=1

(
I{|ε∗i | ≤ 1} − F̃ε(1) + F̃ε(−1)

)(
I{Xi ≤ t} − F̂X,n(t)

)

Wn(s) =
1√
n

n∑
i=1

(
I{ε∗i ≤ F−1

ε (s)} − F̃ε(F
−1
ε (s))

)
.

We show tightness seperately for the four processes in the decomposition. For Un we apply

Bickel and Wichura’s (1971) condition. To this end first consider neighbouring blocks A =

(x, y]× (s, t] and B = (y, z]× (s, t] in [0, 1]2 and note that by a straightforward calculation

E
[( 1√

n

n∑
i=1

(
I{F−1

ε (x) < ε∗i ≤ F−1
ε (y)} − F̃ε(F

−1
ε (y)) + F̃ε(F

−1
ε (x))

)
I{s < Xi ≤ t}

)2

( 1√
n

n∑
i=1

(
I{F−1

ε (y) < ε∗i ≤ F−1
ε (z)} − F̃ε(F

−1
ε (z)) + F̃ε(F

−1
ε (y))

)
I{s < Xi ≤ t}

)2 ∣∣∣Yn

]

≤ 1

n
E
[(
I{x < Fε(ε

∗
1) ≤ y} − F̃ε(F

−1
ε (y)) + F̃ε(F

−1
ε (x))

)2

(
I{y < Fε(ε

∗
1) ≤ z} − F̃ε(F

−1
ε (z)) + F̃ε(F

−1
ε (y))

)2 ∣∣∣Yn

]
(F̂X,n(t)− F̂X,n(s))

+ E
[(
I{x < Fε(ε

∗
1) ≤ y} − F̃ε(F

−1
ε (y)) + F̃ε(F

−1
ε (x))

)2 ∣∣∣Yn

]
× E

[(
I{y < Fε(ε

∗
1) ≤ z} − F̃ε(F

−1
ε (z)) + F̃ε(F

−1
ε (y))

)2 ∣∣∣Yn

]
(F̂X,n(t)− F̂X,n(s))

2

+ 2

(
E
[(
I{x < Fε(ε

∗
1) ≤ y} − F̃ε(F

−1
ε (y)) + F̃ε(F

−1
ε (x))

)
(
I{y < Fε(ε

∗
1) ≤ z} − F̃ε(F

−1
ε (z)) + F̃ε(F

−1
ε (y))

) ∣∣∣Yn

])2

(F̂X,n(t)− F̂X,n(s))
2.

Now calculating the conditional expectations one obtains the simple bound(
F̃ε(F

−1
ε (y))− F̃ε(F

−1
ε (x))

)(
F̃ε(F

−1
ε (z))− F̃ε(F

−1
ε (y))

)
(F̂X,n(t)− F̂X,n(s))

2 = μn(A)μn(B).

Here we have used that either F̂X,n(t) − F̂X,n(s) = 0 or 1
n
≤ F̂X,n(t) − F̂X,n(s). Further

μn((a, b] × (c, d]) = (F̃ε(F
−1
ε (b)) − F̃ε(F

−1
ε (a)))(F̂X,n(d) − F̂X,n(c)) converges almost surely

to μ((a, b] × (c, d]) = (b − a)(FX(d) − FX(c)). By a similar but simpler calculation for

neighbouring blocks A = (x, y]×(s, t] andB = (x, y]×(t, u] one altogether obtains conditional

tightness of Un almost surely.
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For the other three processes first note that conditional weak convergence of Vn,1 and Vn,2

to centered Gaussian processes, almost surely, can be shown analogously to the proof of

bootstrap validity in Birke and Neumeyer (2013), following the proof of Lemma A.3 by

Stute et al. (1998). Now to prove tightness of the second process in the decomposition in

terms of asymptotic stochastic equicontinuity the limit limδ→0 limn→∞ for the conditional

probability

P

(
sup

|s1−s2|<δ
|t1−t2|<δ

|φ̃n(F
−1
ε (s1))Vn,1(t1)− φ̃n(F

−1
ε (s2))Vn,1(t2)| > η

∣∣∣∣ Yn

)

≤ P

(
sup
y∈R

|φ̃n(y)− φ(y)|+
(

sup
|s1−s2|<δ

|φ(F−1
ε (s1))− φ(F−1

ε (s2))|
)

sup
t∈[0,1]

|Vn,1(t)| > η

2

∣∣∣∣ Yn

)

+ P

((
sup
y∈R

|φ̃n(y)− φ(y)|+ sup
y∈R

|φ(y)|
)

sup
|t1−t2|<δ

|Vn,1(t1)− Vn,1(t2)| > η

2

∣∣∣∣ Yn

)

should be zero for almost all sequences (X1, Y1), (X2, Y2), . . ., for all η > 0. For the first

probability this follows by uniform almost sure convergence of φ̃n to φ, uniform continuity

of φ and conditional weak convergence of supt∈[0,1] |Vn,1(t)| almost surely. For the second

probability it follows from uniform almost sure convergence of φ̃n, boundedness of φ and

conditional tightness of Vn,1. The proof of conditional tightness of the third process in the

decomposition, i. e. ψ̃n(F
−1
ε (s))Vn,2(t), is completely analogous. Also, conditional tightness of

F̂X,n(t)Wn(s) follows from almost sure uniform convergence of F̂X,n to FX , uniform continuity

of FX and conditional weak convergence (and, thus, conditional tightness) ofWn. The latter

is completely analogous to Theorem 4 by Neumeyer (2009a).

This completes the proof. �

Proof of Theorem 4.2.

Theorem 4.2 follows from Theorem 3.6 in the same manner as Theorem 4.1 follows from

Theorem 3.1 by application of Lemmata C.3 and C.4. �

28



References

J. Abrevaya (2005). Isotonic quantile regression: asymptotics and bootstrap. Sankhyā 67,
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C Supplement to “The independence process in con-

ditional quantile location-scale models and an ap-

plication to testing for monotonicity” by Melanie

Birke, Natalie Neumeyer and Stanislav Volgushev

— Technical results

C.1 Main results for proofs

Define εi,L as the estimated residuals based on linearized versions q̂τ,L, ŝL [see Appendix

C.2 for their definition], i.e. ε̂i,L := (Yi − q̂τ,L(Xi))/ŝL(Xi), and ε̂∗i,L as the corresponding

quantities in the bootstrap setting, that is

ε̂∗i,L =
Y ∗
i − q̂∗L(Xi)

ŝ∗L(Xi)
=
ŝL(Xi)ε

∗
i + q̂L(Xi)− q̂∗L(Xi)

ŝ∗L(Xi)

The following Lemma demonstrates, that the sequential empirical process based on the resid-

uals ε̂i = (Yi − q̂τ (Xi))/ŝ(Xi) computed from the initial estimators q̂τ , ŝ and the sequential

empirical process of residuals based on εi,L have the same first order expansion.

Lemma C.1 Assume that (K1)-(K6), (A1)-(A5), (BW) hold. Then

sup
t∈[2hn,1−2hn],y∈Y

∣∣∣ 1√
n

∑
i

I{2hn ≤ Xi ≤ t}(I{ε̂i ≤ y} − I{ε̂i,L ≤ y})
∣∣∣ = oP (1)

uniformly in t. If additionally (B1)-(B2) hold we also have

sup
t∈[4hn,1−4hn],y∈Y

∣∣∣ 1√
n

∑
i

I{4hn ≤ Xi ≤ t}(I{ε̂∗i ≤ y} − I{ε̂∗i,L ≤ y})
∣∣∣ = oP (1).

