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Abstract

In this paper, we describe an adjusted method to facilitate a non-inferiority trial by a three-arm robust

design. Because local optimal designs derived in [Hasler et al. (2007)] require knowledge about the ratios of

the population variances and are not necessarily robust with respect to possible misspecifications, a maximin

approach is adopted. This method requires only the specification of an interval for the variance ratios and

yields robust and efficient designs. We demonstrate that a maximin optimal design only depends on the

boundary points specified for the intervals of the variance ratios and receive numerical and analytical solutions

which are demonstrated in several examples. The derived designs are robust and very efficient for statistical

analysis in non inferiority three arm trials.

Keywords: maximin design, robust design, non-inferiority, three arm design, gold design trials, randomized

clinical trial

1 Introduction

Nowadays, randomized clinical trials claiming at least non-inferiority are performed. The specific statistical

methodology was recently described in [Munk et. al. (2005)]. A two-arm design where a new experimental
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Treatment group Mean Standard deviation Sample size
Placebo 16.5 7.5 14

ALM4+NO 26.5 10.4 14
ALM16+NO 36.7 13.2 14

Table 1: Summary statistics for PaO2 (kPa) 30 minutes after onset of one-lung ventilation of the clinical data
set of Silva-Costa-Gomes et al. (2005)

drug (with mean µ1) is compared with the reference drug or active control (with mean µ2) is common. However,

trials without a placebo arm require an indirect inference, e.g. by meta-analysis and may be problematic (see e.g.

[Hung et. al. (2007)]). Therefore, so-called "Gold design trials" are recommended as three-arm designs, which

include the new experimental drug (with mean µ1), the reference drug or active control (with mean µ2) and

an additional placebo control (with mean µ3). For these trials, non-inferiority can be formulated as a fraction

of the trial sensitivity, see e.g. [Pigeot et al. (2003)] or [Hung et. al. (2005)]. The null hypothesis is based on

the ratio of the differences of the means H0 : µ1−µ3
µ2−µ3

≤ θ and is compared with the alternative H1 : µ1−µ3
µ2−µ3

> θ

for a given non-inferiority threshold θ ∈ (0,1). The alternative hypothesis indicates that the relative efficacy of

the experimental drug is more than θ · 100% of the efficacy of the reference compound compared to placebo.

For this ratio hypothesis, a t-distributed test statistic was derived, assuming normal distribution and variance

homogeneity. However, in real data it is more realistic that heterogeneous variances occur.

For example in [Silva-Costa-Gomes et al. (2005)], a randomized clinical trial was conducted comparing

low and high-doses of almitrine combined with nitric oxide with a placebo group in the prevention of hydroxia

during open-chest one-lung ventilation. Table 1 shows the related summary statistics of these three treatment

arms for the primary respiratory endpoint PaO2 (kPa) for an administration 30 minutes after onset of one-lung

ventilation. The experimental drug ALM4+NO was compared with the reference ALM16+NO and the placebo

for at least non-inferiority of the low dose versus the high dose relative to the difference between the high dose

and the placebo effect. Notice that the data shows a markedly lower variance in the placebo group, i.e. the

assumption of homoscedasticity is hard to imagine.

One possibility to address the problem of heteroscedasticity is a logarithmic transformation to stabilize the

variances, but there are many cases where this procedure does not yield homoscedastic data. Assuming homoge-

neous variances, an optimal design can be achieved as in [Pigeot et al. (2003)], where the unbalancedness now

depends only on the given threshold θ . Assuming heterogeneous - but "known" - variances, an optimal design

can as well be calculated like [Hasler et al. (2007)], but the unbalancedness now depends on the given threshold

θ and the variances of the three treatments. However, the availability of the exact variances is rather unlikely in

practice and a misspecification of these variances can lead to an experimental design with a low efficiency. In
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order to derive designs which are robust against such misspecification - but still efficient for a broad range of the

parameters - we propose a maximin approach. In particular, we describe an adjusted method to facilitate a non-

inferiority trial by a three-arm robust design in the case of heterogeneous variances. Only interval estimates of

variance ratios have to be available for the construction of an experimental design of a randomized clinical trial.

We consider this situation as more realistic from a practical point of view, because usually information from

preliminary clinical trials do not yield precise information for the variance ratios, but often allows the experi-

menter to derive lower and upper bounds for such ratios. We prove that such robust optimal designs only depend

on the boundary points of the specified region for the variance ratios and receive numerical and analytical so-

lutions. Moreover, it is demonstrated that the derived designs are very efficient over a broad range of specified

variance ratios. Thus, the new designs provide an interesting alternative to the commonly used designs, which

may be inefficient if the ratios of the population variances have been misspecified. A MatLab program serving

the purpose of calculating the robust designs can be downloaded at [Maximin-Program (2007)].

