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Abstract
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1 Introduction

Consider the common nonparametric regression model on the interval [a, b]

Yi = g(ti) + εi , i = 1, . . . , n;(1.1)

where a ≤ t1 < . . . < tn ≤ b are the design points, the errors are independent identically

distributed with mean 0 and variance σ2 > 0. There are several procedures to estimate the

unknown regression function g nonparametrically, including kernel type, series estimators and

polynomial splines [see e.g. the monographs of Fan and Gijbels (1996) or Efromovich (1999)].

Because of its similarity to polynomials and its conceptual simplicity many authors propose to fit

polynomial splines to the data [see e.g. De Boor (1978), Diercx (1995) or Eubank (1999) among

many others]. Smoothing splines owe their origin to Whittaker (1923) and have been further

developed by Schoenberg (1964) and Reinsch (1967); see also the monographs of Eubank (1999)

and Wahba (1990). The basic idea of this estimate is rather simple. Because the minimization

of the residual sum of squares
n∑

i=1

(Yi − g(ti))
2(1.2)

with respect to the function g would yield an interpolating curve with too many rapid fluctua-

tions, a roughness penalty is introduced, which restricts the class of plausible curves with respect

to their smoothness properties. More precisely, if W (m)([a, b]) denotes the Sobolev space of all m

times continuously differentiable functions defined on the interval [a, b] with
∫ b

a
|g(m)(t)|2dt < ∞,

then the sum of squares in (1.2) is minimized in the class

Fρ =
{

g ∈ W (m)([a, b]) |
∫ b

a

|g(m)(t)|2dt ≤ ρ2
}

,(1.3)

where ρ > 0 is a given roughness penalty or smoothing parameter, that is

min
g∈Fρ

n∑
i=1

(Yi − g(ti))
2.(1.4)

Introducing a Lagrange multiplier it can be shown that this constrained optimization problem

is equivalent to minimizing

n∑
i=1

(Yi − g(ti))
2 + λ

∫ b

a

|g(m)(t)|2dt(1.5)

for some well defined constant λ > 0. The case m = 2 corresponds to smoothing cubic splines,

which have been extensively studied and widely used because of the availability of fast and ef-

ficient algorithms for its calculation [see Reinsch (1967), Silverman (1985), Eubank (1999) or

Green and Silverman (1994) among many others]. While many statistical properties of these
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estimates have been considered in the literature the problem of designing experiments for non-

parametric estimation with smoothing splines has - to the knowledge of the authors - not been

investigated so far.

Design problems for spline estimation with a well defined truncated power basis have a long

history. If the knots are assumed to be fixed and the basis is given, the estimation problem

reduces to a linear regression problem and optimal designs have been investigated by Studden

and Van Arman (1969), Studden (1971), Murty (1971a,b), Park (1978), Kaishev (1989), Heiligers

(1998, 1999). If the knots are also estimated from the data, then the resulting splines are called

free knot splines and the estimation problem is a nonlinear least squares problem [see Jupp (1978)

of Mao and Zhao (2003)]. The construction of D-optimal designs for splines with estimated knots

was considered recently by Dette, Melas and Pepelyshev (2007). Other types of optimal designs

for the estimation with splines taking the bias into account have been discussed by Woods (2005)

and Woods and Lewis (2006).

On the other hand no optimal designs are available for estimation with the smoothing spline.

This gap can be partially explained by the particular difficulties, which emerge from the implicit

definition of the basis and the knots in the solution of the optimization problem (1.4). The goal

of the present paper is to fill this gap and present some useful tools for constructing optimal

designs for the estimation of the regression with smoothing splines. In Section 2 we review

some basic terminology and recall a local minimax property of the smoothing spline. The value

of the corresponding minimax criterion will be the basis for the definition of optimal design

problems. In Section 3 we introduce a new basis for the space of natural splines, which is of own

interest and fundamental for the solution of the optimal design problems discussed in Section 4.

Two optimality criteria for the determination of optimal designs are introduced corresponding

a most precise estimation of the coefficients in the spline representation (D-optimality) and an

accurate prediction of the curve (G-optimality). Several properties of the optimal designs are

derived. In particular – in contrast to approximate design theory [see Kiefer (1974)] – D- and

G-optimal designs are not equivalent. Finally, some numerical results and a comparison of the

optimal design with the commonly used uniform design in this context are presented in Section

5. The numerical study also includes an I-optimality criterion which is more appropriate for

mean squared error considerations.

2 The local minimax property

It is well known that in the case n ≥ m there exists a unique solution of the constrained

optimization problem (1.4) or (1.5), which is a natural spline [see e.g. Eubank (1999), Theorem

5.3]. The set of natural splines, say N2m(t1, . . . , tn), is defined as the set of all functions g defined

on the interval [a, b] with the following properties

(i) g is a piecewise polynomial of order 2m− 1 on any subinterval (ti, ti+1); i = 1, . . . , n− 1.
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(ii) g has 2m− 2 continuous derivatives.

(iii) g has 2m− 1 derivatives.

(iv) g is a polynomial of degree m− 1 on the intervals (−∞, t1) and (tn,∞).

The dimension of the vector space N2m(t1, . . . , tn) is precisely n [see Eubank (1999)], and if

ϕ1, . . . ϕn denotes a basis of N2m(t1, . . . , tn), then the unique smoothing spline has a local minimax

property, which will be recalled here, because it is essential for the construction of optimal designs.

