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Abstract

In this paper we study the theoretical properties of the simultaneous multiscale change

point estimator (SMUCE) proposed by Frick et al. (2014) in regression models with depen-

dent error processes. Empirical studies show that in this case the change point estimate

is inconsistent, but it is not known if alternatives suggested in the literature for correlated

data are consistent. We propose a modification of SMUCE scaling the basic statistic by

the long run variance of the error process, which is estimated by a difference-type variance

estimator calculated from local means from different blocks. For this modification we prove

model consistency for physical dependent error processes and illustrate the finite sample

performance by means of a simulation study.

Keywords and phrases: Change point detection, multiscale methods, physical dependent pro-
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1 Introduction

The problem of detecting multiple abrupt changes in the structural properties of a time series and

to split the data into several “stationary” segments has been of interest to statisticians for many

decades. An efficient a posteriori change-point detection rule enables the researcher to analyze

data under the assumption of piecewise-stationarity and has numerous applications including

bioinformatics, neuroscience, genetics, the analysis of speech signals, financial, and climate data.

Because of its importance the literature on the subject is very vast and we refer exemplarily to

the work of Yao (1988), Bai and Perron (1998, 2003), Braun et al. (2000), Lavielle and Moulines
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(2000), Kolaczyk and Nowak (2005), Davis et al. (2006), Harchaoui and Lévy-Leduc (2010),

Ciuperca (2011, 2014), Killick et al. (2012), Fryzlewicz (2014), Matteson and James (2014), Cho

and Fryzlewicz (2015), Preuss et al. (2015), Yau and Zhao (2016), Haynes et al. (2017), Korkas

and Fryzlewicz (2017) and Chakar et al. (2017). This list of references is by no means complete

and further references can be found in the cited literature.

The focus of the present paper is on the simultaneous multiscale change point estimator (SMUCE),

which was introduced recently in a seminal paper of Frick et al. (2014) to identify multiple changes

in the mean structure of the sequence

Yi = ϑ∗
(
i
n

)
+ εi, i = 1, . . . , n,(1.1)

where ϑ∗ : [0, 1]→ R is a piecewise constant function and ε1, . . . , εn are independent identically

distributed centered Gaussian random variables. Note that these authors considered distributions

from a one-parametric exponential family with a piecewise constant parameter ϑ∗, but for the sake

of brevity we restrict ourselves to the location scale model, which corresponds to the Gaussian

case. The SMUCE procedure controls the probability of overestimating the true number of

change points, and it is also possible to give bounds for the probability of underestimation.

Moreover, one can construct asymptotic honest confidence sets for the unknown step function

ϑ∗ and its change points. The method has turned out to be very successful and has therefore

been extended in various directions. For example, Pein et al. (2017b) consider model (1.1) with

a heteroscedastic Gaussian noise process. Li et al. (2016) argue that in situations with low signal

to noise ratio or with many change-points compared to the number of observations SMUCE

necessarily leads to a conservative estimate and propose to control the false discovery instead

of the family wise error rate. More recently Li et al. (2018) extend the procedure to certain

function classes beyond step functions in a nonparametric regression setting.

The present paper is devoted to the analysis of SMUCE in the location scale model (1.1) with a

piecewise constant regression function under more general assumptions on the error process. We

are particularly interested in the situation where the errors are neither Gaussian nor independent.

If the sample size is reasonably large and the errors are independent, SMUCE is relatively robust

because it is based on local means which are asymptotically Gaussian due to the CLT. However,

the independence of the errors is more crucial and ignoring this assumption may lead to serious

errors in the estimation procedure. This is illustrated in Figure 1, where we display a typical

estimate of the signal (upper left panel) by the modification of SMUCE proposed in Tecuapetla-

Gómez and Munk (2017) for m-dependent errors (lower left panel). The data generating process

is an ARMA(2, 6) process. We observe that the modification still produces a function with

too many jumps. The lower right panel shows the estimate proposed in this paper, which

seems to work better. The upper right panel shows the performance of SMUCE, which clearly

overestimates the true number of change points. A more detailed comparison will be presented

in Section 4.
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Figure 1: Different estimates of a piecewise constant signal in model (1.1) with an ARMA(2, 6)

error process. Upper left panel: true function. Upper right panel: SMUCE. Lower left panel:

estimate proposed in Tecuapetla-Gómez and Munk (2017). Lower right panel: estimate proposed

in this paper.

The reason for the differences consists in the fact that in the case of dependent data all de-

scribed procedures require a reliable estimate of the long run variance of the error distribution.

Tecuapetla-Gómez and Munk (2017) demonstrate by means of a simulation study that the prob-

lem can easily be addressed for m-dependent errors using difference based estimators [see Hall

et al. (1990) or Dette et al. (1998)]. Their approach provides a solution for a specific error

structure and we see the improvement in Figure 1. However, from a practical point of view

the method requires a good choice of m, and the example indicates that this procedure might

not work well for other dependence structures. More importantly, from a theoretical point of

view rigorous statements regarding the performance of SMUCE in models with more general

(stationary) error processes are missing. It turns out that results of this type are substantially

more difficult to obtain and are–to our best knowledge–not available in the literature so far.

In this paper we address this problem and prove consistency of SMUCE with an appropriately

modified variance estimator under the assumption that the error process {εi}i∈Z is a physical

system in the sense of Wu (2005). This includes such important examples as ARMA or GARCH

processes. We also avoid any distributional assumptions regarding the errors εi except the

existence of moments. In Section 2 we introduce the model and the modification of the SMUCE

procedure to address general time dependent error processes. Roughly speaking, we have to
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define consistent estimates of the long run variance

σ2
? :=

∑
k∈Z

Cov(ε0, εk) ,(1.2)

which address the fact that the regression function may be only piecewise constant and not

constant. This is achieved by a two step estimator which is defined as a difference based estimator

of local averages. The asymptotic properties of the modified procedure are established in Section

3. We prove that the number of change points is identified with probability converging to 1 and

that all change points are estimated consistently. The finite sample properties are investigated

in Section 4 by means of a simulation study. Finally, all proofs and technical details are deferred

to an appendix.

2 Multiscale change point detection for dependent data

We begin with a brief review of the simultaneous multiscale change point estimator (SMUCE)

as introduced by Frick et al. (2014), where we directly address the problem of dependent data.

