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1. Introduction

Modeling and estimating stochastic dependencies has attracted increasing atten-
tion over the last decades in various fields of applications, including mathematical
finance, actuarial science or hydrology, among others. Of particular interest, espe-
cially in risk management, is a sensible quantitative description of the dependence
between extreme events, commonly referred to as tail dependence; see for example
Embrechts et al. (2003). A formal definition of this concept is given in Section 2
below.

In applications, tail dependence is often assessed by fitting a parametric copula
family to the data and by subsequently extracting the tail behavior of that particu-
lar copula. Examples can be found in Breymann et al. (2003) and Malevergne and
Sornette (2003), among others. More robust methods are based on the assumption
that the underlying copula is an extreme-value copula. The class of these copulas
can be regarded as a nonparametric copula family indexed by a function on the
unit simplex (Gudendorf and Segers, 2010). Since the copula is a rather general
measure for stochastic dependence, the estimation techniques for both of the lat-
ter approaches are usually based on the entire available dataset (see, for instance,
Genest et al. (1995); Chen and Fan (2006) for parametric families or Genest and
Segers (2009) for extreme-value copulas). However, due to the fact that the center
of a distribution does not contain any information about the tail behavior, these
techniques might in general yield biased estimates for the tail dependence. We
refer to Frahm et al. (2005) for a more elaborated discussion of this issue. In order
to circumvent the problem and to obtain estimators that are robust with respect
to deviations in the center of the distribution, there are basically two important
approaches: either one could extract the tail dependence from subsamples of block
maximal data, for which extreme-value copulas provide a natural model (McNeil
et al., 2005, Section 7.5.4), or one could rely on extreme-value techniques some
of which are presented in Section 2 below. Applications of these procedures can
be found in Breymann et al. (2003); Caillault and Guéégan (2005); Jäschke et al.
(2012); Jäschke (2012), among others.

Most of the aforementioned applications to time series data are based on the
implicit assumption that the tail dependence remains constant over time. Whereas
nonparametric testing for constancy of the whole dependence structure, as for in-
stance measured by the copula, has recently drawn some attention in the literature
(Remillard, 2010; Busetti and Harvey, 2011; Krämer and van Kampen, 2011; van
Kampen and Wied, 2012; Kojadinovic and Rohmer, 2012; Bücher and Ruppert,
2013), there does not seem to exist a unified approach to testing for constancy of
the tail dependence. It is the main purpose of the present paper to fill this gap. Our
proposed testing procedures are genuine extreme-value methods depending only on
the tails of the data and are hence robust with respect to potential (non-)constancy
of the dependence between the centers of the distributions. In particular, the pre-
sented tests do not rely on the assumption of a constant copula throughout the
sample period.

Our procedures are based on new limit results for the sequential empirical tail
copula process, formally defined in Section 3.1. We derive its asymptotic distri-
bution under the null hypothesis and propose several variants to approximate the
required critical values. When restricting to the case of testing for constancy of the
simple tail dependence coefficient, the limiting process can be easily transformed
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into a Brownian bridge. In this case, the asymptotic critical values of the tests can
be obtained by direct calculations or simulations. In the more complicated case of
testing for constancy of the whole extremal dependence structure as measured by
the tail copula, we propose a multiplier bootstrap procedure to obtain approximate
asymptotic quantiles. The finite-sample performance of all proposals is assessed in
a simulation study, which reveals accurate approximations of the nominal level and
reasonable power properties.

We apply our methods to two real datasets. The first application revisits a
recent investigation in Jäschke (2012) on the tail dependence between WTI and
Brent crude oil spot log-returns, which is based on the implicit assumption that
the tail dependence remains constant over time. Our testing procedures show that
this assumption cannot be rejected. The second application concerns the tail de-
pendence between Dow Jones Industrial Average and the Nasdaq Composite time
series around Black Monday on 19th of October 1987, it reveals a significant break
in the tail dependence. However, our results do not show clear evidence for the
hypothesis that this break takes place at the particular date of Black Monday.

The structure of the paper is as follows: in Section 2, we briefly summarize the
concept of tail dependence and corresponding nonparametric estimation techniques.
The new testing procedures for constancy of the tail dependence are introduced in
Section 3. In particular, we derive the asymptotic distribution of the sequential
empirical tail copula process, propose a multiplier bootstrap approximation of the
latter and show consistency of various asymptotic tests. Additionally, we deal with
the estimation of change-points in case the null hypothesis is rejected and pro-
pose a data-adaptive way for the necessary parameter choice, common to inference
methods in extreme-value theory. A comprehensive simulation study is presented
in Section 4, followed by the two elaborate empirical applications in Section 5. All
proofs are deferred to an Appendix.

2. The concept of tail dependence and its
nonparametric estimation

Let (X,Y ) be a bivariate random vector with continuous marginal cumulative dis-
tribution functions (c.d.f.s) F and G. Lower or upper tail dependence concerns
the tendency that extremely small or extremely large outcomes of X and Y occur
simultaneously. Simple, widely used and intuitive scalar measures for these ten-
dencies are provided by the well-established coefficients of tail dependence (TDC),
defined as

λL = lim
t↘0

P{F (X) ≤ t | G(Y ) ≤ t}, λU = lim
t↗1

P{F (X) ≥ t | G(Y ) ≥ t} (1)

see for instance Joe (1997); Frahm et al. (2005), among others.
It is well-known that the joint c.d.f. H of (X,Y ) can be written in a unique way

as

H(x, y) = C{F (x), G(y)}, x, y ∈ R, (2)

where the copula C is a c.d.f. on [0, 1]2 with uniform marginals. Elementary calcu-
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lations show that the conditional probabilities in (1) can be written as

λL = lim
t↘0

C(t, t)

t
, λU = lim

t↘0

C (t, t)

t
,

where C denotes the survival copula of (X,Y ). Therefore, the coefficients of tail
dependence can be regarded as directional derivatives of C or C at the origin with
direction (1, 1). Considering different directions, we arrive at the so-called lower
tail copulas, defined for any (x, y) ∈ E = [0,∞]2 \ {(∞,∞)} by

ΛL(x, y) = lim
t↘0

C(xt, yt)

t
, ΛU (x, y) = lim

t↘0

C (xt, yt)

t
, (3)

see Schmidt and Stadtmüller (2006). Note that the upper tail copula of (X,Y ) is
the lower tail copula of (−X,−Y ), whence there is no conceptual difference between
upper and lower tail dependence.

Several variants of tail copulas have been proposed in the literature on mul-
tivariate extreme-value theory. For instance, L(x, y) = x + y − ΛU (x, y) denotes
the stable tail dependence function, see, e.g., de Haan and Ferreira (2006). The
function A(t) = 1 − ΛU (1 − t, t), which is simply the restriction of L to the unit
sphere with respect to the ‖ · ‖1-norm, is called Pickands dependence function, see
Pickands (1981). All these variants are one-to-one and are known to characterize
the extremal dependence of X and Y , see de Haan and Ferreira (2006). In the
present paper we restrict ourselves to the case of tail copulas.

Nonparametric estimation of L and Λ has been addressed in Huang (1992); Drees
and Huang (1998); Einmahl et al. (2006); de Haan and Ferreira (2006); Bücher
and Dette (2011); Einmahl et al. (2012) for i.i.d. samples (Xi, Yi)i∈{1,...,n}. For
instance, in the case of lower tail copulas, the considered estimators are slight
variants, differing only up to a term of uniform order O(1/k), of the function

(x, y) 7→ 1

k

n∑
i=1

1
(
Ri ≤ kx, Si ≤ ky

)
(4)

where Ri (resp. Si) denotes the rank of Xi (resp. Yi) among X1, . . . , Xn (resp.
Y1, . . . , Yn), and where k = kn → ∞ denotes an intermediate sequence to be cho-
sen by the statistician. Under suitable assumptions on kn and on the speed of
convergence in (3) the estimators are known to be

√
kn-consistent. Additionally,

under certain smoothness conditions on Λ, the corresponding process
√
kn(Λ̂− Λ)

converges to a Gaussian limit process.

3. Testing for constant tail dependence

3.1. Setting and test statistics Let (Xi, Yi)i∈{1,...,n} be an independent
sequence of bivariate random vectors with joint c.d.f. Hi and identical continuous
marginal c.d.f.s F and G, respectively. According to Sklar’s Theorem, see (2), we
can decompose

Hi(x, y) = Ci{F (x), G(y)}, x, y ∈ R,
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where Ci(u, v) = P(Ui ≤ u, Vi ≤ v) with Ui = F (Xi) and Vi = G(Yi). We assume
that the corresponding lower tail copulas

Λi(x, y) = lim
t→∞

tCi(x/t, y/t) (5)

exist for all (x, y) ∈ E = [0,∞]2 \ {(∞,∞)} and all i = 1, . . . , n.
The assumption of i.i.d. marginal time series may appear somewhat restrictive.

Nonetheless, in the literature on testing for constant copulas, it can be considered as
a common practice, see for instance Busetti and Harvey (2011); Remillard (2010);
van Kampen and Wied (2012); Kojadinovic and Rohmer (2012). In Section 5, the
role of (Xi, Yi) will be played by the unobservable, serially independent innovations
of popular time series models such as AR or GARCH processes. In these cases, we
will apply the proposed tests to the observable, standardized residuals (obtained
by univariate filtering) and consider these residuals as almost i.i.d. Our extensive
simulation study in Section 4 indicates that the additional estimation step does
not influence the asymptotic behavior of our test statistics, i.e., the asymptotic
distribution of the estimator based on residuals is the same as the one based on
the unobservable, serially independent innovations. Note that this observation is
supported by the results in Chen and Fan (2006); Remillard (2010); Chan et al.
(2009), where it is shown that the asymptotic distributions of both semi- and non-
parametric estimators in copula models are not influenced by marginal filtering.

It is our aim to develop tests for detecting changes in the tail dependence, i.e.,
to test for

HΛ
0 : there exists Λ > 0 such that Λi ≡ Λ for all i = 1, . . . , n

against alternatives involving the non-constancy of Λi. A special case of this null
hypothesis is given by considering the conventional lower tail dependence coefficient
λi = Λi(1, 1). The corresponding null hypothesis reads as

Hλ
0 : there exists λ > 0 such that λi = λ for all i = 1, . . . , n.