For this purpose we consider the n× n matrix

X = X(T ) = (ϕi(tj))i,j=1,...,n(2.1)

(here the notation X(T ) reflects the fact that the basis functions depend on the knots T =

{t1, . . . , tn} and is used whenever it is necessary to emphazise this dependence) and define the

vector ϕ(t) = (ϕ1(t), . . . , ϕn(t))T . If

g(t) = θT ϕ(t) =
n∑

j=1

θjϕj(t)(2.2)

denotes a natural spline, then it is easy to see that the defining constraint (1.3) for the set Fρ is

θT Bθ ≤ ρ2, where the matrix B is given by

B =
(∫ b

a

ϕ
(m)
i (t)ϕ

(m)
j (t)dt

)
i,i=1,...,n

.(2.3)

In what follows we consider the set

Ω = {θ ∈ Rn | θT Bθ ≤ ρ2}(2.4)

of all vectors θ corresponding to a function in N2m(t1, . . . , tn) ∩ Fρ and discuss for k = 1, . . . , n

the following minimax problem

inf
a∈Rn

sup
g∈Fρ

E[(g(tk)− aT Y )2],(2.5)

where Y = (Y1, . . . , Yn)T denotes the vector of all observations. The following Lemma can be

found in Eubank (1999). We will present a proof here, because we need the optimal value of the

minimax problem (2.5) for the definition of the optimality criteria, and could not find this in the

literature.

Lemma 2.1. Assume that n > m and k ∈ {1, . . . , n}. The solution of the minimax problem

(2.5) is given by

a∗ = X(XT X + λB)−1ϕ(tk),(2.6)
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and the minimum value is given by

inf
a∈Rn

sup
g∈Fρ

E[(g(tk)− aT Y )2] = σ2ϕT (tk)(X
T X + λB)−1ϕ(tk),(2.7)

where λ = σ2/ρ2.

Proof. For fixed k ∈ {1, . . . , n} we define for any vector a ∈ Rn the function

H(a) = sup
g∈Fρ

E[(g(tk)− aT Y )2](2.8)

and note that this function depends on the class Fρ only through the points t1, . . . , tn. Conse-

quently, it follows from well known properties of natural splines [see e.g. Karlin and Studden

(1966), Section 11.9 ] that the supremum in (2.8) is attained at a function g∗ ∈ N2m(t1, . . . , tn)∩
Fρ, that is

H(a) = sup
g∈N2m(t1,...,tn)∩Fρ

E[(g(tk)− aT Y )2] .(2.9)

Note that all functions g ∈ N2m(t1, . . . , tn)∩Fρ are of the form (2.2) for some θ ∈ Ω, and define

L =
{ ϕ(tk)a

T

ϕT (tk)ϕ(tk)

∣∣∣ a ∈ Rn
}
⊂ Rn×n.

Obviously each vector a ∈ Rn can be represented as a = LT ϕ(tk) with L ∈ L, and we obtain

inf
a∈Rn

H(a) = inf
L∈L

sup
θ∈Ω

E[{ϕT (tk)(θ − LY )}2] ≥ inf
S∈Rn×n

sup
θ∈Ω

E[{ϕT (tk)(θ − SY )}2]

= σ2ϕT (tk)(X
T X + λB)−1ϕ(tk),

where λ is defined by λ = σ2/ρ2 and the last equality follows from Kuks and Olman (1971) with

S∗ = (XT X + λB)−1XT [see also Toutenburg (1982), Chap. 4]. Note that

ϕT (tk)S
∗ = ϕT (tk)

ϕ(tk)ϕ
T (tk)S

∗

ϕT (tk)ϕ(tk)
,

and that ϕ(tk)ϕ
T (tk)S

∗/ϕT (tk)ϕ(tk) ∈ L. Consequently we have

inf
a∈Rn

H(a) = σ2ϕT (tk)(X
T X + λB)−1ϕ(tk),

and the infimum is attained for the vector a∗ defined in (2.6). 2

The value of the minimax criterion (2.6) will be the basic criterion for constructing optimal

designs for estimation with smoothing splines. More precisely, note that the matrix

σ2(XT X + λB)−1(2.10)
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is the analogue of the Fisher information matrix and depends on the design points T = {t1, . . . , tn}.
Therefore a good design, specified by an appropriate choice of T , should maximize a real valued

function of the matrix

M(T ) = XT X + λB(2.11)

[see Silvey (1980) or Pukelsheim (1993)]. However, in contrast to classical design theory for

regression, the functions ϕi defining the basis of the set of natural splines N2m(t1, . . . , tn) also

depend on the design points. Therefore it is not clear that the ”minimization” of a real valued

function of the matrix (2.10) will yield a ”small” value for the optimum in (2.8), and alternative

optimality criteria could be used to reflect this dependence more appropriately. For the sake of

brevity we restrict ourselves in this paper to one optimality criterion which depends only on the

matrix (2.11) and one criterion, which takes also into account that the functions ϕi depend on

the design points.

To be precise recall that a design T = {t1, . . . , tn} is called D-optimal if it maximizes the

determinant det M(T ). Similarly a design is called G-optimal if it minimizes the expression

max
t∈[a,b]

ϕT (t, T )M−1(T )ϕ(t, T ),(2.12)

where the notation ϕ(t, T ) = ϕ(t) reflects the fact that the vector basis functions depend also

on the design points. Note that in classical approximate design theory D- and G-designs are

identical [see Kiefer and Wolfowitz (1960)], but this is not necessarily true in the present context,

because on the one hand we do not consider approximate designs here, and on the other hand the

functions ϕi in (2.12) also depend on the design points. In the following section we construct a

special basis for N2m(t1, . . . , tn), which will be useful for deriving some properties of the optimal

designs with respect to the two criteria.