2 Local Optimal Design

We consider a clinical trial with three groups that correspond to the experimental, reference and placebo arms

with means µ1,µ2,µ3, respectively. We focus on the previously introduced problem of finding a robust design

for the non-inferiority hypothesis

H0 :
µ1−µ3

µ2−µ3
≤ θ vs. H1 :

µ1−µ3

µ2−µ3
> θ

with a fixed retention fraction of θ ∈ (0,1).

For the motivation of a criterion for the comparison of competing designs the following statistic

T =
x̄1−θ x̄2− (1−θ)x̄3√
1
n1

σ2
1 + θ 2

n2
σ2

2 + (1−θ)
n3

σ2
3

∼ N

 µ1−θ µ2− (1−θ)µ3√
1
n1

σ2
1 + θ 2

n2
σ2

2 + (1−θ)
n3

σ2
3

,1

 (1)

is used where σ2
i denotes the (unknown) variance, ni the sample size and x̄i the arithmetic mean of each group

i = {1,2,3}. Furthermore, the observations in the different groups are assumed to be normally distributed with

mean µi and variances σ2
i (i = 1,2,3). The formula (1) can be equivalently written as

T ∼ N

√n1
(µ1−θ µ2− (1−θ)µ3)√

σ2
1 + θ 2

w2
σ2

2 + (1−θ)2

w3
σ2

3

,1
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with w2 = n2
n1

, w3 = n3
n1

being ratios of the sample sizes. For a given significance level α and power level 1−β

we derive the formula

√
n1

(µ1−θ µ2− (1−θ)µ3)√
σ2

1 + θ 2

w2
σ2

2 + (1−θ)2

w3
σ2

3

= z1−α + z1−β ,

where zu for u ∈ [0,1] denotes the u-quantile of a standard normal distribution. This leads to

n1 =
(
z1−α + z1−β

)2 (µ1−θ µ2− (1−θ)µ3)
−2
(

σ
2
2 +

θ 2

w2
σ

2
3 +

(1−θ)2

w3
σ

2
3

)
=

(
z1−α + z1−β

µ1−θ µ2− (1−θ)µ3

)2

·σ2
2

(
1+

θ 2

w2
r2 +

(1−θ)2

w3
r3

)

as sample size n1 for group one, where r2 = σ2
2 /σ2

1 and r3 = σ2
3 /σ2

1 denote the (fixed) ratios of the variances

σ2
2 and σ2

3 with reference to σ2
1 .

With the specified nominal level α and power 1−β , the minimum total sample size n can be derived by

minimizing the following function (2) with respect to w2 and w3

n = n1(1+w2 +w3) =
(

z1−α + z1−β

µ1−θ µ2− (1−θ)µ3

)2

·σ2
2

(
1+

θ 2

w2
r2 +

(1−θ)2

w3
r3

)
(1+w2 +w3) . (2)

This means that one has to determine the ratio of the variances r2 and r3 for an optimal design of the experiment.

Since the function

f (w2,w3|r2,r3) =
(

1+
θ 2

w2
r2 +

(1−θ)2

w3
r3

)
(1+w2 +w3) (3)

is the only factor on the right side of equation (2) that involves w2 and w3, the minimum sample size can be

derived by simply minimizing this function. The optimal values for w2 and w3 are determined by solving the

system of equations

0 =
δ

δw2

(
1+

θ 2

w2
r2 +

(1−θ)2

w3
r3

)
(1+w2 +w3)

0 =
δ

δw3

(
1+

θ 2

w2
r2 +

(1−θ)2

w3
r3

)
(1+w2 +w3) .
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For 0 < θ < 1, the unique - and surprisingly simple - solution is given by

w2 = θ
√

r2 (4)

w3 = (1−θ)
√

r3 , (5)

which leads to the optimal sample sizes

n1 =
(

z1−α + z1−β

µ1−θ µ2− (1−θ)µ3

)2

·σ2
2 (1+θ

√
r2 +(1−θ)

√
r3)

n2 = θ ·
√

r2 ·n1

n3 = (1−θ) ·
√

r3 ·n1

n = n1 · (1+θ
√

r2 +(1−θ)
√

r3) .

For the calculation of the optimal group size allocation for a fixed sample size n, we introduce the following

two parameters

p2 =
w2

1+w2 +w3
p3 =

w3

1+w2 +w3
(6)

which represent the proportion of observations allocated to group two and three with respect to the total

sample size. Following [Chernoff (1953)] the resulting design is called local optimal, because it depends

on the (unknown) variance ratios r2 and r3. Thus, the local optimal design advises the experimenter to take

n1 = (1− p2− p3) ·n, n2 = p2 ·n and n3 = p3 ·n observations at group one, two and three, respectively. These

results coincide with the recent findings in the article of [Hasler et al. (2007)], if one substitutes i ∈ {1,2,3}

with i ∈ {E,R,P}.