In order to motivate our test statistics, let us first recapitulate the empirical
tail copula from Schmidt and Stadtmüller (2006) as the basic nonparametric esti-
mator for Λ under HΛ

0 , see also (4) and the corresponding citations. Replacing the
unknown copula in (5) by the empirical copula Cn, it is defined as

Λ̂n(x, y) =
n

k
Cn

(
kx

n
,
ky

n

)
=

1

k

n∑
i=1

1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

)
, (6)

where (Ûi, V̂i) denote pseudo-observations from the copula C, defined by

Ûi =
n

n+ 1
Fn(Xi), V̂i =

n

n+ 1
Gn(Yi),

with Fn and Gn denoting the marginal empirical c.d.f.s. Additionally, k = kn →∞,
k = o(n), represents a sequence of parameters discussed in detail below. The ratio
k/n can be interpreted as the fraction of data that one considers as being in the tail
and thus taken into account to estimate the tail dependence in Equation (6). Under
suitable regularity conditions some of which are given in the subsequent Section 3.2,
it is known that Λ̂n is

√
k-consistent for Λ and that the corresponding empirical
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tail copula process (x, y) 7→
√
k{Λ̂n(x, y)−Λ(x, y)} converges weakly to a Gaussian

limit process.
Now, in order to test for HΛ

0 , it is natural to consider a suitable sequential
version of Λ̂n. We define

Λ̂◦n(s, x, y) =
1

k

bnsc∑
i=1

1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

)
as the sequential empirical tail copula. Under HΛ

0 , Λ̂◦n should be regarded as an
estimator for Λ◦(s, x, y) = sΛ(x, y). Note that Λ̂◦n(1, x, y) = Λ̂n(x, y). The crucial
quantity for all test procedures in this paper is now given by the corresponding
sequential empirical tail copula process {Gn(s, x, y), s ∈ [0, 1], (x, y) ∈ E} with

Gn(s, x, y) =
√
k
{

Λ̂◦n(s, x, y)− sΛ̂◦n(1, x, y)
}
.

Some simple calculations show that, for s ∈ (0, 1), Gn can be written as

Gn(s, x, y) =
√
k{s(1− s)}

 1

ks

bnsc∑
i=1

1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

)

− 1

k(1− s)

n∑
i=bnsc+1

1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

) .

Since ks ≈ bksc, ns ≈ bnsc and k/n ≈ bksc/bnsc for any s ∈ (0, 1), the two
summands in the brackets on the right-hand side can be interpreted as (slightly
adapted) empirical tail copulas of the subsamples (X1, Y1), . . . , (Xbnsc, Ybnsc) and
(Xbnsc+1, Ybnsc+1), . . . , (Xn, Yn), respectively, with corresponding sequence of pa-

rameters k′ = bksc and k′′ = bk(1 − s)c. Under HΛ
0 , one would expect that the

difference between these two estimators converges to 0. Therefore, any statistic that
can be interpreted as a distance between Gn and the function being constantly equal
to 0 is a reasonable candidate for a test statistic for the null hypothesis. A simula-
tion study similar to one presented in Section 4 showed that a Cramér-von Mises
functional yields to the best finite-sample performance, which is why we restrict
ourselves to this case in the subsequent presentation. Consequently, in case of the
simple null hypothesis Hλ

0 , we propose the test statistic

Sn := {Λ̂◦n(1, 1, 1)}−1

∫ 1

0
{Gn(s, 1, 1)}2 ds (7)

and to reject the null hypothesis whenever Sn is larger than an appropriate critical
value to be determined later on.

For the construction of a test for the null hypothesis HΛ
0 , we make use of the

fact that, by homogeneity, the lower tail copula is uniquely determined by its values
on the sphere S(c) = {x ∈ [0,∞)2 : ‖x‖ = c}, where ‖ · ‖ denotes an arbitrary fixed
norm on R2 and where c > 0 is an arbitrary fixed constant. The most popular
choice in bivariate extreme value theory is c = 1 together with the ‖ · ‖1-norm
resulting in the function B : [0, 1] → [0, 1/2] : t 7→ B(t) = Λ(1 − t, t). Note that
B(t) = 1−A(t) with the Pickands dependence function A, see, e.g., Segers (2012).

6



In order to test for overall constancy of Λi it is sufficient to test for constancy
of Λi on some sphere S(c). In Section 3.5, we will propose a data-adaptive procedure
for the choice of the parameter k, which will suggest to use a sphere that contains
the point (1, 1). For that reason, we introduce the following test statistic

Tn :=

∫ 1

0

∫ 1

0
{Gn(s, 2− 2t, 2t)}2 dtds,

whose support corresponds to the ‖ · ‖1-norm and c = 2, and let HΛ
0 again be

rejected when Tn is larger than an appropriate critical value.
In order to determine the critical values, we will derive the asymptotic null

distributions of the tests in the next subsection. For both statistics, they will rely
on a limit result for the sequential empirical tail copula process.

3.2. Asymptotic null distributions Let B∞([0, 1]× E) denote the space of
all functions f : [0, 1] × E → R which are uniformly bounded on every compact
subset of [0, 1] × E (here and throughout, we understand E = [0,∞]2 \ {(∞,∞)}
as the one-point uncompactification of the compact set [0,∞]2), equipped with the
metric

d(f, g) =

∞∑
m=1

2−m(‖f − g‖Sm ∧ 1),

where a ∧ b = min(a, b), where the sets Sm are defined as Sm = [0, 1]× Tm with

Tm = [0,m]2 ∪ ({∞} × [0,m]) ∪ ([0,m]× {∞})

and where ‖ · ‖S denotes the sup-norm on a set S. Note that convergence with
respect to d is equivalent to uniform convergence on each Sm.

In the following we are going to show weak convergence of Gn as an element of
the metric space (B∞([0, 1]×E), d). Similar as in related references on the estimation
of tail copulas (see Section 2), we have to impose several regularity conditions.
First, we need a second order condition quantifying the speed of convergence in (5)
uniformly in i and (x, y).

Assumption 3.1. We have Λi 6≡ 0 and

Λi(x, y)− tCi(x/t, y/t) = O(B(t)), t→∞, (8)

uniformly on {(x, y) ∈ [0, 1]2 : x + y = 1} (and hence uniformly on each Tm)
and uniformly in i ∈ N, where B : [0,∞) → [0,∞) denotes a function satisfying
limt→∞B(t) = 0.

Second, the following conditions have to be imposed on the sequence k = kn.

Assumption 3.2. For some α > 0, the non-decreasing sequence k = kn → ∞
satisfies the conditions

(a) kn/n ↓ 0, (b)
√
knB(n/kn) = o(1), (c) lim sup

n→∞
kbnδc/kn ≤ δα

as n tends to infinity, where (c) has to hold for any δ ∈ (0, 1).

Condition (a) is needed anyway to define a meaningful estimator. Condition (b)
allows to control appearing bias terms in the non-sequential empirical tail copula
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process, see also Schmidt and Stadtmüller (2006) and Bücher and Dette (2011).
Finally, Condition (c), which can be regarded as very light, will allow to transfer
the results from the non-sequential to the sequential setting.

With these assumptions we can now state the main result of our paper.

Proposition 3.3. Suppose that Assumptions 3.1 and 3.2 hold. Then, under HΛ
0 ,

Gn  GΛ in (B∞([0, 1]× E), d),

where GΛ(s, x, y) = BΛ(s, x, y)−sBΛ(1, x, y). Here, BΛ is a tight centered Gaussian
process with continuous sample paths and with covariance structure

E[BΛ(s1, x1, y2)BΛ(s2, x2, y2)] = (s1 ∧ s2)Λ(x1 ∧ x2, y1 ∧ y2).

As stated above, Assumption 3.2 (b) is needed to control bias terms occurring
when estimating Λ by Λ̂n. As the process Gn does not involve the true tail copula Λ,
the assertion of Proposition 3.3 actually holds if (b) is replaced by a quite technical,
but less restrictive assumption, see Remark A.2 in the appendix. However, as an
application of the proposed test procedures in this paper will usually be followed by
the application of estimation techniques relying on (b), we do not feel that imposing
this condition is too restrictive.

Proposition 3.3 immediately yields the asymptotic null distributions of Sn and Tn.

Proposition 3.4. Suppose that Assumptions 3.1 and 3.2 hold. Then, under HΛ
0 ,

Sn  S =

∫ 1

0
{B(s)}2ds,

where B is a one-dimensional standard Brownian bridge, and

Tn  T =

∫ 1

0

∫ 1

0
{GΛ(s, 2− 2t, 2t)}2dtds,

where GΛ is defined in Proposition 3.3.

Note that, in fact, the weak convergence of Sn can be derived under a relaxation
of HΛ

0 , as it suffices that Λi(x, y) 6≡ 0 exists and is constant in time in an open
neighborhood of (1, 1). This is, however, a bit more than assumed in Hλ

0 .
Since the limiting distribution for Sn in Proposition 3.4 is pivotal, we directly

obtain an asymptotic level α test for Hλ
0 .

TDC-Test 1. Reject Hλ
0 for Sn ≥ qC1−α, where qC1−α denotes the (1 − α)-quantile

of the Cramér-von Mises distribution, the latter being defined as the distribution
of the random variable

∫ 1
0 {B(s)}2 ds.

In order to derive critical values for the test based on Tn, some more effort
is needed. Its limiting distribution in Proposition 3.4 is not pivotal and cannot
be easily transformed to a distribution which is independent of Λ. Therefore, we
propose an appropriate bootstrap approximation for GΛ which will also allow for
the definition of an alternative test for Hλ

0 .
Let B ∈ N be a large integer and let ξ(1)1 , . . . , ξ(1)n , . . . , ξ(B)

1 , . . . , ξ(B)
n be an in-

dependent sequence of n × B i.i.d. non-negative random variables with mean and
variance 1 which are independent of the data (X1, Y1), . . . , (Xn, Yn) and possess fi-
nite moments of any order. We will refer to ξ(b)i as a multiplier. For b ∈ {1, . . . , B},
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let ξ̄(b)n = n−1
∑n

i=1 ξ
(b)

i denote the arithmetic mean of ξ(b)1 , . . . , ξ(b)n . Similar in
spirit as in Bücher and Dette (2011) we define, for any (s, x, y) ∈ [0, 1] × E and
b ∈ {1, . . . , B},

Gn,ξ(b)(s, x, y) = Bn,ξ(b)(s, x, y)− sBn,ξ(b)(1, x, y),

where
Bn,ξ(b)(s, x, y) =

√
k{Λ̂◦

n,ξ(b)
(s, x, y)− Λ̂◦n(s, x, y)}

and

Λ̂◦
n,ξ(b)

(s, x, y) =
1

k

bnsc∑
i=1

ξ(b)i
ξ̄(b)n

1(Ûi ≤ kx/n, V̂i ≤ ky/n).

The following proposition states that, for large n, Gn,ξ(1) , . . . ,Gn,ξ(B) can be
regarded as almost independent copies of Gn. To prove the result, one additional
technical assumption on the sequence kn is required, which, again, can be regarded
as very light.

Assumption 3.5. There exists some p ∈ N such that n/kpn = o(1).

Proposition 3.6. Suppose that Assumptions 3.1, 3.2 and 3.5 hold. Then, un-
der HΛ

0 ,
(Gn,Gn,ξ(1) , . . . ,Gn,ξ(B)) (GΛ,G(1)

Λ , . . . ,G(B)

Λ )

in (B∞([0, 1]× E), d)B+1, where G(1)
Λ , . . . ,G(B)

Λ are independent copies of GΛ.