3 A new basis for natural splines

There are several bases, which could be used in this context [see for example Eubank (1999),

Section 5.3.3], and it is worthwhile to mention again that basis functions depend on the knots

t1, . . . , tn. As pointed out in the previous section the optimal design problem consists in the

determination of the points t1, . . . , tn, such that an efficient estimate is obtained by the smoothing

spline. In this section we will present a new basis of N2m(t1, . . . , tn), which is particularly useful

for this purpose. We could not find this basis in the literature and therefore it might be also of

its own interest. To be precise consider the nonparametric regression model (1.1) and define

F = F (T ) =




1 t1 . . . tn−1
1

...
...

...
...

1 tn . . . tn−1
n


 ∈ Rn×n,(3.1)

di = di(T ) = (det F )(F T )−1em+i , i = 1, . . . , n−m;(3.2)
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where ej = (0, . . . , 0, 1, 0, . . . , 0)T denotes the jth unit vector in Rn (j = 1, . . . , n). Finally, we

introduce the vector

ψ(t) = ψ(t, T ) = ((t− t1)
2m−1
+ , . . . , (t− tn)2m−1

+ )T .(3.3)

Theorem 3.1. The functions

ϕ1(t) = 1 , ϕ2(t) = t , . . . , ϕm(t) = tm−1(3.4)

ϕm+1(t) = dT
1 ψ(t) , . . . , ϕn(t) = dT

n−mψ(t)(3.5)

define a basis of the set of natural splines N2m(t1, . . . , tn).

Proof. Recalling the definition of the natural splines [see for example Eubank (1999), Chapter

5] the assertion of Theorem 3.1 follows if the following two assertions can be established:

(a) The functions ϕm+1, . . . ϕn are polynomials of degree m− 1 on the interval [tn,∞)

(b) The functions ϕ1, . . . ϕn are linearly independent on the interval [t1, tn].

We begin with a proof of assertion (a). Note that for t > tn the functions ϕm+i are of the form

ϕm+i(t) =
n∑

j=1

dij(t− tj)
2m−1 =

n∑
j=1

2m−1∑

`=0

dij

(
2m− 1

`

)
t`t2m−1−`

j

=
2m−1∑

`=0

(
2m− 1

`

){ n∑
j=1

dijt
2m−1−`
j

}
t` ,

where dij denotes the jth component of the vector di = (di1, . . . , din)T defined in (3.2). Conse-

quently the functions ϕm+i are polynomials of degree 2m − 1. Moreover, if ` ≥ m we have for

the coefficients of the monomials t`

n∑
j=1

dijt
2m−1−`
j = dT

i Fe2m−1−` = (det F )eT
m+ie2m−1−` = 0,

which proves assertion (a). For a proof of (b) we show that the determinant of the matrix

X = (ϕi(tj))i,j=1,...,n with the functions ϕi defined in (3.4) and (3.5) is not vanishing. Obviously

for this basis the matrix B in (2.3) is of the form

B =

(
0 0

0 V

)

(here 0 denotes a matrix of appropriate dimensions with all entries equal to 0), where the matrix

V is given by

V =
(∫ b

a

ϕ
(m)
m+i(t)ϕ

(m)
m+j(t)dt

)
i,i=1,...,n−m

∈ Rn−m×n−m.
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Define for a ≤ s < t ≤ b

Q(s, t) =

∫ b

a

(s− u)m−1
+ (t− u)m−1

+ du,(3.6)

then it is known that the matrix

Qn = (Q(ti, tj))i,j=1,...,n(3.7)

is positive definite [see Eubank (1999), p. 208]. With the notation D = (dij)
j=1,...,n
i=1,...,n−m ∈ Rn−m×n

we have

V = DQnDT .

Note that by Cramer’s rule the vectors di are the rows of the matrix (det F )F−1 and as conse-

quence linearly independent. Therefore we have det V > 0, which shows that the matrix B has

rank n−m. Moreover, Lemma 5.1 in Eubank (1999) yields,

∫ b

a

ϕ
(m)
m+i(t)ϕ

(m)
m+j(t)dt = (−1)m(2m− 1)!

n∑

`=1

dj`ϕm+i(t`),

which gives V = κDRDT , where κ = (−1)m(2m− 1)! and

R =
( |ti − tj|2m−1

2

)n

i,j=1
.

Recalling the definition of

X =




1 t1 . . . tm−1
1 ϕm+1(t1) . . . ϕn(t1)

...
...

. . .
...

...
. . .

...

1 tn . . . tm−1
n ϕm+1(tn) . . . ϕn(tn)


 ∈ Rn×n,

we obtain for its determinant by Laplace’s identity

det X =
∑

1≤α1<...<αm≤n

(−1)
∑m

i=1 αi+m(m+1)/2 det(tj−1
αi

)m
i,j=1 det(ϕm+i(tβj

)i,j=1)
n−m,

where the indices β1, . . . , βn−m ∈ {1, . . . , n}\{α1, . . . , αm} are arranged in natural order. On the

other hand due to the well known formula for minors of the inverse matrix (see e.g. Gantmacher

(1998), Section 1.3) we obtain

det(tj−1
αi

)m
i,j=1 = (−1)

∑m
i=1 αi+m(m+1)/2 det(diβj

)n−m
i,j=1(det F )n−m−1

and we have

det X = (det F )n−m−1
∑

1≤β1<...<βn−m≤n

det(diβj
)n−m
i,j=1 det(ϕm+i(tβj

)n−m
i,j=1

= (det F )n−m−1 det(DRDT ) = κn−m(det V )(det F )n−m−1 6= 0,(3.8)

which completes the proof of Theorem 3.1. 2
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4 D- and G-optimal designs for smoothing splines

In this section we present several properties of the D- and G-optimal designs for estimation with

smoothing splines (see the definitions at the end of Section 2). We begin with an invariance

property of the optimal designs, which reduces the design problem to the interval [−1, 1].