Note that the optimal sample sizes depend on the unknown variance ratios r2 and r3, which are usually

not available before the experiment. In particular, a misspecification of these ratios may result in errors of the

optimal allocation of the treatments thus making that specific trial less efficient. In the following section, we will

propose a robust design, which is less sensitive with respect to misspecified variance ratios and very efficient

for the three-arm clinical trial. This and additional properties are illustrated in section 4.
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3 Robust Design With A Maximin Approach

A more realistic approach to the problem considered in section 2 is that the ratios of the variances are not exactly

known, but interval estimates are available based on previous (similar) trials. This means that we have access to

information of the form σ2
2

σ2
1
∈V 2 :=

[
V 2

L ,V 2
U
]

and σ2
3

σ2
1
∈V 3 :=

[
V 3

L ,V 3
U
]
, where V 2

L ,V 2
U ,V 3

L ,V 3
U are the boundary

points of the postulated intervals for the variance ratios r2 and r3 with respect to σ2
2 ∈ R+. As an alternative to

a rectangular region for the variance ratios elliptical or circular regions could be considered as well, but for the

sake of brevity we restrict ourselves to the rectangle. We want to minimize the required total population sample

size n to achieve a given power 1−β . For this purpose we use the rate function (3). We mentioned that - if the

ratios of the variances are fixed and known - this function has exactly one minimum (see the previous section

or [Hasler et al. (2007)]). Nevertheless, this local optimal design might not be a good choice if the ratios of

the variances have been misspecified. In order to derive designs which are less sensitive with respect to such

misspecifications, we consider the efficiency

e f f (w2,w3,r2,r3) =
f (ν ,ω|r2,r3)

f (w2,w3|r2,r3)
∈ [0,1] , (7)

with f (ν ,ω|r2,r3) := minw2,w3 f (w2,w3|r2,r3). Equation (7) measures the performance of an arbitrary design

w = (w2,w3) (in the denominator) with respect to the best design (in the numerator) calculated under the as-

sumption that r2 and r3 are the "true" ratios of the population variances. Following [Dette (1997)] a design

w∗ = (w∗2,w
∗
3) is called standardized maximin optimal or briefly maximin optimal design if it maximizes the

minimum efficiency

g(w2,w3) = min
r2∈V 2,r3∈V 3

e f f (w2,w3,r2,r3) (8)

over the rectangle V 2×V 3.

With our knowledge from the previous section it follows that for fixed variance ratios r2 and r3 the minimum

of the function f (ν ,ω|r2,r3) is attained at the point ν = θ
√

r2 and ω = (1−θ)
√

r3 and thus formula (7) can

be simplified to

e f f (w2,w3,r2,r3) =
f (ν ,ω|r2,r3)

f (w2,w3|r2,r3)
=

f
(
θ
√

r2, (1−θ)
√

r3|r2,r3
)

f (w2,w3|r2,r3)
, (9)

where

f (θ
√

r2, (1−θ)
√

r3|r2,r3) = (1+θ
√

r2 +(1−θ)
√

r3)
2 . (10)
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This simplifies the analysis of formula (8) substantially since now

g(w2,w3) = min
r2∈V 2,r3∈V 3

(
1+θ

√
r2 +(1−θ)

√
r3
)2

f (w2,w3|r2,r3)
(11)

= min
r2∈V 2,r3∈V 3

(
1+θ

√
r2 +(1−θ)

√
r3
)2(

1+ θ 2

w2
r2 + (1−θ)2

w3
r3

)
(1+w2 +w3)

(12)

The following Lemma states that the minimum on the right hand side of (11) with respect to (r2,r3) ∈V 2×V 3

may only be attained at the corners of the rectangle V 2×V 3. The proof can be found in the appendix.

Lemma

The minimum of the function e f f defined by (9) with respect to (r2,r3) ∈ V 2×V 3 may only be attained at the

corners of the rectangle V2×V3, that is

g(w2,w3) = min{e f f
(
w2,w3,V 2

L ,V 3
L
)
,e f f

(
w2,w3,V 2

U ,V 3
L
)
,

e f f
(
w2,w3,V 2

L ,V 3
U
)
,e f f

(
w2,w3,V 2

U ,V 3
U
)
} (13)

With this Lemma, one only has to numerically maximize the function (8) at the four corners of V2×V3 rather

than the whole rectangle area. The resulting robust design is

arg max
w2,w3

g(w2,w3) = (w∗2, w∗3) = w∗ . (14)

The actual value has to be calculated numerically using e.g. [Maximin-Program (2007)].