For b = 1, . . . , B, define Sn,ξ(b) and Tn,ξ(b) by

Sn,ξ(b) = λ̂−1
n

∫ 1

0
{Gn,ξ(b)(s, 1, 1)}2ds, Tn,ξ(b) =

∫ 1

0

∫ 1

0
{Gn,ξ(b)(s, 2− 2t, 2t)}2dtds,

where λ̂n = Λ̂n(1, 1, 1). We obtain the following tests for Hλ
0 and HΛ

0 , respectively.

TDC-Test 2. Reject Hλ
0 for Sn ≥ q̂Sn,1−α, where q̂Sn,1−α denotes the (1 − α)-

sample quantile of Sn,ξ(1) , . . . ,Sn,ξ(B) .

TC-Test. Reject HΛ
0 for Tn ≥ q̂Tn,1−α, where q̂Tn,1−α denotes the (1 − α)-sample

quantile of Tn,ξ(1) , . . . , Tn,ξ(B) .

The final result of this subsection shows that all proposed tests in this paper
asymptotically hold their level.

Corollary 3.7. Suppose that Assumptions 3.1 and 3.2 hold and that HΛ
0 is valid.

Then TDC-Test 1 is an asymptotic level α test for Hλ
0 . If, additionally, Assump-

tion 3.5 holds, then TDC-Test 2 and TC-Test are asymptotic level α test for Hλ
0

and HΛ
0 , respectively, in the sense that, for any α ∈ (0, 1),

lim
B→∞

lim
n→∞

P(Sn ≥ q̂Sn,1−α) = α, lim
B→∞

lim
n→∞

P(Tn ≥ q̂Tn,1−α) = α.

3.3. Asymptotics under a fixed alternative In the present subsection we
are going to show consistency of the proposed test statistics under fixed alternatives.
We observe a triangular array of row-wise independent random vectors (Xi,n, Yi,n),
i = 1, . . . , n, such that Xi,n ∼ F and Yi,n ∼ G for all i and n and such that the
copula Ci,n of (Xi,n, Yi,n) may vary over time. Slightly abusing notation, we omit
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the index n wherever it does not cause any ambiguity. For the sake of a clear
exposition, we first consider the following two simple alternatives for Hλ

0 and HΛ
0 .

Hλ
1 : there exists s̄ ∈ (0, 1), λ(1) 6= λ(2) such that

λi = λ(1) for i = 1, . . . , bns̄c and λi = λ(2) for i = bns̄c+ 1, . . . , n.

HΛ
1 : there exists s̄ ∈ (0, 1),Λ(1) 6≡ Λ(2) such that

Λi = Λ(1) for i = 1, . . . , bns̄c and Λi = Λ(2) for i = bns̄c+ 1, . . . , n.

Proposition 3.8. Suppose that Assumptions 3.1 and 3.2 hold.

(i) If Hλ
1 and HΛ

1 are true, then

sup
s∈[0,1]

∣∣∣∣ 1√
kn

Gn(s, 1, 1)−G(s)

∣∣∣∣ = oP (1)

where G(s) = s(1− s̄)(λ(1) − λ(2)) for s ≤ s̄ and G(s) = s̄(1− s)(λ(1) − λ(2))
for s > s̄. Moreover, Sn converges to infinity in probability.

(ii) If HΛ
1 is true, then

sup
s∈[0,1],(x,y)∈Tm

∣∣∣∣ 1√
kn

Gn(s, x, y)−H(s, x, y)

∣∣∣∣ = oP (1)

for any m ∈ N, where H(s, x, y) = s(1 − s̄){Λ(1)(x, y) − Λ(2)(x, y)} for s ≤ s̄
and H(s, x, y) = s̄(1 − s){Λ(1)(x, y) − Λ(2)(x, y)} for s > s̄. Moreover, Tn
converges to infinity in probability.

As already mentioned after Proposition 3.4, it is not necessary to assume global
constancy of the tail copulas in the respective subsamples in part (i) of Proposi-
tion 3.8, constancy in a neighborhood of (1, 1) is sufficient. Moreover, Proposi-
tion 3.8 implies consistency of the proposed tests.

Corollary 3.9. Suppose that Assumptions 3.1 and 3.2 are satisfied. Then TDC-
Test 1 is consistent for Hλ

1 . If, additionally, Assumption 3.5 holds, then TDC-
Test 2 and TC-Test are consistent for Hλ

1 and HΛ
1 , respectively, in the sense that,

for any B ∈ N and α ∈ (0, 1),

lim
n→∞

P(Sn ≥ q̂Sn,1−α) = 1, lim
n→∞

P(Tn ≥ q̂Tn,1−α) = 1.

Under Hλ
1 and HΛ

1 , consistent estimator for the change-point fraction s̄ are given
by ŝλ := argmaxs∈[0,1] |Gn(s, 1, 1)| and ŝΛ := argmaxs[0,1] supt∈[0,1] |Gn(s, 2−2t, 2t)|,
respectively.

Proposition 3.10. Suppose that Assumptions 3.1 and 3.2 hold.

(i) If Hλ
1 and HΛ

1 are true, ŝλ →p s̄.

(ii) If HΛ
1 is true, ŝΛ →p s̄.

Note that, if one of the alternatives Hλ
1 or HΛ

1 holds, then the other one cannot
hold with a different value for s̄. Hence, the change-point s̄ in Proposition 3.10 (i)
is well-defined.
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Up to now, we have assumed the existence of at most one single break-point.
An analog consistency result for the test can be obtained in the case of an arbitrary
finite number of break-points between which the tail copula is constant, respectively.
For example, a corresponding alternative for Hλ

0 would then read as: there exists
a finite number of points 0 = s0 < s1 < . . . < s` < . . . < sL = 1 such that, for any
` ∈ {1, . . . , L}, the TDC of the sample (Xbns`−1c+1, Ybns`−1c+1), . . . , (Xbns`c, Ybns`c)

is given by λ(`), with λ(`) 6= λ(`+1).
Estimating the change-points s1, s2, . . . is slightly more complicated than it is

in the case of just one break-point. In principal, it is also possible to work with
the argmax-estimator sλ̂ here, but, by construction, this estimator only estimates
a single change-point. The number and the location of the other change-points can
be estimated by a binary segmentation algorithm going back to Vostrikova (1981).
This procedure is for instance applied in Galeano and Wied (2013) to the prob-
lem of detecting changing correlations. The basic principle is as follows: at first,
the test is applied to the whole sample. If the null hypothesis gets rejected, the
argmax-estimator sλ̂ can be shown to be a consistent estimator for the dominating
change-point (see Galeano and Wied, 2013). In the next step, the sample is divided
into two parts with the split point given by bnsλ̂c. The test is applied to both parts
separately to decide whether one gets additional change-points in the correspond-
ing subsamples. In that case, the respective subsample is further divided at the
corresponding estimated break-point. This procedure is repeated until no further
change-points are detected.

3.4. Testing for a break at a specific time point In certain applications,
one might have a reasonable guess for a potential break-point in the tail dependence
of a time series. Important econometric examples can be seen in Black Monday on
19th of October 1987, the introduction of the Euro on 1st of January 1999 or the
bankruptcy of Lehman Brothers Inc. on 15th of September 2008. In that case, it
might be beneficial to test for constancy against a break at that specific time point
rather than testing against the existence of some unspecified break-point. The
results in the previous sections easily allow to obtain simple tests in this setting.

Under the situation of Section 3.1, let s̄ ∈ (0, 1) be some fixed time point
of interest. Suppose we know that the tail dependence is constant in the two
subsamples before bns̄c and after bns̄c + 1, which, in practice, can be verified by
the tests in the preceding sections. Then, to test for Hλ

0 against

Hλ
1 (s̄) : there exists λ(1) 6= λ(2) such that

λi = λ(1) for i = 1, . . . , bns̄c and λi = λ(2) for i = bns̄c+ 1, . . . , n,

we propose to use the test statistic

Sn(s̄) = {s̄Λ◦n(1, 1, 1)}−1Gn(s̄, 1, 1)2. (9)

It easily follows from Proposition 3.3 that, under the null hypothesis, Sn(s̄) weakly
converges to a chi-squared distribution with one degree of freedom. Under the alter-
native, it follows from Proposition 3.8 that Sn(s̄) converges to infinity, in probabil-
ity. Hence, rejecting H0 if Sn(s̄) exceeds a corresponding quantile of the chi-squared
distribution, yields a consistent test for Hλ

0 against Hλ
1 (s̄), which asymptotically

holds its significance level. Similar results can be obtained for the bootstrap analog
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and for the test for constancy of the entire tail copula, the details are omitted for
the sake of brevity.

3.5. Choice of the parameter k As usual in extreme-value theory, the choice
of kn plays a crucial role for statistical applications. The asymptotic properties of
the tests proposed in this paper hold as long as the assumptions on the sequence kn
from Assumption 3.2 (and of course other assumptions) hold. This, of course,
allows for a large number of possible choices of kn. However, the results of the
testing procedures may depend crucially on the specific choice of kn.

The common approach in extreme-value theory to cope with this problem is
to consider the outcome of statistical procedures, for instance of an estimator, for
several different values of k. The set of all these outcomes should give a clearer
picture of the underlying data-generating process. This, for instance, is the basic
motivation for the Hill plot used in univariate extreme-value theory for estimating
the extreme-value index, see, e.g., Embrechts et al. (1997). Additionally, in certain
univariate settings some refined data-adaptive choices to estimate an optimal k
have been developed, see for instance Drees and Kaufmann (1998) or Danielsson
et al. (2001).

In the specific context of estimating tail dependence, Frahm et al. (2005) use
plots of the function k 7→ TDC(k) to define an plateau-finding algorithm that
provides a single data-adaptive choice of k. In most of the application in this
paper, we closely follow their approach for which reason we briefly summarize this
algorithm in the following.

The aim of the algorithm is to search for a value k∗ such that the TDC, as a
function of k, is as constant as possible in a suitable neighborhood of k∗. This is
achieved by accomplishing the following steps: first, the function k 7→ TDC(k) is
smoothed by a box kernel depending on a bandwidth b; we denote the smoothed
plot by k 7→ λ̃b(k), k = 1, . . . , n− 2b. In our simulation study, we use b = b0.005nc.
In a second step, we consider a rolling window of vectors or plateaus (having length
` = b

√
n− 2bc) with their entries consisting of successive values of the smoothed

TDC-plot, formally defined as P (k) = (λ̃b(k), λ̃b(k+1), . . . , λ̃b(k+`−1)) ∈ R`, where
k = 1, . . . , n− 2b− `+ 1. We calculate the sum of the absolute deviations between
all entries and the first entry in each vector, i.e., MAD(k) =

∑`
j=1 |(P (k))1 −

(P (k))j |. The algorithm searches for the first vector such that MAD(k) is smaller
than two times the sample standard deviation of all values of the smoothed TDC-
plot λ̃b(1), . . . , λ̃b(n− 2b). Finally, k∗ is defined as the index which corresponds to
the middle entry (the floor function if the length is even) of this vector. For further
details, we refer to Frahm et al. (2005).