Throughout this paper let

ϑ∗(t) :=
K∗∑
k=0

θ∗k1[τ∗k ,τ
∗
k+1)(t)(2.1)

denote the “true” unknown signal in model (1.1), where K∗ is the (unknown) number of change

points, 0 = τ ∗0 < τ ∗1 < . . . < τ ∗K∗ < τ ∗K∗+1 = 1 are the change point locations, and θ∗0, . . . , θ
∗
K∗ are

the function values of ϑ∗. We summarize the change point locations in a vector

J(ϑ∗) = (τ ∗1 , . . . , τ
∗
K∗)

of dimension |J(ϑ∗)|. For the sake of simplicity we restrict ourselves to estimators of the form

ϑ̂(·) =
∑K̂

k=0 θ̂k1[τ̂k,τ̂k+1)(·) where the estimates τ̂k of the change point locations only attain values

at the sampling points 0, 1
n
, . . . n−1

n
, 1 and denote the set of these functions by Sn. Following Frick

et al. (2014) we propose to test for a candidate step function ϑ(·) =
∑K

k=0 θk1[τk,τk+1)(·) ∈ Sn on

each interval [i/n, j/n] where ϑ is constant whether ϑ∗ is constant on this interval as well with

the same value as ϑ. For this purpose we use the multiscale statistic

Vn(Y, ϑ) = max
0≤k≤K

max
nτk≤i≤j<nτk+1
j−i+1≥ncn

{
1

σ̂?

√
j − i+ 1

∣∣∣Y j

i − θk
∣∣∣−√2 log

en

j − i+ 1

}
,(2.2)

where {cn}n∈N is a positive sequence converging to 0,

Y
j

i :=
1

j − i+ 1

j∑
`=i

Y`
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is a local mean and σ̂2
? is an appropriate estimator of the long run variance (1.2), which will be

defined later. The estimator of the piecewise constant function ϑ∗ is then required to minimize

the number of change points over the acceptance region of this multiscale test. More precisely,

for a fixed threshold q chosen according to the (asymptotic) null distribution of Vn the step

function estimator ϑ̂ is required to fulfil a data fit claim of the form

Vn(Y, ϑ̂) ≤ q ,

and to satisfy simultaneously a parsimony requirement concerning its number of change points.

This is achieved by first estimating the number of change points K∗ by

K̂ = K̂(Vn, q) = inf
ϑ∈Sn

Vn(Y,ϑ)≤q

|J(ϑ)|.

Next, we identify among all suitable candidate step functions the one which provides the best

fit to the data, that is

ϑ̂ = argmin
ϑ∈C(Vn,q)

n∑
i=1

(
Yi − ϑ

(
i
n

))2

,(2.3)

where

C(Vn, q) := {ϑ ∈ Sn : |J(ϑ)| = K̂ and Vn(Y, ϑ) ≤ q}

is a “confidence set” of all functions in Sn satsifying the multiscale criterion with a minimal

number of change points. The estimator can be efficiently computed by a dynamic program and

is implemented with the function stepFit in the R-package stepR [see Pein et al. (2017a)].

The appropriate estimation of the long run variance σ2
? is crucial for a good performance of

SMUCE if it is applied to correlated data, and for this purpose we propose a two step procedure

as considered in Wu and Zhao (2007). We divide the sample in mn = b n
kn
c blocks {Y1, . . . , Ykn},

{Ykn+1, . . . , Y2kn}, . . . , {Y(mn−1)kn+1, . . . , Ymnkn} of length kn and calculate local averages

Ai :=
1

kn

kn∑
j=1

Yj+ikn ,

to mimic the dependence structure of the data. Secondly, we use the difference based estimate

σ̂2
? :=

kn
2(mn − 1)

mn−1∑
i=1

|Ai − Ai−1|2 ,(2.4)

to eliminate the signal. Here kn increases with the sample size in order to achieve the correct

asymptotic behaviour. For details see Proposition 3.1 below, where we prove the consistency of

this estimate.
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In the Gaussian case the only difference to the SMUCE procedure regards the use of the long

run variance estimator. Note, however, that we will discuss arbitrary dependent error processes,

not necessarily Gaussian, in which case the asymptotic analysis of the procedure is substantially

more difficult. This analysis will be carefully carried out in the following Section 3. The finite

sample properties of the new multiscale method are investigated by means of a simulation study

in Section 4.

3 Asymptotic properties

Consider the location scale model (1.1) with a stationary error process ε = {εi}i∈Z such that

E [εi] = 0, Var [εi] = σ2 > 0. For the asymptotic analysis of the multiscale procedure introduced

in Section 2 we assume that ε is a physical system as introduced in Wu (2005). This means

that there exists a sequence of independent identically distributed random variables {ηi}i∈Z with

values in some measure space S and a measurable function G : SN → R such that for all i ∈ Z

εi = G(. . . , ηi−1, ηi) .

As pointed out by Wu (2011), physical systems include many of the commonly used time series

models such as ARMA and GARCH processes.

In the following discussion let p ≥ 1 and define for a random variable X (in the case of its

existence) ||X||p =
(
E[|X|p]

)1/p
. If ‖εi‖p <∞ we consider the physical dependence measure

δi,p := ||εi − ε?i ||p,

where the random variable ε?i is defined by ε?i = G(. . . , η−1, η
′
0, η1, . . . , ηi) and η′0 is an independent

copy of η0. We also define the quantity

∆m,p :=
∞∑
i=m

δi,p, m = 1, 2, . . .

and call a system {εi}i∈Z p-strong stable if ∆0,p <∞ [see Wu (2005)]. It can be shown that for

a 2-strong stable process {εi}i∈Z the covariance function is absolutely summable and thus the

long run variance in (1.2) exists [see e.g. Wu and Phoumaradi (2009)]. A further quantity that

we will make use of is the so-called projection operator, which for i ∈ Z is given by

Pi · := E [· | Fi]− E [· | Fi−1] ,

where Fi = (. . . , ηi−1, ηi). It is shown in Wu (2011) that for a 2-strong stable process {εi}i∈Z the

long run variance (1.2) can be represented as σ2
? = E[(

∑∞
j=0 P0εj)

2].