Note that such numerical optimization may yield local maxima and it is not clear that a numerically found

maximum corresponds to the global maximum, i.e. the standardized maximin optimal design. In the following,

we state a necessary and sufficient checking condition for the standardized maximin optimal design. For a

more detailed discussion the reader is referred to e.g. [Pukelsheim (1993)] or [Müller (1995)]. The following

Theorem can be used to check the optimality of the numerically calculated design. For this purpose we introduce

the following notation

cT
θ = (1,θ ,(1−θ)) , θ ∈ (0,1) ,

and the set

V = V 2×V 3 .
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For fixed variance ratios v = (r2, r3) ∈V and arbitrary group ratios w = (w2,w3) we define

M (w,v) :=
1

1+w2 +w3
diag

(
σ

2
1 ,

w2

σ2
2
,

w3

σ2
3

)
=

1
σ2

1 · (1+w2 +w3)
·diag

(
1,

w2

r2
,

w3

r3

)

The optimality criterion in (8) can be rewritten as

g(w) = min
r∈V

e f f (w,r) = min
r∈V

cT
θ

M−1 (w∗r ,r)cθ

cT
θ

M−1 (w,r)cθ

, (15)

where w∗r denotes the local optimal design assuming known ratios of the variances r2 and r3, that is w∗r =(
θ
√

r2,(1−θ)
√

r3
)

(see the discussion in the previous section). The following characterization of the stan-

dardized maximin optimal design is a consequence of Theorem 2 in [Biedermann et al. (2006)].

Theorem

Let

N (w) =
{

r̃ ∈V |e f f (w, r̃) = min
r∈V

e f f (w, r)
}

be the subset of V consisting of those values of b, for which the efficiency (15) of a design w takes its minimal

value over V. A design w∗M is standardized maximin optimal if and only if for each v ∈ N (w∗M) there exists a

nonnegative weight π∗(v) such that the following equations are valid

∑
v∈N(w∗M)

π
∗ (v) ·

(
cT

θ
M−1 (w∗M,v)xi

)2

cT
θ

M−1 (w∗M,v)cθ

= 1, i = 1,2,3 , (16)

where

x1 =


1

0

0

 , x2 =


0

1

0

 , x3 =


0

0

1


and

∑
v∈N(w∗M)

π
∗(v) = 1

By our Lemma derived in this section, the set N (w) for any design w consists of at most the four corners of the



3 ROBUST DESIGN WITH A MAXIMIN APPROACH 9

rectangle V , namely

v1 = (V L
2 ,V L

3 ), v2 = (VU
2 ,V L

3 ), v3 = (V L
2 ,VU

3 ), v4 = (VU
2 ,VU

3 ) .

This means that all other points v ∈V have higher efficiencies.

The Theorem leads to the following three equations for i = 1,2,3:

4

∑
j=1

π(v j) ·
(
cT

θ
M−1 (w∗M,v j)xi

)2

cT
θ

M−1 (w∗M,v j)cθ

= 1

These equations contain the unknown parameters π(v1),π(v2),π(v3), w2 and w3 since π(v4) = 1− π(v1)−

π(v2)−π(v3). Note that some of the probabilities π(vi) may be zero because the corresponding corner vi is not

an element of the set N(w∗M).

We use the following notation to keep these equations more readable

a2L = θ

√
V 2

L , a2U = θ

√
V 2

U , a3L = (1−θ)
√

V 3
L , a3U = (1−θ)

√
V 3

U ,

and obtain the following system of nonlinear equations

π(v1) · (1+w2+w3)

1+
a2
2L

w2
+

a2
3L

w3

+π(v2) · (1+w2+w3)

1+
a2

2U
w2

+
a2

3L
w3

+π(v3) · (1+w2+w3)

1+
a2

2L
w2

+
a2

3U
w3

+π(v4) · (1+w2+w3)

1+
a2

2U
w2

+
a2

3U
w3

= 1 (17)

π(v1) ·
(1+w2+w3)

(
a2L
w2

)2

1+
a2
2L

w2
+

a2
3L

w3

+π(v2) ·
(1+w2+w3)

(
a2U
w2

)2

1+
a2
2U
w2

+
a2
3L

w3

+π(v3) ·
(1+w2+w3)

(
a2L
w2

)2

1+
a2

2L
w2

+
a2

3U
w3

+π(v4) ·
(1+w2+w3)

(
a2U
w2

)2

1+
a2

2U
w2

+
a2

3U
w3

= 1

π(v1) ·
(1+w2+w3)

(
a3L
w3

)2

1+
a2
2L

w2
+

a2
3L

w3

+π(v2) ·
(1+w2+w3)

(
a3L
w3

)2

1+
a2
2U
w2

+
a2

3L
w3

+π(v3) ·
(1+w2+w3)

(
a3U
w3

)2

1+
a2

2L
w2

+
a2

3U
w3

+π(v4) ·
(1+w2+w3)

(
a3U
w3

)2

1+
a2

2U
w2

+
a2

3U
w3

= 1

These equations allow us to check whether a given design (w2,w3) is standardized maximin optimal or not. To

find such an optimal design, one first solves the maximizing problem (14), evaluates the efficiencies at the cor-

ners of the rectangle V and then picks the point(s) where the minimum efficiency is attained (the weights of the

remaining points are set to zero). Now one numerically evaluates the remaining weights π(v j) using the system

of equations (17). If there exists a valid solution, one can be assured that a standardized maximin optimal design

has been found. All of these calculations can easily be done using e.g. MatLab [The-MathWorks (1984)] and/or

Mathematica [Wolfram-Research (1988)]. Numerical evaluations show that for the standardized maximin op-

timal design w∗M the set N (w∗M) usually contains only two or three points. Several examples of the described
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procedure can be found in the following section.