Theorem 4.1. Let T = {t1, . . . tn} denote the D- (G-) optimal design for estimation with the

smoothing spline on the interval [−1, 1] with penalty ρ2, then the design T̄ = {t̄1, . . . t̄n} with,

t̄i =
b− a

2
ti +

b + a

2
, i = 1, . . . , n

is D- (G-) optimal for estimation with the smoothing spline on the interval [a, b] with penalty

(b− a)ρ2/2.

Proof. Let T = {t1, . . . , tn} denote an arbitrary design on the interval [−1, 1], define c = b−a
2

and

d = b+a
2

. We introduce the notation ϕi(t, T ) for the basis functions ϕi reflecting the dependence

on the design T = {t1, . . . , tn} and we will show at the end of this proof that the vector ϕ(t, T ) =

(ϕ1(t, T ), . . . , ϕn(t, T ))T defined by (3.3) and (3.4) satisfies

ϕ(ct + d, T̄ ) = Sϕ(t, T ),(4.1)

where T̄ = {ct1 + d, . . . , ctn + d} denotes the transformed design, the n× n matrix S is given by

S =

(
J1 0

0 J2

)
,(4.2)

J1 is a lower m×m triangular matrix with diagonal elements 1, c . . . , cm−1,

J2 = csdiag
(
cm−2, cm−3, . . . , c2m−n−1

) ∈ Rn−m×n−m(4.3)

and s = n(n− 1)/2 . With this representation we obtain (t̄i = cti + d)

M(T̄ ) = XT (T̄ )X(T̄ ) + λB

=
n∑

i=1

ϕ(t̄i, T̄ )ϕT (t̄i, T̄ ) + λ

∫ b

a

ϕ(m)(t, T̄ )(ϕ(m)(t, T̄ ))T dt

=
n∑

i=1

Sϕ(ti, T )ϕT (ti, T )ST +
λ(b− a)

2

∫ 1

−1

Sϕ(m)(t, T )(ϕ(m)(t, T ))T ST dt

= SM(T )S,

where

M(T ) =
n∑

i=1

ϕ(ti, T )ϕT (ti, T ) +
λ(b− a)

2

∫ 1

−1

ϕ(m)(t, T )(ϕ(m)(t, T ))T dt.
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Because the matrix S does not depend on the design T , the D-optimal design on the interval

[a, b] for a given λ (maximizing det M(T̄ ) with respect to T̄ ) can be obtained from the D-optimal

design on the interval [−1, 1] for λ(b − a)/2 (maximizing det M(T ) with respect to T ) by the

linear transformation t̄ = ct + d. The assertion for G-optimality follows by the same argument

observing the identity

max
t∈[−1,1]

ϕT (t, T )M−1(T )ϕ(t, T ) = max
t∈[a,b]

ϕT (t, T̄ )M−1(T̄ )ϕ(t, T̄ ),

and it remains to prove the identity (4.1). For this purpose recall the definition of the matrix

F (T ) and the vector di(T ) in (3.1) and (3.2), then it is easy to see that

det F (T̄ ) = cs det F (T ),

di(T̄ ) = cs−(m+i)di(T ) , i = 1, . . . n−m, s = n(n− 1)/2.

A simple calculation shows that

(ct + d− t̄j)
2m−1
+ = (c(t− tj))

2m−1
+ = c2m−1(t− tj)

2m−1
+

(note that c > 0), and a multiplication of this equation by the jth component dij(T̄ ) of the

vector di(T̄ ) yields

ϕm+i(ct + d, T̄ ) =
n∑

j=1

dij(T̄ )c2m−1(t− tj)
2m−1
+ = cs+m−1−iϕm+i(t, T ).

This proves the representation

(ϕm+1(ct + d, T̄ ), . . . , ϕn(ct + d, T̄ ))T = J2(ϕm+1(t, T ), . . . , ϕn(t, T ))T ,

where the matrix J2 is defined in (4.3). Finally, the representation

(ϕ1(ct + d, T̄ ), . . . , ϕm(ct + d, T̄ ))T = J1(ϕ1(t, T ), . . . , ϕm(t, T ))T

with a lower triangular matrix J1 is obvious and the assertion of Theorem 4.1 follows. 2

Theorem 4.1 shows that the determination of D- and G-optimal designs for the estimation with

smoothing splines can be restricted to the design space [−1, 1]. The next theorem gives some

more information about the structure of the optimal designs.

Theorem 4.2. Consider the estimation problem with smoothing splines on the interval [−1, 1]

with n > m and ρ ≥ 0.

(i) Any D-optimal design for estimation with the smoothing spline contains the boundary points

of the design space , i.e. t1 = −1, tn = 1.
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(ii) There exists a G-optimal design for estimation with the smoothing spline which contains

the boundary points t1 = −1, tn = 1.

(iii) If the D- (G-) optimal design for estimation with the smoothing spline is unique, then it is

necessarily symmetric, i.e. tn−i+1 = −ti, i = 1, . . . , n.

Proof.

(i) Assume that T = {t1, . . . , tn} denotes a D-optimal design for estimation with the smoothing

spline on the interval [−1, 1] with t1 6= −1 or tn 6= 1 . We define c = 2/(tn − t1) > 1 and

d = −(tn + t1)/(tn − t1), then the transformation

t̄ = ct + d

maps the interval [t1, tn] onto [−1, 1]. From the proof of Theorem 4.1 we have for the design

T̄ = {t̄1, . . . , t̄n} on the interval [−1, 1]

M(T̄ ) = SM(T )ST ≥ SM(T )ST ,

where the matrix M(T ) is defined in the proof of Theorem 4.1 and (b−a)/2 is replaced by c > 1.