Proof We only proof the second assertion since the first one follows by similar but easier

arguments. Start by observing that by assumption there exists a set Dn whose probability

tends to one such that on Dn we have

(i) supx∈[4hn,1−4hn]

(
|q̂(x)− q̂τ,L(x)|+ |q̂∗(x)− q̂∗τ,L(x)|+ |ŝ(x)− ŝL(x)|+ |ŝ∗(x)− ŝ∗L(x)|

)
≤ γn

(ii) infx∈[4hn,1−4hn]min(ŝL(x), ŝ
∗
L(x)) ≥ c > 0

(iii) supy∈Y |yf̃ε(y)| ≤ C

for some deterministic sequence γn = o(1/
√
n) and finite constants C, c > 0. A standard

Taylor expansion shows that on Dn∣∣∣I{ε̂∗i ≤ y} − I{ε̂∗i,L ≤ y}
∣∣∣ ≤ I

{∣∣∣Ui − F̃ε

(
y
ŝ∗L(Xi)

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)∣∣∣ ≤ Cγn

}
=: Zn,y,Cγn(Ui, Xi).

i



In the same manner as the proof of Proposition 3 in Neumeyer (2009a) it follows from

assumptions (B1) and (B2) that the classes of functions

Gn,2 :=
{
v �→ F̃ε

(
y
ŝ∗L(v)
ŝL(v)

+
q̂∗τ,L(v)− q̂τ,L(v)

ŝL(v)

)∣∣∣y ∈ Y
}

are with probability tending to one contained in classes of functions Gn,3 with bracketing

numbers satisfying the assumptions of part one of Lemma C.9. Thus the class of functions

Fn :=
{
(u, v) �→ I{s ≤ u ≤ t}

(
I{|v − g(u)| ≤ z}

)∣∣∣g ∈ Gn,2, s, t ∈ [4hn, 1− 4hn], |z| ≤ Cγn

}
satisfies logN[ ](ε,F , L2(P )) ≤ Cε−2a, see Lemma C.10, and moreover, standard arguments

show that supg∈Fn

∫
gdP = o(1/

√
n) and supg∈Fn

∫
g2dP = o(1). Here, P denotes the

probability distribution of (Xi, Ui) and g2 = g for all g ∈ Fn. Finally observe that, with

probability tending to one,

sup
t∈[4hn,1−4hn],y∈Y

1√
n

∑
i

(
I{h ≤ Xi ≤ t}Zn,y,Cγn(Ui, Xi)−

∫ t

h

∫
Zn,y,Cγn(v, u)fX(u)dvdu]

)

≤ √
n sup

g∈Fn

(

∫
gdPn −

∫
gdP ),

and the right-hand side of the inequality is of order oP (1) by part one of Lemma C.9 .

Moreover, standard arguments yield∫ t

h

∫
Zn,y,Cγn(v, u)fX(u)dvdu = oP (1/

√
n).

Summarizing, we have obtained the estimate

sup
t∈[4hn,1−4hn],y∈Y

1√
n

∑
i

I{4hn ≤ Xi ≤ t}Zn,y,Cγn(Ui, Xi) = oP (1).

and thus the proof is complete. �

Lemma C.2 Assume that the conditions (K1)-(K6), (A1)-(A5), (BW) hold. Then

∫ t

hn

q̂τ,L(x)− qτ (x)

s(x)
fX(x)fε(0)dx = −1

n

n∑
i=1

(I{εi ≤ 0} − τ)I[hn,t](Xi) + oP (1/
√
n)

uniformly in t ∈ [hn, 1− hn] and∫ t

2hn

ŝL(x)− s(x)

ŝ(x)
fX(x) dx

= −1

n

n∑
i=1

I[2hn,t](Xi)

f|ε|(1)

(
I{|εi| ≤ 1} − 1

2
− (I{εi ≤ 0} − τ)(fε(1)− fε(−1))

fε(0)

)
+ oP (

1√
n
)

ii



uniformly in t ∈ [2hn, 1− 2hn].

If additionally (B1)-(B2) hold∫ t

3hn

q̂∗(x)− q̂τ,L(x)

ŝL(x)
fX(x)dx = −1

n

n∑
i=1

I{ε∗i ≤ 0} − τ

fε(0)
I[3hn,t](Xi) + oP (1/

√
n)

uniformly in t ∈ [3hn, 1− 3hn] and∫ t

4hn

ŝ∗(x)− ŝ(x)

ŝ(x)
fX(x) dx

= −1

n

n∑
i=1

I[4hn,t](Xi)

f|ε|(1)

(
I{|ε∗i | ≤ 1} − 1

2
− (I{ε∗i ≤ 0} − τ)(fε(1)− fε(−1))

fε(0)

)
+ oP (

1√
n
)

uniformly in t ∈ [4hn, 1− 4hn].

Proof We will only prove the representation for
∫ t

3hn

q̂∗(x)−q̂τ,L(x)

ŝL(x)
fX(x)dx since all other

results can be derived by analogous arguments.

Observe the decomposition q̂∗(x)− q̂τ,L(x) = q̂∗(x)−q(x)+ q(x)− q̂τ,L(x). Moreover we have

q̂∗(x) − q̂∗τ,L(x) = oP (1/
√
n), q̂∗τ,L(x) − qτ (x) = OP (rn), ŝL(x) − s(x) = OP (rn) uniformly in

x ∈ [3hn, 1− 3hn]. It thus suffices to establish∫ t

3hn

q̂∗τ,L(x)− qτ (x)

s(x)
fX(x)dx =

∫ t

3hn

q̂τ,L(x)− qτ (x)

s(x)
fX(x)dx− 1

n

n∑
i=1

I{ε∗i ≤ 0} − τ

fε(0)
I[3hn,t](Xi)

+oP (1/
√
n)

uniformly in t ∈ [3hn, 1− 3hn]. By definition we have

fX(x)(q̂
∗
L(x)− q(x))

s(x)

= −fX(x)u
t
1M(K)−1

fε(0)

∫ 1

−1

κ(v)
(
T̃ ∗
n,0,L,S(x, qτ+vbn(x)), . . . , T̃

∗
n,p,L,S(x, qτ+vbn(x))

)t

dv + oP (1
√
n)

where

T̃ ∗
n,k,L,S(x, y) =

1

nhn

1

fX(x)

n∑
i=1

Khn,k(x−Xi)
(
Ω
(Y ∗

i − y

dn

)
− FY (y|Xi)

)

Later we will establish the following two assertions

(A)

∫ t

3hn

T̃ ∗
n,k,L,S(x, qτ+vbn(x))fX(x)dx

=
1

n

∑
i

I[3hn,t−hn](Xi)

∫ 1

−1

K1,k(u)
(
Ω
(Y ∗

i − qτ+vbn(Xi + uhn)

dn

)
− FY (qτ+vbn(Xi + uh)|Xi)

)
du

iii



+oP (1/
√
n)

(B)
1

n

∑
i

I[3hn,t−hn](Xi)
(
I{Y ∗

i ≤ qτ+vbn(Xi + uhn) + y} − I{ε∗i ≤ y/ŝL(Xi)}
)

=
1

n

∑
i

I[3hn,t−hn](Xi)
(
F̄ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̄ε

(qτ (Xi)− q̂τ,L(Xi) + y

ŝL(Xi)

)

+fε

( y

ŝL(Xi)

)qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
+ oP (1/

√
n).

uniformly in t ∈ [3hn, 1− 3hn], u, v ∈ [−1, 1], y ∈ Y where F̄ε is defined in Lemma C.5. Now

convolving both sides of (B) [with respect to the argument y] with 1
dn
ω(·/dn) and evaluating

the result in 0 yields the identity

1

n

∑
i

I[3hn,t−hn](Xi)
(
Ω
(Y ∗

i − qτ+vbn(Xi + uhn)

dn

)
− Ω

( ε∗i
dn

))

=
1

n

∑
i

I[3hn,t−hn](Xi)
(
F̄ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi)

ŝL(Xi)

)
− F̄ε

(qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)

+fε(0)
qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
+ oP (1/

√
n).

As we will show at the end of this proof, it holds that

(C)
1

n

∑
i

I[3hn,t−hn](Xi)
(
Ω
( ε∗i
dn

)
− I{ε∗i ≤ 0}

)
= oP (1/

√
n).