4 Further discussion and examples

4.1 Verifying the optimality of a given design

We begin with an example illustrating the use of the checking condition. For this purpose let us assume that the

variance ratios are located in the intervals V 2 = [0.16,0.64] and V 3 = [0.49,3.24], and that the non-inferiority

parameter is given by θ = 0.5. We first convert these parameters to the previously used terms in the system of

equations defined by (17)

a2L = 0.5 ·
√

0.16 = 0.2 a3L = 0.5 ·
√

0.49 = 0.35

a2U = 0.5 ·
√

0.64 = 0.4 a3U = 0.5 ·
√

3.24 = 0.9

In the next step we numerically maximize the minimal efficiency at the corners of the rectangle V = V 2×V 3 in

terms of w2 and w3:

argmaxw2,w3 min {e f f (w2,w3,a2L,a3L) ,e f f (w2,w3,a2U ,a3L) , (18)

e f f (w2,w3,a2L,a3U ) ,e f f (w2,w3,a2U ,a3U )}

where the efficiency function in (7) is now defined for the new parameters a2 = θ
√

r2, a3 = (1−θ)
√

r3, that is

e f f (w2,w3,a2,a3) =
(1+a2 +a3)

2(
1+ a2

2
w2

+ a2
3

w3

)
(1+w2 +w3)

In our considered case the numerical solution of the optimization problem (18) is w∗ = (0.3818, 0.6249) yield-

ing a minimal efficiency of at least 93.26% over the rectangle V = [0.16,0.64]× [0.49,3.24]. To check whether

the numerically calculated design is optimal or not, we calculate the efficiencies

e f f (w∗2,w
∗
3,a2L,a3L) = 0.9326 e f f (w∗2,w

∗
3,a2U ,a3L) = 0.9326

e f f (w∗2,w
∗
3,a2L,a3U ) = 0.9326 e f f (w∗2,w

∗
3,a2U ,a3U ) = 0.9730
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in order to apply the Theorem of Section 3. Because the efficiency at the point v4 = (a2U ,a3U ) is greater than

the efficiencies at the other three points, we set the weight π(v4) equal zero. Thus, we have to numerically

find the weights π(v1) and π(v2) (since π(v3) = 1−π(v1)−π(v2)) to fulfill the three equations in (17). Using

MatLab, Mathematica or any other adequate program, we calculate the weights to be π(v1) = 0.4603 for the

point v1 = (a2L,a3L), π(v2) = 0.5072 for the point v2 = (a2U ,a3L) and the remaining mass to be π(v3) = 0.0325

at the point v3 = (a2U ,a3L).

With this weight distribution we validated that the solution w∗ is indeed the optimal solution. Using the

conversion (6), the optimal allocation w∗ means that we have to take about p∗2 = 17% of our observations at

the reference arm, about p∗3 = 32% of our observations at the placebo arm, and the remaining 51% of our

observations at the experimental arm.

4.2 Some optimal designs for the PaO2 example

In the second example we illustrate how the new methodology can be used to derive a robust and efficient design

for a similar clinical trial as considered in the introduction. Assume that we have to design a new randomized

clinical trial with a new experimental drug and that we expect similar results as presented in Table 1. In the

context of this paper, the experimental drug is ALM4+NO, the reference drug is ALM16+NO and, of course,

the placebo takes the part of the placebo. Since the variance ratios in this example are r2 = 1.61 and r3 = 0.52,

we assume that the real variance ratios are located within the intervals V 2 = [1.0,2.0] and V 3 = [0.40,0.60].

If the non-inferiority parameter is given by θ = 0.8, numerical calculations similar to Example 4.1 yield the

optimal weight distribution to be w∗ = (0.9566,0.1434). For fixed sample size n and using conversion (6), the

standardized maximin design allocates approximately n1 = 0.4762 ·n, n2 = 0.4555 ·n and n3 = 0.0683 ·n to the

three groups. The efficiency of this design over the rectangle [1.0,2.0]× [0.4,0.6] is at least 0.9910. The reason

for the surprisingly small sample size of the placebo group originates from its variance ratio and the nature of

how a three arm clinical trial depends on the parameter θ (compare (1) ). If the total sample size is 100, then this

design advises the experimenter to prescribe about 46 persons the experimental drug, 47 persons the standard

treatment, and the remaining 7 persons to placebo treatment.