For the statement of the asymptotic properties in this section we will make the following basic

assumptions
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(A1) ‖εi‖4 <∞

(A2) ∆0,4 <∞ and
∑∞

i=1 iδi,2 <∞

(A3) ∆m,3 = O(m−γ) for some γ > 0

Assumption (A3) is used to construct a simultaneous Gaussian approximation of the partial

sums of the errors εi (see Section 5 for details). Assumption (A2) is needed for a proof of the

first result of this section, which establishes the consistency of the estimator (2.4) for the long

run variance with an explicit rate. For its precise statement we introduce the notation an � bn
for two sequences {an}n∈N and {bn}n∈N, which means that

0 < lim inf
n→∞

|an/bn| ≤ lim sup
n→∞

|an/bn| <∞.

Proposition 3.1 Consider the nonparametric regression model (1.1) with a piecewise constant

regression function (2.1). If assumptions (A1) and (A2) are satisfied and kn � n1/3, we have for

the estimator in (2.4)

σ̂? − σ? = OP
(
n−1/3

)
,

where σ2
? is the long run variance in (1.2).

Throughout this paper we will always assume that kn � n1/3, if the long run variance estimator

(2.4) is used. Our first main result shows that the asymptotic null distribution of the statistic

Vn does not change in the case of dependent observations.

Theorem 3.2 Consider the nonparametric regression model (1.1) with piecewise constant re-

gression function (2.1). If assumptions (A1)–(A3) are satisfied with γ > 1/2 in (A3), cn → 0

and

lim
n→∞

(log n)3

nm(γ)cn
= 0 ,(3.1)

where m(γ) = 2γ−1
1+6γ

, then it holds

Vn(Y, ϑ∗)
D−→ max

0≤k≤K∗
sup

τ∗k≤s<t≤τ
∗
k+1

{
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

}
as n→∞,

where {B(t)}t∈[0,1] denotes a standard Brownian motion.
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With exactly the same arguments as given in Frick et al. (2014), we can assure for given α ∈ (0, 1)

that

lim
n→∞

P

(
K̂(Vn, q) > K∗

)
≤ α,(3.2)

where q is chosen as the (1− α)–quantile of

M := sup
0≤s≤t≤1

{
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

}
.(3.3)

Note that the distribution of M coincides with the asymptotic distribution in Theorem 3.2, if the

function ϑ∗ is constant (that is K∗ = 0). We also obtain from Theorem 3.2 and the definition of

K̂ that the probability of overestimating the number of change points becomes arbitrarily small

with an increasing sample size.

Corollary 3.3 If the assumptions from Theorem 3.2 are satisfied and qn →∞, we have

lim
n→∞

P

(
K̂(Vn, qn) > K∗

)
= 0.

The following result shows that the probability of underestimating the true number of change

points also converges to 0 for an increasing sample size.

Theorem 3.4 If the assumptions from Theorem 3.2 hold and the sequence {qn}n∈N fulfils

qn = o
(√

n
)

(3.4)

as n→∞, then it follows that

lim
n→∞

P

(
K̂(Vn, qn) < K∗

)
= 0.

Combining Corollary 3.3 and Theorem 3.4 yields model selection consistency.

Corollary 3.5 If the same assumptions as in Theorem 3.4 are satisfied and qn → ∞, then it

follows that

lim
n→∞

P

(
K̂ (Vn, qn) = K∗

)
= 1.

Under appropriate assumptions, the change point locations of ϑ∗ are estimated correctly. More

precisely, we have the following result.
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Theorem 3.6 If the assumptions from Theorem 3.2 hold and the sequence {qn}n∈N additionally

fulfils qn →∞ and

qn +

√
2 log

e

cn
= o (

√
ncn)(3.5)

as n→∞, it follows that

lim
n→∞

P

(
sup

ϑ∈C(Vn,qn)

max
τ∗∈J(ϑ∗)

min
τ∈J(ϑ)

|τ ∗ − τ | > cn

)
= 0.

In particular we have for k = 1, . . . , K∗

lim
n→∞

P

(
sup

ϑ∈C(Vn,qn)

|τ ∗k − τk| > cn

)
= 0.

4 Finite sample properties

In this section we compare the finite sample performance of the change point estimator developed

and analyzed in Section 3 with SMUCE and the change point estimator proposed by Tecuapetla-

Gómez and Munk (2017) for m-dependent errors. These authors use the abbreviation JUSD for

their procedure and we will use the notation DepSMUCE for the procedure (2.3) developed in

this paper. The sample size is n = 1000 and all results are based on 1000 simulation runs.

For DepSMUCE, we consider a block length of k = 10. Concerning the change point estimator

JUSD, it is necessary to specify a value for m. The R-package dbacf [see Tecuapetla-Gómez

(2015)] provides a graphical procedure to choose m which is used throughout the simulation

study.

We compare the deviations between the estimated and the true number of change points, and

the mean deviation of |K∗ − K̂|. Concerning the data fit, we compute the mean squared error

MSE(ϑ̂) :=
1

n

n∑
i=1

(
ϑ∗
(
i
n

)
− ϑ̂

(
i
n

))2

and mean absolute deviation

MAE(ϑ̂) :=
1

n

n∑
i=1

∣∣∣ϑ∗ ( in)− ϑ̂ ( in)∣∣∣ ,
respectively. Furthermore, we also present histograms of the estimated locations of the changes

for all three estimators.

All procedures depend sensitively on the threshold q in the definition of the change point estima-

tor and we investigate three different choices of q. More precisely, considering (3.2), we choose
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the significance level α as 0.1, 0.5 and 0.9 and set q as the (1 − α)–quantile of the distribution

of the random variable M in (3.3). Since this quantile cannot be derived directly, we perform

Monte Carlo simulations of the test statistic Vn(Y, ϑ∗) with ϑ∗ ≡ 0 and independent standard

normal distributed errors, i.e. εi ∼ N (0, 1) (based on 10000 repetitions). This is exactly the

same procedure as in the R-package stepR [see Pein et al. (2017a)].