Moreover, the uniform rates of q̂τ,L − qτ , ŝL − s and the fact that q̂τ,L ∈ Cδ
C with probability

tending to one combined with Lemma C.9 yield

1

n

∑
i

I[3hn,t−hn](Xi)
qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)
=

1

n

∑
i

I[3hn,t−hn](Xi)
qτ (Xi)− q̂τ,L(Xi)

s(Xi)
+ oP (1/

√
n)

=

∫ t−hn

3hn

qτ (u)− q̂τ,L(u)

s(u)
fX(u)du+ oP (1/

√
n)

=

∫ t

3hn

qτ (u)− q̂τ,L(u)

s(u)
fX(u)du+ oP (1/

√
n),

where the last equality follows for t ∈ [6hn, 1 − 3hn] (for t < 6hn, the indicator in the first

line vanishes). Finally, observe that the smoothness properties of F̄ε (defined in Lemma C.5)

and FY yield the representations

F̄ε

(qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
− F̄ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi)

ŝL(Xi)

)

= vbnγ(Xi) +

p∑
j=1

ξj(Xi, v, n)(uhn)
j + rn,1

FY (qτ+vbn(Xi + uhn)|Xi) = τ + vbn +

p∑
j=1

ζj(Xi, v, n)(uhn)
j + rn,2

iv



where the remainder terms rn,j are of order O(b2n + hp+1
n ) = o(1/

√
n) uniformly in u, v and

ξj , ζj denote some functions that do not depend on u and γ is a function not depending on

u. Combining all the arguments so far, we obtain∫ t

3hn

T̃ ∗
n,k,L,S(x, qτ+vbn(x))dx

= μk(K)
(
fε(0)

∫ t

3hn

qτ (u)− q̂τ,L(u)

s(u)
fX(u)du+

1

n

n∑
i=1

I[3hn,t−hn](Xi)(I{ε∗i ≤ 0} − τ)
)

+
hjn
n

p∑
j=1

μk+j(K)

n∑
i=1

I[3hn,t−hn](Xi)(ξj(Xi) + ζj(Xi)) + oP (1/
√
n)

Noting that by definition

et1M(K)−1(μj(K), . . . , μp+j(K))t = I{j = 0},

the proof thus will be complete once we establish (A)-(C) and

(D)
1

n

n∑
i=1

I[3hn,t−3hn](Xi)(I{ε∗i ≤ 0} − τ) =
1

n

n∑
i=1

I[hn,t](Xi)(I{ε∗i ≤ 0} − τ) + oP (1/
√
n)

uniformly in t ∈ [3hn, 1− 3hn].

Proof of (A) Remembering that K has support [−1, 1], we obtain for any t ∈ [3hn, 1−3hn]

the decomposition

Khn,k(x−Xi)I[3hn,t](x) = Khn,k(x−Xi)I[3hn,t](x)
(
I[t−hn,t+hn](Xi)+I[2hn,3hn](Xi)+I[hn,t−hn](Xi)

)
.

We will now show that the contributions corresponding to the summands containing I[2hn,3hn](Xi),

I[t−hn,t+hn](Xi) are negligible. Since both expressions can be treated analogously, we only

provide the arguments for I[t−hn,t+hn](Xi). By similar arguments as in the proof of Lemma

C.6 it is easy to show that

sup
t,x∈[3hn,1−3hn],y∈Y

∣∣∣ 1

nhn

n∑
i=1

Khn,k(x−Xi)

fX(x)
I[t−hn,t+hn](Xi)

(
Ω
(Y ∗

i − y

dn

)
− FY (y|Xi)

)∣∣∣
=: An = OP (rn)

for any compact Y ⊂ R. This yields uniformly in t ∈ [3hn, 1 − 3hn] [remember that Khn,k

vanishes outside of [−hn, hn] which yields the equality Khn,k(x −Xi)I[3hn,t](x) = Khn,k(x −
Xi)I[3hn,t](x)I[t−2hn,t+2hn](x)]∣∣∣ ∫ t

hn

1

nhn

n∑
i=1

Khn,k(x−Xi)

fX(x)
I[t−hn,t+hn](Xi)

(
Ω
(Y ∗

i − qτ+vbn(x)

dn

)
− FY (qτ+vbn(x)|Xi)

)
dx

∣∣∣
≤

∫ t+2hn

t−2hn

Andx = OP (hnrn) = oP (1/
√
n)

v



uniformly in t ∈ [3hn, 1− 3hn], v ∈ [−1, 1]. This completes the proof of (A).

Proof of (B) Observe that

I
{
Y ∗
i ≤ qτ+vbn(Xi + uhn) + y

}
= I

{
ε∗i ≤

qτ+vbn(Xi + uhn)− q̂(Xi) + y

ŝ(Xi)

}
and

1

n

∑
i

I[3hn,t−3hn](Xi)
(
I
{
ε∗i ≤

qτ+vbn(Xi + uhn)− q̂(Xi) + y

ŝ(Xi)

}
− I

{
ε∗i ≤

y

ŝL(Xi)

})

=
1

n

∑
i

I[3hn,t−3hn](Xi)
(
I
{
ε∗i ≤

qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

}
− I

{
ε∗i ≤

y

ŝL(Xi)

})
+ oP (1/

√
n)

=
1

n

∑
i

I[3hn,t−3hn](Xi)
(
F̃ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̃ε(y/ŝL(Xi))

)
+ oP (1/

√
n)

uniformly in t, v, u, which follows from Lemma C.9, Lemma C.10 and the properties of

F̃ε, q̂l, ŝL [the bracketing numbers can be bounded by observing that for y from bounded sets

the functions involved are all with probability tending to one contained in C1+δ
C ]. Next, an

application of Lemma C.5 yields

1

n

∑
i

I[3hn,t−3hn](Xi)F̃ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi)

ŝL(Xi)

)

=
1

n

∑
i

I[3hn,t−3hn](Xi)F̃ε

(qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
− 1

n

∑
i

I[3hn,t−3hn](Xi)F̄ε

(qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)

)

+
1

n

∑
i

I[3hn,t−3hn](Xi)F̄ε

(qτ+vbn(Xi + uhn)− q̂τ,L(Xi)

ŝL(Xi)

)
+ oP (1/

√
n),

where F̄ε is defined in Lemma C.5. Noting that

F̃ε

(qτ (Xi)− q̂τ,L(Xi) + y

ŝL(Xi)

)
− F̃ε(y) = f̃ε

( y

ŝL(Xi)

)qτ (Xi)− q̂τ,L(Xi)

ŝL(Xi)
+ oP (1/

√
n),

and remembering that f̃ε converges to fε uniformly with rate oP ((hn/ logn)
1/2) completes

the proof of (B).

Proof of (C) and (D). Define the sequence of sets S(δn) := {(t, yn, zn)|x ∈ [3hn, 1 −
3hn], yn, zn ∈ Y , |yn − zn| ≤ δn} for some δn = o(1) for some bounded Y containing zero.