3.6. Higher dimensions Although we have focused on the case of two dimen-
sions so far, it is basically straightforward (although notationally more involved) to
deal with d-dimensional random vectors for a fixed number d. Consider a sequence
of marginally i.i.d. random vectors (Xi1, . . . , Xid)i∈{1,...,n} with continuous marginal
c.d.f.s F1, . . . , Fd and d-dimensional copulas Ci. We suppose that the corresponding
lower tail copulas

Λi(x1, . . . , xd) = lim
t→∞

tCi(x1/t, . . . , xd/t).
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exist for all x = (x1, . . . , xd) ∈ Ed = [0,∞]d \ {(∞, . . . ,∞)}. Define pseudo-
observations (Ûi1, . . . , Ûid) from the copula Ci by Ûij = n

n+1Fnj(Xij), j = 1, . . . , d,
where Fnj denote the marginal empirical c.d.f.s. The d-dimensional sequential em-
pirical tail copula process is defined, for any (s, x1, . . . , xd) ∈ [0, 1]× Ed, by

Gn(s, x1, . . . , xd) =
√
k
{

Λ̂◦n(s, x1, . . . , xd)− sΛ̂◦n(1, x1, . . . , xd)
}
,

where Λ̂◦n(s, x1, . . . , xd) = 1
k

∑bnsc
i=1 1(Ûi1 ≤ kx1/n, . . . , Ûid ≤ kxd/n). Then, using

the test statistics

Sn := {Λ̂◦n(1, 1, . . . , 1)}−1

∫ 1

0
{Gn(s, 1, . . . , 1)}2ds

and

Tn :=

∫ 1

0

∫
∆d−1

{Gn (s, 1− t1 − · · · − td−1, t1, . . . , td−1)}2 d(t1, . . . , td−1)ds,

where ∆d−1 = {(t1, . . . , td−1) ∈ [0, 1]d |
∑d−1

j=1 tj = 1}, we obtain basically the
same tests as in the two-dimensional case. Note that for testing constancy of Λi,
by similar arguments as in the two-dimensional case, it suffices to show constancy
of Bi for Bi(t1, . . . , td−1) = Λi(1−

∑d−1
j=1 tj , t1, . . . , td−1). For the asymptotic results,

one has to modify the metric defined in the beginning of Section 3.2 such that

Tm =

d−1⋃
j=0

(dj)⋃
`=1

Um,j,`,

where, for each m ∈ N and j = 0, . . . , d − 1, the Um,j,` are the
(
d
j

)
different d-fold

cartesian products that contain j times {∞} and d− j times [0,m].

4. Evidence in finite samples

This section investigates the finite sample properties of the proposed testing pro-
cedures by means of a simulation study. We observe that the tests are slightly
conservative and that they have reasonable power properties. As a main conclu-
sion, we obtain that the tests based on i.i.d. observations and on time series residuals
show the same asymptotic behavior.

4.1. Setup As outlined in Jäschke (2012) (see also McNeil et al., 2005, Sec-
tion 7.5), many commonly applied symmetric tail copulas exhibit a quite similar
behavior. When comparing, for instance, the Gumbel model (Gumbel, 1960), the
Galambos model (Galambos, 1975) or the Hüsler-Reiss model (Hüsler and Reiss,
1989), the plots of t 7→ Λ(1 − t, t), which uniquely determine the tail copula by
homogeneity, are nearly indistinguishable. We therefore stick to two cases of one
common symmetric and one common asymmetric tail copula model as follows.

(Λ1) The negative logistic or Galambos model (Galambos, 1975), given by

Λ(1− t, t) =
{

(1− t)−θ + t−θ
}−1/θ

, t ∈ [0, 1],
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where we chose the parameter θ ∈ [1,∞) such that λ = Λ(1, 1) = 2−1/θ varies
in the set {0.25, 0.50, 0.75}.

(Λ2) The asymmetric negative logistic model (Joe, 1990), defined by

Λ(1− t, t) =
{

(ψ1(1− t))−θ + (ψ2t)
−θ
}−1/θ

, t ∈ [0, 1],

with two fixed parameters ψ1 = 2/3, ψ2 = 1 and parameter θ ∈ [1,∞) such

that λ = Λ(1, 1) = 2
(
(ψ1/2)−θ + (ψ2/2)−θ

)−1/θ
varies in the set {0.2, 0.4, 0.6}.

Tail copulas being directional derivatives of copulas in the origin, there are of
course many copulas that result in the same tail copula. In our simulation study,
we stick to simulating from one of following two copula families.

(C1) The Clayton copula, given by

C(u, v) =
(
u−θ + v−θ − 1

)−1/θ
, u, v ∈ [0, 1],

possesses the negative logistic tail copula as specified in (Λ1). The Clayton
copula is widely used for modeling negative tail dependent data.

(C2) The survival copula of the extreme-value copula

C(u, v) = exp

{
log(uv)A

(
log(v)

log(uv)

)}
u, v ∈ [0, 1], (10)

where A(t) = 1 − Λ(1 − t, t) with Λ as in (Λ2), see Segers (2012), possesses
the asymmetric negative logistic tail copula specified in (Λ2).

Our simulation results will show that the distribution of the test statistic based
on estimated almost i.i.d. residuals is the same as the one of the test statistic based
on the unobservable i.i.d. innovations. Regarding the marginal time series behavior,
we consider three different cases. We begin with a consideration of i.i.d. marginals.
Subsequently, the simulation results in this case will serve as a benchmark for the
application of the tests to almost i.i.d. residuals of AR and GARCH time series
models.

(T1) i.i.d. setting. Here, we simply generate an independent sample (Ui, Vi),
i = 1, . . . , n, of one of the aforementioned copulas (C1) or (C2). Note that,
without loss of generality, the marginal distribution can be chosen as standard
uniform in this case, since all estimators in this paper are rank-based and hence
invariant with respect to monotone transformations.

(T2) AR(1) residuals. This setting considers the stationary solution (Qi, Ri) of
the first order autoregressive process

Qi = β1Qi−1 +Xi, Ri = β2Ri−1 + Yi, (11)

where (Xi, Yi) are i.i.d. bivariate random vectors (innovations) whose marginals
are either standard normally distributed or t-distributed with ν = 3 degrees
of freedom and whose copula is from model (C1) or (C2). The coefficients
(β1, β2) of the lagged variables vary in the set {1/3, 1/2, 2/3}. We simulate a
time series of length n of this model as follows:
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(a) choose some reasonably large number M , e.g., M = −100;

(b) generate an i.i.d. sample (Ui, Vi), i = M, . . . , n, of the copula C and
apply the inverse of the marginal c.d.f.s F and G to the copula sample,
vis. (Xi, Yi) = (F−1(Ui), G

−1(Vi));

(c) calculate recursively the values (Qi, Ri) according to (11) for all i = M +
1, . . . , n, starting with (QM , RM ) = (XM , YM ); the last n observations
form the final sample.

Since we do not observe the innovations (Xi, Yi), we estimate β1 and β2 by the
Yule-Walker estimators and obtain an almost i.i.d. sample having copula C
(see Section 3.1) by considering the time series (X̂i, Ŷi) of corresponding esti-
mated residuals defined as

X̂i = Qi − β̂1Qi−1, Ŷi = Ri − β̂2Ri−1.

(T3) GARCH(1,1) residuals. The final setting analyses a two-dimensional time
series model which is based on the frequently applied univariate GARCH(1,1)
model. More precisely, we consider the solution (Qi, Ri) of{

Qi = σi,1Xi, σ2
i,1 = ω1 + α1X

2
i−1 + β1σ

2
i−1,1,

Ri = σi,2Yi, σ2
i,2 = ω2 + α2Y

2
i−1 + β2σ

2
i−1,2,

(12)

where (Xi, Yi) are i.i.d. bivariate random vectors (innovations) as in the AR(1)
scenario. Following the empirical application of modeling volatility of S&P
500 and DAX daily log-returns in Jondeau et al. (2007) we set the coefficients
ω1 = 0.012, ω2 = 0.037, α1 = 0.072, α2 = 0.115, β1 = 0.919 and β2 =
0.868. The long run average variances in this model are given by σM,j =√
ωj/(1− αj − βj) which also serve as initial values for simulating a sample

from (12). The simulation algorithm reads as follows:

(a) generate an independent sample (Xi, Yi), i = M, . . . , n as described in
steps (a) and (b) of the previous AR(1) setting;

(b) recursively calculate the values (Qi, Ri) according to (12) for all i =
M + 1, . . . , n, starting with (QM , RM ) = (XM , YM ); again, the last n
observations form the final sample.

An almost i.i.d. sample (X̂i, Ŷi) to which we apply the tests is obtained by
estimating the standardized residuals

X̂i = σ−1
i,1 (ω̂1, α̂1, β̂1)Qi, Ŷi = σ−1

i,2 (ω̂2, α̂2, β̂2)Ri,

where the estimates ω̂j , α̂j and β̂j , j = 1, 2, are calculated by applying stan-
dard constraint non-linear optimization routines.

4.2. Results and discussion The target values of our finite sample study are
the simulated rejection probabilities (s.r.p.) of the Cramér-von Mises tests described
in Subsection 3.2 under the null hypothesis and under various alternatives. Based on
N = 5,000 repetitions, we estimate the s.r.p. for three different levels of significance,
α ∈ {1%, 5%, 10%}, for two different sample sizes n = 1,000 and n = 3,000 and for
all of the previously described models. Due to the close similarity of some of the
results, we report them only partially.
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In Table 1, we present the results for TDC-Test 1 under 7 × 3 different null
hypotheses. The estimated s.r.p. for the different levels are stated in columns 3–5
(n = 1,000) and 8–10 (n = 3,000), respectively. The parameter k is determined by
the plateau algorithm described in Section 3.5. The properties of this algorithm are
summarized in Columns 6 and 7 (n = 1,000) and 11 and 12 (n = 3,000), where we
state the mean and the sample standard deviation of the estimate k∗. We observe an
accurate approximation of the nominal level in all cases, with a tendency of a slight
underestimation of the significance level in most of the cases. As already mentioned
in Subsection 3, the additional initial estimation step of applying univariate filtering
to the time series does not significantly influence the finite sample properties. The
slight conservative behavior of the test can be explained by the constancy of the

copula in most of our settings: defining Cn(s, u, v) = 1
n

∑bnsc
i=1 1(Ûi ≤ u, V̂i ≤ v) the

test statistic Sn from Equation (7) can be rewritten as

Sn = {Cn(1, k/n, k/n)}−1

∫ 1

0

[√
n{Cn(s, k/n, k/n)− sCn(1, k/n, k/n)}

]2
ds.