This implies

det(M(T̄ )) ≥ (det S)2 det(M(T ))

where (det S)2 > 1, which contradicts to the D-optimality of the design T .

(ii) This follows similarly observing the identity

ϕT (t, T )M−1(T )ϕ(t, T ) = ϕT (t, T̄ )M−1(T̄ )ϕ(t, T̄ ).

(iii) Assume that the D-optimal design for the smoothing spline on the interval [−1, 1] is unique,

consider the transformation t̄ = −t and define the design −T = {−tn, . . . ,−t1}. A similar

calculation as given in the proof of Theorem 4.1 shows

det M(−T ) = det M(T ),

and therefore we obtain from the uniqueness of the D-optimal design that −T = T , that is

tn−i+1 = −ti, i = 1, . . . , n. The corresponding statement for G-optimality follows by similar

arguments. 2

Lemma 4.3. If there exists a design T̄ on the interval [−1, 1], which satisfies

max
t∈[−1,1]

ϕT (t, T̄ )M−1(T̄ )ϕ(t, T̄ ) = tr
(
XT (T̄ )X(T̄ )M−1(T̄ )

)
,(4.4)

tr
(
XT (T̄ )X(T̄ )M−1(T̄ )

)
= min

T
tr

(
XT (T )X(T )M−1(T )

)
,(4.5)

11



then T̄ is a G-optimal design for estimation with the smoothing spline on the interval [−1, 1].

Proof. We have for any design T = {t1, . . . , tn} on the interval [−1, 1]

ψ(T ) = max
t∈[−1,1]

ϕT (t, T )M−1(T )ϕ(t, T ) ≥
n∑

i=1

ϕT (ti, T )M−1(T )ϕ(ti, T )

= tr
(
XT (T )X(T )M−1(T )

) ≥ min
T̃

tr
(
XT (T̃ )X(T̃ )M−1(T̃ )

)
.

Consequently we obtain from (4.4) and (4.5)

ψ(T̄ ) = min
T

max
t∈[−1,1]

ϕT (t, T )M−1(T )ϕ(t, T ),

which establishes the G-optimality of the design T̄ . 2

Note that in the case ρ = ∞ or equivalently λ = 0 we have tr(XT (T̄ )X(T̄ )M−1(T̄ )) = n and

condition (4.5) of Lemma 4.3 is trivially satisfied. Note also that the case λ = 0 corresponds to

an interpolating spline and is for this reason not of practical interest for estimation. However, our

numerical studies presented in the following section show that D-optimal designs for estimation

with smoothing splines are rather robust with respect to the choice of the smoothing parameter.

Therefore these optimal designs are also of some interest in the case λ = 0, which will now

be considered for the remaining part of this section. In particular we will show that in this

case D- and G-optimal designs for the smoothing splines are identical, if n = m + 1. In the

case n > m + 1 this statement is not true anymore. Note that the famous equivalence theorem

of Kiefer and Wolfowitz (1960) cannot be directly applied in the present context, because we

consider exact designs in this paper and the regression functions in the optimality criteria depend

on the design points. In order to apply approximate design theory in the present context we

consider a linear regression model with a basis of N2m(u1, . . . , un) as regression functions, where

the knots U = {u1, . . . , un} do not necessarily coincide with the points T = {t1, . . . , tn}, where

observations are taken, i.e.

Y = X(T, U)θ + ε(4.6)

Here Y = (Y1, . . . , Yn)T denotes the vector of observations in the nonparametric regression model

(1.1), θ = (θ1, . . . , θn)T , ε = (ε1, . . . , εn)T denotes a vector of centered and uncorrelated random

variables with equal variances,

X(T, U) = (ϕi(tj, U))n
i,j=1(4.7)

and ϕ1(t, U)), . . . , ϕn(t, U)) are the basis functions of N2m(u1, . . . , un) defined by (3.4) and (3.5),

where the points tj in (3.3) have been replaced by uj (j = 1, . . . , n). In what follows define

R(T, U) = ((ti − uj)
2m−1
+ )n

i,j=1,(4.8)

F (T ) = (tj−1
i )m

i,j=1 , F (U) = (uj−1
i )m

i,j=1,(4.9)

di(T ) = (det F (T ))(F T (T ))−1em+i , di(U) = (det F (U))(F T (U))−1em+i,(4.10)

D(T ) = (dij(T ))j=1,...,n
i=1,...,n−m , D(U) = (dij(U))j=1,...,n

i=1,...,n−m,(4.11)

12



[here dij(T ) denotes the jth component of the vector di(T )], then the following result holds.

Lemma 4.4. We have

[det(D(T )R(T, U)DT (U))]2 ≤ det(D(T )R(T, T )DT (T )) det(D(U)R(U,U)DT (U))

with equality if and only if T = U .

Proof. With the same arguments as presented in the proof of Theorem 3.1 it follows

κn−m det(D(T )R(T, U)DT (U)) = det V (T, U),(4.12)

κm−n det(D(T )R(T, T )DT (T )) = det V (T, T ),(4.13)

where the (n−m)× (n−m) matrix V (T, U) is defined by

V (T, U) =
(∫ b

a

ϕ
(m)
m+i(t, T )ϕ

(m)
m+j(t, U)dt

)
i,i=1,...,n−m

On the other hand we have from the Cauchy Binet formula [see e.g. Karlin and Studden (1966),

p. 14] and the Cauchy Schwarz inequality

det V (T, U) = det
(∫ b

a

ϕ
(m)
m+i(t, T )ϕ

(m)
m+j(t, U)dt

)
i,i=1,...,n−m

=

∫ b

a

. . .