Observe that, with probability tending to one,

sup
(t,yn,zn)∈S(δn)

∣∣∣1
n

n∑
i=1

I[3hn,t−3hn](Xi)
(
I{ε∗i ≤ yn} − I{ε∗i ≤ zn}+ F̃ε(zn)− F̃ε(yn)

)∣∣∣
≤ sup

(t,yn,zn)∈S(Cδn)

∣∣∣1
n

n∑
i=1

I[3hn,t−3hn](Xi)
(
I{Ui ≤ yn} − I{Ui ≤ zn}+ zn − yn

)∣∣∣
= oP (1/

√
n)

vi



by standard empirical, process arguments provided that δn = o(1). Assertion (D) can be

established by a similar argument. For a proof of assertion (C), note further that

F̃ε(zn)− F̃ε(yn) = F̄ε(zn)− F̄ε(yn)

uniformly in |yn − zn| = o(1) by Lemma C.5. Moreover, the smoothness of F̄ε implies that

we have [here, ∗ denotes convolution] 1
dn
(F̄ε(·)∗ω(·/dn))(y) = F̄ε(y)+oP(1/

√
n). Combining

this facts with the properties of convolution completes the proof of (C). A proof of (D)

follows from

sup
s,t∈[0,1]

∣∣∣ 1
n

n∑
i=1

(
I[3hn,s](Xi)− I[3hn,t](Xi)

)(
I{Ui ≤ F̃ε(0)} − Fε(0)

)∣∣∣
≤ sup

s,t,y∈[0,1]

∣∣∣ 1
n

n∑
i=1

(
I[3hn,s](Xi)− I[3hn,t](Xi)

)(
I{Ui ≤ y} − y

)∣∣∣
and standard empirical process arguments. �

C.2 Properties of q̂τ and ŝ

We start this section by introducing some notation and giving an overview of the derived

results. Define

Tn,k,S(x, y) :=
1

nhn

n∑
i=1

Kh,k(x−Xi)Ω
(y − Yi

dn

)
where Ω denotes a distribution function on R. Also, set

Tn,k,U(x, y) :=
1

nhn

n∑
i=1

Kh,k(x−Xi)I{Yi ≤ y}

and define F̂Y,U with Tn,k,S in the definition of Y replaced by Tn,k,U . Note that by definition,

Tn,k,S(x, ·) is a smoothed version of Tn,k,U(x, ·) that is obtained by convolution with the

function 1
dn
ω(·/dn) where ω := Ω′. In particular, this implies

Tn,k,S(x, y) =

∫
Tn,k,U(x, y − dnu)ω(u)du,

∂mx ∂
l
yTn,k,S(x, y) =

1

dln

∫
ω(l)(u/dn)∂

m
x Tn,k,U(x, y − dnu)du.

Define the quantities F̂|e|, F̂ ∗
Y , F̂

∗
|e| analogously with Yi replaced by |êi|, Y ∗

i , |e∗i |, respectively
where êi := Yi − q̂(Xi), ê

∗
i := Y ∗

i − q̂∗(Xi). The structure of the estimator makes it rather

complicated to directly analyze its derivatives with respect to x. However, it is possible to

derive an asymptotic representation of the form

F̂Y (y|x) = F̂Y,L,S(y|x) + oP (1/
√
n), F̂|e|(y|x) = F|e|,L,S(y|x) + oP (1/

√
n),

F̂ ∗
Y (y|x) = F̂ ∗

Y,L,S(y|x) + oP (1/
√
n), F̂ ∗

|e|(y|x) = F ∗
|e|,L,S(y|x) + oP (1/

√
n)
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holding uniformly over x, y where F̂Y,L,S(y|x) is defined as

F̂Y,L,S(y|x) := FY (y|x) + ut1M(K)−1
(
Tn,0,L,S(x, y), . . . , Tn,p,L,S(x, y)

)t

F̂|e|,L,S(y|x) := F|e|(y|x) + ut1M(K)−1
(
Te,n,0,L,S(x, y), . . . , Te,n,p,L,S(x, y)

)t

F̂ ∗
Y,L,S(y|x) := FY (y|x) + ut1M(K)−1

(
T ∗
n,0,L,S(x, y), . . . , T

∗
n,p,L,S(x, y)

)t

F̂ ∗
|e|,L,S(y|x) := F|e|(y|x) + ut1M(K)−1

(
T ∗
e,n,0,L,S(x, y), . . . , T

∗
e,n,p,L,S(x, y)

)t

where ut1 := (1, 0, ..., 0) denotes the first unit vector in R
p+1, M(K) denotes a (p+1)×(p+1)

matrix with entries

M(K)ij = μi+j−2(K) :=

∫
ui+j−2K(u)du,

and

Tn,k,L,S(x, y) :=
1

nh

n∑
i=1

1

fX(Xi)
Kh,k(x−Xi)

(
Ω
(y − Yi

dn

)
− FY (y|Xi)

)

Te,n,k,L,S(x, y) :=
1

nh

n∑
i=1

1

fX(Xi)
Kh,k(x−Xi)

(
Ω
(y − |Yi − q̂τ,L(Xi)|

dn

)
− Fe(y|Xi)

)

T ∗
n,k,L,S(x, y) :=

1

nh

n∑
i=1

1

fX(Xi)
Kh,k(x−Xi)

(
Ω
(y − Y ∗

i

dn

)
− FY (y|Xi)

)

T ∗
e,n,k,L,S(x, y) :=

1

nh

n∑
i=1

1

fX(Xi)
Kh,k(x−Xi)

(
Ω
(y − |Y ∗

i − q̂∗τ,L(Xi)|
dn

)
− Fe(y|Xi)

)
.

This, and further properties as differentiability and convergence rates of F̂Y,L,S(y|x), F̂|e|, F̂ ∗
Y , F̂

∗
|e|

is the subject of Lemma C.6.

Next, consider the functionals

HG,κ,τ,bn(F ) :=
1

bn

∫ 1

0

∫ τ

−∞
κ
(F (G−1(u))− v

bn

)
dvdu

and QG,κ,τ,bn(F ) := G−1(HG,κ,τ,bn(F )). Some properties of this functional are collected in

Lemma C.8. With this definition, the quantiles estimators q̂, ŝ, q̂∗, ŝ∗ can be represented as

q̂(x) = HG,κ,τ,bn(F̂Y (·|x)), q̂∗(x) = HG,κ,τ,bn(F̂
∗
Y (·|x)),

ŝ(x) = HGs,κ,τ,bn(F̂|e|(·|x)), ŝ∗(x) = HGs,κ,τ,bn(F̂
∗
|e|(·|x)).

The results in Lemma C.8 and properties of the estimators F̂Y , F̂|e|, F̂ ∗
Y , F̂

∗
|e| yield represen-

tations of the form

q̂τ (x) = q̂τ,L(x) + oP (n
−1/2), ŝ(x) = ŝL(x) + oP (n

−1/2),

q̂∗τ (x) = q̂∗τ,L(x) + oP (n
−1/2), ŝ∗(x) = ŝ∗L(x) + oP (n

−1/2)
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uniformly in x [see Lemma C.4] where

q̂α,L(x) := qα(x)− 1

fe(0|x)
∫ 1

−1

(
F̂Y,L,S(qα+vbn(x)|x)− FY (qα+vbn(x)|x)

)
κ(v)dv

= qα(x)− ut1M(K)−1

fe(0|x)
∫ 1

−1

κ(v)
(
Tn,0,L,S(x, qα+vbn(x)), . . . , Tn,p,L,S(x, qα+vbn(x))

)t

dv

ŝL(x) := s(x)− 1

f|ε|(1|x)
∫ 1

−1

(
F̂|e|,L,S(s1/2+vbn(x)|x)− F|e|(s1/2+vbn(x)|x)

)
κ(v)dv

= s(x)− ut1M(K)−1

f|ε|(1)

∫ 1

−1

κ(v)
(
Te,n,0,L,S(x, s1/2+vbn(x)), . . . , Te,n,p,L,S(x, s1/2+vbn(x))

)t

dv

q̂∗α,L(x) := qα(x)− 1

fe(0|x)
∫ 1

−1

(
F̂ ∗
Y,L,S(qt+vbn(x)|x)− FY (qt+vbn(x)|x)

)
κ(v)dv

= qα(x)− ut1M(K)−1

fe(0|x)
∫ 1

−1

κ(v)
(
T ∗
n,0,L,S(x, qα+vbn(x)), . . . , T

∗
n,p,L,S(x, qα+vbn(x))

)t

dv

ŝ∗L(x) := s(x)− 1

f|ε|(1)

∫ 1

−1

(
F̂ ∗
|e|,L,S(s1/2+vbn(x)|x)− F|e|(s1/2+vbn(x)|x)

)
κ(v)dv

= s(x)− ut1M(K)−1

f|ε|(1)

∫ 1

−1

κ(v)
(
T ∗
e,n,0,L,S(x, s1/2+vbn(x)), . . . , T

∗
e,n,p,L,S(x, s1/2+vbn(x))

)t

dv

Differentiability properties and convergence rates of derivatives of these estimators can ob-

viously be derived from the corresponding properties of the underlying distribution function

estimators, see Lemma C.3.