If k was chosen such that u = k/n > 0 is constant in n and if, additionally to
the tail copula, the copula remained constant over time, it would follow from
Corollary 3.3 (a) in Bücher and Volgushev (2013) that Sn weakly converges to
{1−C(u, u)}

∫ 1
0 B

2(s) ds, where B denotes a standard Brownian bridge. Since the

critical values of TDC-Test 1 are the quantiles of
∫ 1

0 B
2(s) ds, we can easily see

that the test rejects too rarely, provided that C(u, u) > 0. Note that this argument
remains valid if the copula is constant over time only in a neighborhood of (u, u).

A more enlightening view on this issue can be gained from the results in the third
block of Table 1. Here, we first simulate the first half of the dataset from model
(C1) whereas the second half is simulated from model (C2). The parameters are
chosen in such a way that both models exhibit the same tail dependence coefficient.
Hence, we are still simulating under the null hypothesis but this time the hybrid
model is not constant (over time) at any point on the diagonal of the interior of the
unit square. Within the i.i.d. setting we observe that this is the only case where
the s.r.p. (slightly) exceed some levels of significance.

In Table 2, we present simulation results for TDC-Test 1 under 8 × 3 different
alternatives. We consider only the case of one break-point, which is either located
at s̄ = 0.25 or at s̄ = 0.5, and of three different upward jumps. Note that, for
symmetry reasons, the results are essentially the same for corresponding downward
jumps at 1 − s̄. The second column of the table indicates the coefficient of tail
dependence before and after the break-point. As one might have expected, higher
jumps in the TDC are detected more frequently. Also, breaks at s̄ = 0.5 are more
likely to be detected than breaks at s̄ = 0.25. Similar as for the null hypotheses
presented in Table 1, the discrepancy between the corresponding results for the
i.i.d. case and for the time series residuals appears to be negligible. Overall, one
can conclude that TDC-Test 1 shows reasonable power properties.

Table 3 briefly presents simulation results for TDC-Test 2 and the TC-Test. For
the sake of brevity, we only report the s.r.p. for the Clayton tail copula model and
the i.i.d. case, since the results for the other cases do not convey any additional
insights. The estimated s.r.p. are based on N = 1,000 simulation runs, while
the sample size is again either n = 1,000 or n = 3,000 with B = 500 bootstrap

replications (B = 300 for the TC-Test) and multipliers ξ
(b)
i that are uniformly
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distributed on the set {0, 2}. In comparison to its competitor TDC-Test 1, we
observe that the TDC-Test 2 is slightly more conservative and has almost the same
power properties. The results for the TC-Test are basically similar to TDC-Test 2
although the power is slightly lower.

The final results of this section, presented in Table 4, concern a setting, where
the tail dependence coefficient stays constant over time whereas the tail copula
may change at points (x, y) 6= (1, 1) (cf. third block of Table 1). From theory, one
would expect that the TC-Test should be able to detect those breaks, whereas the
TDC-Tests should hold the nominal size. We only consider breaks at s̄ = 0.5 and
model (Λ2) (i.e., we simulate from (C2)) which will allow to construct tail copulas
that are equal in (1, 1), but sufficiently different in other points. More precisely, for
a given λ ∈ {0.2, 0.4, 0.6}, we choose ψ1 = λ, ψ2 = 1 and θ = 100 for s ≤ s̄ and we
set ψ1 = 1, ψ2 = λ and θ = 100 for s > s̄. For λ = 0.4, the corresponding graphs
of t 7→ Λ(2− 2t, 2t) are shown in Figure 1. Note that, for fixed ψ1, ψ2, we have

Λ∞(1− t, t) := lim
θ→∞

Λ(1− t, t) = {ψ1(1− t)} ∧ (ψ2t).

The corresponding limit copula defined in (10) is the well-known Marshall–Olkin
copula, whose TDC is given by min(ψ1, ψ2), see Segers (2012). With our choice of
θ = 100 in (Λ2), the difference between the TDC and min(ψ1, ψ2) = λ is less than
the machine accuracy 10−16.

The results in Table 4 confirm the expectations: the TC-Test has considerable
power while the TDC-Test 1 basically keeps the nominal size. As a conclusion, the
developed testing procedures allow for empirically distinguishing between constant
tail dependence coefficient and constant tail copula.

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

Figure 1: Negative asymmetric logistic model (Λ2) for ψ1 = 0.4, ψ2 = 1, θ = 100 (blue)
and ψ1 = 1, ψ2 = 0.4, θ = 100 (yellow) evaluated on the straight line (2− 2t, 2t), t ∈ [0, 1].
Both models exhibit the same tail dependence coefficient λ = 0.4.
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5. Empirical applications

5.1. Energy sector In this section, we reinvestigate the bivariate dataset
from Jäschke (2012) consisting of n = 1,001 daily closing quotes of WTI Cushing
Crude Oil Spot and the Bloomberg European Dated Brent from October 2, 2006, to
October 1, 2010, collected from Bloomberg’s Financial Information Services. The
analysis of the extremal dependence between the log-returns of the two time series
in Jäschke (2012) is based on the implicit assumption that the tail dependence
structure, more precisely their lower tail copula, remains constant over time. We
are going to verify this assumption by applying the tests developed in the previous
sections.

As pointed out in Jäschke (2012), the assumption of an i.i.d. sample is unreal-
istic. To account for autocorrelation and volatility clustering, it is shown that an
ARMA(0,0)-EGARCH(2,3)-model including an explanatory variable (U.S. crude oil
inventory) and the skewed generalized error distribution adequately describes the
data generating process for the log-returns of the WTI time series. Regarding the
daily Brent spot log-returns, an ARMA(1,1)-EGARCH(2,3)-model including U.S.
crude oil inventory as an explanatory variable and the skewed generalized error
distribution provides an adequate fit.

We calculate standardized residuals on the basis of the preceding time series
models. A first view on the lower tail dependence between these residuals can be
gained from the diagnostic plot in Figure 2. For various values of k such that k/n
lies in the set {0.05, 0.06, . . . , 0.15}, we depict the points in time where the pseudo-
observations in both coordinates fall simultaneously below the value k/n. Note that
these are exactly the joint extremal events inside the indicators in the definition of
the empirical tail dependence coefficient. As the points are quite equally spaced in
time, the picture suggests that the tail dependence remains rather constant.

100 300 500 700 900
0.05

0.1

0.15

Figure 2: (WTI and Brent time series) Points in time where pseudo-observations in
both coordinates fall simultaneously below the value k/n, for k/n ∈ {0.05, 0.06, . . . , 0.15}.
The yellow row corresponds to the plateau ratio k∗/n = 104/1001 ≈ 10%.

More formally, we proceed by checking the hypothesis Hλ
0 of constancy of the

tail dependence coefficients by an application of TDC-Test 1. First, in order to
obtain a reasonable choice for the parameter k, we use the plateau algorithm from
Subsection 3.5 with bandwidth b = b0.005nc = 5. This yields a value of k∗ = 104
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(which is also depicted in yellow in Figure 2) and a plateau of length m = 31. Fol-
lowing Frahm et al. (2005), the average of the 31 empirical lower tail dependence
coefficients on this plateau, given by λ̂ = 0.732, provides a good estimate for λ. Fig-
ure 3 shows the corresponding standardized sequential empirical tail copula process
s 7→ λ̂−1/2Gn(s, 1, 1) for k∗ = 104. The graph seems to be indistinguishable from
a simulated path of a one-dimensional standard Brownian bridge, which indicates
that the null hypothesis cannot be rejected. In Figure 4, we depict both the value
of the the Cramér-von Mises type test statistic Sn defined in (7) (yellow) as well
as the corresponding p-valuess (blue) as a function of k. The dashed vertical line
shows the outcomes for the plateau optimal k∗ = 104, in which case we obtain
Sn = 0.285 with a resulting p-value of 0.15. Consequently, the null hypothesis Hλ

0

cannot be rejected at a 5% level of significance. Moreover, Figure 4 shows that
this conclusion is robust with respect to different choices of k. Results for the
Kolmogorov-Smirnov-type test and for the TDC-Test 2 are very similar and are
not depicted for the sake of brevity.

Finally, the assumption of a constant lower tail copula is verified by testing
for the hypothesis HΛ

0 . We apply the TC-Test from Section 3.2 with B = 2,000
bootstrap replications using the plateau optimal k∗ = 104. We obtain Tn = 0.068
with a resulting p-value of 0.33. Again, the null hypothesis cannot be rejected at
a 5% level of significance. Similar as for the tests for Hλ

0 , this conclusion is robust
with respect to different choices of k.

100 300 500 700 900
−1

−0.5

0

0.5

Figure 3: (WTI and Brent time series) Standardized sequential empirical tail copula

process λ̂−1/2Gn(s, 1, 1) for k∗ = 104 with respect to ns, s ∈ [0, 1].

5.2. Financial markets As an empirical application from the finance sector,
we consider the Dow Jones Industrial Average and the Nasdaq Composite time
series around Black Monday on 19th of October 1987. This dataset covers n = 1,768
log-returns from daily closing quotes between January 4, 1984, and December 31,
1990, collected from Datastream. Related studies in Wied et al. (2013) and Dehling
et al. (2013) try to examine whether Black Monday constitutes a break in the
dependence structure between the two time series. The outcomes of their studies
do not provide a clear picture, as the answer depends on the applied test statistic.
While the test for a constant Pearson correlation rejects the null hypothesis of
constant correlation, the more robust (rank-based) tests for constant Spearman’s
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Figure 4: (WTI and Brent time series) Test statistics Sn (yellow) and corresponding
p-values (blue) for different k. The horizontal line indicates the 5% level of significance, the
vertical one the plateau k∗ = 104.

rho and Kendall’s tau yield no evidence for changes. In these papers, the contrasting
result is explained by the fact that the (unfiltered) time series contain several heavy
outliers around Black Monday which seriously affect the Pearson-, but not the rank-
based tests for Spearman’s rho and Kendall’s tau.

For our analysis, we begin by an investigation of the univariate time series.
Applying the model selection and verification criteria from Jäschke (2012), we find
that an ARMA(0,0)-GARCH(1,1)-model with t-distribution for the Dow Jones log-
returns and an ARMA(1,0)-GARCH(1,1)-model with skewed t-distribution for the
Nasdaq equivalent provide the best fits. Details on the parameter estimation are
given in Table 5.

parameter Dow Jones log-returns Nasdaq log-returns

estimate std error estimate std error

mean equation

µ 0.0006 0.0002 0.0005 0.0002

θ1 - - 0.2714 0.0234

variance equation

ω 0.0000 0.0000 0.0000 0.0000

α1 0.0349 0.0084 0.1407 0.0179

β1 0.9373 0.0080 0.7914 0.0182

distribution

ξ − − 0.8531 0.0294

ν 4.2016 0.4390 5.3001 0.4135

Table 5: Maximum likelihood estimates together with their corresponding standard errors
for the Dow Jones ARMA(0,0)-GARCH(1,1)-model with t-distribution and the Nasdaq
ARMA(1,0)-GARCH(1,1)-model including the skewed t-distribution. All estimates but the
additive constant ω are significant at the 1% level.
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Along the lines of Dehling et al. (2013) we first seek to answer the question
whether Black Monday constitutes a break in the tail dependence between the two
time series. A positive answer would indicate that the market conditions have
substantially changed after this date. For the ease of a clear exposition, we restrict
ourselves to an investigation of the lower tail dependence coefficient. A first visual
description of the joint tail behavior similar to the one in Figure 2 can be found in
Figure 5, which, however, does not provide a clear picture: even though there seems
to be a tendency of stronger tail dependence for later dates in the time series, it is
unclear whether this is due to a change on Black Monday (second dashed vertical
line).