∫ b

a

det
(
ϕ

(m)
m+i(zj, T )

)n−m

i,j=1
det

(
ϕ

(m)
m+j(zi, U)

)n−m

i,j=1
dz1, . . . dzn−m

≤
{∫ b

a

. . .

∫ b

a

[
det

(
ϕ

(m)
m+i(zj, T )

)n−m

i,j=1

]2

dz1 . . . dzn−m

×
∫ b

a

. . .

∫ b

a

[
det

(
ϕ

(m)
m+i(zi, U)

)n−m

i,j=1

]2

dz1 . . . dzn−m

}1/2

= {det V (T, T ) det V (U,U)}1/2.

Note that the equality takes place if and only if for some constant c ∈ R

det
(
ϕ

(m)
m+i(zj, T )

)n−m

i,j=1
= c det

(
ϕ

(m)
m+j(zi, U)

)n−m

i,j=1

almost everywhere with respect to measure dz1 . . . dzn−m on [a, b]n−m. But since both sides are

piecewise polynomials, this takes place if and only if U = T and the assertion of Lemma 4.4

follows. For example, consider the case n−m = 1. In this case the condition is of the form

m+1∑
j=1

d1j(T )(z − tj)
m−1
+ − c

m+1∑
j=1

d1j(U)(z − uj)
m−1
+ = 0

13



almost everywhere on the interval 8 [a, b]. This equality is impossible if U 6= T since the left side

will not be m− 1 times continuously differentiable in point z = tj for some j ∈ {1, . . . , n}. The

general case n > m + 1 can be considered in a similar (but slightly more complicated) way. 2

For the formulation of our next result we consider an approximate design ξ with weights ξ1, . . . , ξN

at the points t1, . . . , tN [see e.g. Kiefer (1974)] and its information matrix

M̃(ξ, U) =
N∑

i=1

ϕ(ti, U)ϕT (ti, U)ξi .(4.14)

Proposition 4.5. Consider the smoothing spline defined by (1.4) with n = m+1 and ρ = ∞. Let

T ∗ = {t∗1, . . . , t∗n} denote a D-optimal design for estimation with the smoothing spline. If there

exists an approximate D-optimal design with N = n support points maximizing det M̃(ξ, T ∗) in

the class of all approximate design, then the design T ∗ = {t∗1, . . . , t∗n} is G-optimal for estimation

with the smoothing spline.

Proof. Let T ∗ = {t∗1, . . . , t∗n} denote a D-optimal design for estimation with the smoothing

spline and ξ̃ be a D-optimal design maximizing det M̃(ξ, T ∗) with N = n support points, say

T̃ = {t̃1, . . . , t̃n}. A standard result from approximate design theory shows that ξ̃i = 1
n

i =

1, . . . , n. Obviously we have

det M̃(ξ̃, T ∗) = (
1

n
)n det M(T̃ , T ∗) = (

1

n
)n max

T
det M(T, T ∗)

(otherwise the design ξ̃ would not be the approximate D-optimal design). We obtain from

Lemma 4.4 and formula (3.8)

(det M(T̃ , T ∗))2 = (det(D(T̃ )R(T̃ , T ∗)DT (T ∗)2 ≤ det M(T̃ , T̃ ) · det M(T ∗, T ∗)

with equality if and only if T ∗ = T̃ . Consequently it follows that T̃ = T ∗. If ξ∗ = ξ̃ is

the approximate D-optimal design with equal masses at the points t∗1, . . . , t
∗
n, it follows by the

equivalence theorem of Kiefer and Wolfowitz (1960) that ξ∗ is also an approximate G-optimal

design, which means that it minimizes

Φ(ξ) = max
tε[a,b]

ϕT (t, T ∗)M̃−1(ξ, T ∗)ϕ(t, T ∗)

among all approximate designs. Moreover, Φ(ξ∗) = n, which implies (observing the identity

nM̃(ξ∗, T ∗) = M(T ∗, T ∗))

max
tε[a,b]

ϕT (t, T ∗)M−1(T ∗, T ∗)ϕ(t, T ∗) = 1 .
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On the other hand we have for any design T = {t1, . . . , tn} for estimation with the smoothing

spline

max
tε[a,b]

ϕT (t, T )M−1(T, T )ϕ(t, T ) ≥ 1

n

n∑
i=1

ϕT (ti, T )M−1(T, T )ϕ(ti, T )

=
1

n
tr(M−1(T, T )M(T, T )) = 1 ,

which proves that the design T ∗ is also G-optimal. 2.

We will conclude this section with a more detailed discussion of the case m = 1 for which the

resulting optimization problem for the determination of the D-optimal design can be formulated

more explicitly.

Theorem 4.6. Consider the quadratic smoothing spline (m = 1) with ρ = ∞, then the D-

optimal design T ∗ = {t∗1, . . . , t∗n} on the interval [−1, 1] is unique, t∗1 = −1, t∗n = 1 and t∗2, . . . , t
∗
n−1

maximize the function

det X(T ) =
n∏

i=2

(ti − ti−1)
( ∏

1≤i<j≤n

(tj − ti)
)n−2

Moreover, the D-optimal designs T ∗, is symmetric, i.e. t∗n−i+1 = −t∗i , i = 1, . . . , n.