Lemma C.3 Let (K1)-(K6), (A1)-(A5), (BW) hold. Then for any k ≤ p

sup
x∈[hn,1−hn]

|q̂(k)τ,L(x)− q(k)τ (x)| = OP

( log h−1
n

nhn(hn ∧ dn)2k
)1/2

= oP (1),

sup
x∈[2hn,1−2hn]

|ŝ(k)L (x)− s(k)(x)| = OP

( log h−1
n

nhn(hn ∧ dn)2k
)1/2

= oP (1),

and under (B1)-(B2) it follows that

sup
x∈[3hn,1−3hn]

|(q̂∗τ,L)(k)(x)− q(k)τ (x)| = OP

( log h−1
n

nhn(hn ∧ dn)2k
)1/2

= oP (1),

sup
x∈[4hn,1−4hn]

|(ŝ∗L)(k)(x)− s(k)(x)| = OP

( log h−1
n

nhn(hn ∧ dn)2k
)1/2

= oP (1).

Proof of Lemma C.3 Directly follows from the definitions of the linearized versions. �

Lemma C.4 Let (K1)-(K6), (A1)-(A5), (BW) hold. Then

(i) sup
x∈[hn,1−hn]

|q̂(x)− q̂τ,L(x)| = oP (1/
√
n),

(ii) sup
x∈[2hn,1−2hn]

|ŝ(x)− ŝL(x)| = oP (1/
√
n),
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and if additionally (B1)-(B2) hold, we also have

(iii) sup
x∈[3hn,1−3hn]

|q̂∗(x)− q̂∗τ,L(x)| = oP (1/
√
n),

(iv) sup
x∈[4hn,1−4hn]

|ŝ∗(x)− ŝ∗L(x)| = oP (1/
√
n).

Proof Apply Lemma C.8 with F1 = F̂Y , F̂|e|, F̂ ∗
Y , F̂

∗
|e|, F2 = F̂Y,L, F̂|e|,L, F̂ ∗

Y,L, F̂
∗
|e|,L and F =

FY , F|e|, FY , F|e|, respectively. The corresponding assumptions are satisfied by Lemma C.8.

�

Lemma C.5 Let nα4
n = o(1) and assume that the conditions of (i), (i)’, (ii), (ii)’ of Lemma

C.6 hold. Then for any bounded Y ⊂ R we have

sup
a,b∈Y ,|a−b|≤dn

∣∣∣F̃ε(a)− F̃ε(b)−
(
F̄ε(a)− F̄ε(b)

)∣∣∣ = oP (1/
√
n)

where

F̄n(a) :=

∑
k I[2hn,1−2hn](Xk)FY (q̂τ,L(Xk) + aŝL(Xk)|Xk)∑

l I[2hn,1−2hn](Xl)
.

Proof Recalling the definition of F̃ε, it is easy to see that F̃ε(y) =
1
αn

(
F̂ε(·) ∗ φ(·/αn)

)
(y)

where

F̂ε(y) :=

∑
k I[2hn,1−2hn](Xk)I{Yk − q̂(Xk) ≤ yŝ(Xk)}∑

l I[2hn,1−2hn](Xl)
.

Standard calculations show that

1

αn

(
F̄ε(·) ∗ φ(·/αn)

)
(y) = F̄ε(y) + oP (1/

√
n)

uniformly in y ∈ Y . Thus it suffices to establish that

sup
|a−b|≤dn

∣∣∣F̂ε(a)− F̂ε(b)−
(
F̄ε(a)− F̄ε(b)

)∣∣∣ = oP (1/
√
n).

Since 1
n

∑
l I[2hn,1−2hn](Xl) = 1+ oP (1), we only need to consider the enumerator. Since Y is

uniformly bounded we have, with probability tending to one, uniformly in y ∈ Y∣∣∣I{Yk − q̂(Xk) ≤ yŝ(Xk)} − I{Yk − q̂τ,L(Xk) ≤ yŝL(Xk)}
∣∣∣

≤ I{Yk − q̂τ,L(Xk)− yŝL(Xk) ≤ γn} − I{Yk − q̂τ,L(Xk)− yŝL(Xk) ≤ −γn}

for some γn = o(1/
√
n). Moreover an application of Lemma C.10 shows that the functions

(u, v) �→ I{v − q̂τ,L(u)− yŝL(u) ≤ γn} − I{v − q̂τ,L(u)− yŝL(u) ≤ −γn}

x



are, with probability tending to one, contained in a class of functions satisfying the assump-

tions of the first part of Lemma C.9 with the additional property that each element has

expectation of order o(1/
√
n). In particular, this implies

sup
y∈Y

∣∣∣∑
k

I[2hn,1−2hn](Xk)
(
I{Yk−q̂(Xk) ≤ yŝ(Xk)}−I{Yk−q̂τ,L(Xk) ≤ yŝL(Xk)}

)∣∣∣ = oP (1/
√
n),

and thus it remains to consider

sup
a,b∈Y ,|a−b|≤dn

1

n

∑
k

I[2hn,1−2hn](Xi)
(
I{Yk ≤ q̂τ,L(Xk) + aŝL(Xk)} − I{Yk ≤ q̂τ,L(Xk) + bŝL(Xk)}

−FY (q̂τ,L(Xk) + aŝL(Xk)|Xk) + FY (q̂τ,L(Xk) + bŝL(Xk)|Xk)
)

By arguments similar to those given above, it is easily seen that this quantity is of order

oP (1/
√
n) if one notes that the smoothness assumptions on FY imply that with q̂τ,L, ŝL ∈

C1+δ
C with probability tending to one the same holds for the function u �→ FY (q̂τ,L(u) +

yŝL(u)|u) uniformly in y ∈ Y . This completes the proof. �

Lemma C.6 Assume that conditions (K1)-(K6), (A1)-(A5) and (BW) hold. Then for

any bounded Y ⊂ R we have

(i)′ F̂Y (y|x) = FY (y|x) + ut1M(K)−1
(
Tn,0,L,S(x, y), . . . , Tn,p,L,S(x, y)

)t

+ oP (1/
√
n)

=: F̂Y,L,S(y|x) + oP (1/
√
n)

uniformly in y ∈ Y , x ∈ [hn, 1− hn] and

(ii)′ F̂e(y|x) = Fe(y|x) + ut1M(K)−1
(
Te,n,0,L,S(x, y), . . . , Te,n,p,L,S(x, y)

)t

+ oP (1/
√
n)

=: F̂e,L,S(y|x) + oP (1/
√
n).

uniformly in y ∈ Y , x ∈ [2hn, 1− 2hn]. If additionally (B1)-(B2) hold,

(iii)′ F̂ ∗
Y (y|x) = FY (y|x) + ut1M(K)−1

(
T ∗
n,0,L,S(x, y), . . . , T

∗
n,p,L,S(x, y)

)t

+ oP (1/
√
n)

=: F̂ ∗
Y,L,S(y|x) + oP (1/

√
n).

uniformly in y ∈ Y , x ∈ [3hn, 1− 3hn] and

(iv)′ F̂ ∗
e (y|x) = Fe(y|x) + ut1M(K)−1

(
T ∗
e,n,0,L,S(x, y), . . . , T

∗
e,n,p,L,S(x, y)

)t

+ oP (1/
√
n)

=: F̂ ∗
e,L,S(y|x) + oP (1/

√
n)

uniformly in y ∈ Y , x ∈ [4hn, 1− 4hn].
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Assertions (i)’-(iv)’ continue to hold under their respective assumptions for T̃n,k, T̃e,n,k, T̃
∗
n,k, T̃

∗
e,n,k

where the fX(Xi) in the definition of Tn,k, Te,n,k, T
∗
n,k, T

∗
e,n,k is replaced by fX(x).

Moreover, (i)-(iv) hold under the assumptions of (i)′ − (iv)′, respectively.