Further maximin optimal designs are shown in Table 2. Here V 2 = [V L
2 , VU

2 ] is the specified interval for the

variance ratio r2 = σ2
2 /σ2

1 , V 3 = [V L
3 , VU

3 ] is the interval of the variance ratio r3 = σ2
3 /σ2

1 , p∗ is the optimal

allocation of the reference (p∗2) and placebo arm (p∗3), and the column labeled with e f f shows the minimal

(worst case) efficiency. Rather than listing the values of w∗ we list the values of p∗ because they are easier

to interpret: for a sample of size n this means to take p∗2 · n observations at the reference, p∗3 · n observations
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θ V 2 V 3 p∗ = (p∗2, p∗3) eff
0.6 [0.4, 0.5] [3, 4] (0.1875, 0.3474) 0.9978
0.6 [3, 4] [0.4, 0.5] (0.4685, 0.1127) 0.9980
0.6 [0.8, 1.2] [0.4, 0.5] (0.3197, 0.1443) 0.9969
0.6 [0.8, 1.2] [0.4, 1.7] (0.3057, 0.1938) 0.9753

θ V 2 V 3 p∗ = (p∗2, p∗3) eff
0.7 [0.4, 0.5] [3, 4] (0.2315, 0.2760) 0.9979
0.7 [3, 4] [0.4, 0.5] (0.5205, 0.0805) 0.9982
0.7 [0.8, 1.2] [0.4, 0.5] (0.3664, 0.1065) 0.9969
0.7 [0.8, 1.2] [0.4, 1.7] (0.3544, 0.1464) 0.9795

θ V 2 V 3 p∗ = (p∗2, p∗3) eff
0.8 [0.4, 0.5] [3, 4] (0.2809, 0.1957) 0.9981
0.8 [3, 4] [0.4, 0.5] (0.5677, 0.0513) 0.9984
0.8 [0.8, 1.2] [0.4, 0.5] (0.4116, 0.0699) 0.9970
0.8 [0.8, 1.2] [0.4, 1.7] (0.4031, 0.0981) 0.9846

θ V 2 V 3 p∗ = (p∗2, p∗3) eff
0.9 [0.4, 0.5] [3, 4] (0.3369, 0.1046) 0.9985
0.9 [3, 4] [0.4, 0.5] (0.6108, 0.0246) 0.9986
0.9 [0.8, 1.2] [0.4, 0.5] (0.4552, 0.0344) 0.9972
0.9 [0.8, 1.2] [0.4, 1.7] (0.4517, 0.0501) 0.9906

Table 2: Optimal group size and minimal efficiency for different non-inferiority parameters θ and variance
ratios V 2 and V 3

at the placebo arm, and the remaining observations at the experimental arm. The MatLab program used to

derive the optimal designs may be attained at [Maximin-Program (2007)]. It is worthwhile to mention that the

efficiency values in Table 2 represent the minimal efficiency value over the rectangle V 2×V 3 and are always

very high. These results indicate that the derived results are rather robust and efficient. If one chooses the

optimal allocation p∗ of the standardized maximin optimal design, one can be assured that the design is close

to being ”perfect” for the considered range of variance ratios.

4.3 Robustness of optimal designs

In this section we investigate the efficiencies of various designs if the parameters have been misspecified. Again,

we will use the values of Table 1 and non-inferiority parameters θ = 0.8 and θ = 0.6. Note that the observed

variance ratios in Table 1 are given by r2 = σ2
3

σ2
2

= 1.61 and r3 = σ2
3

σ2
2

= 0.52.

In our first example we study the efficiency of the local optimal design and the minimax design if the initial

parameters have been misspecified. If the non-inferiority parameter is given by θ = 0.6, the local optimal design

for the point b = (1.61, 0.52) is derived by formula (4) and has sample size distribution w = (0.76, 0.29). As
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a typical example for a robust design we consider the standardized maximin optimal design for the rectangle

[0.64,4.03]× [0.21,1.3], which yields the optimal weight w∗ = (0.84, 0.36). In Figure 1 we display the level

curves of the standardized maximin optimal design (left part) and the local optimal design (right part) for

varying variance parameters. A very important property is how the designs efficiencies are competing if the

initial variance parameters have been misspecified. For example, if the “true” ratios of the variances would be

r2 = 4 and r3 = 3 the efficiency of the local optimal design would be 89% while the standardized maximin

optimal design yields an efficiency of 94 %. On the other hand, if the “true” variance ratios would be exactly

r2 = 1.61 and r3 = 0.52 the local optimal design had efficiency 100 %, while the minimax optimal design yields

99.5 % efficiency. However, whenever the variance ratios are incorrectly specified, a large efficiency is obtained

by the standardized maximin optimal design.

In our second example we consider the the case θ = 0.8 and compare the standardized maximin optimal

design with the more heuristic allocation rule w = (1.61, 0.52), which yields a relative sample size appor-

tionment corresponding directly to the variance ratios. For the maximin approach we will use the intervals

V 2 = [0.81, 3.22] and V 2 = [0.26, 1.04] resulting in w∗ = (1.03, 0.15). The corresponding level curves in Fig-

ure 2 show the values of formula (9) for varying parameters r2 and r3, where the left part of Figure 2 corresponds

to minimax design and the right part to the heuristic allocation rule. The standardized maximin optimal design

clearly outperforms the heuristic design in a very broad area around the point b = (1.61, 0.52).