First, we illustrate that SMUCE is relatively robust to weak dependencies but it does not yield

satisfactory results when the innovations exhibit a stronger dependence. To this end, we consider

two MA(1) error processes with different MA parameters. Let

εi = ηi + κηi−1, i ∈ Z,(4.1)

where {ηi}i∈Z is a sequence of standard normal distributed errors. We consider the cases κ = 0.1

and κ = 0.3, respectively, and assume that the function ϑ∗ in model (1.1) has K∗ = 5 change

points at locations

(τ ∗1 , τ
∗
2 , τ

∗
3 , τ

∗
4 , τ

∗
5 ) = (101/1000, 301/1000, 501/1000, 551/1000, 751/1000).(4.2)

The corresponding function intensities are given by

(θ∗0, θ
∗
1, θ
∗
2, θ
∗
3, θ
∗
4, θ
∗
5) = (0, 1, 0, 2, 0,−1).(4.3)

K̂ −K∗ ≤ −3 −2 −1 0 +1 +2 ≥ +3

SMUCE(0.1) 0.000 0.000 0.001 0.980 0.019 0.000 0.000

SMUCE(0.5) 0.000 0.000 0.000 0.760 0.209 0.031 0.000

SMUCE(0.9) 0.000 0.000 0.000 0.238 0.343 0.267 0.152

DepSMUCE(0.1) 0.000 0.000 0.117 0.883 0.000 0.000 0.000

DepSMUCE(0.5) 0.000 0.000 0.009 0.988 0.003 0.000 0.000

DepSMUCE(0.9) 0.000 0.000 0.000 0.946 0.053 0.001 0.000

JUSD(0.1) 0.075 0.065 0.125 0.702 0.027 0.004 0.003

JUSD(0.5) 0.020 0.024 0.080 0.745 0.087 0.020 0.023

JUSD(0.9) 0.003 0.004 0.033 0.631 0.168 0.085 0.076

Table 1: Proportion of estimated numbers of change points (the true number of change points is

K∗ = 5) in model (1.1) with step function defined by (4.2) and (4.3) and an MA(1) error process

defined in (4.1) with κ = 0.1.

Tables 1 and 2 show the performance of SMUCE, DepSMUCE and JUSD in the estimation of

the number of change points for different values of α. For example, in Table 1 we display results

for model (4.1) with κ = 0.1 and we observe that DepSMUCE estimates the correct number

of change points in 98.8% of the cases if we work with α = 0.5. Considering the first three

rows of Table 1, it can be seen that SMUCE performs relatively well if α = 0.1. However for

α = 0.5 DepSMUCE already shows some improvement and for α = 0.9 DepSMUCE and JUSD
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K̂ −K∗ ≤ −3 −2 −1 0 +1 +2 ≥ +3

SMUCE(0.1) 0.000 0.000 0.001 0.619 0.302 0.066 0.012

SMUCE(0.5) 0.000 0.000 0.000 0.069 0.184 0.262 0.486

SMUCE(0.9) 0.000 0.000 0.000 0.000 0.010 0.025 0.965

DepSMUCE(0.1) 0.001 0.043 0.356 0.600 0.000 0.000 0.000

DepSMUCE(0.5) 0.000 0.000 0.048 0.947 0.005 0.000 0.000

DepSMUCE(0.9) 0.000 0.000 0.007 0.919 0.070 0.004 0.000

JUSD(0.1) 0.231 0.124 0.179 0.446 0.018 0.001 0.001

JUSD(0.5) 0.072 0.077 0.167 0.618 0.043 0.016 0.007

JUSD(0.9) 0.010 0.016 0.111 0.615 0.156 0.060 0.032

Table 2: Proportion of estimated numbers of change points (the true number of change points is

K∗ = 5) in model (1.1) with step function defined by (4.2) and (4.3) and an MA(1) error process

defined in (4.1) with κ = 0.3.

show a better performance because they are constructed to address dependency in the data.

The advantages of these two procedures become even more visible in Table 2, where we consider

a stronger dependence, that is κ = 0.3. In this case SMUCE tends to overestimate the true

number of change points. We also observe a better performance of DepSMUCE compared to

JUSD, which often estimates a too small number of change points. Our findings are confirmed

by Table 3, where we display the average MSE, MAE, and the average value of |K∗− K̂|. Figure

2 shows histograms of the estimated change point locations for α = 0.5. The comparatively

bad performance of JUSD can be explained by the fact that it requires the specification of the

order of the MA(m) process. We observed that the data driven procedure to choose m from the

R-package dbacf [see Tecuapetla-Gómez (2015)] does not work well for small MA parameters.

A simulation study with κ = 0.5, which is not included here for the sake of brevity, shows that

JUSD works much better for larger MA parameters, and as a consequence the behaviour of

DepSMUCE and JUSD becomes more similar.

κ = 0.1 κ = 0.3

|K∗ − K̂| MSE MAE |K∗ − K̂| MSE MAE

SMUCE(0.1) 0.020 0.018 0.060 0.475 0.033 0.093

SMUCE(0.5) 0.271 0.019 0.064 2.569 0.045 0.118

SMUCE(0.9) 1.407 0.024 0.077 6.488 0.063 0.145

DepSMUCE(0.1) 0.117 0.025 0.072 0.446 0.064 0.139

DepSMUCE(0.5) 0.012 0.018 0.060 0.053 0.031 0.088

DepSMUCE(0.9) 0.056 0.018 0.060 0.084 0.030 0.085

JUSD(0.1) 0.549 0.050 0.109 1.226 0.117 0.209

JUSD(0.5) 0.397 0.031 0.082 0.647 0.069 0.145

JUSD(0.9) 0.705 0.024 0.073 0.577 0.044 0.109

Table 3: Average of |K∗− K̂|, MSE, and MAE of different estimates in the MA(1)-model (4.1).
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Figure 2: Histograms of estimated change point locations for different estimators. First row:

MA(1) error process with κ = 0.1. Second row: MA(1) error process with κ = 0.3. Left column:

SMUCE. Middle column: DepSMUCE. Right column: JUSD. The “true” change points are

located at 101, 301, 501, 551, and 751.