(i) sup
y∈Y ,x∈[hn,1−hn]

|∂kx∂lyF̂Y,L,S(y|x)− ∂kx∂
l
yFY (y|x)| = OP

( logn

nh2k+1
n d2ln

)1/2

(ii) sup
y∈Y ,x∈[2hn,1−2hn]

|∂kx∂lyF̂e,L,S(y|x)− ∂kx∂
l
yFe(y|x)| = OP

( log n

nh2k+1
n d2ln

)1/2

(iii) sup
y∈Y ,x∈[3hn,1−3hn]

|∂kx∂lyF̂ ∗
Y,L,S(y|x)− ∂kx∂

l
yFY (y|x)| = OP

( log n

nh2k+1
n d2ln

)1/2

(iv) sup
y∈Y ,x∈[4hn,1−4hn]

|∂kx∂lyF̂ ∗
e,L,S(y|x)− ∂kx∂

l
yFe(y|x)| = OP

( log n

nh2k+1
n d2ln

)1/2

Proof of Lemma C.6

We will only provide the arguments for (iv) and (iv)’ since all other assertions can be derived

analogously. Define the quantity

T ∗
e,n,k,L(x, y) :=

1

nhn

n∑
i=1

1

fX(Xi)
Khn,k(x−Xi)

(
I{Y ∗

i ≤ y + q̂∗τ,L(Xi)} − Fe(y|Xi)
)

and note that T ∗
e,n,k,L,S(x, y) is, up to an error of order dpωn , the convolution of T ∗

e,n,k,L(x, ·)
with 1

dn
ω(·/dn). As we will now show, (iv)’ follows from the following assertion

(iva)′ F̂ ∗
e,U(y|x) = Fe(y|x) + ut1M(K)−1

(
T ∗
e,n,0,L(x, y), . . . , T

∗
e,n,p,L(x, y)

)t

+ oP (1/
√
n).

Assertion (iva)′ implies assertion (iv)′ since

(Fe(·|x) ∗ 1

dn
ω(·/dn))(y) = Fe(y|x) +O(dpωn ) = Fe(y|x) + o(1/

√
n)

uniformly in x ∈ [4hn, 1− 4hn], y ∈ Y . Similarly, in order to establish (iv) it suffices to show

that

(iva) sup
y∈Y ,x∈[4hn,1−4hn]

|∂kxF̂ ∗
e,L,U(y|x)− ∂kxFe(y|x)| = OP

( log n

nh2k+1
n

)1/2

.

This is due to the fact that

∂kx∂
l
y

(
F̂ ∗
e,L,S(y|x)− Fe(y|x)

)
=

1

dl+1
n

(
(∂kxF̂

∗
e,L,U(·|x)− ∂kxFe(·|x)) ∗ ω(l)(

·
dn

)
)
(y)

+
1

dn
((∂kx∂

l
yFe(·|x)) ∗ ω( ·

dn
))(y)− ∂kx∂

l
yFe(y|x).

Now, since by assumption ∂kxFe(y|x) is r times continuously differentiable with respect to y,

the second summand is of order dr−l
n = O

(
logn

nh2k+1
n d2ln

)1/2

. The first summand can be estimated
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by 1
dln
OP

(
logn

nh2k+1
n

)1/2

[note that one dn can be absorbed into the integral with respect to κ].

We will now proceed by establishing (iva)′ and (iva). Observe the identity

I{Y ∗
i ≤ y + q̂∗τ,L(Xi)} = I

{
Ui ≤ F̃ε

( y

ŝ(Xi)
+
q̂∗τ,L(Xi)− q̂(Xi)

ŝ(Xi)

)}
.

Moreover, a Taylor expansion shows that, with probability tending to one,∣∣∣I{Ui ≤ F̃ε

( y

ŝ(Xi)
+
q̂∗τ,L(Xi)− q̂(Xi)

ŝ(Xi)

)}
− I

{
Ui ≤ F̃ε

( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)}∣∣∣
≤ I

{∣∣∣Ui − F̃ε

( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)∣∣∣ ≤ Cγn sup
y∈2Y/cs

|yf̃ε(y)|
}

where γn = o(1/
√
n), and thus arguments similar to those in the proof of Lemma C.1 yield

1

n

n∑
i=1

Khn,k(x− u)

hn

( 1

f(u)
− 1

f(x)

)(
I
{
Ui ≤ F̃ε

( y

ŝ(Xi)
+
q̂∗τ,L(Xi)− q̂(Xi)

ŝ(Xi)

)})

=
1

n

n∑
i=1

Khn,k(x− u)

hn

( 1

f(u)
− 1

f(x)

)(
I
{
Ui ≤ F̃ε

( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)})
+ oP (1/

√
n).

Next, observe that we have uniformly over y ∈ Y∣∣∣F̃ε

( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)
− Fε

( y

s(Xi)

)∣∣∣ ≤ ‖F̃ε − Fε‖∞ + cn sup
y∈2Y/cs

|yfε(y)| ≤ Ccn

with probability tending to one for a deterministic sequence cn = O(rn). Denote by Dn the

set where this inequality holds. Observe that on the set Dn the classes of functions

Fn :=
{
(u, v) �→ Khn,k(x− u)

hn

( 1

f(u)
− 1

f(x)

)
×

×
(
I
{
v ≤ F̃ε

( y

ŝL(u)
+
q̂∗τ,L(u)− q̂τ,L(u)

ŝL(u)

)}
− Fe(y|u)

)∣∣∣x ∈ [4hn, 1− 4hn], y ∈ Y
}

are, with probability tending to one contained in a class Gn of functions with bracketing

numbers N[](ε,Gn, L
2(P )) ≤ C exp(Cε−a) for some a < 2 [see Lemma C.10] and moreover,

every element g of Fn satisfies Eg(Xi, Yi) = O(hncn) = o(1/
√
n),Eg2(Xi, Yi) = O(hn). Thus

by Lemma C.9 supg∈Fn
|∑i g(Xi, Yi)| = oP (1/

√
n), i.e. we have shown that the 1/f(Xi) in

the definition of T ∗
e,n,k can be replaced with 1/f(x) with an error of order op(1/

√
n). For the

rest of the proof, note that on Dn we have the inequality

I
{
Ui ≤ Fε

( y

s(Xi)

)
−cn

}
≤ I

{
Ui ≤ F̃ε

( y

ŝL(Xi)
+
q̂∗τ,L(Xi)− q̂τ,L(Xi)

ŝL(Xi)

)}
≤ I

{
Ui ≤ Fε

( y

s(Xi)

)
+cn

}
Consider the decomposition

Tn,k,m(x, y) := ∂mx Tn,k(x, y) = T+
n,k,m(x, y) + T−

n,k,m(x, y)
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where

T+
n,k,m(x, y) :=

1

nhn

1

hmn

n∑
i=1

K
(m)
hn,k

(x−Xi)

f(Xi)
I
{
K

(m)
hn,k

(x−Xi) > 0
}(
I{Y ∗

i ≤ y+q̂∗τ,L(Xi)}−Fe(y|Xi)
)

and T−
n,k,m is defined analogously. On the set Dn we have

T+
n,k,m(x, y) ≤ 1

nhm+1
n

n∑
i=1

K
(m)
hn,k

(x−Xi)

f(Xi)
I
{
K

(m)
hn,k

(x−Xi) > 0
}
×

×
(
I
{
Ui ≤ Fε

( y

s(Xi)

)
+ cn

}
− Fε

( y

s(Xi)

))

=:
1

nhm+1
n

n∑
i=1

g(n,m,+)
x,y (Xi, Ui, cn).

The expectation of each summand g
(n,m,+)
x,y (Xi, Ui, cn) in the above sum is of the order O(hcn).