400 800 1200 1600
0.05

0.1

0.15

Figure 5: (Dow Jones and Nasdaq time series) Points in time where pseudo-
observations in both coordinates fall simultaneously below the value k/n, for k/n ∈
{0.05, 0.06, . . . , 0.15}. The yellow row corresponds to the plateau ratio k∗/n ≈ 11%. The
first yellow vertical line reflects the argmax-estimator bnŝλc = 817, the second equivalent
indicates Black Monday bns̄BMc = 959.

In the following, we examine this formally by applying the tests from Section 3,
in particular the test from Section 3.4 for a specific break-point. First, a careful
inspection of the plot k 7→ TDC(k) and the statistics defining the plateau algo-
rithm (which are not depicted for the sake of brevity) suggests that k∗ = 191 is a
reasonable choice for the parameter k, with a corresponding length of the plateau
of m = 41. The average of the empirical lower tail dependence coefficients over the
corresponding values k ∈ {171, . . . , 211} is given by λ̂ = 0.620.

Now, we apply the test from Section 3.4 for a specific break-point at bns̄BMc =
959, the date of Black Monday. The results are depicted in Figure 6, where we
plot the p-values of the test against the parameter k. For k∗ = 191, the resulting
p-value of 0.082 does not allow for a clear rejection of the null-hypothesis. In
contrast to this, slightly lower values of k yield to a rejection at the 5%-significance
level, whence, as a summary, there seems to be some light, but disputable evidence
against H0. However, the rejection of the null hypothesis might be due to different
reasons than a break precisely on Black Monday. To conclude upon the latter,
one would have to accept the hypothesis of constancy of the lower tail dependence
coefficient in the subsamples before and after Black Monday. Therefore, we perform
the corresponding TDC-Test 1 in the subsamples, whose results are depicted in
Figures 7 and 8 in a similar manner as before; in particular, they are based on new
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Figure 6: (Dow Jones and Nasdaq time series) Chi-squared test for a break at
bns̄BMc = 959: p-values for different k. The horizontal line indicates the 5% level of
significance, the vertical one the plateau k∗ = 191.
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Figure 7: (Dow Jones and Nasdaq time series) TDC-Test 1 for the subsample before
bns̄BMc = 959: p-values for different k. The horizontal line indicates the 5% level of
significance, the vertical one the plateau k∗ = 48.
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Figure 8: (Dow Jones and Nasdaq time series) TDC-Test 1 for the subsample after
bns̄BMc = 959 (including Black Monday): p-values for different k. The horizontal line
indicates the 5% level of significance, the vertical one the plateau k∗ = 169.
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parameter before Black Monday after Black Monday full sample size

n 958 810 1768

k∗ 48 169 191

m 30 28 41

λ̂ 0.449 0.678 0.620

Sn 0.546 0.211 1.064

p-value 0.028 0.244 0.003

Table 6: Summary of results for TDC-Test 1 applied to the subsample before Black
Monday, to the subsample after Black Monday and to the full sample.

(plateau-based) choices of k for the reduced samples. We can accept constancy
after Black Monday, but have to reject it for the subsample before Black Monday.
A summary of the results can also be found in the first two columns of Table 6.

In principal, one could now proceed by a refined analysis of the subsample before
Black Monday in order to identify potential additional break-points. Motivated by
the diagnostic plot in Figure 5, we prefer an application of the TDC-Test 1 to the
whole sample since this might reveal that a model with at most one break-point is
also appropriate. In other words, we dismiss the initial guess of a break precisely
on Black Monday and rather split the sample at an estimated break-point, hoping
that the latter yields to a simpler model with at most one break-point.

We do not depict the results of the corresponding test, since it clearly rejects the
null-hypothesis Hλ

0 at the 1%-significance level for almost all choices of k. A short
summary can be found in the last column of Table 6. More enlightening conclusions
can be drawn from the plot of the the function ns 7→ |λ̂−1/2Gn(s, 1, 1)| in Figure 9,
for k∗ = 191. The dashed vertical lines denote Black Monday bns̄BMc = 959 (blue)
and the value bnŝλc = 817 where the graph attains its maximum (yellow). The
latter corresponds to the 27th of March 1987 and appears to be the argmax for
most choices of k in a neighborhood of k∗ = 191. We split the sample at this
estimated break-point and conduct a refined analysis in the respective subsamples.
The procedure is similar to what we have done before, whence we restrict ourselves
to a brief summary of the results: in both subsamples, we cannot reject the null
hypothesis for all reasonable choices of k, including the values obtained from the
plateau algorithm, with p-values lying between 0.2 and 0.5. Similar to the reported
values in Table 6 we find λ̂ = 0.430 for the first subsample (k∗ = 43) and λ̂ = 0.656
for the second one (k∗ = 57), respectively.

We conclude this application with a short summary of the main findings:

(i) The test for a break on Black Monday does not yield entirely unambiguous
results; in particular, we have to reject the null hypothesis of constant tail
dependence in the subsample before Black Monday resulting in an overall
model with more than one break-point.

(ii) Testing against the existence of some unspecified break-point in the full sample
clearly rejects the null, with an estimated break-point at bnŝλc = 817. Since
we cannot reject the null hypothesis in the corresponding subsamples, an
overall model with only one break-point can be accepted.
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Figure 9: (Dow Jones and Nasdaq time series) Absolute standardized sequential

empirical tail copula process |λ̂−1/2Gn(s, 1, 1)| for k∗ = 191 with respect to ns, s ∈ [0, 1].
The yellow vertical line indicates the argmax estimator bnŝλc = 817, the black one shows
Black Monday bns̄BMc = 959.

6. Conclusion and Outlook

In this paper, we developed new tests for detecting structural breaks in the tail de-
pendence of multivariate time series, derived several theoretical properties (asymp-
totic null distribution, behavior under alternatives), investigated the finite-sample
performance and applied them to datasets from energy and financial markets.

Our work hints at interesting directions for further research. First of all, we did
not give a formal proof for the conjecture derived from the simulation study, that
the test statistics based on estimated residuals show the same asymptotic behavior
as the ones based on i.i.d. samples. To the best of our knowledge, this problem
is also unsolved for the estimation techniques described in Section 2: under what
conditions does (or does not) the additional estimation step of forming almost i.i.d.
residuals influence the asymptotic behavior of the nonparametric estimators for the
tail dependence? Second, extensions to the case of serially dependent datasets (e.g.,
to mixing sequences) would allow to check for constant tail dependence of the raw
data which might also be of interest for practitioners. In particular with a view on
the necessary (block) bootstrap procedure this could be a quite challenging task.

A. Appendix

A.1. Proof of the results in the main text For all proofs, by asymptotic
equicontinuity, we may redefine Ûi = Fn(Xi) and V̂i = Gn(Yi). For any s ∈ [0, 1]
and (x, y) ∈ E, let

Λ̃◦n(s, x, y) =
1

k

bnsc∑
i=1

1(Ui ≤ kx/n, Vi ≤ ky/n).

Under HΛ
0 , this is a sequential (oracle) estimator for Λ◦(s, x, y) = sΛ(x, y). To

begin with, we investigate the associated sequential empirical process, defined as

Bn(s, x, y) =
√
k
{

Λ̃◦n(s, x, y)− Λ◦(s, x, y)
}
.
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The proof of the following lemma is given in Appendix A.2.

Lemma A.1. Suppose that Assumptions 3.1 and 3.2 hold. Then, under HΛ
0 ,

Bn  BΛ in (B∞([0, 1]× E), d),

where BΛ is given as in Proposition 3.3.

Proof of Proposition 3.3. Since the rank of Xi among X1, . . . , Xn is the same as the
rank of Ui among U1, . . . , Un (similar for the second coordinate) we may assume
without loss of generality that (Xi, Yi) is distributed according to Ci, i.e., F (x) =
G(x) = x for all x ∈ [0, 1]. Some thoughts reveal that

|Λ̂◦n(s, x, y)− Λ̄◦n(s, x, y)| ≤ 2/k,

uniformly in (s, x, y) ∈ Sm, where

Λ̄◦n(s, x, y) =
1

k

bnsc∑
i=1

1
{
Xi ≤ F−n (kx/n), Yi ≤ G−n (ky/n)

}
and where F−n and G−n denote the generalized inverse functions of Fn and Gn,
respectively. Note that Λ̄◦n can be expressed in terms of Λ̃◦n as

Λ̄◦n(s, x, y) = Λ̃◦n

{
s,
n

k
F−n

(
kx

n

)
,
n

k
G−n

(
ky

n

)}
.

Now, we have n/kFn(kx/n) = Λ̃◦n(1, x,∞) and n/kGn(kx/n) = Λ̃◦n(1,∞, y),
whence, by Hadamard-differentiability of the inverse mapping as stated in Bücher
and Dette (2011),

sup
x∈[0,M ]

∣∣∣∣nkF−n
(
kx

n

)
− x
∣∣∣∣ = oP (1), sup

y∈[0,M ]

∣∣∣∣nkG−n
(
ky

n

)
− y
∣∣∣∣ = oP (1) (13)

for any M > 0 (this result can also be obtained by deducing weak convergence of
x 7→ Bn(1, x,∞) as an element of the càdlàg space D([0,M ]) with the Skorohod
topology (from Lemma A.1), invoking a Skorohod construction and applying Ver-
vaat’s Lemma, see Vervaat (1972) or Lemma A.0.2 in de Haan and Ferreira (2006)).
Therefore, by asymptotic equicontinuity of Bn,

Gn(s, x, y) =
√
k
{

Λ̄◦n(s, x, y)− sΛ̄◦n(1, x, y)
}

+O(k−1/2)

= Bn
{
s,
n

k
F−n

(
kx

n

)
,
n

k
G−n

(
ky

n

)}
− sBn

{
1,
n

k
F−n

(
kx

n

)
,
n

k
G−n

(
ky

n

)}
+O(k−1/2) (14)

weakly converges to GΛ(s, x, y) = BΛ(s, x, y)− sBΛ(1, x, y) on (Sm, ‖ · ‖Sm), for any
m ∈ N. The Proposition is proved.