This observation is also confirmed in our next example, where we consider an MA(4) error process

with relatively large parameters, that is

εi = ηi + 0.9ηi−1 + 0.8ηi−2 + 0.7ηi−3 + 0.6ηi−4, i ∈ Z .(4.4)

Here {ηi}i∈Z denotes again a sequence of independent standard normal distributed errors. We

assume that the function ϑ∗ in model (1.1) has K∗ = 5 change points at the locations given in

(4.2) and that the corresponding function intensities are given by

(θ∗0, θ
∗
1, θ
∗
2, θ
∗
3, θ
∗
4, θ
∗
5) = (0, 3, 0, 4, 0,−3).(4.5)

The data driven rule in the R-package dbacf works well and determines m = 4 for JUSD correctly

in all of the iterations. Table 4 shows the performance of SMUCE, DepSMUCE, and JUSD. For

example, if α = 0.5, DepSMUCE estimates the number K∗ of change points correctly in 80.6% of

the cases, while it underestimates K∗ by 1 in 17.3% of the cases. The first three rows show that

SMUCE is not able to correctly estimate the number of change points in the case of an MA(4)
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K̂ −K∗ ≤ −3 −2 −1 0 +1 +2 ≥ +3

SMUCE(0.1) 0.000 0.000 0.000 0.000 0.000 0.000 1.000

SMUCE(0.5) 0.000 0.000 0.000 0.000 0.000 0.000 1.000

SMUCE(0.9) 0.000 0.000 0.000 0.000 0.000 0.000 1.000

DepSMUCE(0.1) 0.020 0.138 0.511 0.330 0.001 0.000 0.000

DepSMUCE(0.5) 0.000 0.006 0.173 0.806 0.015 0.000 0.000

DepSMUCE(0.9) 0.000 0.000 0.024 0.856 0.114 0.006 0.000

JUSD(0.1) 0.025 0.188 0.511 0.275 0.001 0.000 0.000

JUSD(0.5) 0.000 0.006 0.145 0.812 0.037 0.000 0.000

JUSD(0.9) 0.000 0.000 0.013 0.709 0.240 0.032 0.006

Table 4: Proportion of estimated numbers of change points (the true number of change points is

K∗ = 5) in model (1.1) with step function defined by (4.2) and (4.5) and an MA(4) error process

defined in (4.4).

MA(4) ARMA(2,6)

|K∗ − K̂| MSE MAE |K∗ − K̂| MSE MAE

SMUCE(0.1) 43.845 1.787 1.016 59.950 4.174 1.592

SMUCE(0.5) 56.842 2.041 1.108 73.800 4.550 1.684

SMUCE(0.9) 67.865 2.208 1.166 85.582 4.798 1.743

DepSMUCE(0.1) 0.848 0.861 0.584 0.516 1.534 0.778

DepSMUCE(0.5) 0.200 0.418 0.364 0.064 0.646 0.465

DepSMUCE(0.9) 0.150 0.319 0.322 0.115 0.586 0.449

JUSD(0.1) 0.963 0.929 0.619 1.422 1.720 0.879

JUSD(0.5) 0.194 0.401 0.357 2.181 1.042 0.637

JUSD(0.9) 0.336 0.343 0.341 3.979 1.019 0.630

Table 5: Average of |K∗ − K̂|, MSE, and MAE of different estimates under the same model

assumptions as in Table 4 and Table 6.

error process. Of course, SMUCE is designed for independent data, but it always estimates

a much larger number of change points than 5. In contrast, JUSD and DepSMUCE perform

substantially better if they are used with α = 0.5. In particular, they yield very similar results

and DepSMUCE is able to compete with JUSD, which is specially designed for m-dependent

processes (note that we used the correct m in the simulations). Similar observations can be made

for the estimation error (see the left part of Table 5). These observations are also supported by

the upper part of Figure 3 which shows the histograms of the estimated change point locations.

DepSMUCE and JUSD are able to identify the locations correctly in most of the cases and

show a rather similar behaviour. On the other hand, SMUCE is not reliable for the estimation

of the signal in case of strong dependencies. DepSMUCE and JUSD show a good and similar

performance if the error process is an MA(4)-process and the corresponding parameters are

reasonably large.
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Finally, we consider an example where the error process in model (1.1) is a stationary and causal

ARMA(2, 6)-process defined by

εi = 0.75εi−1 − 0.5εi−2 + ηi + 0.8ηi−1 + 0.7ηi−2 + 0.6ηi−3 + 0.5ηi−4 + 0.4ηi−5 + 0.3ηi−6,(4.6)

where {ηi}i∈Z is a sequence of independent standard normal distributed random variables. We

consider again a model with K∗ = 5 change points located as described in (4.2) with the corre-

sponding function intensities

(θ∗0, θ
∗
1, θ
∗
2, θ
∗
3, θ
∗
4, θ
∗
5) = (0, 5, 1, 8, 1,−2)(4.7)

(see Figure 1). The data driven procedure from the R-package dbacf [Tecuapetla-Gómez (2015)]

now leads to ambiguous results because there is no correct m to estimate. Table 6 shows the

estimated numbers of change points. While at level α = 0.5 DepSMUCE correctly estimates

K∗ = 5 in more than 93% of the cases, JUSD mostly overestimates K∗. From the right part of

Table 5 we also observe that K∗ is estimated more precisely by DepSMUCE than by JUSD with

smaller MSE and MAE. As in the MA(4)-example, SMUCE in general includes a large amount

of false positives. Finally, these results are reflected in Figure 3, where we show the histograms

of estimated change points. For the ARMA(2, 6) error process DepSMUCE yields substantially

better results than JUSD.

K̂ −K∗ ≤ −3 −2 −1 0 +1 +2 ≥ +3

SMUCE(0.1) 0.000 0.000 0.000 0.000 0.000 0.000 1.000

SMUCE(0.5) 0.000 0.000 0.000 0.000 0.000 0.000 1.000

SMUCE(0.9) 0.000 0.000 0.000 0.000 0.000 0.000 1.000

DepSMUCE(0.1) 0.001 0.061 0.391 0.547 0.000 0.000 0.000

DepSMUCE(0.5) 0.000 0.001 0.049 0.937 0.013 0.000 0.000

DepSMUCE(0.9) 0.000 0.000 0.005 0.892 0.096 0.007 0.000

JUSD(0.1) 0.055 0.144 0.203 0.292 0.099 0.077 0.129

JUSD(0.5) 0.005 0.022 0.087 0.447 0.077 0.066 0.296

JUSD(0.9) 0.001 0.002 0.012 0.444 0.067 0.033 0.441

Table 6: Proportion of estimated numbers of change points (the true number of change points is

K∗ = 5) in model (1.1) with step function defined by (4.2) and (4.7) and an ARMA (2, 6) error

process defined in (4.6).
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Figure 3: Histograms of estimated change point locations for different estimators. Upper row:

MA(4) error process. Lower row: ARMA(2, 6) error process. Left columun: SMUCE. Middle

columun: DepSMUCE. Right columun: JUSD. The “true” change points are located at 101, 301,

501, 551, and 751.