Moreover, the class of functions{
(u, v) �→ g(n,m,+)

x,y (u, v, cn)
∣∣∣x ∈ [4hn, 1− 4hn], y ∈ Y

}
is with probability tending to one contained in a class that satisfies the assumptions of part

2 of Lemma C.9 with δn = hn. This yields the estimate

1

nhm+1

n∑
i=1

g(n,m,+)
x,y (Xi, Ui, cn) =

hcn
hm+1

+OP

( log n

nh2m+1

)1/2

= OP

( logn

nh2m+1

)1/2

uniformly in x ∈ [4hn, 1−4hn], y ∈ Y . Summarizing, we have obtained the bound T+
n,k,m(x, y) ≤

OP

(
logn

nh2m+1
n

)1/2

, and a corresponding lower bound can be obtained by similar arguments.

Analogous reasoning yields a bound for T−
n,k,m(x, y) and altogether this implies Tn,k,m(x, y) =

OP

(
logn

nh2m+1
n

)1/2

uniformly in x ∈ [4hn, 1− 4hn], y ∈ Y .

For a proof of (iva)’, note that a Taylor expansion of Fe(y|Xi) with respect to Xi around the

point x combined with the fact that

1

nhn
et1(X

tWX)−1

⎛
⎜⎜⎝

hkn
∑

iKhn,k(x−Xi)
...

hp+k
n

∑
iKhn,p+k(x−Xi)

⎞
⎟⎟⎠ = I{k = 0}

for k = 0, ..., p yields the representation

et1(X
tWX)−1

nhn

⎛
⎜⎜⎝

∑
iKhn,0(x−Xi)Fe(y|Xi)

...∑
i h

p
nKhn,p(x−Xi)Fe(y|Xi)

⎞
⎟⎟⎠ = Fe(y|x)+OP (h

p+1
n ) = Fe(y|x)+oP (n−1/2)
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uniformly in x ∈ [4hn, 1− 4hn], y ∈ Y . Combining the arguments so far

F̂ ∗
e (y|x)−F ∗

e (y|x) = et1(X
tWX)−1

(
Tn,0,0(x, y), hnTn,1,0(x, y), . . . , h

p
nTn,p,0(x, y)

)t

+oP (1/
√
n)

and moreover Tn,j,0(x, y) = OP (rn) for j = 0, ..., p uniformly in x, y. Together with Lemma

C.7 observing that et1H−1 = et1 completes the proof of (iva)’.

For a proof of (iva), we recall that by definition of M(K) we have for j = 0, ..., p

et1M(K)−1(μj(K), . . . , μp+j(K))t = I{j = 0}.

It thus suffices to show that

1

nhm+1
n

n∑
i=1

K
(m)
hn,k

(x−Xi)
Fe(y|Xi)

fX(Xi)
=

p+1−m−1∑
j=0

μk+j(K)hj∂m+j
x Fe(y|x)+OP

(
hp+1−m
n +

√
log n

nh2m+1
n

)
.

To this end we first observe that for x ∈ [4hn, 1 − 4hn] integration-by parts and a Taylor

expansion yields

E

[
K

(m)
hn,k

(x−Xi)
Fe(y|Xi)

fX(Xi)

]
=

∫ x+hn

x−hn

K
(m)
hn,k

(x− u)Fe(y|u)du

= hmn

∫ x+hn

x−hn

Kh,k(x− u)∂m2 Fe(y|u)du

= hm+1
n

p+1−m−1∑
j=0

μk+j(K)hjn∂
m+j
2 Fe(y|x) +O(hp+2

n )

Finally, the estimate

sup
x∈[4hn,1−4hn],y∈Y

∣∣∣ 1

nhm+1
n

n∑
i=1

K
(m)
hn,k

(x−Xi)
Fe(y|Xi)

fX(Xi)
− 1

hm+1
E

[
K

(m)
hn,k

(x−Xi)
Fe(y|Xi)

fX(Xi)

]∣∣∣
= OP

(√ logn

nh2m+1

)
.

follows from the fact that the sets of functions

Fn :=
{
u �→ K

(m)
hn,k

(x− u)
Fe(y|u)
fX(u)

∣∣∣x ∈ [4hn, 1− 4hn], y ∈ Y
}

satisfy the assumptions of the second part of Lemma C.9 with δn = hn. Now the proof is

complete. �

Lemma C.7 Under assumptions (K1) and (A1) if additionally (nhn)
−1 = o(hn

√
logn) we

have the decomposition (holding uniformly in x ∈ [hn, 1− hn])

(XtWX)−1 =
1

fX(x)
H−1M(K)−1H−1 +H−11(p+1)×(p+1)OP (h)H−1

where H = diag(1, hn, ..., h
p
n), and 1(p+1)×(p+1) is a matrix with 1 in every entry.
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Proof The elements of the matrix XtWX are of the form

(XtWX)k,l =
1

nhn

∑
i

Khn,0(x−Xi)(x−Xi)
m =

hmn
nhdn

∑
i

Khn,m(x−Xi)

where m = k + l − 2. In particular, continuous differentiability of fX together with an

application of Lemma C.9 and Lemma C.10 implies that

1

nhn

∑
i

Khn,k(x−Xi) = μkfX(x) +OP (
( log n
nhn

)1/2

+ hn)

uniformly in x. Thus we obtain a representation of the form

XtWX = H
(
M(K)fX(x) + 1N×NOP (hn)

)
H

where M0 = M(K) is invertible and H is a diagonal matrix with entries 1, hn, ..., h
p
n. Thus

for hn sufficiently small an application of the Neumann series yields the assertion with

probability tending to one. �

C.3 Additional technical results

Lemma C.8 Assume that κ is a symmetric, uniformly bounded density with support [−1, 1]

and let bn = o(1).

(a) If the function F : [0, 1] → R is strictly increasing and F−1 is k times continuously

differentiable in a neighborhood of the point τ , we have for bn small enough

Hid,κ,τ,bn(F ) = F−1(τ) +
k∑

i=1

bin
i!
(F−1)(i)(τ)μi+1(κ) +Rn(τ)

with |Rn(τ)| ≤ Ck(κ)b
k
n sup|s−τ |≤bn |(F−1)(k)(τ) − (F−1)(k)(s)|, μi(κ) :=

∫
uiκ(u)du and a

constant Ck depending only on k and κ. In particular, if we assume that F : R → [0, 1] is

strictly increasing and F−1 is two times continuously differentiable in a neighborhood of τ

and G : R → (0, 1) is two times continuously differentiable in a neighborhood of F−1(τ) with

G′(F−1(τ)) > 0 we have

|F−1(τ)−QG,κ,τ,bn(F )| ≤ Cb2n sup
|s−G◦F−1(τ)|≤Rn,1

|(G−1)′(s)| sup
|s−τ |≤bn

|(G ◦ F−1)′′(s)| =: Rn,2

for some constant C that depends only on κ where Rn,1 := Cb2n sup|s−τ |≤bn |(G ◦ F−1)′′(s)|.

(b) Assume that κ is additionally differentiable with Lipschitz-continuous derivative and that

the functions G,G−1 have derivatives that are uniformly bounded on any compact subset of
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R [the bound is allowed to depend on the interval]. Then for any increasing function F with

uniformly bounded first derivative we have |H(F1)−H(F2)| ≤ Rn,3 +Rn,4 and

|QG,κ,τ,bn(F1)−QG,κ,τ,bn(F2)| ≤ sup
u∈U(H(F1),H(F2))

|(G−1)′(u)|(Rn,3 +Rn,4)

where C is a constant that depends only on κ, U(a, b) := [a ∧ b, a ∨ b], and

Rn,3 :=
Ccn
bn

‖F1 − F2‖∞ sup
|v−τ |≤cn

|(G ◦ F−1)′(v)|, Rn,4 := Rn,3
‖F1 − F‖∞ + ‖F1 − F2‖∞

bn

with cn := bn + 2‖F1 − F2‖∞ + ‖F1 − F‖∞.