Remark A.2. A crucial argument in the preceding proof is the decomposition (14)
of Gn into a sum involving Bn from Lemma A.1. A similar decomposition is possible
with Bn replaced by B′n from the proof of Lemma A.1, and weak convergence of
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the latter holds without imposing Assumption 3.2 (b). Therefore, a relaxation
of the assumptions for Proposition 3.3 seems to be possible. Indeed, a sufficient
condition that makes occurring bias terms negligible and allows to dispense with
Assumption 3.2 (b) is given by

sup
(s,x,y)∈Sm

√
k

n

∣∣∣∣∣∣
bnsc∑
i=1

Ri(x, y, k, n)− s
n∑
i=1

Ri(x, y, k, n)

∣∣∣∣∣∣ = o(1),

as n→∞, where

Ri(x, y, n, k) =
n

k
Ci(kx/n, ky/n)− Λ(x, y).

In case Ci ≡ C is constant over time, this condition reduces to
√
k/n = o(1), which

is satisfied anyway since k = o(n).

Proof of Proposition 3.4. It follows from Proposition 3.3 that

s 7→ {Λ̂◦n(1, 1, 1)}−1/2Gn(s, 1, 1)

converges to a standard Brownian bridge. Therefore, both assertions are simple
consequences of the continuous mapping theorem.

Proof of Proposition 3.6. Let us first fix a b ∈ {1, . . . , B} and show that Gn,ξ(b)

weakly converges to GΛ(b) . For the sake of a clear notation, we omit the index b for
the proof of this result. In light of the continuous mapping theorem, it is sufficient
to prove that Bn,ξ weakly converges to BΛ. As in the proof of Proposition 3.3, we
may assume that the marginal distributions are standard uniform. Let us suppose
that we have proved B̃n,ξ  BΛ, where

B̃n,ξ(s, x, y) =
√
k{Λ̃◦n,ξ(s, x, y)− Λ̃◦n(s, x, y)},

and

Λ̃◦n,ξ(s, x, y) =
1

k

bnsc∑
i=1

ξi
ξ̄n
1(Ui ≤ kx/n, Vi ≤ ky/n).

Then, by a similar reasoning as in the proof of Proposition 3.3,

Bn,ξ(s, x, y) = B̃n,ξ
{
s,
n

k
F−n

(
kx

n

)
,
n

k
G−n

(
ky

n

)}
+O

(
k−1/2 + k−1/2 n

max
i=1

ξi/ξ̄n

)
. (15)

By (13) and asymptotic equicontinuity of B̃n,ξ, the first expression on the right-
hand side weakly converges to BΛ in `∞(Sm), for any fixed Sm. In light of the fact
that ξ1 has finite moments of any order we have P(ξ1 > x) = O(x−q) for any q ∈ N.
Therefore, the estimation

P(k−1/2 n
max
i=1

ξi/ξ̄n > ε) ≤ P(ξ̄n ≤ 1/2) + nP(ξ1 > ε
√
k/2) = o(1) + nO(k−q/2)

shows that theO-term in (15) converges to 0 in probability, by choosing q sufficiently
large. This proves that Gn,ξ(b) weakly converges to GΛ(b) .
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It remains to be shown that B̃n,ξ  BΛ in `∞(Sm), for any fixed Sm. We have

B̃n,ξ(s, x, y) =
1√
k

bnsc∑
i=1

(
ξi
ξ̄n
− 1

)
1(Ui ≤ kx/n, Vi ≤ ky/n)

=
1√
k

bnsc∑
i=1

(
ξi
ξ̄n
− 1

)
{1(Ui ≤ kx/n, Vi ≤ ky/n)− Λ(kx/n, ky/n)}

= An(s, x, y) +Bn(s, x, y) + Cn(s, x, y),

where

An =
1√
k

bnsc∑
i=1

(ξi − 1) {1(Ui ≤ kx/n, Vi ≤ ky/n)− Λ(kx/n, ky/n)} ,

Bn =

(
1

ξ̄n
− 1

)
1√
k

bnsc∑
i=1

(ξi − 1) {1(Ui ≤ kx/n, Vi ≤ ky/n)− Λ(kx/n, ky/n)} ,

Cn =

(
1

ξ̄n
− 1

)
1√
k

bnsc∑
i=1

{1(Ui ≤ kx/n, Vi ≤ ky/n)− Λ(kx/n, ky/n)} .

It follows from Lemma A.1 and from the fact that ξ̄n converges to 1, almost surely,
that Cn = oP (1), uniformly on each Sm. Hence, observing that Bn = An × oP (1),
the proposition is proved if we show that An converges weakly to BΛ in `∞(Tm). By
similar arguments as in proof of Lemma A.1 (Ottaviani’s inequality; the details are
omitted for the sake of brevity), it suffices to establish the (non-sequential) weak
convergence of Ãn(x, y) = An(1, x, y) to DΛ(x, y) = BΛ(1, x, y) in `∞(Tm). To show
this, we decompose Ãn = An1 +An2, where

An1 =
1√
k

n∑
i=1

(ξi − 1) {1(Ui ≤ kx/n, Vi ≤ ky/n)− Ci(kx/n, ky/n)} ,

An2 =
1√
k

n∑
i=1

(ξi − 1) {Ci(kx/n, ky/n)− Λ(kx/n, ky/n)} .

Now, Ci(kx/n, ky/n) − Λ(kx/n, ky/n) = k/n × O(B(k/n)) by Assumption 3.1,
uniformly in i and uniformly on Tm, whence

An2 =
1

n

n∑
i=1

(ξi − 1)×
√
kO(B(k/n)) = o(1),

uniformly on Tm, almost surely. Finally, we obtain weak convergence of An1 to DΛ

from Theorem 11.19 in Kosorok (2008) and the fact that conditional weak conver-
gence as considered by the last named author implies unconditional weak conver-
gence.

Now, let us give the proof of the proposition. On each Sm, the sequence
(Gn,Gn,ξ(1) , . . . ,Gn,ξ(B)) is jointly asymptotically tight by Lemma 1.4.3 in Van der
Vaart and Wellner (1996). Hence, it remains to consider weak convergence of the
finite-dimensional distributions. It suffices to consider the finite-dimensional dis-
tributions of (Bn,Bn,ξ(1) , . . . ,Bn,ξ(B)). By a similar argumentation as above in the
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case of a fixed b ∈ {1, . . . , B}, we may replace each coordinate Bn,ξ(b) by

1√
k

bnsc∑
i=1

(
ξ(b)i − 1

)
{1(Ui ≤ kx/n, Vi ≤ ky/n)− Ci(kx/n, ky/n)} .

Then, the coordinates are uncorrelated and row-wise independent, whence the
finite-dimensional distributions weakly converge to those of (BΛ,B(1)

Λ , . . . ,B(B)

Λ ) by
the central limit theorem for row-wise independent triangular arrays.

Proof of Corollary 3.7. For TDC-Test 1, this is a direct consequence of Proposi-
tion 3.4 (i). The proofs of TDC-Test 2 and TC-Test being essentially the same, we
restrict ourselves to the proof of TDC-Test 2. For monotonicity reasons it suffices
to consider α ∈ R \Q.

Let K denote the c.d.f. of S and define

Kn,B(x) = B−1
B∑
b=1

1(Sn,ξ(b) ≤ x), KB(x) = B−1
B∑
b=1

1(S(b) ≤ x),

where S(1), . . . ,S(B) denote independent copies of S. Then we can write Pr(Sn ≥
q̂Sn,1−α) = Pr{Kn,B(Sn) ≥ 1− α}. Let us first show that, for any B ∈ N fixed, we
have

lim
n→∞

Pr{Kn,B(Sn) ≥ 1− α} = Pr{KB(S) ≥ 1− α}. (16)

For that purpose, let ε > 0 be given. Define a map Ψ : RB+1 → R by Ψ(t0, . . . , tB) =
B−1

∑B
b=1 1(tb ≤ t0) and note that Ψ is continuous at any point (t0, . . . , tB) with

pairwise different coordinates (i.e., ti 6= tj for i 6= j). Then, observing that
(Sn,Sn,ξ(1) , . . . ,Sn,ξ(B))  (S,S(1), . . . ,S(B)) with the limit having pairwise dif-
ferent coordinates, almost surely, the continuous mapping theorem implies that
Kn,B(Sn)  KB(S), for n → ∞. The Portmanteau-Theorem implies that there
exists some n0 = n0(ε,B) such that

|Pr{Kn,B(Sn) ≥ 1− α} − Pr{KB(S) ≥ 1− α}| < ε

(note that Pr(KB(S) = 1− α) = 0 since α ∈ R \Q), which proves (16).
It remains to be shown that

lim
B→∞

Pr{KB(S) ≥ 1− α} = α. (17)

By the Glivenko-Cantelli Theorem, we may choose B0 = B0(ε) ∈ N such that

Pr

{
sup
x∈R
|KB(x)−K(x)| > ε

}
≤ ε.

for all B ≥ B0. For all such B,

Pr{KB(S) ≥ 1− α} ≤ Pr{K(S) ≥ 1− α− ε) + ε = α+ 2ε,
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and similarly,

Pr{KB(S) ≥ 1− α} ≥ Pr{K(S) ≥ 1− α+ ε) = α− ε,

which implies that

|Pr{KB(S) ≥ 1− α} − α| ≤ 2ε.

This proves (17) and hence the Corollary.

Proof of Proposition 3.8. As in the proof of Proposition 3.3 we may assume without
loss of generality that the marginals are standard uniform.

We begin with the proof of (i). It suffices to derive the p-limit of

Λ̂◦n(s, x, y) =
1

k

bnsc∑
i=1

1
(
Ûi ≤ kx/n, V̂i ≤ ky/n

)
for, on the one hand, s ≤ s̄, and, on the other hand, s > s̄. The rest are simple
calculations and applications of the continuous mapping theorem.

For s ≤ s̄, we show that

sup
s∈[0,s̄]

∣∣∣∣∣∣ 1

kn

bnsc∑
i=1

1
(
Ûi ≤ kn/n, V̂i ≤ kn/n

)
− sλ(1)

∣∣∣∣∣∣ = oP (1).

As in the proof of Proposition 3.3, we may replace the indicators in the previous
expression by 1{Ui ≤ F−n (kn/n), Vi ≤ G−n (kn/n)}, whence we need to show that

sup
s∈[0,s̄]

∣∣∣∣∣∣ 1

kn

bnsc∑
i=1

1
{
Ui ≤ F−n (kn/n), Vi ≤ G−n (kn/n)

}
− sλ(1)

∣∣∣∣∣∣ = oP (1).

The latter result follows from Lemma A.1 , uniform continuity of Λ(1) and (13).
For s > s̄, we write

1

kn

bnsc∑
i=1

1
(
Ûi ≤ kn/n, V̂i ≤ kn/n

)

=
1

kn

bns̄c∑
i=1

1
(
Ûi ≤ kn/n, V̂i ≤ kn/n

)
+

1

kn

bnsc∑
i=bns̄c+1

1
(
Ûi ≤ kn/n, V̂i ≤ kn/n

)
.

Then, by similar arguments as above, we can conclude that

sup
s∈[s̄,1]

∣∣∣∣∣∣ 1

kn

bnsc∑
i=1

1
(
Ûi ≤ kn/n, V̂i ≤ kn/n

)
−
{
s̄λ(1) + (s− s̄)λ(2)

}∣∣∣∣∣∣ = oP (1).