Proof. Note that we have by assumption m = 1, which implies for any design T = {t1, . . . , tn}

X(T ) =




1 0 . . . 0
... Q

1


 ∈ Rn×n,

where the (n− 1)× (n− 1) matrix Q = Q1Q2 is defined by

Q1 =




t2 − t1 0 0 . . . 0

t3 − t1 t3 − t2 0 . . . 0
...

...
...

...
...

tn − t1 tn − t2 tn − t3 . . . tn − tn−1


 ∈ Rn−1×n−1,

Q2 =




d1,1 . . . d1,n−1

...
...

...

dn−1,1 . . . dn−1,n−1


 ∈ Rn−1×n−1.

Note that the matrix Q2 is a minor of the matrix (F T )−1 and we obtain using the known formula

for minors of the inverse matrix [see Gantmacher (1998), Section 1.3] that

det Q2 = (det F )n−2,
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which yields

det X(T ) = det Q1 det Q2 =
n∏

i=2

(ti − ti−1)
( ∏

1≤i<j≤n

(tj − ti)
)n−2

.(4.15)

It was shown in Theorem 4.2 that the the D-optimal design satisfies t∗1 = −1 and t∗n = 1.

Moreover, for t1 = −1 and tn = 1 the function on the right hand side of (4.15) is strictly

concave as a function of (t2, . . . , tn−1), which implies the uniqueness of the D-optimal design.

The assertion regarding the symmetry follows form part (iii) of Theorem 4.3. 2.

5 Some examples

In this section we present several numerical results illustrating the theory. We begin with a

discussion of the case ρ = ∞, which allows an explicit calculation of the optimal designs for

small sample sizes. The second example refers to some numerical calculation and comparison of

D- and G-optimal designs for estimation with linear and quadratic smoothing splines.

Example 5.1. Consider the case m = 1 and ρ = ∞. For a small sample sizes the optimiza-

tion problem in Theorem 4.6 can be solved explicitly and the D-optimal designs can be found

explicitly. In the case n = 2 and n = 3 it follows from Theorem 4.6 that the D-optimal de-

sign is given by {−1, 1} and {−1, 0, 1}, respectively. In the case n = 4 the symmetry implies

that the D-optimal design is of the form {−1,−x, x, 1} where x ∈ [0, 1] maximizes the function

x3(x − 1)6(x + 1)4, that is x = (−1 + 2
√

10)/13. Similarly, in the case n = 5 the D-optimal

design is given by {−1,−x, 0, x, 1}, where x = (−1 + 2
√

69)/25. Note that by Proposition 4.5

the D-optimal design for n = 2 is also G-optimal.

Example 5.2. Note that in all cases of practical interest the optimal designs for estimation with

the smoothing spline have to be calculated numerically. We have performed such calculations

for the case m = 1 considered in Theorem 4.6 and the smoothing cubic spline (i.e. m = 2).

In Table 1 we present the D- and G-optimal designs for the estimation with the quadratic

(m = 1) and cubic (m = 2) spline in the case of n = 6 and n = 8 knots, while Table 2 contains

the corresponding results if n = 10 knots are used. It is interesting to note that the D-optimal

designs for estimation with the quadratic and cubic spline do not change substantially for different

values of the parameter λ. In the case of G-optimal designs the situation is completely different.

Here a larger value of the smoothing parameter λ yields to a G-optimal design which is more

concentrated at the boundary. This corresponds to intuition, because a larger value of λ yields to

a more smooth function (in the extreme case a line), for which it is better to take observations at

the boundary of the design space. A comparison of D- and G-optimal designs for fixed n shows

that in the case of no smoothing (λ = 0) the G-optimal designs are slightly more concentrated
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at the interior of the design space. On the other hand, if λ > 0, the D-optimal designs do

not change, but the knots corresponding to the G-optimal designs are more concentrated at the

boundary.

A comparison of the designs for the quadratic and cubic spline model shows nearly no differences

for the D-optimality criterion. Similarly, in the case λ = 0 the G-optimal designs show the

same pattern. On the other hand if λ > 0 the differences between the G-optimal designs for

the quadratic and cubic spline model are clearly visible. In particular in the case m = 1 the

G-optimal designs are more concentrated at the boundary of the design space.

It might also be of interest to investigate the function

d(t, T ) = ϕT (t)(XT X + λB)−1ϕ(t)(5.1)

for the different designs. In the upper panel of Figure 1 we present this function for the G-optimal

design and the uniform design. The results show that for λ > 0 the G-optimal design has a better

performance at the boundary of the design interval, while in the interior of the interval [−1, 1]

the uniform design has advantages. For λ = 0 both designs yield similar curves t → d(t, T ).

Note that a G-optimal design minimizes the worst case, which appears at the boundary of the

design interval. Thus the price which has to be paid for this better performance at the boundary

is a worse behaviour in the interior of the interval [−1, 1]. If a minimax approach might not be

appropriate for the construction of optimal designs one could alternatively determine optimal

designs which minimize the integrated ”variance”

∫ 1

−1

ϕT (t)(XT X + λB)−1ϕ(t)dt

and are called I-optimal designs for estimation with smoothing splines. Some I-optimal designs

are shown for the cases m = 1 and m = 2 in Table 3 and 4. It is interesting to note that

there appear not too substantial differences between the I-optimal designs for estimation with

the quadratic and cubic splines. A comparison of G- and I-optimal designs shows that the

I-optimal designs are more concentrated in the interior of the design interval [−1, 1]. As a

consequence we observe in the lower panel of Figure 1 that in the case λ > 0 the uniform design

yields smaller values for the function d(t, T ) defined in (5.1) and is smaller at the boundary of

the interval [−1, 1]. The opposite behaviour is observed in the interior of the interval [−1, 1].