(c) If additionally to the assumptions made in (b), the function F1 is two times continu-

ously differentiable in a neighborhood of F−1(τ) with F ′
1(F

−1
1 (τ)) > 0 and G is two times

continuously differentiable in a neighborhood of F−1
1 (τ) with G′(F−1(τ)) > 0, we have

QG,κ,τ,bn(F1)−QG,κ,τ,bn(F2) = − 1

F ′
1(F

−1
1 (τ))

∫ 1

−1

κ(v)
(
F2(F

−1
1 (τ + vbn))− F1(F

−1
1 (τ + vbn))

)
dv

+Rn,

where

|Rn| ≤ Rn,5 +Rn,6 +
Cbn sup|s−τ |≤bn(G ◦ F−1)′′(s)‖F1 − F2‖∞ +Rn,4

G′(F−1
1 (τ))

with a constant C depending only on κ and

Rn,5 :=
1

2
sup

u∈U(H(F1),H(F2))

|(G−1)′′(u)|(H(F1)−H(F2))
2

Rn,6 := sup
u∈U(H(F1),G(F−1

1 )(τ))

|(G−1)′′(u)| · |H(F1)−G(F−1
1 )(τ)| · |H(F1)−H(F2)|.

Proof See Volgushev et al. (2013).

Lemma C.9 (Basic Lemma)

1. Assume that the classes of functions Fn consist of uniformly bounded functions (with

the bound, say D, not depending on n) with N[](Fn, ε, L
2(P )) ≤ C exp(−cε−a) for every

ε ≤ δn for some a < 2 and constants C, c not depending on n. Then we have

√
n sup

f∈Fn,‖f‖P,2≤δn

(∫
fdPn −

∫
fdP

)
= o∗P (1)

where the ∗ denotes outer probability, see van der Vaart and Wellner (1996) for a more

detailed discussion.

xvii



2. If under the the assumptions of part one we have N[](Fn, ε, L
2(P )) ≤ Cε−a for every

ε ≤ δn, some a > 0 and C not depending on n, it holds that for any δn ∼ n−b with

b < 1/2
√
n sup

f∈Fn,‖f‖P,2≤δn

(∫
fdPn −

∫
fdP

)
= O∗

P

(
δn| log δn|

)

Proof See Volgushev et al. (2013).

Lemma C.10

1. Define F + G := {f + g|f ∈ F , g ∈ G},FG := {fg|f ∈ F , g ∈ G}. Then

N[](F + G, ε, ρ) ≤ N[](F , ε/2, ρ)N[](G, ε/2, ρ)

If additionally the classes F ,G are uniformly bounded by the constant C, we have

N[](FG, ε, ‖.‖) ≤ N2
[](F , ε/4C, ‖.‖)N2

[](G, ε/4C, ‖.‖)

for any seminorm ‖.‖ with the additional property that |f2| ≤ |f2| implies ‖f1‖ ≤ ‖f2‖.

2. Assume that the Kernel K has compact support [−1, 1], that K
(m)
1,k is uniformly bounded

and Lipschitz-continuous, and that fX is uniformly bounded. Then the L2(PX) brack-

eting numbers N[](Fn, ε, L
2(PX)) of the set

Fn :=
{
u �→ K

(m)
hn,k

(x− u)
∣∣∣x ∈ [hn, 1− hn]

}
are bounded by Cε−3 for some constant C independent of n.

3. Assume that the Kernel K has compact support [−1, 1], that K is uniformly bounded,

and that fX is uniformly bounded away from zero on [0, 1] and Lipschitz-continuous.

Then for the set of function

Fn :=
{
u �→ 1

hn

( 1

fX(x)
− 1

fX(u)

)
Khn,k(x− u)

∣∣∣x ∈ [hn, 1− hn]
}

we have N[](Fn, ε, L
2(P )) ≤ Cε−5 for some constant C independent of n.

4. For any measure P on the unit interval with uniformly bounded density f , the class of

functions

F :=
{
u �→ I{u ≤ s}

∣∣∣s ∈ [0, 1]
}
∪
{
u �→ I{u < s}

∣∣∣s ∈ [0, 1]
}

can be covered by Cε−2 brackets of L2(P ) length ε.
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5. Consider the class of distribution functions F :=
{
u �→ F (y|u)

∣∣∣y ∈ R

}
with densities

f(y|u) and assume that supu,y |y|α(F (y|u) ∧ (1 − F (y|u)) ≤ D for some α > 0 and

additionally supu,y f(y|u) ≤ D. Then we have N[](F , ε, ‖ ‖∞) ≤ Cε−
α+1
α for some

constant C independent of α.

6. For any measure P on R × R
k with uniformly bounded conditional density fV |U the

class of functions

G :=
{
(u, v) �→ I{v ≤ f(u)}

∣∣∣f ∈ F
}

satisfies N[](G, ε, ‖.‖P,2) ≤ N[](F , Cε2, ‖.‖∞) for some constant C independent of ε.

Proof

Part 1 The first assertion is obvious from the definition of bracketing numbers. For the

second assertion, note that FG = (F +C)(G +C)−CF −CG +C2. Moreover, all elements

of the classes F + C,G + C are by construction non-negative and thus it also is possible

to cover them with brackets consisting of non-negative functions and amounts equal to the

brackets of F ,G, respectively. Finally, observe that if 0 ≤ fl ≤ f ≤ fu and 0 ≤ gl ≤ g ≤ gu,

we also have flgl ≤ fg ≤ fugu. Moreover ‖flgl − fugu‖ ≤ C‖fu − fl‖ + C‖gu − gl‖. Thus

the class (F + C)(G + C) can be covered by at most ≤ N[](F , ε, ‖.‖)N[](G, ε, ‖.‖) brackets
of length 2Cε. Finding brackets for the classes CF , CG is trivial, and applying the first

assertion of the Lemma completes the proof.

Part 2+3 Without loss of generality, assume that h = hn < 1. The respective assumptions

imply that it suffices to establish that for any class of functions F with uniformly bounded

(say by C) elements that have supports of the form [x − h, x + h] with x from [h, 1 − h]

and supf∈F |f(x) − f(y)| ≤ C|x − y|h−k uniformly in x, y we we have N[](Fn, ε, L
2(PX)) ≤

Cε−(2k+1) for some C that does not depend on h. Observe that in particular, the L2(P )

norm of elements from F is bounded by Dh1/2. Now consider two cases.

1 ε > 4h1/2

Divide [0, 1] into N := 2/ε2 subintervals of length 2α := ε2 with centers rα for r =

1, ..., N and call the intervals I1, ..., IN . Note that two adjunct intervals overlap by

α > 2h. This construction ensures that every set of the form [x − h, x + h] with

x ∈ [h, 1 − h] is completely contained in at least one of the intervals defined above.

Then a collection of N brackets of L2-length Dε for some D > 0 independent of h is

given by (−CI{u ∈ Ij}, CI{u ∈ Ij}).

2 ε ≤ 4h1/2

Observe that by assumption any element g of F satisfies |g(x)− g(y)| ≤ C|x− y|h−k.

Consider the points ti := i/(N +1), i = 1, ..., N with N := 22k+1C/ε2k+1. By construc-

tion, to every x ∈ [h, 1 − h] there exists i(x) with |ti(x) − x| ≤ ε2k+1/(22k+1C). This
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implies

|g(x)− g(ti(x))| ≤ Cε2k+1h−k/22k+1C ≤ ε/2

Then N ‖.‖∞−brackets of length covering F are given by (g(ti) − ε/2, g(ti) + ε/2),

i = 1, ..., N . From those one can easily construct L2(PX)-brackets.

Part 4 Follows by standard arguments.

Part 5 For any ε > 0, set yε := ε−α/D and define ti := −1/yε + iε/2D for i = 1, ..., N

with such that tN ≥ 1/yε. Note that N ≤ Cε−
α+1
α for some fixed, finite constant C. The

collection of brackets (f ≡ 0, f ≡ ε), (f ≡ 1 − ε, f ≡ 1), (F (yti|.)− ε/2, F (yti|.) + ε/2) with

i = 1, ..., N covers the class F .

Part 6 Follows from |I{v ≤ g1(u)} − I{v ≤ g2(u)}| ≤ I{|v − g1(u)| ≤ 2‖g1 − g2‖∞}.
�
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