5 Proofs

5.1 Proof of Theorem 3.2

The proof essentially proceeds in two steps. First we will prove an analog of the result for the

statistic

Vn,σ?(Y, ϑ) = max
0≤k≤K

max
nτk≤i≤j<nτk+1
j−i+1≥ncn

{
1

σ?

√
j − i+ 1

∣∣∣Y j

i − θk
∣∣∣−√2 log

en

j − i+ 1

}
,

which is defined as Vn using the known long run variance. This result is essentially based on a

Gaussian approximation via assumption (A3). In a second step we use Proposition 3.1, for which

assumptions (A1) and (A2) are needed, to show that the error caused by the estimation of the

long run variance is negligible. The proof of the proposition is given at the end of this section.

Theorem 5.1 Consider the nonparametric regression model (1.1) and assume that ‖εi‖3 <∞.
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If assumption (A3) holds for some γ > 1/2 and cn → 0 fulfils (3.1), then we have

Vn,σ?(Y, ϑ
∗)

D−→ max
0≤k≤K∗

sup
τ∗k≤s<t≤τ

∗
k+1

{
|B(t)−B(s)|√

t− s
−
√

2 log
e

t− s

}
as n→∞,

where {B(t)}t∈[0,1] denotes a standard Brownian motion.

Proof of Theorem 5.1 : By (A3), the assumptions of Theorem 1 in Wu and Zhou (2011) are

fulfilled. It therefore follows that on a richer probability space (Ω̌, Ǎ, P̌), there exists a process

{Ši}ni=1 and a centered Gaussian process {Ǧi}ni=1 with independent increments such that( i∑
`=1

ε`

)n
i=1

D
=
(
Ši
)n
i=1

and max
1≤i≤n

∣∣Ši − Ǧi

∣∣ = O
P̌
(τn),(5.1)

where

τn = n(1+2γ)/(1+6γ)(log n)8γ/(1+6γ).

Moreover, again on a richer probability space (Ω̂, Â, P̂), there exists another Gaussian process

{Ĝi}ni=1 and i.i.d. random variables U` ∼ N (0, σ2
?) such that

(
Ǧi

)n
i=1

D
=
(
Ĝi

)n
i=1

and max
1≤i≤n

∣∣∣Ĝi −
i∑

`=1

U`

∣∣∣ = O
P̂
(τn).(5.2)

By (5.1), it follows that Vn,σ?(Y, ϑ
∗)
D
= V̌n,σ?(Y, ϑ

∗), where

V̌n,σ?(Y, ϑ
∗) = max

0≤k≤K∗
max

nτ∗k≤i≤j<nτ
∗
k+1

j−i+1≥ncn

{
1

σ?
√
j − i+ 1

∣∣Šj − Ši−1

∣∣−√2 log
en

j − i+ 1

}
.

By (3.1) we have τn = o(
√
ncn), and a further application of (5.1) and the triangle inequality

yield

V̌n,σ?(Y, ϑ
∗) = max

0≤k≤K∗
max

nτ∗k≤i≤j<nτ
∗
k+1

j−i+1≥ncn

{
1

σ?
√
j − i+ 1

∣∣Ǧj − Ǧi−1

∣∣−√2 log
en

j − i+ 1

}
+ o

P̌
(1).

By (5.2), the first random variable on the right hand side has the same distribution as

V̂n,σ?(Y, ϑ
∗) = max

0≤k≤K∗
max

nτ∗k≤i≤j<nτ
∗
k+1

j−i+1≥ncn

{
1

σ?
√
j − i+ 1

∣∣∣Ĝj − Ĝi−1

∣∣∣−√2 log
en

j − i+ 1

}
.

With the same arguments as given above, we obtain

V̂n,σ?(Y, ϑ
∗) = max

0≤k≤K∗
max

nτ∗k≤i≤j<nτ
∗
k+1

j−i+1≥ncn

{
1

σ?

√
j − i+ 1

∣∣∣U j

i

∣∣∣−√2 log
en

j − i+ 1

}
+ o

P̂
(1).
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Note that

max
0≤k≤K∗

max
nτ∗k≤i≤j<nτ

∗
k+1

j−i+1≥ncn

{
1

σ?

√
j − i+ 1

∣∣∣U j

i

∣∣∣−√2 log
en

j − i+ 1

}
D
= max

0≤k≤K∗
max

nτ∗k≤i≤j<nτ
∗
k+1

j−i+1≥ncn

{√
j − i+ 1

∣∣∣Zj

i

∣∣∣−√2 log
en

j − i+ 1

}
,

where Z1, . . . , Zn ∼ N (0, 1) are i.i.d. The assertion now follows with the same arguments as

given in the proof of Theorem 1 in Frick et al. (2014). 2

Proof of Theorem 3.2 : For the sake of clarity, we will denote the statistic Vn in (2.2) by Vn,σ̂? to

emphasize its dependence on the estimator σ̂2
? of the long run variance. Considering the proof

of Theorem 5.1, it suffices to show that

Vn,σ?(Y, ϑ
∗)− Vn,σ̂?(Y, ϑ∗) = oP(1).(5.3)

A straightforward application of the triangle inequality yields

|Vn,σ?(Y, ϑ∗)− Vn,σ̂?(Y, ϑ∗)| ≤
∣∣∣∣ 1

σ?
− 1

σ̂?

∣∣∣∣ max
0≤k≤K∗

max
nτ∗k≤i≤j<nτ

∗
k+1

j−i+1≥ncn

∣∣∣√j − i+ 1
(
Y
j

i − θ∗k
)∣∣∣ .