Finally, if λ = 0, there are no substantial differences between I-, G-optimal designs and the

uniform design.
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Table 1: D- and G-optimal designs for estimation with the quadratic and cubic smoothing spline

quadratic spline (m = 1) cubic spline (m = 2)

D-optimal G-optimal D-optimal G-optimal

n λ 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1

t1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

t2 -0.74 -0.75 -0.75 -0.68 -1 -1 -0.73 -0.73 -0.74 -0.65 -0.78 -0.85

6 t3 -0.27 -0.28 -0.28 -0.33 -1 -1 -0.26 -0.26 -0.27 -0.21 -0.30 -0.24

t4 0.27 0.28 0.28 0.33 1 1 0.26 0.26 0.27 0.21 0.30 0.24

t5 0.74 0.75 0.75 0.68 1 1 0.73 0.73 0.74 0.65 0.78 0.85

t6 1 1 1 1 1 1 1 1 1 1 1 1

λ 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1

t1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

t2 -0.86 -0.86 -0.87 -0.79 -1 -0.95 -0.85 -0.86 -0.86 -0.77 -0.89 -1

t3 -0.58 -0.58 -0.59 -0.51 -0.32 -0.95 -0.57 -0.57 -0.58 -0.47 -0.54 -0.60

8 t4 -0.21 -0.21 -0.21 -0.20 -0.30 -0.87 -0.20 -0.20 -0.20 -0.15 -0.20 -0.17

t5 0.21 0.21 0.21 0.20 0.30 0.87 0.20 0.20 0.20 0.15 0.20 0.17

t6 0.58 0.58 0.59 0.51 0.32 0.95 0.57 0.57 0.58 0.47 0.54 0.6

t7 0.86 0.87 0.87 0.78 1 0.95 0.85 0.86 0.86 0.77 0.89 1

t8 1 1 1 1 1 1 1 1 1 1 1 1

Table 2: D- and G-optimal designs for estimation with the quadratic and cubic smoothing spline

quadratic spline (m = 1) cubic spline (m = 2)

D-optimal G-optimal D-optimal G-optimal

n λ 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1 0 0.01 0.1

t1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

t2 -0.91 -0.92 -0.92 -0.82 -1 -1 -0.91 -0.91 -0.91 -0.83 -0.95 -1

t3 -0.73 -0.73 -0.74 -0.58 -0.32 -1 -0.72 -0.73 -0.73 -0.60 -0.66 -0.89

t4 -0.47 -0.47 -0.48 -0.41 -0.31 -0.23 -0.46 -0.47 -0.47 -0.35 -0.43 -0.33

10 t5 -0.16 -0.16 -0.16 -0.20 0 0 -0.16 -0.16 -0.16 -0.12 -0.12 -0.31

t6 0.16 0.16 0.16 0.20 0 0 0.16 0.16 0.16 0.12 0.12 0.31

t7 0.47 0.47 0.48 0.41 0.32 0.23 0.46 0.47 0.47 0.35 0.43 0.33

t8 0.73 0.73 0.74 0.58 0.32 1 0.72 0.73 0.73 0.60 0.66 0.89

t9 0.91 0.92 0.92 0.82 1 1 0.92 0.91 0.91 0.83 0.95 1

t10 1 1 1 1 1 1 1 1 1 1 1 1
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Table 3: I- optimal designs for estimation with the quadratic and cubic smoothing spline

quadratic spline (m = 1) cubic spline (m = 2)

n λ 0 0.001 0.01 0 0.01 0.1

t1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

t2 -0.60 -0.60 -0.63 -0.63 -0.58 -0.49

6 t3 -0.22 -0.20 -0.21 -0.21 -0.18 -0.22

t4 0.22 0.20 0.21 0.21 0.18 0.22

t5 0.60 0.60 0.63 0.63 0.58 0.49

t6 1.00 1.00 1.00 1.00 1.00 1.00

t1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

t2 -0.75 -0.72 -0.75 -0.73 -0.66 -0.75

t3 -0.48 -0.44 -0.43 -0.43 -0.40 -0.30

8 t4 -0.18 -0.15 -0.14 -0.14 -0.13 -0.30

t5 0.18 0.15 0.14 0.14 0.13 0.30

t6 0.48 0.44 0.43 0.43 0.40 0.30

t7 0.75 0.72 0.75 0.73 0.66 0.75

t8 1.00 1.00 1.00 1.00 1.00 1.00

Table 4: I- optimal designs for estimation with the quadratic and cubic smoothing spline

quadratic spline (m = 1) cubic spline (m = 2)

n λ 0 0.001 0.01 0 0.01 0.1

t1 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

t2 -0.80 -0.79 -0.83 -0.79 -0.72 -0.94

t3 -0.59 -0.57 -0.69 -0.56 -0.55 -0.46

t4 -0.41 -0.35 -0.29 -0.33 -0.32 -0.46

10 t5 -0.19 -0.12 -0.13 -0.11 -0.11 0

t6 0.19 0.12 0.13 0.11 0.11 0

t7 0.41 0.35 0.29 0.33 0.32 0.46

t8 0.59 0.57 0.69 0.56 0.55 0.46

t9 0.80 0.79 0.83 0.79 0.72 0.94

t10 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 1 The function d(t, ξ) defined in (5.1) for various optimal designs and different values of the
parameter λ (left part: λ = 0, right part: λ = 0.01. Upper panel: comparison of G-optimal (solid
line) and uniform design (dashed line). Lower panel: comparison of I-optimal (solid line) and uniform
design (dashed line). The number of observations is n = 10.
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