Proof of Corollary 3.9. For TDC-Test 1, this is a direct consequence of Propo-
sition 3.8 (i). The proofs for TDC-Test 2 and TC-Test being essentially the same,
we only consider the TC-Test.
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Let us first show that Tn,ξ is stochastically bounded. This follows if we prove
that sup(s,x,y)∈Sm |Bn,ξ(s, x, y)| = OP (1), for n → ∞. By a similar reasoning as in

(15) and the subsequent paragraph, it suffices to show the same for B̃n,ξ(s, x, y).
Since

sup
(s,x,y)∈Sm

|B̃n,ξ(s, x, y)| = max

{
sup

s≤s̄,(x,y)∈Tm
|B̃n,ξ(s, x, y)|, sup

s≥s̄,(x,y)∈Tm
|B̃n,ξ(s, x, y)|

}
,

we can verify the claim for each of the suprema in the maximum. The first term
converges weakly due to the proof of Proposition 3.6 and is therefore bounded in
probability. For the second term, we decompose

B̃n,ξ(s, x, y) = B̃n,ξ(s̄, x, y) + k−1/2

bnsc∑
i=bns̄c+1

(
ξi
ξ̄n
− 1

)
1(Ui ≤ kx/n, Vi ≤ ky/n).

(18)

Again by the proof of Proposition 3.6, the first summand on the right-hand side
converges weakly in `∞(Tm) (with respect to (x, y)) to BΛ(1)(s̄, x, y), whence the
supremum of it absolute value is bounded in probability. The second summand is
equal in law to B̄n,ξ(s, x, y)− B̄n,ξ(s̄, x, y), where B̄n,ξ is defined analogously as B̃n,ξ,
with (Ui, Vi) replaced by a sequence (U?i , V

?
i ) of i.i.d. random vectors such that

(U?i , V
?
i ) ∼ Ci for i > bns̄c and (U?i , V

?
i ) ∼ Cn for i ≤ bns̄c. This sequence meeting

the assumptions of Proposition 3.6, we can conclude that the second summand on
the right hand side of (18) weakly converges to BΛ(2)(s, x, y)−BΛ(2)(s̄, x, y). Hence,
its supremum is bounded in probability.

Now, fix B ∈ N and let ε > 0 be given. Then, since Tn,ξ(b) = OP (1) for each
b = 1, . . . , B, we may choose K = K(ε,B) > 0 such that

sup
n∈N

Pr

(
B

max
b=1
|Tn,ξ(b) | > K

)
≤ ε.

Therefore, q̂Tn,1−α ≤ K with probability 1 − ε, and since Tn → ∞ in probability,
we get that

lim inf
n→∞

Pr(Tn ≥ q̂Tn,1−α) ≥ lim inf
n→∞

{Pr(Tn ≥ K)− Pr(q̂Tn,1−α > K)} ≥ 1− ε.

As ε > 0 was arbitrary, the assertion is proved.

Proof of Proposition 3.10. It follows from Proposition 3.8, that the random func-

tions s 7→ k
−1/2
n |Gn(s, 1, 1)| and s 7→ k

−1/2
n supt∈[0,1] |Gn(s, 2 − 2t, 2t)| uniformly

converge to deterministic functions in probability, respectively, which have a unique
maximum in the point s̄ (the graph is a triangle with a peak in s̄). Consistency
of the change-point estimators then follows from the argmax-continuous mapping
theorem, see for instance Kim and Pollard (1990), Theorem 2.7.

33



A.2. Proofs of additional results

Proof of Lemma A.1. Define a centered version of Bn by

B′n(s, x, y) =
1√
kn

bnsc∑
i=1

{
1
(
Ui ≤ knx/n, Vi ≤ kny/n

)
− Ci(knx/n, kny/n)

}
and let us show that d(B′n,Bn) = o(1). We have

|B′n(s, x, y)− Bn(s, x, y)| =
√
kn

∣∣∣∣∣∣ 1

kn

bnsc∑
i=1

Ci(knx/n, kny/n)− sΛ(x, y)

∣∣∣∣∣∣
≤
√
kn

∣∣∣∣(bnscn − s
)

Λ(x, y)

∣∣∣∣+
√
kn
bnsc
n

n
max
i=1

∣∣∣∣ nknCi(knx/n, kny/n)− Λ(x, y)

∣∣∣∣
The first term on the right-hand side of this expression is of order O(

√
kn/n) = o(1),

uniformly on each Sm. By (8), the second term is of order O(
√
knB(n/kn)) = o(1),

uniformly on each Tm.
Now, let us show weak convergence of B′n. It suffices to fix one set Sm. Finite-

dimensional convergence follows from the classical central limit Theorem for row-
wise independent triangular arrays. To show tightness, we proceed similar as in the
proof of Theorem 2.12.1 in Van der Vaart and Wellner (1996). For ` ∈ {1, . . . , n},
define

D′`,n(x, y) =
1√
kn

∑̀
i=1

{
1
(
Ui ≤ knx/n, Vi ≤ kny/n

)
− Ci(knx/n, kny/n)

}
and note that D′n,n(x, y) = B′n(1, x, y). For any δ > 0, set

wδ(D′`,n) = sup{|D′`,n(x1, y1)− D′`,n(x2, y2)| :
(xj , yj) ∈ TM for j = 1, 2, |x1 − x2|+ |y1 − y2| ≤ δ}.

Invoking Theorem 11.16 in Kosorok (2008), it follows as in Lemma 4.1 in Bücher and
Dette (2011) that D′n,n(x, y) weakly converges to BΛ(1, x, y) in `∞(Tm) (by invoking
Theorem 11.16 rather than Theorem 11.20 in Kosorok (2008), the i.i.d. result in
Bücher and Dette (2011) also holds under the slightly more general situation of a
changing copula but a constant tail copula). Hence, observing that BΛ(1, ·, ·) has
continuous trajectories, Theorem 1.5.7 and its addendum in Van der Vaart and
Wellner (1996) imply that

lim
δ→0

lim sup
n→∞

P∗(wδ(D′n,n) > ε) = 0. (19)

Similar as for D′`,n, set

wδ(B′n) = sup{|B′n(s1, x1, y1)− B′n(s2, x2, y2)| :
(sj , xj , yj) ∈ Sm for j = 1, 2, |s1 − s2|+ |x1 − x2|+ |y1 − y2| ≤ δ}.

In order to establish tightness, again by Theorem 1.5.7 in Van der Vaart and Wellner
(1996), it suffices to show that (19) holds with D′n,n replaced by B′n.
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First of all, by the triangular inequality,

wδ(B′n) ≤ sup
|s1−s2|≤δ

sup
(x,y)∈Tm

|B′n(s1, x, y)− B′n(s2, x, y)|

+ sup
0≤s≤1

sup
|x1−x2|+|y1−y2|≤δ

|B′n(s, x1, y1)− B′n(s, x2, y2)|. (20)

The second summand on the right-hand side can be written as

n
max
`=1

sup
|x1−x2|+|y1−y2|≤δ

|B′n(`/n, x1, y1)− B′n(`/n, x2, y2)| = n
max
`=1

wδ(D′l,n)

By Ottaviani’s inequality, see Lemma A.1.1 in Van der Vaart and Wellner (1996),
we have

P∗( n
max
`=1

wδ(D′`,n) > 2ε) ≤
P∗(wδ(D′n,n) > ε)

1−maxn`=1 P∗(wδ(D′`,n) > ε)
.

From (19), we know that the numerator converges to 0 for n → ∞ followed by
δ → 0. Let us show that the denominator is bounded away from 0. Observing
that D′`,n(x, y) =

√
k`/knD′`,`(kn`x/(k`n), kn`y/(k`n)) and that kn`/(k`n) ≤ 1 for

all ` ≤ n, we have wδ(D′`,n) ≤
√
k`/knwδ(D′`,`). Asymptotic equicontinuity of D′n,n

allows to choose some n0 ∈ N such that, for all n ≥ n0 and for some fixed δ0 > 0
(and hence for all δ ≤ δ0),

n
max
`=n0

P∗(
√
k`/knwδ(D′`,`) > ε) ≤ n

max
`=n0

P∗(wδ(D′`,`) > ε) ≤ 1/2.

On the other hand, for ` < n0, we have
√
k`wδ(D′`,`) ≤ 4n0 = o(

√
kn), which shows

that the denominator is bounded away from 0. Hence, the second summand in (20)
converges to 0 in probability for n→∞ followed by δ → 0.

To show the same for the first summand in (20) it suffices to show that

P∗
(

max
0≤jδ≤1
j∈N

sup
jδ≤s≤(j+1)δ

sup
(x,y)∈Tm

|B′n(s, x, y)− Bn(jδ, x, y)| > 2ε

)
converges to 0. The at most d1/δe terms in the first maximum are identically
distributed whence we can estimate the probability by

d1/δeP∗
(

sup
0≤s≤δ

sup
(x,y)∈Tm

|B′n(s, x, y)| > 2ε

)
≤ d1/δeP∗

(
max
`≤bnδc

‖D′`,n‖Tm > 2ε

)
≤

d1/δeP∗
(∥∥D′bnδc,n∥∥Tm > ε

)
1−max`≤bnδc P∗

(
‖D′`,n‖Tm > ε

) , (21)

where, in the last step, we invoked Ottaviani’s inequality again. Regarding the
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numerator, exploiting that kn`/(k`n) ≤ 1 for all ` ≤ n again, we have

lim sup
n→∞

P∗
(∥∥D′bnδc,n∥∥Tm > ε

)
≤ lim sup

n→∞
P∗
(√

kbnδc/kn
∥∥D′bnδc,bnδc∥∥Tm > ε

)
≤ P

(∥∥DΛ

∥∥
Tm

> εδ−α/2
)

by the Portmanteau Theorem and Assumption 3.2(c), where DΛ = BΛ(1, ·, ·) de-
notes the weak limit of D′n,n. The fact that suprema of Gaussian processes possess
finite moments of any order implies that

d1/δeP
(∥∥DΛ

∥∥
Tm

> εδ−α/2
)

= o(1)

as δ → 0. Regarding the denominator in (21), we can proceed as before: since
η = 1− P(‖DΛ‖Tm > ε) is larger than 0, we may choose n0 ∈ N such that

bnδc
max
`=n0

P∗
(
‖D′`,n‖Tm > ε

)
≤
bnδc
max
`=n0

P∗
(√

k`/kn‖D′`,`‖Tm > ε
)

≤
bnδc
max
`=n0

P
(
‖D′`,`‖Tm > ε

)
≤ 1− η/2.

For ` < n0, we have
√
k`‖D′`,`‖Tm ≤ 2n0 = o(

√
kn). Thus, the denominator in (21)

is bounded away from 0 and the Proposition is proved.
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Jäschke, S. (2012): “Estimation of risk measures in energy portfolios using mod-
ern copula techniques,” SFB 823 discussion paper 43/12, TU Dortmund.
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