Summarizing these and similar numerical studies, which are not shown for the sake of brevity, we obtain the

following picture: there is no evident loss in efficiency in the application of the standardized maximin optimal

design, even if precise knowledge of the variance ratios is available. The standardized maximin optimal design

offers about the same high efficiencies in the considered variance intervals as the local optimal designs. On

the other hand – whenever the ratios of the variances have been moderately misspecified – the standardized

maximin optimal design is more efficient than the local optimal design.

4.4 Sample size calculation

In this section we compare the effects of the new standardized maximin and the local optimal designs with

respect to the sample size required to achieve a specific power. [Hasler et al. (2007)] recommended to use

the Welch type test [Welch (1938)] to address for possible heteroscedasticity in the data. For this test the

necessary sample sizes to keep a preassigned level α and power 1− β can be derived from formula (15) in
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Figure 1: Level curves of the efficiencies (9) for the standardized maximin optimal design for the intervals V 2 =
[0.64, 4.03] and V 3 = [0.21, 1.3] (marked by the rectangle) and the local optimal design for b = (1.61, 0.52).

[Hasler et al. (2007)], and is (in our notation) given by

n1 ≥
(
t1−α(ϑ)+ t1−β (ϑ)

)2 σ2
1 + θ 2

w2
σ2

2 + (1−θ)2

w3
σ2

3

(µ1−θ µ2− (1−θ)µ3)2 ,

where tu(ϑ) for u ∈ [0,1] denotes the u-quantile of a tϑ -distribution with

ϑ =

(
1
n1

σ2
1 + θ 2

w2n1
σ2

2 + (1−θ)2

w3n1
σ2

3

)2

1
n2

1(n1−1)
σ4

1 + θ 4

(w2n1)(w2n1−1)σ4
2 + (1−θ)4

(w3n1)(w3n1−1)σ4
3

degrees of freedom.

It was pointed out in the previous subsection that the standardized maximin optimal design yields better

efficiencies than the local optimal design if the variance ratios have been misspecified. On the other hand, the

standardized maximin optimal design offers about the same high efficiencies in the considered variance intervals

as the local optimal design, if the variance ratios have been correctly specified. In the following discussion we

demonstrate that these differences are also reflected in the necessary sample size to achieve a given power.
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Figure 2: Level curves of the efficiencies (9) for the standardized maximin optimal design for the intervals V 2 =
[0.81, 3.22] and V 2 = [0.26, 1.04] (marked by the rectangle) and the design corresponding to the distribution
w = (1.61, 0.52).

For example, consider the situation where the clinical team uses the preliminary information from Table 1

for the construction of the local optimal design, but the “true” variances are given by σ2
1 = 10.42, σ2

2 = 4σ2
1 and

σ2
3 = 3σ2

1 . In this case the minimal sample sizes to achieve a power of 1−β = 0.8 with level α = 0.025 and

non-inferiority parameter θ = 0.6 are n = 1767 (n1 = 862, n2 = 656 and n3 = 249) for the misspecified local

optimal design and n = 1685 (n1 = 766, n2 = 644 and n3 = 275) for the standardized maximin optimal design

for V = [0.64, 4.03]× [0.21, 1.3]. This equals reduction of 4.9 % in the total sample size. Note that in this case

the observed ratio of the means is (x̄1− x̄3)/(x̄2− x̄3) = 0.49.

As a further example we consider the above case but with µ1 = 33.67, µ2 = 36.7 and µ3 = 16.5, which

corresponds to a ratio (µ1− µ3)/(µ2− µ3) = 0.85. In this case the misspecified local optimal design requires

n = 314 (n1 = 154, n2 = 116 and n3 = 44) observations to achieve a power of 0.8, while the standardized

maximin optimal design yields n = 299 (n1 = 136, n2 = 114 and n3 = 49) for the required sample sizes of the

non-inferiority trial. This corresponds to a reduction of 5.4 % in the total sample size.

If the variances ratios are correctly specified the efficiencies of the local and the standardized maximin

optimal designs are very similar and this similarity is also reflected in the sample sizes required for the two



5 CONCLUDING REMARKS 16

V 2×V 3 [0.64, 4.03]× [0.21,1.30] [0.81,3.22]× [0.26,1.04] [1.61,1.61]× [0.52,0.52]

θ
µ1−µ3
µ2−µ3

n1 n2 n n1 n2 n n1 n2 n
0.6 0.85 65 55 143 67 55 144 70 53 143
0.6 0.90 46 39 101 47 38 101 49 37 100
0.6 0.95 34 29 75 35 29 75 36 27 74
0.6 1 26 22 57 27 22 58 28 21 57

0.8 0.85 1733 1844 3899 1749 1583 3891 1799 1826 3885
0.8 0.90 434 462 977 438 397 975 451 458 974
0.8 0.95 194 206 437 196 177 436 201 204 434
0.8 1 110 117 248 111 100 247 114 116 246

Table 3: Sample sizes n needed for α = 0.025 and 1−β = 0.8 using the minimax approach with the indicated
variance ratio intervals V 2 and V 3. The designs in the last row are local optimal.