We use again the Gaussian approximation result from Theorem 5.1 and obtain

Dn := max
1≤i≤j≤n
j−i+1≥ncn

∣∣∣√j − i+ 1
(
Y
j

i − E[Y
j

i ]
)∣∣∣ D= max

1≤i≤j≤n
j−i+1≥ncn

{ 1√
j − i+ 1

∣∣Šj − Ši−1

∣∣}
as well as

max
1≤i≤j≤n
j−i+1≥ncn

{ 1√
j − i+ 1

∣∣Šj − Ši−1

∣∣} = max
1≤i≤j≤n
j−i+1≥ncn

{ 1√
j − i+ 1

∣∣Ǧj − Ǧi−1

∣∣}+ o
P̌
(1).

Furthermore, it holds that

max
1≤i≤j≤n
j−i+1≥ncn

{ 1√
j − i+ 1

∣∣Ǧj − Ǧi−1

∣∣} D= max
1≤i≤j≤n
j−i+1≥ncn

{ 1√
j − i+ 1

∣∣∣Ĝj − Ĝi−1

∣∣∣}
and

max
1≤i≤j≤n
j−i+1≥ncn

{ 1√
j − i+ 1

∣∣∣Ĝj − Ĝi−1

∣∣∣} = max
1≤i≤j≤n
j−i+1≥ncn

{√
j − i+ 1

∣∣∣U j

i

∣∣∣}+ o
P̂
(1).

From Theorem 1 in Shao (1995) it follows that

max
1≤i≤j≤n
j−i+1≥ncn

{√
j − i+ 1

∣∣∣U j

i

∣∣∣} ≤ max
1≤i≤j≤n

{√
j − i+ 1

∣∣∣U j

i

∣∣∣} = O(
√

log n) a.s.

In combination with Proposition 3.1, this yields (5.3). 2
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5.2 Proof of Theorem 3.4

Note that by definition of K̂, we have

K̂(Vn, qn) < K∗ ⇐⇒ ∃ϑ ∈ Sn with |J(ϑ)| < K∗ such that Vn(Y, ϑ) ≤ qn

[see Frick et al. (2014)]. It therefore suffices to show that the probability of the existence of

a candidate function ϑ ∈ Sn having less than K∗ change points and fulfilling Vn(Y, ϑ) ≤ qn
converges to 0.

We will again first prove an analog of the result for the statistic Vn,σ? , where the estimator σ̂2
? is

replaced by the long run variance.

Theorem 5.2 Under the same assumptions as in Theorem 5.1, assume that {qn}n∈N is a se-

quence fulfilling (3.4). Then it follows that

lim
n→∞

P

(
K̂(Vn,σ? , qn) < K∗

)
= 0.

Proof of Theorem 5.2 : We proceed similarly as in the proof of Theorem 7.10 in Frick et al.

(2014). Set

λ := inf
0≤k≤K∗

∣∣τ ∗k+1 − τ ∗k
∣∣ , β := inf

1≤k≤K∗

∣∣θ∗k − θ∗k−1

∣∣ ,
and define the K∗ disjoint intervals

Ii :=
[
τ ∗i −

λ

2
, τ ∗i +

λ

2

)
, i = 1, . . . , K∗.

Moreover, define θ+
i := max{θ∗i−1, θ

∗
i }, θ−i := min{θ∗i−1, θ

∗
i }, I+

i := {t ∈ Ii : ϑ∗(t) = θ+
i }, and

I−i := {t ∈ Ii : ϑ∗(t) = θ−i }. Note that |I+
i | = |I−i | = λ/2. In particular, since {cn}n∈N is a null

sequence, it holds that |I+
i | ≥ cn and |I−i | ≥ cn for any n ∈ N large enough.

Any candidate function with K < K∗ change points must be constant on at least one of the

disjoint intervals Ii. Therefore we get

P

(
K̂(Vn,σ? , qn) < K∗

)
≤

K∗∑
i=1

P

(
∃θ ≤ θ+

i −
β

2
:

1

σ?

√
nλ

2

∣∣∣Y I+i
− θ
∣∣∣−√2 log

2e

λ
≤ qn

)

+
K∗∑
i=1

P

(
∃θ ≥ θ−i +

β

2
:

1

σ?

√
nλ

2

∣∣∣Y I−i
− θ
∣∣∣−√2 log

2e

λ
≤ qn

)
.

All of these summands can be dealt with analogously, which is why we will restrict ourselves to the

second probability and the case i = 1. Without loss of generality, assume that I−1 = [τ ∗1−λ/2, τ ∗1 ).

It follows easily that the term of interest is bounded from above by

P

(
1

σ?

√
nλ

2

∣∣∣∣εnτ∗1−1

nτ∗1−
nλ
2

− β

2

∣∣∣∣−
√

2 log
2e

λ
≤ qn

)
+ P

(
ε
nτ∗1−1

nτ∗1−
nλ
2

>
β

2

)
.(5.4)
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Since {εi}i∈Z is mean-ergodic, the second probability in (5.4) converges to 0. Concerning the

first probability in (5.4), note that with exactly the same Gaussian approximation arguments as

given in the proof of Theorem 5.1, it suffices to show that

P̂

(
1

σ?

√
nλ

2

∣∣∣∣Unτ∗1−1

nτ∗1−
nλ
2

− β

2

∣∣∣∣−
√

2 log
2e

λ
≤ qn

)
= o(1),(5.5)

where U1, . . . , Un ∼ N (0, σ2
?) are i.i.d. and defined on a richer probability space (Ω̂, Â, P̂). From

Theorem 7.10 and Lemma 7.11 in Frick et al. (2014), it follows that the probability in (5.5) is

upper bounded by e
− 1

64σ2?
nλβ2+ 1

2
(qn+
√

2 log 2e
λ

)2

. By assumption (3.4), this expression vanishes as n

tends to ∞. 2

Proof of Theorem 3.4 : With exactly the same arguments as given in the proof of Theorem 5.2,

it suffices to show that

lim
n→∞

P

(
1

σ̂?

√
nλ

2

∣∣∣∣εnτ∗1−1

nτ∗1−
nλ
2

− β

2

∣∣∣∣−
√

2 log
2e

λ
≤ qn

)
= 0.

Set

Xn :=
1

σ?

√
nλ

2

∣∣∣∣εnτ∗1−1

nτ∗1−
nλ
2

− β

2

∣∣∣∣ and Yn :=
1

σ̂?