different designs to achieve a given power. To illustrate this fact we again investigate the situation considered

in Table 1 and compare the required minimum sample size to achieve a power of 80 percent. The following

parameters are chosen: the non-inferiority threshold θ = 0.6 and θ = 0.8, the expected values of the reference

µ2 = 36.7 and the placebo µ3 = 16.5, and the three standard deviations σ1 = 10.4, σ2 = 13.2, σ3 = 7.5 and thus

variance ratios of r2 = σ2
2

σ2
1

= 1.61, r3 = σ2
3

σ2
1

= 0.52. The expected value of the new experimental drug µ1 will

be varied as the only parameter. In the following we compare the minimal sample sizes for two standardized

maximin optimal designs and the local optimal design which uses the “true” variance ratios. For the sake of

comparison we display the results for the same ratios (µ1−µ3)/(µ2−µ3) as considered by Hasler et. al. (2007).

It is clearly visible that the maximin approach specifies very efficient designs which are about as good as the

local optimal choice. In particular, the total sample size to achieve the required power is at most 0.3 % larger for

the standardized maximin optimal design as for the local optimal design, which requires the exact and correct

specification of the variance ratios.

5 Concluding Remarks

Most optimal experimental designs for three-arm clinical trials depend on the ratios of the population variances,

which are not available before the trial. An erroneous specification of these ratios can lead to a loss of the

efficiency of the local optimal experimental designs, and notable care is necessary in choosing these variance

ratios. In this paper we have proposed a new method for robust designs in three-arm non-inferiority trials

which is less sensitive to such misspecifications. In particular, only intervals of variance ratios have to be

specified for the design of the clinical trial in advance. These estimates may even be very conservative and the

resulting standardized maximin design still allows to conduct economic and highly efficient studies. We feel
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that this situation is more realistic in practical applications, because in many cases preliminary information from

previous similar trials are available. These data might not provide a precise classification of the variance ratios,

but might allow to specify - sometimes very large - intervals of the required ratios of the population variances.

Our approach is based on the standardized maximin principle, and determines the design which maxi-

mizes the worst case efficiency over the range of the specified variance ratios. The numerical results indicate

that standardized maximin optimal designs are very efficient for all values of specified variances. Therefore,

standardized maximin optimal designs provide an interesting alternative to the commonly used local optimal

designs, which may be inefficient, if the variance ratios have been misspecified. A MatLab program for the

numerical construction of the standardized designs may be downloaded at [Maximin-Program (2007)].
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6 Appendix

6.1 Proof of Lemma

We will investigate the previously used efficiency function g(w2, w3) from (8) for fixed w2 and w3 and vary the

variance ratios r2 and r3 to see where possible minima are attained. For this purpose we consider the function

h(r2,r3) =

(
1+θ

√
r2 +(1−θ)

√
r3
)2(

1+ θ 2

w2
r2 + (1−θ)2

w3
r3

)
(1+w2 +w3)

(19)

and simplify it to

f (a2,a2) =
(1+a2 +a3)

2(
1+ a2

2
w2

+ a2
3

w3

)
(1+w2 +w3)

,

with a2 = θ
√

r2 and a3 = (1−θ)
√

r3. The gradient of grad f (a2,a3) is given by

grad f (a2,a3) = 2 1+a2+a3

(1+
a2

2
w2

+
a2
3

w3
)(1+w2+w3)


1− a2(1+a2 +a3)

w2(1+ a2
2

w2
+ a2

3
w3

)

1− a3(1+a2 +a3)

w3(1+ a2
2

w2
+ a2

3
w3

)

 ,
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which equals zero only at the point

a∗2 = w2 (20)

a∗3 = w3

The Hessian Matrix at this point is obtained as

H ( f (a∗2,a
∗
3)) = 2

(1+w2+w3)2

 − 1+w3
w2

1

1 − 1+w2
w3

 .

This matrix is negative definite: the signs of the two minors alternate starting with a negative value. Thus, the

point (a∗2,a
∗
3) is a global maximum. With this information it follows that the minimum of (8) must be attained

at the boundary of the set V = V 2×V 3. But looking at the one-directional derivatives with respect to a2 and a3

yield even more: the minimum value must be attained at one of the four corners of the rectangle. This follows

because the function δ f
δa2

has only one possible extrema at the point

ã2 =
w2(a2

3 +w3)
w3(1+a3)

where the second derivative is always negative. Thus this point always corresponds to a local maximum. The

same argument is valid for the function δ f
δa3

and leads to the conclusion that the minimal value of f (a2,a3) (and

of h(r2,r3) for fixed w2,w3 and θ , of course) is taken at one of the four corners of the rectangle.

Thus, (19) has only a single, global extrema which is a maximum, and the directional derivatives in direction

of r2 and r3 (a2 and a3, respectively) have only one critical point corresponding to a local maximum, too. Since

the set V = V 2×V 3 is compact, we conclude that the minimal value of h (with respect to (r2,r3) is attained at

one of the four corners of the rectangle V .

�
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