√
nλ

2

∣∣∣∣εnτ∗1−1

nτ∗1−
nλ
2

− β

2

∣∣∣∣ .
Let δ > 0 be arbitrary and note that

P

(
Yn ≤ qn +

√
2 log

2e

λ

)
= P

(
Yn ≤ qn +

√
2 log

2e

λ
,

∣∣∣∣ YnXn

− 1

∣∣∣∣ > δ

)

+ P

(
Yn ≤ qn +

√
2 log

2e

λ
,

∣∣∣∣ YnXn

− 1

∣∣∣∣ ≤ δ

)
.

By Proposition 3.1, the first probability converges to 0. Concerning the second probability, it

holds that

P

(
Yn ≤ qn +

√
2 log

2e

λ
,

∣∣∣∣ YnXn

− 1

∣∣∣∣ ≤ δ

)
≤ P

(
(1− δ)Xn ≤ qn +

√
2 log

2e

λ

)
.

With the arguments given in the proof of Theorem 5.2, the expression on the right hand side

is bounded by e
− 1

64σ2?
nλβ2+ 1

2

(
(qn+
√

2 log 2e
λ

)/(1−δ)
)2

+ o(1), which converges to 0 by (3.4) for a fixed

δ > 0. 2
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5.3 Proof of Theorem 3.6

We will prove a corresponding statement for the statistic Vn,σ? where again the estimator σ̂2
? is

replaced by the long run variance, that is

lim
n→∞

P

(
sup

ϑ∈C(Vn,σ? ,qn)

max
τ∗∈J(ϑ∗)

min
τ∈J(ϑ)

|τ ∗ − τ | > cn

)
= 0.

For a proof of this statement we define the value β and the intervals Ji, J
−
i , and J+

i as in the

proof of Theorem 5.2 by replacing λ/2 with cn and then using the letter J instead of I. Any

candidate function ϑ ∈ Sn with

max
τ∗∈J(ϑ∗)

min
τ∈J(ϑ)

|τ ∗ − τ | > cn

must be constant on at least one of the disjoint intervals Ji. Assume without loss of generality

that J−1 = [τ ∗1 −cn, τ ∗1 ). With the same arguments as given in the proof of Theorem 5.2, it suffices

to show that

lim
n→∞

P

(
1

σ?

√
ncn

∣∣∣∣εnτ∗1−1
nτ∗1−ncn

− β

2

∣∣∣∣−√2 log
e

cn
≤ qn

)
= 0.(5.6)

Theorem 7.10 and Lemma 7.11 in Frick et al. (2014) in combination with the Gaussian approx-

imation arguments from the proof of Theorem 5.1 yield that the probability in (5.6) is bounded

by e
− 1

32σ2?
ncnβ2+ 1

2
(qn+
√

2 log e
cn

)2

+ o(1), which converges to 0 by (3.5).

For the proof of Theorem 3.6 assume again that J−1 = [τ ∗1 − cn, τ
∗
1 ) and note that the same

arguments show that the assertion follows from the statement

lim
n→∞

P

(
1

σ̂?

√
ncn

∣∣∣∣εnτ∗1−1
nτ∗1−ncn

− β

2

∣∣∣∣−√2 log
e

cn
≤ qn

)
= 0.

The proof thus works exactly as the proof of Theorem 3.4. 2

5.4 Proof of Proposition 3.1

Note that it suffices to show that

E

[(
σ̂2
? − σ2

?

)2
]

= O(n−2/3).

We proceed as in the proof of Theorem 3 in Wu and Zhao (2007). Moreover, by assumption

(A2), we can apply Lemma 4 and Lemma 5 from Wu and Zhao (2007). For 2 ≤ i ≤ mn we define

Wikn :=
ikn∑

j=(i−1)kn+1

εj −
(i−1)kn∑

j=(i−2)kn+1

εj
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and

rikn :=
ikn∑

j=(i−1)kn+1

ϑ∗
(
j

n

)
−

(i−1)kn∑
j=(i−2)kn+1

ϑ∗
(
j

n

)
.

By Lemma 4 in Wu and Zhao (2007) it then follows that

E

[(
σ̂2
? − σ2

?

)2
]

=
∣∣∣∣∣∣ 1

2kn(mn − 1)

mn∑
i=2

(Wikn + rikn)2 − σ2
?

∣∣∣∣∣∣2
2

≤
∣∣∣∣∣∣ 1

2kn(mn − 1)

mn∑
i=2

[
(Wikn + rikn)2 − ||Wikn||22

]∣∣∣∣∣∣2
2

+O(k−2
n ).

Note that∣∣∣∣∣∣ 1

2kn(mn − 1)

mn∑
i=2

[
(Wikn + rikn)2 − ||Wikn||22

]∣∣∣∣∣∣2
2
≤ 1

4k2
n(mn − 1)2

∣∣∣∣∣∣ mn∑
i=2

[
(Wikn + rikn)2 −W 2

ikn

] ∣∣∣∣∣∣2
2

+
1

4k2
n(mn − 1)2

∣∣∣∣∣∣ mn∑
i=2

W 2
ikn − (mn − 1)||W2kn||22

∣∣∣∣∣∣2
2
.

By Lemma 5 in Wu and Zhao (2007), the second term is of the order O(m−1
n ). We therefore

need to deal with

1

4k2
n(mn − 1)2

∣∣∣∣∣∣ mn∑
i=2

[
2Wiknrikn + r2

ikn

] ∣∣∣∣∣∣2
2
.

Lemma 4 in Wu and Zhao (2007) gives that ||Wikn||2 = O(
√
kn) uniformly over i = 2, . . . ,mn.

Moreover, it holds that rikn = O(kn) uniformly over i = 2, . . . ,mn. Note that since ϑ∗ is piecewise

constant with K∗ <∞ change points, the set{
i ∈ {2, . . . ,mn}

∣∣∣ rikn 6= 0
}

contains a finite number of elements, independently of n ∈ N. Therefore, it follows that∣∣∣∣∣∣ mn∑
i=2

[
2Wiknrikn + r2

ikn

] ∣∣∣∣∣∣
2

= O(k2
n),

which yields that

1

4k2
n(mn − 1)2

∣∣∣∣∣∣ mn∑
i=2

[
2Wiknrikn + r2

ikn

] ∣∣∣∣∣∣2
2

= O
(
k2
nm
−2
n

)
.

Since kn � n1/3, the claim follows. 2
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